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Abstract

English. Recent approaches to the Au-

tomatic Post-editing (APE) of Machine

Translation (MT) have shown that best re-

sults are obtained by neural multi-source

models that correct the raw MT output by

also considering information from the cor-

responding source sentence. In this pa-

per, we pursue this objective by exploiting,

for the first time in APE, the Transformer

architecture. Our approach is much sim-

pler than the best current solutions, which

are based on ensembling multiple models

and adding a final hypothesis re-ranking

step. We evaluate our Transformer-based

system on the English-German data re-

leased for the WMT 2017 APE shared

task, achieving results that outperform the

state of the art with a simpler architecture

suitable for industrial applications.

Italiano. Gli approcci più efficaci alla

correzione automatica di errori nella

traduzione automatica (Automatic Post-

editing – APE) attualmente si basano su

modelli neurali multi-source, capaci cioè

di sfruttare informazione proveniente sia

dalla frase da correggere che dalla frase

nella lingua sorgente. Seguendo tale ap-

proccio, in questo articolo applichiamo

per la prima volta l’architettura Trans-

former, ottenendo un sistema notevol-

mente meno complesso rispetto a quelli

proposti fino ad ora (i migliori dei quali,

basati sulla combinazione di più mod-

elli). Attraverso esperimenti su dati

Inglese-Tedesco rilasciati per l’APE task

a WMT 2017, dimostriamo che, oltre a

tale guadagno in termini di semplicità, il

metodo proposto ottiene risultati superiori

allo stato dell’arte.

1 Introduction

Automatic post-editing (APE) (Simard et al.,

2007b; Simard et al., 2007a; Simard et al., 2009)

is the task of fixing errors in a machine-translated

text by learning from human corrections. It has

shown to be useful for various tasks like domain

adaptation (Isabelle et al., 2007) and for reducing

time, effort and the overall costs of human transla-

tion in industry environments (Aziz et al., 2012).

Recent approaches to the task have shown that

better results can be obtained by neural multi-

source models that perform the automatic correc-

tion of raw MT output by also considering infor-

mation from the corresponding source sentence

(Chatterjee et al., 2015; Pal et al., 2016). However,

state-of-the-art APE solutions employ pipelined

architectures (Bojar et al., 2017) whose complex-

ity reduces their usability in industrial settings. In-

deed, current top systems typically rely on ensem-

bling multiple recurrent neural networks (RNNs)

and performing a final re-ranking step (Chatterjee

et al., 2017) to select the most promising correc-

tion hypothesis. Though competitive, such archi-

tectures require training and maintaining multiple

components, involving costs that reduce their ap-

peal from the industry perspective.

In this paper, we address this issue, aiming at

a method that is suitable for industry applications,

in which a single trainable network is preferable to

multiple, independently-trained components. Our

main contributions are the following:

• We introduce, for the first time in APE, a

Transformer-based architecture (Vaswani et

al., 2017) that considerably reduces system

complexity (thus being efficient and easy to

train and maintain);

• In doing so, we modify the Transformer ar-

chitecture to incorporate multiple encoders,

thereby considering also source-side infor-

mation to increase correction accuracy;
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• On shared data sets, we report evaluation

results that are comparable (less than 0.5

BLEU score points in the worst case) to those

of computationally-intensive state-of-the-art

systems based on model ensembling and hy-

pothesis reranking.

2 Methodology

In this Section we shortly overview our ap-

proach, by first motivating the use of Transformer

(Vaswani et al., 2017) and then by introducing our

modifications to deploy it for APE.

Most of the competitive neural approaches

in machine translation employ deep recurrent

networks (Sutskever et al., 2014; Bahdanau et

al., 2015). These approaches follow the encoder-

decoder architecture. A sequence of words [x1,

x2, .. , xn] is given to an encoder, which maps

it to a sequence of continuous representations,

i.e. the hidden state of the encoder. At each time

step, based on these continuous representations

and the generated word in the previous time

step, a decoder generates the next word. This

process continues until the decoder generates

the end-of-the-sentence word. More formally,

the decoder predicts the next word yt, given the

context vector c and the previously predicted

words y1 to yt−1 by defining a probability over

the translation y as follows:

p(y) =
T
∏

t=1

p(yt|[y1, .., yt−1], c) (1)

The context vector c is a weighted sum com-

puted over the hidden states of the encoder. The

weights used to compute the context vector are

obtained by a network called attention model that

finds an alignment between the target and source

words (Bahdanau et al., 2015). From an efficiency

standpoint, a major drawback of these approaches

is that, at each time step, the decoder needs the

hidden state of the previous time step, thus hin-

dering parallelization. Other approaches have

been proposed to avoid this sequential dependency

(e.g. using convolution as a main building blocks)

and make parallelization possible (Gehring et al.,

2017; Kalchbrenner et al., 2016). Although they

can avoid the recurrence, they are not able to prop-

erly learn the long term dependencies between

words.

The Transformer architecture, introduced in

(Vaswani et al., 2017), set a new state-of-the-art in

NMT by completely avoiding both recurrence and

convolution. Since the model does not leverage

the order of words, it adds positional encoding

to the word embeddings to enable the model to

capture the order. In Transformer, the attention

employed is a multi-headed self-attention, which

is a mapping from (query, key, value) tuples to

an output vector. The self-attention is defined as

follows:

SA(Q,K, V ) = softmax(QKT /
√

dk)V (2)

where Q is the query matrix, K is the key matrix

and V is the value matrix, dk is the dimensionality

of the queries and keys, and SA is the computed

self-attention.

The multi-head attention is computed as fol-

lows:

MH(Q,K, V ) = Concat(head1, ..., headh)W
O

(3)

where MH is the multi-head attention, h is the

number of attention layers (also called “heads”),

headi is the self-attention computed over the ith

attention layer and WO is the parameter matrix of

dimension hdv*dmodel. The encoder layers con-

sist of a multi-head self-attention, followed by a

position-wise feed forward network. In the self-

attention, the queries, keys and values matrices

come from the previous layer. In the decoder, the

layers have an extra encoder-decoder multi-head

attention after the multi-head self-attention, where

the key and value matrices come from the encoder

and the query matrix comes from the previous

layer in the decoder. Also, inputs to the multi-head

self-attention in the decoder are masked in order to

not attend to the next positions. Finally, a softmax

normalization is applied to the output of the last

layer in the decoder to generate a probability dis-

tribution over the target vocabulary.

In order to encode the source sentence in addi-

tion to the MT output, we employ the multi-source

method (Zoph and Knight, 2016), wherein the

model is comprised of separated encoders (with

a different set parameters) to capture the source

sentence and the MT output respectively. For the

Transformer, we concatenate the two encoder out-

puts and that is passed as the key in the atten-

tion. This helps for a better representation, in turn

leading to more effective attention during decod-

ing time.
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train development test

synthetic 4M synthetic 500K in-domain in-domain in-domain 2016 in-domain 2017

4,391,180 526,368 23,000 1,000 2,000 2,000

Table 1: Statistics for synthetic and in-domain datasets

3 Experiment Setup

3.1 Data

For the sake of a fair comparison with the best

performing system at the WMT 2017 APE shared

task (Chatterjee et al., 2017), we use the same

training, development and test WMT datasets. The

training data consists of three different corpora.

One of them is released by the task organizers

and contains 23K triplets from the Information

Technology domain. The other two are synthetic

data created by (Junczys-Dowmunt and Grund-

kiewicz, 2017). They respectively contain ∼4M

and ∼500K English-German triplets generated by

a round-trip translation process. By using two

phrase-based translation models, German-English

and English-German, German monolingual data

are first translated into English and then the ob-

tained outputs are translated back into German.

The original German monolingual data are con-

sidered as post-edits, the English translated data

are considered as source sentences, and the Ger-

man back-translated data are considered as ma-

chine translation outputs. The development set is

the one released for WMT 2017 APE shared task,

which contains 1K in-domain triplets. We evalu-

ate our model using the two test sets released for

WMT 2016 and 2017 APE shared tasks, each con-

taining 2K in-domain triplets. Table 1 summa-

rizes the statistics of the datasets. To avoid un-

known words and to keep under control the vocab-

ulary size, we apply byte pair encoding (Sennrich

et al., 2016) to all the data.

3.2 Evaluation Metrics

For evaluation, we use the two official metrics of

the WMT APE task: i) TER (Snover et al., 2006)

which is based on edit distance and ii) BLEU,

which is the geometric mean of n-gram precision

(Papineni et al., 2002). They are both applied on

tokenized and true-cased data.

3.3 Term of Comparison

We compare the performance of our Transformer

model with two baselines: i) MT Baseline: the

output of a “do-nothing” APE model that leaves all

the original MT outputs untouched, and ii) Ens8 +

RR: the winning system at the WMT 2017 APE

shared task (Chatterjee et al., 2017). It comprises

4 different models based on RNN architecture:

• SRC PE a single-source model that exploits

only the source sentence to generate post-

edits;

• MT PE a single-source model that only ex-

ploits the machine translation output to gen-

erate post-edits;

• MT+SRC PE a multi-source model that ex-

ploits both the source sentence and the MT

output to generate post-edits;

• MT+SRC PE TSL another multi-source

model with a task-specific loss function in

order to avoid over correction.

For mixing the context vectors of the two en-

coders, Ens8 + RR uses a merging layer. This

layer applies a linear transformation over the con-

catenation of the two context vectors. Chatterjee

et al. (2017) compared the performance of these

4 models on the development set, and reported

that MT+SRC PE outperforms the other models.

They also ensembled the two best models for each

configuration to leverage all the models in a sin-

gle decoder. On top of that, they also trained a

re-ranker (Pal et al., 2017) to re-order the n-best

hypotheses generated by this ensemble. In order

to train the re-ranker, they used a set of features

which are mainly based on edit distance. This set

includes number of insertions, deletions, substitu-

tions, shifts, and length ratios between MT out-

put and APE hypotheses. It also includes preci-

sion and recall of the APE hypotheses. In Section

4, we compare our model with the SRC+MT PE

model and the ensembled model plus re-ranker

(Ens8+RR). We train these models with the same

settings reported in (Chatterjee et al., 2017).

3.4 System Setting

We initially train a generic Transformer model by

using the ∼4M synthetic data. Then, we fine-tune
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Systems TER BLEU

Baseline 24.81 62.92

SRC+MT PE 19.77 70.72

Ens8 + RR 19.22 71.89

Transformer 19.17 71.58

Avg4 18.77 72.04

Table 2: performance of APE systems on 2017 de-

velopment dataset (en-de)

the resulting model on the union of the ∼500K and

the in-domain training data (multiplied 20). Our

Transformer model uses word embedding with

512 dimensions. The decoder and each encoder

have 4 attention layers with 512 units, 4 paral-

lel attention heads, and a feed-forward layer with

1,024 dimensions. The network parameters are

updated using Lazy Adam optimizer (Kingma

and Ba, 2014), with mini-batch size of 8,192 to-

kens for generic training and 2,048 tokens for fine-

tuning. The learning rate is varied using a warm-

up strategy (Vaswani et al., 2017) with warm-up

steps equal to 8,000. During training, the drop-

out rate and the label smoothing value are set to

0.1. During decoding, we employ beam search

with beam width equal to 10. For both the generic

and fine-tuning steps, we continue the training

for 10 epochs and choose the best model check-

points based on their performance on the devel-

opment set. For our implementation, we use the

OpenNMT-tf toolkit (Klein et al., 2017).

4 Results and Discussion

Table 2 shows the results obtained by different

models on the development set. Together with

our simple Transformer model (Transformer), it

also reports the performance of averaging the

weights of the 4 best model checkpoints (Avg4).

Our Transformer model performs better than the

SRC+MT PE model (-0.6 TER and +0.86 BLEU)

showing that using the Transformer architecture

instead of RNN is helpful. Also, our Transformer

model outperforms Ens8+RR in terms of TER,

with only a small loss in terms of BLEU. This

highlights that our simple model can achieve com-

parable results with the best performing systems,

but using less complex architecture. By averag-

ing different Transformer checkpoints, our model

outperforms Ens8+RR by -0.45 TER and +0.15

BLEU. This gain confirms the results reported by

Popel and Bojar (2018), who showed that aver-

Systems
Test2016 Test2017

TER BLEU TER BLEU

MT Baseline 24.76 62.11 24.48 62.49

Ens8 + RR 19.32 70.88 19.60 70.07

Transformer 19.25 70.70 19.81 69.64

Avg4 18.79 71.48 19.54 70.09

Table 3: performance of APE systems on 2016 and

2017 test datasets (en-de)

aging the model’s checkpoints weights is advan-

tageous. Moreover, we are not loosing our sim-

plicity in comparison with ensembling, since we

are choosing the model’s checkpoints in a single

training round and this does not require training

several models and architectures. In order to con-

firm our observation on the development set, we

also evaluated our model in compare to Ens8+RR

on the two test sets. Table 3 shows the results

obtained on the two test sets, which confirm our

observations on development data. The averaged

model has the best performance over the RNN

systems and single Transformer. It significantly

outperforms Ens8+RR on 2016 test data, while a

marginal improvements is obtained on the 2017

test set. To conclude, our results confirm the trend

seen in Machine Translation, where Transformer

outperforms RNN-based systems on different lan-

guage pairs and datasets using a simpler architec-

ture. Beside this, our extension targeting the in-

clusion of source-side information sets a new state

of the art in APE.

5 Conclusion

We developed and used a multi-source Trans-

former architecture for neural Automatic Post-

editing. In contrast to the current state-of-the-art

systems for APE, which are based on RNN archi-

tectures that typically comprise multiple compo-

nents, we used a single model which can be trained

in an end-to-end fashion. This solution is particu-

larly suitable for industrial sectors, where main-

taining different components is costly and inef-

ficient. Our experiments show that our simplest

model has comparable results to the best RNN sys-

tems, while the best one can even perform slightly

better. This sets the new state of the art in APE

and confirms the superiority of Transformer in

sequence-to-sequence learning tasks.
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