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Abstract

English. In this paper we present a work

aimed at testing the most advanced, state-

of-the-art syntactic parsers based on deep

neural networks (DNN) on Italian. We

made a set of experiments by using the

Universal Dependencies benchmarks and

propose a new solution based on ensem-

ble systems obtaining very good perfor-

mances.

Italiano. In questo contributo presentia-

mo alcuni esperimenti volti a verificare

le prestazioni dei più avanzati parser

sintattici sull’italiano utilizzando i tree-

bank disponibili nell’ambito delle Univer-

sal Dependencies. Proponiamo inoltre un

nuovo sistema basato sull’ensemble par-

sing che ha mostrato ottime prestazioni.

1 Introduction

Syntactic parsing of morphologically rich lan-

guages like Italian often poses a number of hard

challenges. Various works applied different kinds

of freely available parsers on Italian training them

using different resources and different methods for

comparing their results (Lavelli, 2014; Alicante

et al., 2015; Lavelli, 2016) and gather a clear pic-

ture of the syntactic parsing task performances for

the Italian language. In this direction seems rel-

evant to cite the EVALITA1 periodic campaigns

for the evaluation of constituency and dependency

parsers devoted to the syntactic analysis of Italian

(Bosco and Mazzei, 2011; Bosco et al., 2014).

Other studies regarding the syntactic parsing

of Italian tried to enhance the parsing perfor-

mances by building some kind of ensemble sys-

tems (Lavelli, 2013; Mazzei, 2015).

1http://www.evalita.it

By looking at the cited papers we can observe

that they evaluated the state-of-the-art parsers be-

fore the “neural net revolution” not including the

last improvements proposed by new research stud-

ies.

The goal of this paper is twofold: first, we

would like to test the effectiveness of parsers based

on the newly-proposed technologies, mainly deep

neural networks, on Italian, and, second, we would

like to propose an ensemble system able to further

improve the neural parsers performances when

parsing Italian texts.

2 The Neural Parsers

We considered nine state of the art parsers repre-

senting a wide range of contemporary approaches

to dependency parsing whose architectures are

based on neural network models (see Table 1). We

set-up each parser using the data from the Italian

Universal Dependencies (Nivre et al., 2016) tree-

bank, UD Italian 2.1 (general texts) and UD Italian

PoSTWITA 2.2 (tweets). For all parsers, we used

the default settings for training, following the rec-

ommendation of the developers.

In Chen and Manning (2014) dense features are

used to learn representations of words, tags and

labels using a neural network classifier in order

to take parsing decisions within a transition-based

greedy model. To address some limitations, in An-

dor et al. (2016) the authors augmented the parser

model with a beam search and a conditional ran-

dom field loss objective. The work of Balles-

teros et al. (2015) extends the parser defined in

Dyer et al. (2015) introducing character-level rep-

resentation of words using bidirectional LSTMs

to improve the performance of stack-LSTM model

which learn representations of the parser state.

In Kiperwasser and Goldberg (2016) the bidirec-

tional LSTMs recurrent output vector for each

word is concatenated with any possible heads re-

current vector, and the result is used as input to a
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multi-layer perceptron (MLP) network that scores

each resulting edge. Cheng et al. (2016) pro-

pose a bidirectional attention model which uses

two additional unidirectional RNN, called left-

right and right-left query component. Based on

Kiperwasser and Goldberg (2016) and Cheng et al.

(2016) model, in Dozat and Manning (2017) a

biaffine attention mechanism is used, instead of

traditional MLP-based attention. The model pro-

posed in Nguyen et al. (2017) train a neural net-

work model that learn jointly POS tagging and

graph-based dependency parsing. The model uses

a bidirectional LSTM to learn POS tagging and the

Kiperwasser and Goldberg (2016) approach for

dependency parsing. Shi et al. (2017a,b) described

a parser that combines three parsing paradigms us-

ing a dynamic programming approach.

Parser Ref.-Abbreviation Method Parsing

(Chen and Manning, 2014) - Tb: a-s Greedy
CM14

(Ballesteros et al., 2015) - Tb: a-s Be-se
BA15

(Kiperwasser and Goldberg, 2016)- Tb: a-h Greedy
KG16:T

(Kiperwasser and Goldberg, 2016)- Gb: a-f Eisner
KG16:G

(Andor et al., 2016) - Tb: a-s Beam-S
AN16

(Cheng et al., 2016) - Gb: a-f cle
CH16

(Dozat and Manning, 2017) - Gb: a-f cle
DM17

(Shi et al., 2017a,b)- Tb: a-h./ Greedy
SH17 -eager

Gb: a-f Eisner
(Nguyen et al., 2017) - Gb: a-f Eisner

NG17

Table 1: All the neural parsers considered in

this study with their fundamental features as well

as their abbreviations used throughout the paper.

In this table “Tb/Gb” means “Transition/Graph-

based”, “Beam-S” means “Beam-search” and “a-

s/h/f” means “arc-standard/hybrid/factored”.

We trained, validated and tested the nine con-

sidered parsers, as well as all the proposed exten-

sions, by considering three different setups:

• setup0: only the UD Italian 2.1 dataset;

• setup1: only the UD Italian PoSTWITA 2.2

dataset;

• setup2: UD Italian 2.1 dataset joined with the

UD Italian PoSTWITA 2.2 dataset (train and

validation sets) keeping the test set of PoST-

WITA 2.2;

After the influential paper from Reimers and

Gurevych (2017) it is clear to the community that

reporting a single score for each DNN training ses-

sion could be heavily affected by the system ini-

tialisation point and we should instead report the

mean and standard deviation of various runs with

the same setting in order to get a more accurate

picture of the real systems performances and make

more reliable comparisons between them.

Table 2 shows the parsers performances on

the test set for the three setups described above

executing the training/validation/test cycle for 5

times. In any setup the DM17 parser exhibits the

best performances, notably very high for general

Italian. As we can expect, the performances on

setup1 were much lower than that for setup0 due

to the intrinsic difficulties of parsing tweets and to

the scarcity of annotated tweets for training. Join-

ing the two datasets in the setup2 allowed to get

a relevant gain in parsing tweets even if we added

out-of-domain data. For these reasons, for all the

following experiments, we abandoned the setup1

because it seemed more relevant to use the joined

data (setup2) and compare them to setup0.

3 An Ensemble of Neural Parsers

The DEPENDABLE tool in Choi et al. (2015) re-

ports ensemble upper bound performance assum-

ing that, given the parsers outputs, the best tree

can be identified by an oracle “MACRO” (MA), or

that the best arc can be identified by another oracle

“MICRO” (mi). Table 3 shows that, by applying

these oracles, we have plenty of space for improv-

ing the performances by building some kind of en-

semble system able to cleverly choose the correct

information from the different parsers outputs and

combine them improving the final solution. This

observation motivates our proposal.

To combine the parser outputs we used the fol-

lowing ensemble schemas:

• Voting: Each parser contributes by assigning

a vote on every dependency edge as described

in Zeman and Žabokrtský (2005). With the

majority approach the dependency tree could

be ill-formed, in this case using the switching

approach the tree is replaced with the output

of the first parser.

• Reparsing: As described in Sagae and Lavie

(2006) together with Hall et al. (2007) a MST

algorithm is used to reparse a graph where
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setup0

Valid. Ita Test Ita

UAS LAS UAS LAS

CM14 88.20/0.18 85.46/0.14 89.33/0.17 86.85/0.22
BA15 91.15/0.11 88.55/0.23 91.57/0.38 89.15/0.33
KG16:T 91.17/0.29 88.42/0.24 91.21/0.33 88.72/0.24
KG16:G 91.85/0.27 89.23/0.31 92.04/0.18 89.65/0.10
AN16 85.52/0.34 77.67/0.30 87.70/0.31 79.48/0.24
CH16 92.42/0.00 89.60/0.00 92.82/0.00 90.26/0.00
DM17 93.37/0.27 91.37/0.24 93.72/0.14 91.84/0.18
SH17 89.67/0.24 85.05/0.24 89.89/0.29 84.55/0.30
NG17 90.37/0.12 87.19/0.21 90.67/0.15 87.58/0.11

setup1

Valid. PoSTW Test PoSTW

UAS LAS UAS LAS

CM14 81.03/0.17 75.24/0.30 81.50/0.28 76.07/0.17
BA15 83.44/0.20 77.70/0.25 84.06/0.38 78.64/0.44
KG16:T 77.38/0.14 68.81/0.25 77.41/0.43 69.13/0.43
KG16:G 78.81/0.23 70.14/0.33 78.78/0.44 70.52/0.51
AN16 77.74/0.25 66.63/0.16 77.78/0.33 67.21/0.30
CH16 84.78/0.00 78.51/0.00 86.12/0.00 79.89/0.00
DM17 85.01/0.16 78.80/0.09 86.26/0.16 80.40/0.19
SH17 80.52/0.18 73.71/0.14 81.11/0.29 74.53/0.26
NG17 82.02/0.11 75.20/0.24 82.74/0.39 76.22/0.41

setup2

Valid. Ita+PoSTW Test PoSTW

UAS LAS UAS LAS

CM14 85.52/0.13 81.51/0.05 82.62/0.24 77.45/0.23
BA15 87.85/0.13 83.80/0.12 85.15/0.29 80.12/0.27
KG16:T 83.89/0.23 77.77/0.26 80.47/0.36 72.92/0.46
KG16:G 84.70/0.14 78.41/0.14 81.41/0.37 73.49/0.19
AN16 82.95/0.33 73.46/0.37 79.81/0.27 69.19/0.19
CH16 89.16/0.00 84.56/0.00 86.85/0.00 80.93/0.00
DM17 89.72/0.10 85.85/0.13 87.22/0.24 81.65/0.21
SH17 85.85/0.36 80.00/0.39 83.12/0.50 76.38/0.38
NG17 86.81/0.04 82.13/0.09 84.09/0.07 78.02/0.11

Table 2: Mean/standard deviation of UAS/LAS for

each parser and for the different setups by repeat-

ing the experiments 5 times. All the results are sta-

tistically significant (p < 0.05) and the best values

are showed in boldface.

Validation Test

UAS LAS UAS LAS

setup0

mi 98.30% 97.82% 98.08% 97.72%

MA 96.62% 95.10% 96.31% 94.82%

setup2

mi 97.08% 96.02% 96.32% 94.73%

MA 94.62% 91.29% 93.27% 88.50%

Table 3: Results obtained by building an ensemble

system based on the oracles mi e MA and consid-

ering all parsers.

each word in the sentence is a node. The

MSTs algorithms used are Chu-Liu/Edmons

(cle) and Eisner as reported in McDonald

et al. (2005). Three weighting strategies for

Chu-Liu/Edmons are used: equally weighted

(w2); weighted according to the total la-

beled accuracy on the validation set (w3);

weighted according to labeled accuracy per

coarse grained PoS tag on the validation set

(w4).

• Distilling: In Kuncoro et al. (2016) the au-

thors train a distillation parser using a loss

objective with a cost that incorporates ensem-

ble uncertainty estimates for each possible at-

tachment.

4 Results

Tables 4, 7 and 9 show the performances of the en-

sembles built on the best results on validation set

obtained in the 5 training/test cycles considering

both setup0 and setup2. Table 6 reports the num-

ber of malformed trees for the majority strategy.

Table 5 and 8 report the number of cases when

the ensemble combination output differs from the

baseline, including both labeled (L) and unla-

beled (U) outputs. On the average the percent-

age of different unlabeled output varies from 2%

to 15% with respect to baseline. For the best result

(DM17+ALL) the difference on setup0 and setup2

is about 4%.

The results of the voting approach reported in

Table 4 shows that the majority strategy is slightly

better than the switching strategy, although it must

be taken into account that there might be ill-

formed dependency trees for the former strategy.

The percentage of ill-formed trees on valid./test

set vary from a minimum of 2% to a maximum

of 8%. For this reasons the majority strategy

should be used when it is followed by a man-

ual correction phase. The switching strategy per-

forms well if the first parser of voters is one of the

best parsers, in fact the combinations AN16+ALL

and AN16+CM14+SH17 have worst performance

than the counterparts which using the best parser

(DM17) as the first voter. Overall, the highest

performance is achieved using all parsers together

with DM17 as the first voter. For setup0 the in-

creases are +0.19% in UAS e +0.38% in LAS,

while in setup2 are +0.92% in UAS e +2.47% in

LAS with respect to the best single parser (again

DM17).

The results of the reparsing approach reported

in Table 7 shows that the Chu-Liu/Edmonds al-

gorithm is slightly better than the Eisner algo-

rithm. In this case, the choice of which strategy
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setup0

Validation Test

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/maj. 94.20% 92.27% 93.77% 92.13%
DM17+CH16+BA15/swi. 94.11% 92.16% 93.79% 92.14%
AN16+CM14+SH17/maj. 90.43% 87.96% 91.03% 88.47%
AN16+CM14+SH17/swi. 89.44% 86.77% 90.17% 87.43%
DM17+CM14+SH17/maj. 93.84% 92.03% 93.82% 92.27%
DM17+CM14+SH17/swi. 93.76% 91.94% 93.82% 92.25%
AN16+ALL/maj. 94.37% 92.65% 93.83% 92.27%
AN16+ALL/swi. 93.99% 92.15% 93.43% 91.73%
DM17+ALL/maj. 94.42% 92.67% 93.94% 92.41%
DM17+ALL/swi. 94.38% 92.60% 93.91% 92.37%

DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2

Validation Test

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/maj. 90.57% 87.16% 88.21% 83.64%
DM17+CH16+BA15/swi. 90.51% 87.10% 88.13% 83.51%
AN16+CM14+SH17/maj. 86.90% 83.60% 84.09% 79.78%
AN16+CM14+SH17/swi. 86.01% 82.50% 82.58% 77.94%
DM17+CM14+SH17/maj. 90.35% 87.21% 88.07% 83.64%
DM17+CM14+SH17/swi. 90.27% 87.11% 87.99% 83.52%
AN16+ALL/maj. 90.30% 87.26% 88.36% 84.13%
AN16+ALL/swi. 89.70% 86.45% 87.46% 83.06%
DM17+ALL/maj. 90.64% 87.60% 88.51% 84.42%
DM17+ALL/swi. 90.65% 87.62% 88.50% 84.20%

DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

Table 4: Results of ensembles using switching and

majority approaches on the best models in setup0

and setup2. The baseline is defined by the best

results of Dozat and Manning (2017).

to use must take into account if we want to allow

non-projectivity or not. The percentage of non-

projective dependency trees on valid./test set for

Chu-Liu/Edmonds vary from a minimum of 7% to

a maximum of 12% compared with the average for

the Italian corpora of 4%. Overall, the highest per-

formances are achieved using Chu-Liu/Edmonds

algorithm. For setup0 the increases are +0.25%

in UAS and +0.45% in LAS, while in setup2 are

+0.77% in UAS and +2.30% in LAS with respect

to the best single parser (DM17).

The results of the distilling strategy reported in

Table 9, unlike the previous proposals, show worse

outcomes, which score below the baseline.

5 Discussion and Conclusions

We have studied the performances of some neu-

ral dependency parsers on generic and social me-

dia domain. Using the predictions of each single

parser we combined the best outcomes to improve

the performance in various ways. The ensemble

models are more efficient on corpora built using

in-domain data (social media), giving an improve-

ment of ∼ 1% in UAS and ∼ 2.5% in LAS.

setup0

Validation Test
/11.908 /10.417

Voters/Strategy U L U L

DM17+CH16+BA15/maj. 208 61 188 46
DM17+CH16+BA15/swi. 192 52 175 39
AN16+CM14+SH17/maj. 1.006 424 783 336
AN16+CM14+SH17/swi. 1.130 489 870 371
DM17+CM14+SH17/maj. 170 37 139 15
DM17+CM14+SH17/swi. 157 33 129 13
AN16+ALL/maj. 382 126 328 105
AN16+ALL/swi. 460 164 386 133
DM17+ALL/maj. 356 117 282 81
DM17+ALL/swi. 312 97 255 72

setup2

Validation Test
/24.243 /12.668

Voters/Strategy U L U L

DM17+CH16+BA15/maj. 597 219 470 213
DM17+CH16+BA15/swi. 521 185 394 172
AN16+CM14+SH17/maj. 2.757 1.329 1.805 941
AN16+CM14+SH17/swi. 2.976 1.429 1.986 1.033
DM17+CM14+SH17/maj. 490 140 337 93
DM17+CM14+SH17/swi. 453 121 300 73
AN16+ALL/maj. 1.377 624 897 440
AN16+ALL/swi. 1.610 741 1.063 534
DM17+ALL/maj. 1.156 502 784 378
DM17+ALL/swi. 920 374 614 280

Table 5: Numbers of cases when there is a dif-

ferent output between the ensemble systems, us-

ing switching and majority, and the baseline Dozat

and Manning (2017).

setup0 setup2

Voters Valid. Test Valid. Test
/564 /482 /1235 /674

DM17+CH16+BA15 9 7 31 31

AN16+CM14+SH17 45 25 88 77

DM17+CM14+SH17 6 6 19 23

AN16+ALL 18 17 73 63

DM17+ALL 17 11 75 57

Table 6: Number of malformed trees obtained by

using the majority strategy for both setups.

Thanks to the number of parser models adopted

in the experiments it has been possible to verify

that the performances of the ensemble models in-

crease as the number of parsers grows.

The improvement of LAS is, in most cases, at

least twice the value of UAS. This could mean

that ensemble models catch with better precision

the type of dependency relations rather than head-

dependent relations.

All the proposed ensemble strategies, except for

distilling, perform more or less in the same way,

therefore the choice of which strategy to use is

due, in part, to the properties that we want to ob-

tain on the combined dependency tree.

Our work is inspired by the work of Mazzei
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setup0

Validation Test

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/cle-w2 93.82% 91.85% 93.54% 91.83%
DM17+CH16+BA15/cle-w3 93.89% 91.82% 93.78% 92.06%
DM17+CH16+BA15/cle-w4 94.20% 92.28% 93.72% 92.04%
DM17+CH16+BA15/eisner 94.05% 92.05% 93.46% 91.78%
ALL/cle-w2 94.31% 92.53% 93.85% 92.23%
ALL/cle-w3 94.16% 92.41% 94.00% 92.48%
ALL/cle-w4 94.29% 92.58% 93.95% 92.38%
ALL/eisner 94.31% 92.53% 93.95% 92.35%

DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2

Validation Test

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/cle-w2 90.33% 86.95% 87.69% 83.31%
DM17+CH16+BA15/cle-w3 89.82% 85.96% 87.59% 81.95%
DM17+CH16+BA15/cle-w4 90.41% 86.99% 87.94% 83.32%
DM17+CH16+BA15/eisner 90.50% 87.05% 88.04% 83.51%
ALL/cle-w2 90.52% 87.53% 88.36% 84.25%
ALL/cle-w3 89.90% 86.75% 87.79% 83.54%
ALL/cle-w4 90.42% 87.46% 88.19% 84.11%
ALL/eisner 90.45% 87.41% 88.31% 84.08%

DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

Table 7: Results of ensembles using reparsing ap-

proaches on the best models in setup0 and setup2.

The baseline is again defined by the best results of

DM17.

setup0

Validation Test
/11.908 /10.417

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/cle-w2 360 129 307 90
DM17+CH16+BA15/cle-w3 96 0 89 1
DM17+CH16+BA15/cle-w4 267 76 247 52
DM17+CH16+BA15/eisner 375 130 327 103
ALL/cle-w2 400 131 333 103
ALL/cle-w3 351 108 299 79
ALL/cle-w4 383 126 307 87
ALL/eisner 411 133 333 106

setup2

Validation Test
/24.243 /12.668

Voters/Strategy UAS LAS UAS LAS

DM17+CH16+BA15/cle-w2 1.056 496 800 424
DM17+CH16+BA15/cle-w3 0 0 0 0
DM17+CH16+BA15/cle-w4 603 264 491 236
DM17+CH16+BA15/eisner 1.047 443 789 376
ALL/cle-w2 1.347 599 882 417
ALL/cle-w3 1.261 537 804 363
ALL/cle-w4 1.274 576 822 389
ALL/eisner 1.367 607 916 436

Table 8: Numbers of cases when there is a differ-

ent output between the ensemble systems, using

reparsing approaches, and the baseline Dozat and

Manning (2017).

(2015). Different from his work, we use larger

set of state-of-the-art parsers, all based on neural

networks, in order to gain more diversity among

Setup UAS LAS

setup0 92.50% (–1.25%) 89.93% (–2.10%)

setup2 86.73% (–0.86%) 81.39% (–0.56%)

Table 9: Results of distilling approach on the best

models in setup0 and setup2. In brackets are re-

ported the differences between the distilled mod-

els and the best results of DM17, as baseline.

the models used in the ensembles; furthermore we

have experimented the distilling strategy and eis-

ner reparsing algorithm. Moreover, we built en-

sembles on larger datasets using both generic and

social media texts.

Acknowledgements

We gratefully acknowledge the support of

NVIDIA Corporation with the donation of the Ti-

tan Xp GPU used for this research.

References

Anita Alicante, Cristina Bosco, Anna Corazza,

and Alberto Lavelli. 2015. Evaluating italian

parsing across syntactic formalisms and anno-

tation schemes. In Roberto Basili, Cristina

Bosco, Rodolfo Delmonte, Alessandro Mos-

chitti, and Maria Simi, editors, Harmonization

and Development of Resources and Tools for

Italian Natural Language Processing within the

PARLI Project, Springer International Publish-

ing, Cham, pages 135–159.

Daniel Andor, Chris Alberti, David Weiss, Ali-

aksei Severyn, Alessandro Presta, Kuzman

Ganchev, Slav Petrov, and Michael Collins.

2016. Globally normalized transition-based

neural networks. In Proceedings of the 54th

Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers).

ACL, Berlin, Germany, pages 2442–2452.

Miguel Ballesteros, Chris Dyer, and Noah A.

Smith. 2015. Improved transition-based parsing

by modeling characters instead of words with

lstms. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language

Processing. ACL, Lisbon, Portugal, pages 349–

359.

Cristina Bosco, Felice DellOrletta, Simonetta

Montemagni, Manuela Sanguinetti, and Maria

Simi. 2014. The evalita 2014 dependency pars-

ing task. In Proceedings of the Fourth Inter-



32

national Workshop EVALITA 2014. Pisa, Italy,

pages 1–8.

Cristina Bosco and Alessandro Mazzei. 2011. The

evalita 2011 parsing task. In Working Notes of

EVALITA 2011, CELCT, Povo, Trento.

Danqi Chen and Christopher Manning. 2014. A

fast and accurate dependency parser using neu-

ral networks. In Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing (EMNLP). ACL, Doha,

Qatar, pages 740–750.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng

Gao, and Li Deng. 2016. Bi-directional atten-

tion with agreement for dependency parsing. In

Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing.

ACL, Austin, Texas, pages 2204–2214.

Jinho D. Choi, Joel Tetreault, and Amanda Stent.

2015. It depends: Dependency parser compari-

son using a web-based evaluation tool. In Pro-

ceedings of the 53rd Annual Meeting of the As-

sociation for Computational Linguistics and the

7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers).

ACL, Beijing, China, pages 387–396.

Timothy Dozat and Christopher D. Manning.

2017. Deep biaffine attention for neural depen-

dency parsing. In Proceedings of the 2017 In-

ternational Conference on Learning Represen-

tations.

Chris Dyer, Miguel Ballesteros, Wang Ling,

Austin Matthews, and Noah A. Smith. 2015.

Transition-based dependency parsing with stack

long short-term memory. In Proceedings of

the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language

Processing (Volume 1: Long Papers). ACL,

Beijing, China, pages 334–343.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
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