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Abstract

English. We investigate head-noun identi-

fication in complex noun-compounds (e.g.

table is the head-noun in three legs ta-

ble with white marble top). The task is

of high relevancy in several application

scenarios, including utterance interpreta-

tion for dialogue systems, particularly in

the context of e-commerce applications,

where dozens of thousand of product de-

scriptions for several domains and differ-

ent languages have to be analyzed. We

define guidelines for data annotation and

propose a supervised neural model that is

able to achieve 0.79 F1 on Italian food

noun-compounds, which we consider an

excellent result given both the minimal su-

pervision required and the high linguistic

complexity of the domain.

Italiano. Affrontiamo il problema di iden-

tificare head-noun in nomi composti com-

plessi (ad esempio "tavolo" is the head-

noun in "tavolo con tre gambe e piano in

marmo bianco"). Il compito é di alta rile-

vanza in numerosi contesti applicativi, in-

clusa l’interpretazione di enunciati nei sis-

temi di dialogo, in particolare nelle ap-

plicazioni di e-commerce, dove decine di

migliaia di descrizioni di prodotti per vari

domini e lingue differenti devono essere

analizzate. Proponiamo un modello neu-

rale supervisionato che riesce a raggiun-

gere lo 0.79 di F-measure, che consideri-

amo un risultato eccellente data la minima

quantitá di supervisione richiesta e la alta

complessitá linguistica del dominio.

1 Introduction

Noun-compounds are nominal descriptions that

hold implicit semantic relations between their con-

stituents (Shwartz and Dagan, 2018). For in-

stance, an apple cake is a cake made of apples.

While in the literature there has been a large in-

terest in interpreting noun-compounds by classi-

fying them with a fixed set of ontological relations

(Nakov and Hearst, 2013), in this paper we fo-

cus on automatic recognition of the head-noun in

noun-compounds. We assume that in each noun-

compound there is a noun which can be consid-

ered as the more informative, as it brings the most

relevant information that allows the correct inter-

pretation of the whole noun-compound. For in-

stance, in the apple cake example, we consider

cake as the head-noun, because it brings more in-

formation than apple about the kind of food the

compound describes (i.e. a dessert), its ingredi-

ents (i.e. likely, flour, milk and eggs), and the typ-

ical amount a person may eat (i.e. likely, a slice).

While in simple noun-compounds the head-noun

usually corresponds to the syntactic head of the

compound, this is not the case for complex com-

pounds, where the head-noun can occur in differ-

ent positions of the compound, making its identi-

fication challenging. As an example, in the Italian

food description filetto di vitellone senza grasso

visibile, there are three nouns (i.e. filetto, vitellone

and grasso) which are candidates to be the head-

noun of the compound.

There are a number of tasks and application

domains where identifying noun-compound head-

nouns is relevant. A rather general context is on-

tology population (Buitelaar et al., 2005), where

entity names automatically recognized in text are

confronted against entity names already present in

an ontology, and have to be appropriately matched

in the ontology taxonomy. Our specific appli-

cation interest is conversational agents for the e-

commerce domain. Particularly, understanding

names of products (e.g. food, furniture, clothes,

digital equipment) as expressed by users in differ-

ent languages, requires the capacity to distinguish
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the main element in a product name (e.g. a table in

I am looking for a three legs table with white mar-

ble top), in order to match them against vendor cat-

alogues and to provide a meaningful dialogue with

the user. The task is made much more challeng-

ing by the general lack of annotated data, so that

fully supervised approaches are simply not feasi-

ble. Along this perspective, the long term goal of

our work is to develop unsupervised techniques

that can identify head-nouns in complex noun-

compounds by learning properties on the base of

the noun-compounds included in, possibly large,

gazetteers, regardless of the domain and language

in which they are described.

In this paper we propose a supervised ap-

proach based on a neural sequence-to-sequence

model (Lample et al., 2016) augmented with

noun-compound structural features (Guerini et al.,

2018). This model identifies the more informative

token(s) in the noun-compound, that are finally

tagged as the head-noun. We run experiments on

Italian food names, and show that, although the

domain is very complex, results are promising.

The paper is structured as follow: we first define

noun-compound head-noun identification, with

specific reference to complex noun-compound

(Section 2). Then we introduce the neural model

we have implemented (Section 3), and finally the

experimental setting and the results we have ob-

tained (Section 4).

2 Food Compound-Nouns

In this Section we focus on Italian compound-

nouns referring to food, the domain on which we

run our experiments. Similar considerations and

same methodology can be applied to compound-

nouns in different domains and languages.

There is a very high variety of food compound-

nouns, describing various aspects of food, includ-

ing: simple food names, like mortadella di fe-

gato, pesce, gin and tonic, aglio fresco; recipes

mentioning their ingredients, like scaloppine al

limone, spaghetti al nero, passato di pollo, decotto

di carciofo; recipes focusing on preparation style,

like mandorle delle tre dame, cavolfiore alla napo-

letana; food names focusing on visual or shape

properties, like filetto di vitellone senza grasso

visibile, palline di formaggio fritte; food descrip-

tions containing a course name, like antipasto

di capesante, dessert di mascarpone; food us-

ing fantasy names, like frappé capriccioso, or in-

salata arlecchino; food including proper names or

brands, like saint-honoré, tagliatelle Matilde, for-

maggio bel paese; food names focusing on cook-

ing modalities, like pane fatto in casa, or peperoni

fritti; and focusing on alimentary properties, like

ragù di carne dietetico, or sangria analcolica.

We assume that the head-noun of a food de-

scription is the more informative noun in the noun-

compound, i.e. the noun that better allows to an-

swer questions about properties of the food being

described by the noun-compound. We consider

the following four property related questions, in

order of relevance:

1. What food category (e.g. meat, vegetable,

cake, soup, pasta, fish, liquid, salad, etc.) is

described by the noun-compound?

2. What course (e.g. main, appetizer, side

dish, dessert, etc.) is described by the noun-

compound?

3. Which is the main ingredient (in term of

quantity) described by the noun-compound?

4. Which could be the overall quantity (ex-

pressed in grams) of food described by the

noun-compound?

Although our approach does not require any do-

main knowledge, for the purpose of human anno-

tation and evaluation it is useful to assume a sim-

ple ontology for food, where we define the prop-

erties used for judging head-nouns and the set of

possible values for each property. Table 1 reports

the food ontology at the base of our work.

Property Values

Food category
meat, vegetable, cake, soup,

pasta, fish, liquid, salad...

Course
main, first, second, appetizer,

side , dessert...

Main ingredient <simple food>

quantity <grams>

Table 1: Food Ontology.

A good head-noun should be as much informa-

tive as possible about the noun-compound proper-

ties, or, in other terms, it should allow to infer as

much as possible answers to questions 1-4. An-

swers to such questions are in most of the cases
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graduated and probabilistic, as a noun-compound

contains just a fraction of the knowledge needed to

answer them. For instance, given question 1) for

the food noun-compound insalata noci e formag-

gio should be posed in the following way: know-

ing that formaggio is part of a food description,

which is the probability that the overall descrip-

tion correctly refers to a food of category salad?

When the probability is very low, we assume a "no

guess" value for the answer.

The core procedure for human annotations con-

siders each content word in a food description, fills

in the values of the four attributes, and then se-

lect the noun with the best guesses. Below some

examples (in black the selected head of the food

description):

• insalata noci e formaggio: because insalata

is a better predictor of the food category than

formaggio or noci.

• involtini di peperoni: because peperoni is a

better predictor of food category (i.e. veg-

etable) and of the main ingredient than invol-

tini.

• budino al cioccolato fondente: because

budino is a good predictor of food category

(i.e. dessert) and a better predictor than cioc-

colato of the main ingredient (i.e. milk) of

the noun-compound.

2.1 Task and Data Set

Given a food noun-compound, the task we address

is to predict its head-noun, labelling one or more

consecutive tokens in the food description. We as-

sume that a head is always present, even in case it

is poorly informative.

Two annotators were selected to annotate a data

set of 436 food names, collected from recipe

books, with their head-noun. The inter annotator

agreement, computed at the token level, is Cohen’s

kappa: 0.91, which is considered very high.

In table 2 we give an overview of the data set of

food-description head (FDH) we created focusing

on two main orthogonal characteristics: whether

the head-noun is comprised of a single token or

of a multi-token, and whether the head-noun cor-

responds to the beginning of the food description

or not. As can be seen, the vast majority of head-

nouns is either made of a single token (almost 90%

of cases), or starts at the beginning of the entity

name (almost 80% of cases). The combination of

FDH type
Position Single token Multi token Total

1
st token 72.48 9.17 81.65

Not 1st token 17.89 0.46 18.35

Total 90.37 9.63

Table 2: Coverage on the data set of head-noun

characteristics (in %): either single token or multi-

token and whether appearing at the beginning of

the food description or not.

the two accounts for roughly 70% of the cases.

From the point of view of predicting the head-

noun of a food name, easier cases are given by sin-

gle token in first position, while harder cases are

given by multi-token head inside the food name.

3 Model

The architecture we use to recognize head-nouns

is based on a bidirectional LSTM (Long Short

Term Memory) network (Graves and Schmidhu-

ber, 2005), similar to the one presented in (Lam-

ple et al., 2016). We briefly describe the LSTM

model used in the approach and proceed with the

implementation details.

3.1 LSTM

Recurrent Neural Network (RNN) is a class of ar-

tificial neural network that resemble a chain of

repeating modules to efficiently model sequential

data (Mikolov et al., 2010). They take sequential

data (x1, x2, ....xn) as input and provide a repre-

sentation (h1, h2, ....hn) which captures the infor-

mation at every time step in the input. Formally,

ht = f(Uxt +Wht−1)

where xt is the input at time t, U is the embed-

ding matrix, f is a non-linear operation (such as

sigmoid, tanh or ReLU) and W is the parameter

of RNN learned during training.

The hidden state ht of the network at time t cap-

tures only the left context of the sequence for the

input at time t. The right context for the input at

time t can be captured by performing the same op-

eration in the negative time direction. The input

can be represented by both its left context
−→

ht and

right context
←−

ht as ht = [
−→

ht ;
←−

ht ]. Similarly, the

representation of the completed sentence is given

by hT = [
−→

hT ;
←−

h0]. Such processing of the input in

both forward and backward time-step is known as

bidirectional RNN. Though a vanilla RNN is good
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at modelling sequential data, it struggles to cap-

ture the long-term dependencies in the sequence.

Long Short Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) is a special kind of RNN

that is designed specifically to capture the long-

term dependencies in sequential data. They com-

pute the the hidden state ht as follows,

it = σ(Wi · [ht−1, xt] + bi

ft = σ(Wf · [ht−1, xt] + bf

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ C(t−1) + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo

ht = ot ∗ tanh(Ct)

where xt is the embedding for input at time t; it,

ft, ot are the input, forget and output gates, respec-

tively.

3.2 Implementation

The task of head-noun identification aims to pre-

dict a sequence of tags y = {y1, y2, .., yn} given

an input sequence X = {x1, x2, ..xn}. The

system is modeled as a sequence labelling task

and consists of three main steps: i) word embed-

ding: each word in the sequence is embedded to

a higher dimension; ii) Input encoder: encoding

the sequence of embeddings; iii) Classification:

labelling the sequence.

Word embeddings. Each word in the input se-

quence is represented by a vector of d-dimensions

that captures the syntactic and semantic informa-

tion of the word. The representation is carried by

a word embedding matrix E ∈ R
d×|v| where |v|

is the input vocabulary size. In addition to this,

the model combines a character embedding that is

learned during training using a Bi-LSTM network

to deal with out of vocabulary terms and possible

misspellings (Ling et al., 2015).

To represent the core structure of a complex

noun-compound, we also use the following hand-

crafted features of a head-noun candidate token

(Guerini et al., 2018): (i) the actual position of the

token within the compound name; (ii) the length

of the candidate token; (iii) the frequency of the

token in the gazetteer; (iv) the average length of

the noun-compounds in the gazetteer containing

the token; (v) the average position of the token in

the noun-compound it appears in; (vi) the bigram

probability with reference to the previous token in

the noun-compound; (vii) if the token can be an

noun-compound; (viii) the ratio of the time the to-

ken is the first token in a noun-compound; (ix) the

ratio of the time the token is the last token in a

noun-compound. These handcrafted features for

each word are extracted from a large corpus of Ital-

ian food names reported in (Guerini et al., 2018).

The concatenation of word embedding, final

states of bidirectional character embeddings net-

work, and hand crafted features is used as the word

representation.

Input encoder. LSTM nodes are used to encode

the input sequence of word embeddings. We em-

ploy a bidirectional LSTM (Bi-LSTM) to cap-

ture the context in both forward and backward

timesteps. The hidden representation of a word

at time t is given as,

ht = [
−→
h t;

←−
h t]

Classification. The output layer receives the

hidden representation from the Bi-LSTM and out-

puts a probability distribution over the possible

tag sequences. Then, a conditional random field

(CRF) layer (Lafferty et al., 2001) is used to

model the dependency in labelling tags. The

hidden representations from the Bi-LSTM are

passed through a linear layer to obtain the score

Pi for each word in the input sequence X =
{x1, x2, .., xn}. The score for each possible output

tag sequence ŷ ∈ Ŷ is then obtained as follows,

Score(ŷ) =
n∑

i=0

Ayi,yi+1
+

n∑

i=1

Pi,yi

where A is the transition matrix representing the

transition scores from tag i to tag j. The probabil-

ity of the tag sequence is then computed using a

softmax operation as follows,

p(ŷ|X) =
exp(Score(ŷ))∑
ỹ∈Ŷ exp(Score(ỹ)

The training is done by maximizing the log prob-

ability of the correct output tag sequence.

4 Experiments and Results

4.1 Setup

The dimension of character embedding is set to 30

and embeddings are learned using 50 hidden units
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in each direction. For the word embeddings, as

learning this level of representation with a small

dataset is highly inefficient, we decided to use

pre-trained embeddings trained using skip-gram

(Mikolov et al., 2013) on the Italian corpus of

Wikipedia. The input encoder consists of 120 hid-

den units in each direction with a dropout (E. Hin-

ton et al., 2012) of 0.5 applied between the Bi-

LSTM layer and the output layer.

4.2 Baselines

To compare the performance of the proposed ap-

proach, we provide two baselines: i) 1st token,

where the 1st token of a noun-compound is chosen

as its head-noun; ii) Spacy1, where the root token

of the dependency tree for the noun-compound is

chosen as its head-noun.

1st token. This baseline implicitly accounts for

a number of linguistic behaviours of head-nouns

in Italian language: (a) avoids stop words as head-

nouns, as they do not occur at the first position of

a noun-compound; (b) avoids adjectives as head-

nouns, as they usually occur after the noun they

modify; (c) captures the syntactic head of the

noun-compound, which, in Italian is likely to be

the first noun in a Noun Phrase; as already seen in

Table 2. Summing up, the first-token baseline cap-

tures relevant linguistic behaviours, and is a strong

competitor of our neural model, as in more than

80% of the entries in our dataset the first token be-

longs to head-noun of the noun-compound.

Spacy. This is a widely known open-source li-

brary for natural language processing and include

a syntactic dependency parser. Given an input se-

quence, based on the result returned by the depen-

dency parser, the root of the sequence is chosen to

be the head-noun. We used the statistical model

it_core_news_sm2 released by Spacy for Italian

language.

4.3 Evaluation metric

The performance of the models are evaluated us-

ing F1 score as in CoNLL-2003 NER evaluation

(Sang and Meulder, 2003), which is a standard for

evaluating sequence tagging tasks.

4.4 Results

The results for the FDH dataset are shown in Ta-

ble 3. The baselines 1st token and Spacy achieve

1https://spacy.io/
2https://spacy.io/models/it

Accuracy Precision Recall F1

Baselines

1st token 83.74 70.29 70.24 70.27
Spacy 78.47 62.70 62.67 62.67

Bi-LSTM
a) word_emb 84.06 74.10 65.18 69.28
b) a + hc_feat 85.17 75.76 66.50 70.76
c) a + char_emb 85.21 76.24 66.28 70.79
d) b + CRF 88.07 78.57 77.67 78.09
d) d + char_emb 88.59 80.58 78.62 79.58

Table 3: Experimental results on FDH dataset.

a performance of 70.27 of 62.67 respectively. In

particular, the performance of syntactic depen-

dency parser from Spacy reiterates the difference

between the semantic and syntactic head. The re-

sults are shown by incremental features, for the

proposed approach. The models reported with-

out CRF, are trained using a softmax function as

output layer to predict the tag. We can notice

from the results that using only the pre-trained em-

beddings, the network suffers from a poor recall

and fails to achieve even the baseline performance.

However, using either character embedding or the

hand-crafted features, improves the performance

of the model on par with the baseline. Since the

single token head-noun in FDH dataset is very

high (as shown in table 2), learning the multi to-

ken head-nouns and the dependency of tags is a

challenge. However, introducing the CRF layer to

jointly predict the sequence of tags in combina-

tion with the hand crafted features, enables us to

predict multi-token heads and improve the perfor-

mance of the model to 78.09. Finally, the char-

acter embeddings learned during training helps to

improves the recall further, reaching a F1 score of

79.58.

5 Conclusion and Future Work

We have addressed head-noun identification in

complex noun-compounds, a task of high rele-

vancy in utterance interpretation for dialogue sys-

tems. We proposed a neural model, and experi-

ments on Italian food noun-compounds show that

the model is able to outperform strong baselines

even with a small amount of data. For the future

we plan to extend our investigation to other do-

main and languages.
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