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crystal (LC) ordering into the benzothienobenzothiophene (BTBT) family of LCs,
creating a new class of LC semiconducting materials which respond in a facile way to
anisotropic surfaces, and can, thereby, be effectively processed into highly oriented ‘
monodomains. Measurement on these domains of the electrical conductivity, with in
situ monitoring of domain quality and orientation using LC birefringence textures in
electroded cells, brings a new era of precision and reliability to the determination of  Fgi.cerical
anisotropic carrier mobility in LC semiconductors. signal 3 m (il
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ABSTRACT: We report a mesogenic compound which introduces nematic liquid A i rotation
: A

High mobility (z,)

B INTRODUCTION The use of conventional spin-coating, which gives unaligned

One of the prototypical organic electronic devices is the field- samples, may be driven by the difficulty in realizing the

effect transistor (FET), which has been widely used in many al%gnment of the LC (1)98_(2:13 investigated using conventional LC
6-38 alignment methods. However, many other complex

electronic devices, including displays,l_5 sensors, im-
agers,”'’ radio frequency identification (RFID), and logic
elements."'~'? Recent research has shown that small-molecule
organic semiconductors (OSCs) possessing liquid crystal (LC)
phases are of great potential value in FET devices owing to
their flexibility, tunability, proven efficacy in large-area thin-

fabrication tools, including solvent-exchange methods,””
.y 23 i 24
evaporation-induced self-assembly,” vapor deposition,” and
template-assisted self-assembly,”> have been shown to allow
the formation of aligned smectic LC samples to some degree.
In addition to these, some solution-processable LC OSC
alignment has been demonstrated using solvent-assisted

film devices, ability to operate over a wide temperature range, methods such as soft lithography,”® off-center spin-coating,”’
low cost, and solution-processability when compared to antisolvent crystallization,”® zone casting,29 and solution
organic polymer and inorganic semiconductors.*~"” However, shearing.’® All of these limitations are due to the disorder in
prior reports regarding LC OSCs have not taken advantage of the molecular arrangement as solvent dries, resulting in
several valuable inherent properties of LC phases, specifically unintended or uncontrollable morphologies such as grain
the well-known capability of many LCs to be “aligned” boundaries, glasslike structures, and phase segregation, which
uniformly to improve the device performance and, in the can deteriorate the electrical property. Furthermore, it is not
context of this work, the OSC charge-carrier mobility in thin easy to align LC OSCs with uniaxial planar configuration
films. For example, previous research on LC OSCs focused on because the solution-processed open-cell system induces
the smectic E phase, which is a highly ordered solidlike phase

that uses spin-coating from a solution followed by thermal Received: July 15, 2018

annealing to improve the charge-carrier mobility."® Published: October 24, 2018
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Figure 1. Schematic illustration of the bottom-gate bottom-contact OFET fabrication process. (a) Planar anchoring polyimide solution was spin-
coated on ITO-coated glass. (b) The rubbing method is treated on PA PI layer. (c) Au electrodes were thermally evaporated on the rubbed PI
dielectric layer followed by fabrication of the PFBT SAM layer. (d) The top substrate was flipped over on the prepared bottom substrate followed
by UV exposure to control the cell gap using silica particles dissolved in UV-curable glue. (e) The sandwich cell is filled with LC materials by
capillary force near the nematic to the isotropic phase-transition temperature of ~280 °C. (f) DSC curves were obtained at 5 °C min™" for the

cooling process. (g) Chemical structure of MeOPh-BTBT-8.

majorly vertically oriented films due to the strong homeotropic
anchoring manner of air. However, like the most solvent-free
or melt-fluidic LC phase, the nematic LC phase can provide
very high-quality alignment. Additionally possessing only long-
range orientational order, it allows the uniaxial planar
alignment under rubbed planar anchoring conditions over
large areas. This feature is fundamental to the realization of the
now ubiquitous LC display (LCD).”' It may also be
advantageous to organic light-emitting diodes (OLEDs)
integrated with organic FETs (OFETs), where the light
intensity is proportional to the charge-carrier mobility, so
larger overlapped 7 orbitals and the uniformity of aligned
organic semiconductor molecules are essential.”’

Therefore, it is important to design new LC OSCs that can
show both nematic and smectic phases. Here, we describe a
new LC mesogen possessing the phase sequence nematic—
smectic A—smectic E—crystal on cooling. Furthermore, we
report the uniaxial planar alignment of the LC OSCs in rubbed
planar anchoring sandwich cells in the nematic phase, and
provide measurements of the anisotropic charge-carrier
mobility and birefringence intensity in the LC phases. This
work demonstrates a strong correlation between the
birefringent brightness, which is a directly visible measure of
the LC anisotropic orientation, and the charge-carrier mobility.

B RESULTS AND DISCUSSION

FET Device Fabrication and Molecule Design. To
implement our strategy, we designed a modified planar
anchoring sandwich cell as follows (Figure 1). First, a
transparent indium-tin-oxide-coated (ITO-coated) glass sub-
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strate is treated by spin-coating with a polyimide (PI)
“alignment layer” material expected to produce planar
anchoring. This coating serves as both a dielectric and an
alignment layer for the “bottom” substrate (Figure la). After
uniaxial mechanical rubbing of the polyimide (PI) layer (a
prototypical LC alignment method) (Figure 1b),*>** Au/Ti
electrodes are deposited by conventional thermal evaporation
through a metal shadow mask (Figure 1lc). Then, a
pentafluorobenzenethiol (PFBT) self-assembled monolayer is
applied to reduce the contact resistance, which is important in
the bottom-contact transistor configuration used for these
experiments. The top substrate is prepared by spin-coating the
PI on bare glass, followed by uniaxial rubbing to provide
uniform planar alignment of LC OSC molecules (Figure 1d).
To investigate the orientation of LC OSCs in our sandwich cell
device, we investigated three different alignment conditions:
(1) control without any rubbing process; (2) parallel-rubbed
PI; and (3) perpendicular-rubbed PI; the latter two using
orthogonal rubbing directions relative to the source/drain
channel direction. Finally, similar to a conventional sandwich
LC cell, an LC material is introduced between the top and
bottom substrates at a temperature near the isotropic to
nematic phase transition by capillary action, then cooled down
at 15 °C min~". The film thickness (spacing between the
substrate plates) is controlled using silica “spacer beads”
dispersed in a UV-curable glue. In this study, the film thickness
is approximately 1 gm. The final configuration of the resulting
OFET is shown in Figure le. OFETSs prepared in this way
show highly uniform and smooth surfaces, and are composed
of a pure organic compound, which is free of solvents. This is
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Figure 2. Series of POM images and structural hierarchy of different temperatures and rubbing conditions. (a) Structural hierarchy of MeOPh-
BTBT-8 molecules in different phases. (b—e) POM images of different phases (smectic A, smectic E, and crystalline phase) with no rubbing
condition. (f—i) POM images of different phases with rubbing direction perpendicular to source/drain channel direction. (j—m) POM images of
different phases with rubbing direction parallel to source/drain channel direction. (Scale bar: 200 ym.)

important because the solvent evaporation can induce poor
uniformity and rough surface morphology after the recrystal-
lization. Our cell design and fabrication not only improve the
reliability of the device performance, but also exhibit good
reproducibility in terms of the FET performance, both from
device to device and from sample to sample, showing minimal
variation in FET mobility.

Existing well-established small-molecule LC OSCs are
benzothienobenzothiophene (BTBT) derivatives.”> > One
such a material is C8-BTBT, which possesses only a smectic
A LC phase when two identical alkyl tails are symmetrically
substituted on the BTBT core. Another well-known molecule
is Ph-BTBT-10, which has an additional smectic E phase below
the smectic A phase, obtained by replacing one of the flexible
alkyl tails with a more rigid phenyl ring. On the basis of the
BTBT core following some general trends regarding LC
molecular design, a new LC OSC molecule 2-(4-methox-
yphenyl)-7-octyl-benzothienobenzothiophene (MeOPh-
BTBT-8) was prepared (Figure 1g). This material has a large
m-conjugated fused ring structure to enhance the charge-carrier
mobility and give a rigid mesogenic motif to form LC and
crystal phases. The differential scanning calorimetry (DSC)
chart (Figure 1f) shows the transition from isotropic to
nematic, smectic A, smectic E, and crystal phases upon cooling,
which is different from the previously reported asymmetric
BTBT derivatives, which show only smectic A and smectic E
phases."®

The detailed synthesis is shown in the Supporting
Information (Figure $1).3*7%¢ The BTBT core is first
synthesized, followed by the introduction of an n-octyl tail
via a Friedel-Crafts acylation followed by Wolff—Kishner
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reduction. The resulting intermediate was then brominated
(Br,), followed by Suzuki coupling with 4-methoxy phenyl
boronic acid to give a good yield of MeOPh-BTBT-8.
Polarized Optical Microscopic Properties of the New
Mesogen. MeOPh-BTBT-8 exhibits three LC phases on
cooling, which are directly observed by polarized optical
microscopy (POM) (Figure 2). Figure 2a shows schematic
representations of molecular packing in the nematic, smectic A,
smectic E, and crystal phases. X-ray and electron diffraction
structural studies of smectic E phase materials indicate a two-
dimensional (2D) hexagonal lattice and strong herringbone
packing.””** For the current material, typical schlieren textures
and uniaxial aligned single domains of the nematic phase in the
sandwich cell device are observed without (Figure 2b) and
with (Figure 2fjj) the rubbing process. The smectic A phase
exhibits typical fan textures with disclination lines without
rubbing (Figure 2c) at lower temperatures, while uniform and
uniaxial single-domain alignment of LC OSCs can be seen
when the rubbing direction is either perpendicular or parallel
to the source/drain channel direction (Figure 2gk). As
expected, when the rubbing process is applied, the LC director
is aligned with the rubbing direction (red arrows) in the
nematic and smectic A phases. In the smectic E phase, stripe
patterns are generated perpendicular to the molecular long axis
orientation (Figure 2d,h,), which results from close
herringbone packing of the LC OSC molecules (Figure 2a).
In addition, as expected, randomly oriented domains in the
smectic E phase are generated when the PI is not rubbed
(Figure 2d), meaning that molecular long axes are not
macroscopically oriented. These alignment characteristics are
also observed, even on cooling, to form the crystalline phase
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Figure 3. Electrical characteristics of bottom-gate and bottom-contact FETs. (a) Transfer characteristics of FETs fabricated with rubbing directions
that are different from the source/drain channel direction in the crystalline phase. (Vg = =50 V) (b) Transfer characteristics of FETs fabricated
with rubbing direction perpendicular to source/drain channel direction at different temperatures. (Vg = —50 V).

(Figure 2e,im). Moreover, even in the crystalline phase, large
cracks in the BTBT layer are not seen, suggesting a similar
thermal expansion coefficient of lattices within the molecular
layers in the smectic E and crystalline phases, as has been
reported previously.'**”*’ This results in an improvement in
the reliability of FET devices fabricated with such materials."®
Here, we show that the nematic phase at higher temperature is
vital for the fabrication of unidirectional single-domain OFET's
in rubbed sandwich cells, which is crucial for improving the
device performance using LC OSCs. Without the nematic
phase, LC OSCs with a direct phase transition from the
isotropic to smectic phases are not well-aligned (Figures S2
and $3, Supporting Information) in planar anchored sandwich
cells.

Electrical Properties As a Function of LC Director
Orientation and Temperature. To measure the electrical
properties, we used samples identical to those shown in Figure
2, and we obtained the results given in Figure 3 and Figures
S4—S6 in the Supporting Information. The charge-carrier
(which is, in this case, a hole) transfer characteristic of LC
OSCs are generally believed to be governed by n—n
interactions between the aromatic cores (here, a herringbone
arrangement of oriented MeOPh-BTBT-8 molecules), where
the dominant 7—7 packing direction is perpendicular to the
rubbing direction. This means that holes transfer in the
herringbone stacking direction.

Figure 3a shows the on/off ratio, threshold voltage,
subthreshold slope, and the corresponding hole mobility for
different rubbing orientations. Without the rubbed alignment
layer, the mobility extracted from the transfer curve (black line
in Figure 3a) is between the parallel and perpendicularly
aligned LC OSCs because of the presence of both in- and out-
of-plane 7—rn stacking, which are better than only [001]
directional (out-of-plane) charge-carrier transport and worse
than [010] charge transport (in-plane). Additionally, the
mobility value reported here is comparable to previously
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reported LC OSC-based OFETs.””*"*" However, we show
here that the hole mobility (4, ) is the highest when the sample
is rubbed perpendicular to the source/drain channel direction
(red line in the graph), and g is the lowest when the
alignment layer is rubbed parallel to the source/drain channel
direction (blue line). Thus, the mobility shows anisotropy with
respect to the orientation of the driving field relative to the LC
director, of which anisotropy ratio (u/u) is ~15.83.

To study the molecular arrangement in more detail, 2D-
grazing incidence X-ray diffraction (2D-GIXD) (Figure S7,
Supporting Information) was performed on the MeOPh-
BTBT-8 thin films under rubbed planar anchoring conditions.
The diffraction peaks are typical for a crystalline phase,
exhibiting the smectic E-like polar ordering modulated parallel
to the substrate with face-on molecular orientation. It can be
seen that the molecular long axis is oriented along the [001]
direction, which coincides with the rubbing direction. The
charge transport preferentially occurs along the [010] and
[001] directions corresponding to perpendicular and parallel
rubbing conditions, respectively. Meanwhile, in the previously
reported device using C8-BTBT,"” the peak corresponding to
the [100] direction exhibits stronger intermolecular electronic
coupling compared to the [010] direction. Although it is
possible to further enhance the charge-carrier mobility by
changing the device geometry or molecular orientation, it is
difficult to align molecules along the [100] direction under
homeotropic anchoring conditions because of the simple rod
shape of the molecule used, which exhibits higher mobility and
electrical anisotropy. It is to be noted that this is the first
attempt to study high-quality alignment of solvent-free fluidic
LC OSCs possessing a long-range orientational order resulting
in uniaxial planar alignment in rubbed planar anchoring
conditions over large areas.

We measured the temperature-dependent mobility to
investigate the relationship between the molecular ordering
and charge-carrier mobility. Figure 3b shows the hole-transfer
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Figure 4. Fabrication of radial source/drain channel to evaluate orientation direction and hole-transfer mobility. (a) Schematic design of metal
shadow mask to fabricate radial source/drain channel. 0, is the angle between the alignment direction (red) and source/drain channel direction
(yellow). (b) Optical images of OFET based on modified sandwich cell under two polarizers. (c) POM images at a different angle (6,) between the
fixed rubbing direction (red) and fixed polarizer direction (blue). (Scale bar: 40 ym.) (d) Birefringence intensity profile as a function of rotation
angle (26,) between alignment direction and polarizer direction. (¢) POM images at a different angle (6;) between the fixed rubbing direction
(red) and source/drain channel direction (yellow). (Scale bar: 40 ym.) (f) Mobility profiles as a function of the angle (6,).

mobility in the different phases, i.e., smectic A, smectic E, and
crystalline, when the perpendicularly rubbed alignment layer is
used. Charge transport of smectic A, smectic E, and crystalline
phases was measured at 240, 170, and 30 °C, respectively. As
the molecular packing density increases with a decrease in
temperature, a higher hole mobility is obtained, progressing
from the smectic A to the crystal, as shown in Figure 3b. The
electrical properties in nematic and isotropic phases are shown
in Figure S4. An additional thermal annealing process on the
sample at 140 °C was carried out for S min, which corresponds
to the crystal—smectic E phase-transition temperature; then,
the sample was cooled at 1 °C min~". This simple effort
improves the FET mobility significantly from 3.58 to 9.5 cm®
V™! s7! though the POM texture was little changed (Figure S8,
Supporting Information). For a study of the origin of the
increased performance after thermal annealing, out-of-plane
XRD was carried out (Figure S8c, Supporting Information).
The [002] peak intensity at g, = 0.355 A™" increases by S times
after the annealing process, which means that thermal
annealing generates the higher molecular ordering and
consequently the higher charge-carrier mobility.**~* To
evaluate the reliability and reproducibility of the FET
performance of our platform, we measured the transfer
characteristics for different rubbing conditions and temper-
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atures with 10 bottom-gate and bottom-contact transistors on
five substrates. As shown in Figure S8, the FET mobility and
on/off ratio exhibit minimal variations because of the
uniformity of the LC OSC films (Table SI, Supporting
Information). Furthermore, the device stability is tested by
irradiating the cell with UV light (4 & 365 nm, intensity ~ 0.15
mW cm™?) for approximately 12 h, as shown in Figure S9. The
devices based on aligned MeOPh-BTBT-8 are very stable
under these conditions, and exhibit little performance
deterioration.

Molecular Arrangement and Source/Drain Angle-
Dependent POM Images and Electrical Properties.
Previously, LC OSCs and other organic FETs have been
employed to maximize the charge-carrier mobility using
various kinds of molecules and alignment methods.”>*"*%%
In this study, we demonstrated the high-quality alignment of
an LC OSC on a large length scale. To further study the
anisotropy of charge transfer and the optical signals of LC
samples (Figure 4), we describe the achievement of multi-
channel source/drain electrodes on one LC cell sample. Here,
the rubbing direction is fixed, and the channels have different
angles [0, relative to the rubbing direction, ranging from 0° to
90° in 15° increments (Figure 4a)]. This radial multichannel
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device enables us to precisely test the hole mobility relative to
the molecular long axis orientation.

For this, we examined the optical birefringence of the sample
as it rotated between crossed polarizers (Figure 4b).** The
LC OSC orientation can be simply analyzed using the resulting
POM images because the transmitted light intensity (I) is
proportional to sin* 26,, where 0, is the angle between the
direction of the polarizer (P) and the rubbing direction. We
measured the lowest transmittance when the rubbing direction
was either parallel or perpendicular to the polarizer at 6, = 0°
or 90°, respectively, while the highest transmittance is detected
at 6, = 45° (Figure 4c). A polar plot of the uniaxially oriented
LC OSC shows the first quadrant of a 4-fold symmetry pattern
under crossed polarizers (Figure 4d). This plot shows the
transmittance change of the sample as a function of @,. The
change of transmittance exhibits a periodicity of 90°, revealing
the maximum at 6, = 45°. Then, we also measured the hole
mobility (Figure 4e,f). A minimum mobility was obtained at 6,
= 0° when the source-drain direction is parallel to the rubbing
direction, while the maximum mobility was measured at 8, =
90°. As a function of 8, the hole mobility is mapped out as
shown in the polar plot (Figure 4f), in which the 6, increment
induces the [010] direction of charge-carrier transports
resulting in higher mobility.

In our system, both the birefringence and charge-carrier
mobility show anisotropy in the LC OSC. By rotating the
sample between the crossed polarizer and analyzer, we can
easily determine the orientation of OSC molecules and the
alignment quality, ie., the direction, which is defined as
directions, perpendicular or parallel to the rubbing direction,
where the uniform highest brightness is detected at 45°, which
corresponds to the molecule long axis. Then, we can visually
tell the direction in which the charge-carrier mobility is the
highest, which occurs when the source/drain channel direction
is perpendicular to the rubbing direction. Although one-to-one
correspondence cannot be made because the birefringence
intensity is proportional to 26,, and the charge-carrier mobility
is proportional to 8}, a follow-up study is in progress to make a
one-to-one correspondence with the birefringence intensity
seen when inserting a full A plate. Thus, a visual observation
without actually testing the charge-carrier mobility might
directly indicate the highest charge-carrier mobility direction
when the well-known LC OSC is used, which simplifies the
device electrode-deposition process. In particular, upon
fabrication of large numbers of OFETs, this visual guide
would greatly improve the efficiency and reproducibility.

B CONCLUSION

We have demonstrated a simple method for the fabrication of
highly ordered and oriented supramolecular conducting LC
materials, where an easy and extremely well-developed rubbing
process can be used to align an LC material exhibiting the
phase sequence nematic—smectic A—smectic E. The presence
of the nematic phase, which is an LC phase widely used in
displays, is the key property needed to realize the controllable
uniaxial alignment of these LCs, facilitating the observation of
significant changes in the charge-carrier mobility, depending
on the rubbing direction and molecular long-axis orientation.
We showed that the transmitted intensity is correlated with the
charge-carrier mobility, which is useful for visual observation of
the expected electrical signal. This general platform for the
fabrication of OFETs provides an interesting way of studying
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the anisotropic charge-carrier behavior by employing a simple
tool such as POM or two plastic crossed polarizers.

B METHODS

Safety Statement. No unexpected or unusually high safety
hazards were encountered.

Fabrication and Measurement of OFETs Based on
Modified Sandwich Cell. The ITO glass for bottom
substrates and bare glass for top substrates were cleaned
using acetone and ethanol, followed by rinsing with deionized
water. The cleaned ITO glass and bare glass were spin-coated
with planar anchoring polyimide (PI, SE7492, Nissan
chemical) followed by thermal annealing at 200 °C for 2 h.
The bottom and top substrates were treated using the rubbing
process using a rubbing machine (RMS-50-M, Namil Optics)
for uniaxial alignment. The Au (40 nm)/Ti (S nm) electrodes
were deposited on the bottom substrate through a metal
shadow mask via thermal evaporation. For fabrication of the
self-assembly monolayer (SAM), the pentafluorobenzenethiol
(PFBT, Sigma-Aldrich):ethanol solution (0.1 wt %) was spin-
coated on the bottom substrates followed by thermal annealing
at 120 °C for 1 h. For a uniform cell gap, the silicon particle
with a 1 pum diameter was deposited on the edges of the
bottom substrates using UV-curable polymer (NOA 63,
Norland Products). The prepared top substrates were
combined with the bottom substrates following UV exposure.
The MeOPh-BTBT-8 crystalline powder was prepared on the
entrance of the gap, and then heated to around the nematic
phase temperature of MeOPh-BTBT-8 (Ty = 274 °C) to fill
the sandwich cell by capillary action.

Imaging LC Structure in Sandwich Cells. Polarized
optical microscopy (POM) (LV100POL, Nikon, Tokyo,
Japan) was used to examine the optical textures of LC film
at different temperatures. The birefringence intensity of the
aligned LC films was quantitatively measured using a UV—vis
spectroscopy (SPECTRA max Plus 384, Molecular Devices,
Sunnyvale, CA) with a light source at 540 nm, in which the
sandwich cells were rotated.

Molecular Structure Characterization. The grazing
incidence X-ray diffraction (GIXD) experiments were
performed at the 9A U-SAXS and 6D C&S UNIST-PAL
beamlines of Pohang Accelerator Laboratory (PAL). The
energy of the focused beam was 11.06 keV, and the sample-to-
detector distance (SDD) was around 221.26 mm to observe
the molecular and layer orientation. The diffraction patterns
were recorded with a 2D CCD camera (Rayonix SX165).

Electrical Characterization. The transfer characteristics
of the bottom-gate and bottom-contact FET's based on the LC
semiconductor were characterized using a Keithley 4200
source measurement unit. The channel length (L)/width
(W) ratio was 50/500 gm. The mobility (u) was calculated by
plotting the square root of the source-drain current (Ipg)
versus the gate voltage (V), and using the following equation
from the saturated region in the transfer curve:

Ing = (WC,/2L)u(Vg — V)’

where C; is the capacitance per unit area of the gate insulator
(~7S pF mm™), and Vy, is the threshold voltage.
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