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Abstract

Establishing appropriate heatwave thresholds is important in reducing adverse human

health consequences as it enables a more effective heatwave warning system and

response plan. This paper defined such thresholds by focusing on the non-linear relation-

ship between heatwave outcomes and meteorological variables as part of an inductive

approach. Daily data on emergency department visitors who were diagnosed with heat ill-

nesses and information on 19 meteorological variables were obtained for the years 2011 to

2016 from relevant government agencies. A Multivariate Adaptive Regression Splines

(MARS) analysis was performed to explore points (referred to as “knots”) where the behav-

iour of the variables rapidly changed. For all emergency department visitors, two thresholds

(a maximum daily temperature� 32.58˚C for 2 consecutive days and a heat index� 79.64)

were selected based on the dramatic rise of morbidity at these points. Nonetheless, visitors,

who included children and outside workers diagnosed in the early summer season, were

reported as being sensitive to heatwaves at lower thresholds. The average daytime temper-

ature (from noon to 6 PM) was determined to represent an alternative threshold for heat-

waves. The findings have implications for exploring complex heatwave-morbidity

relationships and for developing appropriate intervention strategies to prevent and mitigate

the health impact of heatwaves.

Introduction

An extended period of abnormally hot weather (commonly referred to as a heatwave) can

cause adverse human health effects. As the frequency, duration and intensity of extreme heat

events are predicted to increase due to climate change [1], many countries have implemented

heatwave warning systems and response plans to reduce the human health consequences.

Defining a “heatwave” is one key factor in effectively mitigating the impacts of extreme heat

events. Certain meteorological thresholds (i.e., two or more consecutive days at a maximum

temperature above a certain value) are used for evaluating heatwave extremes and triggering

warning systems [2, 3]. Some action plans to protect vulnerable groups have also been

designed based on such thresholds.
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To establish appropriate heatwave thresholds, many studies have focused on statistically sig-

nificant increases in relative risk and/or odds ratios under different definitions related primar-

ily to intensity (i.e., maximum daily temperature) and/or duration (i.e., how many days exceed

a certain temperature) of temperature [4–12]. A new heat index combining temperature and

humidity with apparent temperature is also under consideration to replace existing definitions

by comparing odds ratios with heatwave outcomes [13–15]. Previous approaches use deduc-

tive reasoning, making assumptions first and then seeking validation using heatwave

outcomes.

This study focuses inductively on the non-linear relationship between meteorological vari-

ables and heatwave outcomes such as those that take a J, U, or V-shape [16–18]. While a few

studies have given attention to the non-linear curve [19, 20], none have investigated a tipping

point where human health effects rapidly change, which should be closely related to the defini-

tion of a heatwave. This concept has been neglected mainly because classical statistical tech-

niques such as Ordinary Least Square (OLS) methods cannot capture such the tipping point

because the linearity and normality assumptions may not be satisfied in the model.

In this paper, we suggest an alternative approach to directly reveal thresholds using Multi-

variate Adaptive Regression Splines (MARS). This machine learning technique is suitable for

capturing curves in predicted outcomes to allow for non-linearity. This approach has been

used to develop the heatwave definition by focusing on the relationship between 1) the fre-

quency of emergency department visits identified as heat related and 2) several meteorological

factors.

Materials and methods

Study area and dataset

We focused on the summer season in the Seoul metropolitan area of Korea, which includes

Seoul, Incheon, and Gyeonggi-do, with a population of 25 million in 2015, representing 49.5%

of the country’s population. As the Korean Peninsula lies within the East Asian monsoon belt,

summer generally falls between June and August, with the hottest month being August when

the mean temperature is about 24–26˚C. Our dataset included summertime heat-related mor-

bidity rates from 2011–2016 (totaling 521 days from June to August), recorded at 74 public

health centers across the region. In other words, there were 38,554 observations considered

(74 centers � 521 days). Daily meteorological factors were obtained from the nearest weather

station (determined according to the latitudie and longitude of each public health center and

each weather station) (Fig 1). The 105 weather stations covered the whole Seoul metropolitan

area with an average inter-station distance of 8.7 km and an average of 3.26 km (SD = 2.51

km) from public health centers.

Data

Daily data on emergency department visitors diagnosed with heat illnesses was obtained from

a heat-related illness surveillance system operated by the Korea Centers for Disease Control

and Prevention (KCDC) for a total of 586 days during the summer periods from 2011 to 2016:

65 days in 2011 (7/1-9/9), 98 days in 2012 (6/1-9/6), 98 days in 2013 (6/1-9/7), 98 days in 2014

(6/1-9/6), 105 days in 2015 (5/24-9/5) and 122 days in 2016 (5/23-9/21). All cases were initially

reported by local emergency medical centers and then collected by the 74 public health centers.

The Heat-related illnesses are defined according to the International Classification of Diseases,

10th Revision, T67, “Effects of Heat and Light,” which includes such categories as heat stroke,

heat cramps, heat syncope, and heat exhaustion. We extracted the data from June to August
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from the remaining days because there was a significant amount of missing information for

visitors who arrived during the early (May) and late stages (September) of surveillance.

The data included date of visit, sex, age, place of occurence and diagnosis results. This infor-

mation was categorized by month, place of occurrence, and heatwave vulnerability profile of

visitor (age, gender and diagnosis results) (Table 1). To standardize the variables, we divided

by the population of the county where each public health center was located (mean = 303,011,

SD = 143,257 for the whole population). The population was calculated using the average of

2010 and 2015 census data were obtained from Statistics Korea.

Meteorological data (considering 19 factors) from the same time periods was obtained

from the Korea Meteorological Administration (Table 2). We adopted the common definition

Fig 1. Study area and dataset [Data Source: [21–23]].

https://doi.org/10.1371/journal.pone.0206872.g001

Table 1. Description of heatwave morbidity.

(Subcategory) Name Description Count (%)

HWwhole Number of heat-related emergency department visits each day 1,468 (100.0)

Age HWyoung HWwhole under 18 years old 87 (5.9)

HWadult HWwhole 18 to 65 years old 1,014 (69.1)

HWolder HWwhole over 65 years old 367 (25.0)

Gender HWmale Male HWwhole 1,161 (79.1)

HWfemale Female HWwhole 307 (20.9)

Diagnosis� HWdisch HWwhole discharged from a hospital 489 (33.3)

HWhospital HWwhole entered a hospital 875 (59.6)

Month of occurrence� HWjunjul HWwhole occurred in June or July 551 (37.5)

HWaug HWwhole occurred in August 917 (62.5)

Place of occurrence� HWin HWwhole occurred indoors 344 (23.4)

HWout HWwhole occurred outdoors 1,102 (75.1)

Note: The variables divided by the population of the county where each public health center was located.

�There is missing information of diagnosis, month and place of occurrence.

https://doi.org/10.1371/journal.pone.0206872.t001
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of a heatwave as being a heat event during which a certain temperature threshold is surpassed

on a given day (Tmin, Tavg, and Tmax) or over consecutive days (AvgTmaxLag1, AvgTmax-
Lag2, and AvgTmaxLag3) [24, 25]. Daytime temperature (from noon to 6 PM) and its lagged

value were included as alternative heatwave thresholds (Tavg1218 along with AvgTav-
g1218Lag1, AvgTavg1218Lag2, and AvgTavg1218Lag3).

We employed two indices, estimated using combined daily mean temperature and relative

humidity to enable a focus on methodological variables, which are simple and not combined.

The first index was suggested by the US National Weather Service (NWS), originally developed

by Steadman [26] as shown in Eq 1:

NIndex1 ¼ � 42:379þ 2:04901523 � Tþ 10:14333127 � RH � 0:22475541 � T � RH
� 0:00683783 � T2 � 0:05481717 � RH2 � 0:00122874 � T2 � RHþ 0:00085282

� T � RH2 � 0:00000199 � T2 � RH2 ð1Þ

where Nindex1 is the heat index in ˚F, T is the temperature in ˚F and RH is relative humidity.

Two adjustments were considered when calculating Nindex1 (https://www.wpc.ncep.noaa.

gov/heat_index/details_hi.html). Second, a discomfort index (Nindex2) was also established,

calculated using the formula by Thom [27] as follows:

NIndex2 ¼ 1:8 � Tc � ð1 � 0:01RHÞðTc � 14:3Þ þ 32 ð2Þ

where Tc is the temperature in ˚C and RH is relative humidity. The maximum value from

hourly measurements of the indices was also considered but not adopted because there was

multicollinearity with the maximum temperature variables.

Modelling technique

The MARS method implemented in the “Earth” package for R 3.4.1 was used to investigate the

non-linear relationship between heatwave outcomes and meteorological variables. MARS is a

Table 2. Description of meteorological factors.

Variable Description Mean ±std. dev. Min Max

Tmini Minimum temperature of day i 21.13±2.96 5.00 29.80

Tavgi Average temperature of day i 24.83±2.51 14.40 32.90

Tavg1218i Average daytime (noon to 6 PM) temperature of day i 27.68±2.99 13.77 36.44

AvgTavg1218Lag1i Average Tavg1218 of day i-1 to i 27.67±2.65 16.22 36.22

AvgTavg1218Lag2i Average Tavg1218 of day i-2 to i 27.67±2.47 17.51 35.95

AvgTavg1218Lag3i Average Tavg1218 of day i-3 to i 27.66±2.36 17.34 35.76

Tmaxi Maximum temperature of day i 29.5±3.03 16.30 38.90

AvgTmaxLag1i Average Tmax of day i-1 to i 29.5±2.7 18.15 38.80

AvgTmaxLag2i Average Tmax of day i-2 to i 29.49±2.52 19.33 38.47

AvgTmaxLag3i Average Tmax of day i-3 to i 29.48±2.41 19.25 38.13

TmaxGapi Tmaxi—Tmaxi-1 0.42±0.21 0.00 4.10

TavgGapi Tavgi—Tavgi-1 0.19±0.07 -0.10 0.55

Whumi Relative humidity of day i 75.23±13.07 28.90 100.00

Wpci Precipitation of day i 8.09±23.38 0.00 449.50

Wwindi Average wind speed of day i 1.57±0.84 0.00 38.70

WsolMAXi Maximum amount of solar radiation of day i 2.09±0.82 0.00 3.98

WsolVOLi Total amount of solar radiation of day i 14.26±6.63 0.00 28.94

Nindex1i Heat index of day i [26] 74.1±3.9 57.94 85.10

Nindex2i Discomfort index of day i [27] 79.1±6.86 56.86 107.88

https://doi.org/10.1371/journal.pone.0206872.t002
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spline regression model introduced in 1991 [28] to focus on specific sub-regions of a relation-

ship between covariates and response variables. A knot point t, where the behavior of the func-

tion changes, marks the end of one region and the beginning of another, forming basis

functions: (x-t)+ and (t-x)+. Firstly, MARS generates a model with an excessive number of

knots. Those that contribute least to the overall fit by forward and backward selection are elim-

inated. A basis function is used to search for the number of knots and their locations, repre-

senting the relationships between predictor variables (x) and the outcome variable (y):

y ¼ f̂ ðxÞ ¼ b0 þ
Pk

i¼1
bihiðxÞ ð3Þ

where β0 is an intercpet, βi is the coefficient estimated by minimizing the sum-of-squares, and

hi(x) is a weighted sum of basic functions. Initially, The MARS searches all possible basis func-

tions and their corresponding knots using a forward algorithm. Starting with a model consisting

of intercept terms, β0, a larger number of basis functions are added, reducing sum-of-squares

residual error as much as possible. However, MARS can be overfit due to a large number of

basic functions. To mitigate this problem, a backward phase improves the model by iteratively

deleting less significant terms until a final version is reached with the lowest generalized cross

validation (GCV). In the model building process, predictors and knot locations that contribute

significantly are automatically selected. Additionally, the response variable (y) is defined as a

continuous variable because count data cannot be a response variable for the MARS [29, 30].

Results

Initially, we focused on developing a MARS model based on common meteorological factors

(not including Tavg1218 variables) to explore the definition of a heatwave. The mathematical

equation resulting from the MARS model for all emergency department visitors diagnosed

with heat illnesses can be expressed as

HWwhole ¼ 0:08 � 0:009 �maxð0; 32:95 � AvgTmaxLag1Þ þ 0:179 �maxðAvgTmaxLag1

� 32:95; 0Þ þ 0:019 �maxðNindex1 � 79:65; 0Þ ð4Þ

Among all the meteorological variables, AvgTmaxLag1 and Nindex1 were included in the

equation and others were removed to refine the model fitting process. The knots for AvgTmax-
Lag1 and Nindex1 were 32.95 and 79.65, respectively, and the term “max” can be defined thus:

max(j, k) is equal to j if j is larger than k, otherwise it equals k. A positive sign for a function

indicates that the relevant meteorological variable increases the probability of a paitient being

diagnosed with heat illiness, while a negative sign indicates the relevant variable decreases this

probability.

Eq 4 can be explained as follows: AvgTmaxLag1 has little impact on HWwhole when AvgT-
maxLag1 is lower than 32.95, while its effect rapidly increases from 32.95. Nindex1 also influ-

ences HWwhole after its value becomes larger than 79.65. Fig 2 is a plot of the predicted

HWwhole as AvgTmaxLag1 and Nindex1 vary.

Moreover, we allowed a second-order interaction term, excluding two combined indexes

(Nindex1 and Nindex2). Eq 5 can be formulated, which includes the combination of i) Tavg-
Whum and ii) AvgTmaxLag1-Whum (Fig 3). It denoted that the impact of the temeprature is

emerged through the interaction with the humidity in a day.

HWwhole ¼ 0:028þ 0:051 �maxðTavg � 25:1; 0Þ þ 1:157 �maxðAvgTmaxLag1 � 32:95; 0Þ

þ 0:010 �maxðTavg � 25:1; 0Þ �maxðWhum � 81:3; 0Þ þ 0:030

�maxðAvgTmaxLag1 � 32:85; 0Þ �maxð0; 57:5 � Whum � 81:3Þ ð5Þ
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Table 3 shows the first and second most important factors, with knots from other MARS

models for each subcategorized heatwave outcome and daytime temperature variables. To

focus on identifying the locations of knots where the function value was found to vary, we

reported each knot and skipped coefficient values. The interpretation for other models

was similar to the prior MARS model, which targeted all emergency department visitors diag-

nosed with heat illnesses, because we verified that the coefficients of all functions in the form

Fig 2. Graphical representation of the MARS model.

https://doi.org/10.1371/journal.pone.0206872.g002

Fig 3. Graphical representation of interaction terms from the MARS.

https://doi.org/10.1371/journal.pone.0206872.g003
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“max(x-t, 0)” were positive, as for AvgTmaxLag1 and Nindex1 in Eq 4. For example, there is a

knot “30.68” of AvgTmaxLag3 in the model for young heat-related visitors (HWyoung). It can

be said that the effect of AvgTmaxLag3 played a role in increasing the frequency of visits by

young people when it was larger than the knot (30.68).

Discussion

This study developed a definition for the heatwave using a machine learning technique,

MARS, to describe the fundamental relationship between i) the daily frequency of emergency

department visits associated with heat illness, and ii) 19 meteorological factors. MARS enabled

non-linear relationships to be rendered and automatically defined breaking points (knots)

among separate sub-groups. Knots where the behaviour of functions dramatically changed

were used to define a heatwave.

Table 3. Importance of the MARS model and related knots.

(Subcategory) Outcome Importance #1 Importance #2

Variable Knot Variable Knot

(Not including Tavg1218 variables)
HWwhole AvgTmaxLag1 32.95 Nindex1 79.65

Age HWyoung AvgTmaxLag3 30.68 - -

HWadult AvgTmaxLag1 31.80 Nindex2 80.48

HWolder AvgTmaxLag1 33.40 - -

Gender HWmale AvgTmaxLag1 32.15 Nindex1 78.43

HWfemale AvgTmaxLag1 33.10 Tavg 30.5

Diagnosis HWnothosp AvgTmaxLag1 32.80 Nindex2 76.75

HWhosp AvgTmaxLag1 33.45 Nindex2 79.42

Month of occurrence HWjunjul Tmax 29.80 Nindex2 80.65

HWaug AvgTmaxLag1 33.35 Nindex1
Place of occurrence HWin Tavg 30.00 Nindex2 78.40

HWout AvgTmaxLag1 31.25 Nindex2 80.66

(Including Tavg1218 variables)
HWwhole AvgTavg1218Lag1 30.59 Nindex2 80.22

https://doi.org/10.1371/journal.pone.0206872.t003

Table 4. Number of summer days that meet existing and alternative criteria based on Station 108 in Seoul.

Year Number of summer daysHYPERLINK a Existing

criteriab
Alternative

criteria 1c
Alternative

criteria 2d
Alternative

criteria 3e

2011 92 0 5 27 28

2012 92 10 13 46 46

2013 92 0 4 50 51

2014 92 4 6 37 37

2015 92 3 7 40 41

2016 92 19 29 47 47

Total 552 36 64 247 250

aJune to October
bMaximum temperature exceeds 33˚C for two consecutive days
cAverage maximum temperature for two straight days (AvgTmaxLag1)� 32.58
dNWS heat index (Nindex)� 79.64
eAvgTmaxLag1� 32.58 OR Nindex� 79.64

https://doi.org/10.1371/journal.pone.0206872.t004
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For all emergency department visitors diagnosed with heat illnesses, the related average

maximum temperature for 2 consecutive days was greater than 32.58˚C and a heat index

higher than 79.64 was selected as a threshold based on knots where heatwave morbidity started

to rise dramatically. This approach to defining thresholds is similar to existing methods as fol-

lows: 1) the Korea Meteorological Administration issues a heatwave warning when the maxi-

mum temperature exceeds 33˚C for two straight days, while 2) the National Weather Service

(NWS) gives a “Caution” notice for possible fatigue from prolonged exposure and/or physical

activity when the heat index exceeds 80.

We calculated the number of summer days that meet the existing and alternative criteria

based on Station 108, which is representative of Seoul (Table 4). Compared to the current cri-

teria, the number of heat wave days increased three to four times when the two criteria in this

study were adopted. When we allowed second-order interactions, combinations of tempera-

ture and humidity were included in the model as important variables, even though South

Korea only uses a maximum temperature for initiating a heat warning. It suggests that revised

criterions and/or more procdure (i.e., attetion, alarm, emegerncy) should be considered for

the early warning system.

Heat-related outcomes varied depending on visitors’ profiles, similar to findings from pre-

vious studies on heat-related mortality and morbidity. Children were reported as being more

sensitive to heatwaves [31, 32] as the number of emergency room visitors under 18 years of age

entering due to heat illiness was dramatically higher than for other age brackets, even at a

lower threshold. While the elderly are also generally considered vulnerable to heatwaves [4,

33–35], an opposite pattern was observed (relatively fewer emergency room visitors even at a

higher threshold). As two-thirds of deaths from heatwaves are indeed among the elderly, heat-

related mortality was not included in this model: a factor which will be included in future

works where more in-depth consideration can be completed. In gender-specific results, males

were found to be more likely to visit the emergency room due to heat-related morbidity at a

lower threshold compared with females. At a glance, this does not seem consistent with previ-

ous studies, which have identified women as facing higher risk or shown no difference by gen-

der [36–39]. The results of this study might explained by males having greater exposure to heat

through male-dominated occupations that place individuals in positions vulnerable to heat

waves, for example, as construction workers. For diagnosis, it could be helpful to design multi-

stage heatwave warning systems according to the threshold for each group, giving sensitivity

to differences in demographic occurrences of severe illness and hospital admission.

Our results suggest that heatwave prevention systems and response plans should be

designed according to time and place. There is a difference of about 2–3˚C in the trigger point

for early summer (June to July) for outside workers, a conclusion supported in previous work

[40, 41]. In other words, a lower threshold should be set to improve response plans for specific

demographics, such that outside workers should take a 10-minute break every hour, as the

Korea Occupational Safety and Health Agency recommends.

Additionally, in contrast to the basis for existing thresholds (i.e., daily maximum tempera-

ture), this study discovered that average daytime (noon to 6 PM) temperature was determined

to represent an alternative threshold for heatwaves as reflecting heat exposures when it is hot

during the day. With this in mind, other meteorological factors should be explored as other

heatwave thresholds.

Some limitations were encountered during this study. Relying on fixed monitoring stations

may misrepresent true individual-level exposures, so additional analyses such as an object

analysis of monitoring should be conducted for the meteorological variables considered here.

Other heatwave outcomes such as heat-related mortality should also be considered.
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Conclusions

This study investigated heatwave thresholds based on daily data for heat-related morbidity and

meteorological variables. Thresholds were inductively determined using MARS models to

explore non-linear relationships. For all emergency department visitors diagnosed with heat

illnesses, the thresholds identified in this research were similar to existing values used to trigger

heatwave warming systems. These thresholds varied depending on visitors’ profiles and the

place and time of each occurrence. Average daytime temerpature was selected as an alternative

factor informing heatwave thresholds. Our findings can help improve understanding of the

effect of heatwaves on human health and be used to design more effective heatwave warning

systems.
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