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Abstract

English. We report the results of an ex-

ploratory study aimed at investigating the

language of happiness in Italian tweets.

Specifically, we conduct a time-wise anal-

ysis of the happiness load of tweets by

leveraging a lexicon of happiness ex-

tracted from 8.6M tweets. Furthermore,

we report the results of a statistical lin-

guistic analysis aimed at extracting the

most frequent concepts associated with the

happy and sad words in our lexicon.

Italiano. Riportiamo i risultati

dell’analisi esplorativa di un corpus

di tweet in Italiano, al fine di individuare i

concetti tipicamente associati alla felicità.

Riportiamo inoltre i risultati di un’analisi

time-wise dell’happiness load dei tweet

nelle diverse ore della giornata e nei

diversi giorni della settimana.

1 Introduction

The widespread diffusion of social media has re-

shaped the way we interact and communicate.

Among others, microblogging platforms as Twit-

ter are becoming extremely popular and people

constantly use them for sharing opinions about

facts of public interest. Furthermore, its world-

wide adoption and the fact that tweets are publicly

available, makes Twitter an extremely appealing

virtual place for researchers interested in language

analysis as a mean to investigate social phenom-

ena (Bollen et al., 2009; Garimella et al., 2016).

In addition, recent research showed how mi-

croblogging is also used for self-disclosure of in-

dividual feelings (Roberts et al., 2012; Andalibi

et al., 2017). As such, microblogs constitute an

invaluable wealth of data ready to be mined for

discovering affective stereotypes (Joseph et al.,

2017) using corpus-based approaches to linguistic

ethnography (Mihalcea and Liu, 2006). Such anal-

yses, can further enhance our understanding on

how people conceptualize the experience of emo-

tions and what are their more common triggers.

Recent studies even envisaged the emergence of

tools for monitoring the public mood 1 and health

through the analysis of Twitter users’ reaction to

major social, political, economics events (Bollen

et al., 2009).

In this study we report the results of an ex-

ploratory analysis of the language of happiness in

Twitter. In particular, we perform a partial repli-

cation of the approach proposed by (Mihalcea and

Liu, 2006) for mining sources of happiness in blog

posts. The contributions of this paper are as fol-

lows. First, we extract a happiness dictionary from

a sample of about 8.6M tweets from the TWITA

corpus of Italian tweets (Basile and Nissim, 2013).

For each word in the dictionary, we compute a

happiness factor by adapting the approach pro-

posed in the original study. Furthermore, we per-

form a qualitative investigation of the 100 happi-

est and saddest words by mapping them into psy-

cholinguistic word categories (see Section 2). As

a second step, we use our dictionary to perform a

time-wise analysis of happiness as shared in dif-

ferent hours and days of the week (see Section 3).

Third, we extract concepts most frequently asso-

ciated with happy words in our dictionary, which

we map into WordNet super-senses (see Section

4). We discuss limitations and provide suggestions

for future work in Section 5.

2 The Happiness Dictionary

2.1 A Dataset of Happy and Sad Tweets

Our study is based on TWITA (Basile and Nis-

sim, 2013), the largest available corpus of Ital-

1’What Twitter tells us about our happiness’ https://
goo.gl/fmYBP3 - Last accessed: Oct. 2018
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ian tweets. In particular, we analyze a subset of

400M tweets obtained by filtering-out re-tweets

from all the 500M tweets collected from February

2012 to September 2015. Following the idea pro-

posed in (Read, 2005; Go et al., 2009), we select

positive and negative tweets based on the presence

of positive or negative emoticons2. Since a tweet

can contain multiple emoticons, we selected only

tweets that contain a single emoticon appearing at

the end of the tweet. Using this procedure we ob-

tain a corpus Chappy of 8,648,476 tweets.

2.2 Happy/Sad Word Extraction and Scoring

From the Chappy corpus, we extract a subset of

words and we assign them an happiness factor

(hf ) computed according to the log of the odds

ratio between the probability that the word occurs

in positive tweets phappy(wi) and the probability

that it occurs in negative tweets psad(wi) as in Eq.

1.

hf(wi) = log
phappy(wi)

psad(wi)
(1)

We adopt additive smoothing (Laplace smoothing)

for computing both phappy and psad probabilities.

In our lexicon, we include and compute the hap-

piness factor only for words that occur at least

10,000 times, for a total of 718 words. We call

this list “the happiness dictionary” (Dh)3. Table 1

reports the most happy/sad words with the corre-

sponding happiness factor (score(hf)).

Table 1: The happiness factor of the most

happy/sad words.

happy score (hf) sad score (hf)

fback 4.04 triste -2.37

ricambi 3.83 purtroppo -1.91

benvenuta 3.17 dispiace -1.68

grazie 2.32 brutto -1.68

buon 2.14 peccato -1.63

piacere 2.03 manca -1.53

gentile 1.91 compiti -1.35

auguro 1.86 paura -1.33

dolcezza 1.74 studiare -1.30

We observe that some happy words (fback,

ricambi, benvenuta) are due to several positive

tweets that users post when they establish new

connections, i.e. when they start following a

2We use :-) and :) for happy and :-( and :( for sad.
3The dictionary is available on github https://

github.com/pippokill/happyFactor

new user or when they ask sombebody to follow

them back (fback) as in: @usermention ciao sono

nuova, fback? Grazie mille :) Sad words refer to

negative emotions or evaluations, such as triste,

dispiace, brutto, peccato. Interestingly, several

negative words emerge from the school domain

(compiti, studiare) and the word scuola has a neg-

ative score of -0.93 itself.

2.3 Happiness by Psycholinguistic Categories

We are interested in understanding how happiness

words map into psycholinguistic word classes.

Hence, we check their distribution along the word

categories in the Linguistic Inquiry and Word

Count (LIWC) taxonomy (Pennebaker and Fran-

cis, 2001). To this aim, we perform a qualitative

investigation on the 100 most happy and 100 most

sad words, that are the words with the highest and

lowest happiness scores, respectively. We map

each word into LIWC word categories. LIWC

organizes words into psychologically meaningful

categories, based on the assumption that the lan-

guage reflects the cognitive and emotional phe-

nomena involved in communication. It has been

used for a wide range of psycholinguistics exper-

imental settings, including investigation on emo-

tions, social relationships, and thinking styles

(Tausczik and Pennebaker, 2010).

We perform a coding of the English transla-

tion of the happy/sad words into LIWC categories.

When translating, we keep the information about

the subject conveyed by the Italian verbs (e.g.,

’penso’ is translated as ’I think’). The coding

is performed manually by the authors: in a first

round, one rater associates each word with the

corresponding LIWC category; then, the other re-

vises the annotation, checking for consistency and

verifying also the correctness of the translation.

22 words are discarded and replaced with others

from the dictionary because we could not find a

mapping with any of the categories. Furthermore,

we add an ad hoc category to enable modeling of

words from the social media domain (retweet, fol-

low).

Figure 1 shows how the happy and sad words

distribute along the dimensions associated with the

most frequent categories. Sample words for each

word category are reported in Table 2. We observe

that happy words in the dictionary mainly refer to

positive emotions as well as to the social and social

media dimensions. Conversely, sad words mainly
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describe negative emotions with focus on the au-

thor. Words describing cognitive mechanisms are

also associated with sadness.

Figure 1: Comparing the most happy/sad words

along dimensions associated with word categories.

Table 2: Mapping the happiness dictionary to

word categories

Category Sample words

Affect buono/a, ottimo, triste, brutto

Cogmech avrei, pensare, capisco, so, volevo

Comm benvenut*, buonanotte, ciao

I mi, io, first person verbs

Negate mai, nulla, non

Negemo difficile, peggio, sola

Posemo benvenuta, piacere, sorriso, cara

Posfeel cara, contenta, adoro, felice

Present avermi, trovi, riesco

Self mi, io, first person verbs

Social ricambi, gruppo

S. media fback, follow, seguire, Instagram

Time serata, anticipo, periodo, ultima

You te, tuo, second person verbs

3 Time-wise analysis

As observed in the original study, happiness is not

constant in our life and different degrees of hap-

piness might be observed at different moments in

time. As such, we analyze how happiness changes

over time. In particular we take into account the

days of the week and the different hours in a day.

For this analysis, we exploit the whole corpus

of 400M tweets and we compute the distribution

(a) Happiness load by day of the week

(b) Happiness load for a 24-hour day

Figure 2: Time-wise analysis.

of words occurring in the happiness dictionary in

each different time period. Using this strategy, in

each time period the word has an happiness load

obtained by multiplying its frequency in that pe-

riod by its happiness factor. The happiness load

of each time period is the average of all the happi-

ness load in that period. The obtained values are

mapped in the interval [-1, 1] and plotted in Figure

2a (for days) and in Figure 2b (for hours).

Our time-wise analysis reveals a drop in happi-

ness on Thurdsay, with a subsequent twist towards

positive mood on Friday, before the weekend that

is the happiest moment in the week. This is consis-

tent with the findings of the original study report-

ing mid-week blues around Wednesday and a hap-

piness peak on Saturday (Mihalcea and Liu, 2006).

Regarding the hours, we observe the highest hap-

piness load in the morning, with a peak around 6

AM, and it constantly decreases over the day, with

the lowest value observed around 11 PM.

4 Concept analysis

We are interested in concepts related to words in

the happiness dictionary. In the original study, the

authors extract the ’ingredients’ for their recipe of

happiness by ranking the most relevant 2- and 3-

grams from their corpus according to their happi-

ness load. Such an approach is not easy to repli-

cate as the number of 2- and 3-grams extracted

from 400M tweets is potentially huge. Hence,

starting from the words in our happiness dictio-
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Table 3: The most happy and sad word pairs.

word pair score

happy

buon, appetito 9.74

buon, auspicio 8.84

dolcezza, infinita 6.94

grazie, mille 5.23

piacere, ciao 5.12

grazie, esistere 4.50

sad

dispiacere, deludervi -9.28

brutto, presentimento -8.45

triste, arrabbiata -8.10

peccato, potevamo -4.85

triste, piangere -3.68

studiare, matematica -3.55

peccato, gola -2.63

manca, vederlo -1.97

nary, we extract the most 50 co-occurring words

in a window of two words. Then we rank all the

word pairs (dictionary word, co-occurring word)4

according to the Pointwise Mutual Information

(PMI) multiplied by the happiness factor. Table

3 reports some of the most happy and sad pairs.

Starting from word pairs, we perform another

kind of analysis aiming at mapping the words oc-

curring in each pair with super-senses in WordNet.

A super-sense is a general semantic taxonomy de-

fined by the WordNet lexicographer classes as a

way for defining logical aggregation of senses in

each syntactic category. We assign a happiness

score to each super-sense by averaging the hap-

piness factor associated with the dictionary word

in the pair. Since each pair contains a dictionary

word and a co-occurring word, we map the co-

occurring word to its super-sense and increment

the score of the super-sense by summing the hap-

piness factor associated with the dictionary word.

Finally, the score of each super-sense is divided

by the number of the co-occurring words belong-

ing to the super-sense. For ambiguous words, we

select the super-sense associated with the most fre-

quent sense. In this study, we do not rely on

a Word Sense Disambiguation (WSD) algorithm

since WSD is a critical task. We need to test

the WSD performance on tweets before to use

it. Generally, WSD algorithms give performance

slightly above the most frequent sense. We plan

to test WSD in a further study. As super-senses

are defined in the English version of WordNet, we

4We do not take into account the word order in the pairs.

performed a mapping of Italian words to the En-

glish WordNet through the use of both Morph-it!

(Zanchetta and Baroni, 2005) and MultiWordNet

(Pianta et al., 2002), while sense occurrences are

extracted from MultiSemCor (Bentivogli and Pi-

anta, 2005).

In Table 4 we report the most happy and

sad super-senses with the most frequent words

extracted by our corpus. Consistently with

the evidence provided by the analysis of the

psycholinguistic word categories (see Section

2.3), we observe that socialness is associ-

ated with positive feelings, with concepts refer-

ring to people (noun.person) and communication

(verb.communication, noun.communication) scor-

ing high in happiness. Food (noun.food) also

seems to be a major cause of positive mood, as

well as money and gifts (noun.possession), sport

achievements (’vittoria and ’gol’ in noun.act),

and mundane locations and events (’centro’, ’pi-

azza’, ’concerto’, ’viaggio’ in noun.location and

noun.act). This is consistent with suggestion by

(Mihalcea and Liu, 2006) to enjoy food and drinks

in an ’interesting social place’ as a recipe for hap-

piness. People also report their desires and prefer-

ences (voglio, amo, spero in verb.emotion).

Also for sadness, results confirm findings

emerging from the analysis of psycholinguis-

tic categories in LIWC. In fact, we ob-

serve that people tend to report their own

individual negative feelings (rido, piango in

verb.body), thoughts (verb.cognition), percep-

tions (e.g., ’vedo’, ’sento’), and personal needs

(’bisogno’ and ’sonno’ in noun.state). We observe

also stereotypical complaints about weather (pi-

ove) as well as swear words (noun.body).

5 Discussion and Conclusions

We performed an exploratory analysis of the lex-

icon and concepts associated with happiness in

Italian tweets. We leveraged a corpus of happy

and sad tweets to extract a ”happiness dictionary’,

which we use to perform a time-wise analysis of

happiness on Twitter and to extract the most fre-

quent concepts and psycholinguistic categories as-

sociated to positive and negative emotions.

This study is a partial replication of the pre-

vious one by (Mihalcea and Liu, 2006) on blog

posts. The main differences with respect to the

original study are in the size, language and source

of the corpus used for extracting the happiness
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Table 4: The most happy and sad super-senses based in our corpus.

super-sense most frequent concepts

happy

noun.relation resto, ricambio

noun.food cena, pranzo, colazione, caffé

noun.attribute coraggio, voce, numero, bellezza, splendore, silenzio

noun.person mamma, ragazz*, amic*, dio, tesoro, donna

verb.communication dico(no), parlare, prego, profilo, parla, chiedere

noun.communication film, scusa, merda, musica, buongiorno, canzone, concerto

verb.possession trov*, dare, perdere, perso, averti, comprato

verb.emotion voglio/vorrei, amo, piace, vuoi, spero, odio, auguri

noun.location sito, centro, post, piazza, scena, sud, nord, regione

noun.possession soldi, regalo, fondo

noun.event vittoria, gara, onda, campagna, scarica, fuoco, episodio, meraviglia

noun.act cose, partita, gol, colpa, ricerca, viaggio, tour, bacio, corso, sesso

sad

verb.consumption bisogna, mangiare, usare, mangio/mangiato, usa/o, usato, mangio

verb.body piangere, dormire, ridere, sveglia, sorridere, piango, rido

noun.body swear words, testa, occhi, mano/i, capelli

verb.change inizio/inizia(re), cambiare, finito, morire/morte, successo, finisce

verb.perception vedere, vedo, sento, sentire, guarda, guardare, ascoltare, pare

verb.cognition so, sai, penso, letto, credo, sa, leggere, sapere, pensare, studiare

noun.state bisogno, punto, problemi/a, accordo, pace, crisi, situazione, sonno

noun.substance aria, acqua

verb.weather piove

lexicon. Specifically, (Mihalcea and Liu, 2006)

rely on a collection of 10,000 blog posts in En-

glish from LiveJournal.com to extract a list of

happy/sad words with their associated happiness

scores, while we leverage a bigger corpus consist-

ing of 8.6M Italian tweets. Furthermore, the blog

posts were labeled as happy or sad by their au-

thors. Conversely, for tweets we relied on silver

labeling based on the presence of emoticons as a

proxy the author self-reporting of her own positive

or negative emotions.

Our analysis of psycholinguistic categories and

the extraction of concepts and WordNet super-

senses associated with them reveals interesting

findings. Happiness appears related to the so-

cial aspects of life while sad tweets mainly re-

volves around self-centered negative feelings and

thoughts. In addition, our-time wise analysis re-

veals a mid-week drop in happiness also observed

in the original study. We also observe that hap-

piness is high in the morning and decreases over

the day. As a future work, it would be interesting

to investigate if time-wise analysis based on hours

produces consistent results if a weekday or the

weekend is considered and if emotion-triggering

concepts associated with happiness also vary over

time.

We are aware of the main limitations of this

study. First of all, by relying on microblogs we

are probably able to mine emotion triggers that

do not necessarily coincide with those shared in

daily face-to-face conversations or reported in pri-

vate logs. Furthermore, we do not attempt to make

any categorization of the authors of tweets. In-

deed, different target user groups could be studied

to fulfill specific research goals and enable per-

spective applications, i.e. for supporting creative

writing or for providing personalized recommen-

dations based on moods. Finally, we consider only

Twitter as a source of data. The same methodology

could produce different results if applied to other

social media. Indeed, recent research (Andalibi et

al., 2017) showed that other media, such as Insta-

gram, are also used for sharing extremely private

emotions, such as feelings linked to depression.

Based on these observations, further replications

could focus on finer-grained emotions, also lever-

aging corpora from different platforms and includ-

ing consideration of demographics and geograph-

ical information (Mitchell et al., 2013; Allisio et

al., 2013) as additional dimensions of analysis.
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