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Abstract

English. Slot filling techniques are often

adopted in language understanding com-

ponents for task-oriented dialogue sys-

tems. In recent approaches, neural mod-

els for slot filling are trained on domain-

specific datasets, making it difficult port-

ing to similar domains when few or no

training data are available. In this pa-

per we use multi-task learning to lever-

age general knowledge of a task, namely

Named Entity Recognition (NER), to im-

prove slot filling performance on a seman-

tically similar domain-specific task. Our

experiments show that, for some datasets,

transfer learning from NER can achieve

competitive performance compared with

the state-of-the-art and can also help slot

filling in low resource scenarios.

Italiano. Molti sistemi di dialogo task-

oriented utilizzano tecniche di slot-filling

per la comprensione degli enunciati. Gli

approcci piú recenti si basano su modelli

neurali addestrati su dataset specializzati

per un certo dominio, rendendo difficile la

portabilitá su dominii simili, quando pochi

o nessun dato di addestramento é disponi-

bile. In questo contributo usiamo multi-

task learning per sfruttare la conoscenza

generale proveniente da un task, precisa-

mente Named Entity Recognition (NER),

per migliorare le prestazioni di slot fill-

ing su dominii specifici e semanticamente

simili. I nostri esperimenti mostrano che

transfer learning da NER aiuta lo slot fill-

ing in dominii con poche risorse e rag-

giunge risultati competitivi con lo stato

dell’arte.

1 Introduction

In dialogue systems, semantic information of an

utterance is generally represented with a semantic

frame, a data structure consisting of a domain, an

intent, and a number of slots (Tur, 2011). For ex-

ample, given the utterance “I’d like a United Air-

lines flight on Wednesday from San Francisco to

Boston”, the domain would be flight, the intent

is booking, and the slot fillers are United Air-

lines (for the slot airline name), Wednesday

(booking time), San Francisco (origin),

and Boston (destination). Automatically ex-

tracting this information involves domain identifi-

cation, intent classification, and slot filling, which

is the focus of our work.

Slots are usually domain specific as they are

predefined for each domain. For instance, in the

flight domain the slots might be airline name,

booking time, and airport name, while in

the bus domain the slots might be pickup time,

bus name, and travel duration. Recent

successful approaches related to slot filling tasks

(Wang et al., 2018; Liu and Lane, 2017a; Goo et

al., 2018) are based on variants of recurrent neu-

ral network architecture. In general there are two

ways of approaching the task: (i) by training a

single model for each domain; or (ii) by perform-

ing domain adaptation, which results in a model

that learns better feature representations across do-

mains. All these approaches directly train the

models on domain-specific slot filling datasets.

In our work, instead of using a domain-specific

slot filling dataset, which can be expensive to ob-

tain being task specific, we propose to leverage

knowledge gained from a more “general”, but se-

mantically related, task, referred as the auxiliary

task, and then transfer the learned knowledge to

the more specific task, namely slot filling, referred

as the target task, through transfer learning. In the

literature, the term transfer learning can be used
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in different ways. We follow the definition from

(Mou et al., 2016), in which transfer learning is

viewed as a paradigm which enables a model to

use knowledge from auxiliary tasks to help the

target task. There are several ways to train this

model: we can directly use the trained parameters

of the auxiliary tasks to initialize the parameters

in the target task (pre-train & fine-tuning), or train

a model of auxiliary and target tasks simultane-

ously, where some parameters are shared (multi-

task learning).

We propose to train a slot filling model jointly

with Named Entity Recognition (NER) as an aux-

iliary task through multi-task learning (Caruana,

1997). Recent studies have shown the potential

of multi-task learning in NLP models. For exam-

ple, (Mou et al., 2016) empirically evaluates trans-

fer learning in sentence and question classification

tasks. (Yang et al., 2017) proposes an approach for

transfer learning in sequence tagging tasks.

NER is chosen as the auxiliary task for several

reasons. First, named entities frequently occur as

slot values in several domains, which make them

a relevant general knowledge to exploit. The same

NER type can refer to different slots in the same

utterance. On the previous utterance example,

the NER labels are LOC for both San Francisco

and Boston, and ORG for United Airlines. Sec-

ond, state-of-the-art performance of NER (Lam-

ple et al., 2016; Ma and Hovy, 2016) is relatively

high, therefore we expect that the transferred fea-

ture representation can be useful for slot filling

tasks. Third, large annotated NER corpora are eas-

ier to obtain compared to domain-specific slot fill-

ing datasets.

The contributions of this work are as fol-

lows: we investigate the effectiveness of lever-

aging Named Entity Recognition as an auxiliary

task to learn general knowledge, and transfer this

knowledge to slot filling as the target task in a

multi-task learning setting. To our knowledge,

there is no reported work that uses NER trans-

fer learning for slot filling in conversational lan-

guage understanding. Our experiments show that

for some datasets multi-task learning achieves bet-

ter overall performance compared to previous pub-

lished results, and performs better in some low re-

source scenarios.

Figure 1: Multi-task Learning Network architecture.

2 Related Work

Recent approaches on slot filling for conversa-

tional agents are based mostly on neural models.

The work by (Wang et al., 2018) introduces a bi-

model Recurrent Neural Network (RNN) structure

to consider cross-impact between intent detection

and slot filling. (Liu and Lane, 2016) propose

an attention mechanism on the encoder-decoder

model for joint intent classification and slot filling.

(Goo et al., 2018) extends the attention mechanism

using a slot gated model to learn relationships be-

tween slot and intent attention vectors. The work

from (Hakkani-Tür et al., 2016) uses bidirectional

RNN as a single model that handles multiple do-

mains by adding a final state that contains domain

identifier. (Jha et al., 2018; Kim et al., 2017) uses

expert based domain adaptation while (Jaech et al.,

2016) proposes a multi-task learning approach to

guide the training of a model for new domains.

All of these studies train their model solely on

slot filling datasets, while our focus is to lever-

age more “general” resources, such as NER, by

training the model simultaneously with slot filling

through multi-task learning.

3 Model

In this Section we describe the base model that we

use for the slot filling task and the transfer learning

model between NER and slot filling.

3.1 Base Model

The model that we use is a hierarchical neural

based model, as it has shown to be the state of

the art in sequence tagging tasks such as named

entity recognition (Ma and Hovy, 2016; Lample
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Sentence find flights from Atlanta to Boston

Slot O O O B-fromloc O B-toloc

Table 1: An example output from the model.

et al., 2016). Figure 1 depicts the overall archi-

tecture of the model. The model consists of sev-

eral stacked bidirectional RNNs and a CRF layer

on top to compute the final output. The input of

the model are both words and characters in the

sentence. Each word is represented with a word

embedding, which is simply a lookup table. Each

word embedding is concatenated with its character

representation. The character representation itself

can be composed from a concatenation of the fi-

nal state of bidirectional LSTM (Hochreiter and

Schmidhuber, 1997) over characters in a word or

extracted using a Convolutional Neural Network

(CNN) (LeCun et al., 1998). The concatenation of

word and character embeddings is then passed to a

LSTM cell. The output of the LSTM in each time

step is then fed to a CRF layer. Finally, the output

of the CRF layer is the slot tag for a word in the

sentence, as shown in Table 1.

3.2 Transfer Learning Model

In the context of NLP, recent studies have applied

transfer learning in tasks such as POS tagging,

NER, and semantic sequence tagging (Yang et al.,

2017; Alonso and Plank, 2017). In general, a pop-

ular mechanism is to do multitask learning with a

network that optimizes the feature representation

for two or more tasks simultaneously. In partic-

ular, among the tasks we can set target tasks and

auxiliary tasks. In our case, the target task is the

slot filling task and the auxiliary task is the NER

task. Both tasks are using the base model ex-

plained in the previous section with a task specific

CRF layer on top.

4 Experimental Setup

The objective of our experiment is to validate the

hypothesis that by training a slot filling model

with semantically related tasks, such as NER, can

be helpful to the slot filling performance. We

compare the performance of Single Task Learning

(STL) and Multi-Task Learning (MTL). STL uses

the Bi-LSTM + CRF model described in (§3.1)

and it is trained directly on the target slot filling

task. MTL refers to (§3.2), in which models for

slot filling and NER are trained simultaenously

and some parameters are shared.

Dataset #sents #tokens #label Label Examples

Slot Filling

ATIS 4478 869 79 airport name, airline name, return date

MIT Restaurant 6128 3385 20 restaurant name, dish, price, hours

MIT Movie 7820 5953 8 actor, director, genre, title, character

NER

CoNLL 2003 14987 23624 4 person, location, organization

OntoNotes 5.0 34970 39490 18 organization, gpe, date, money, quantity

Table 2: Training data statistics.

Data. We use three conversational slot filling

datasets to evaluate the performance of our ap-

proach: the ATIS dataset on Airline Travel In-

formation Systems (Tür et al., 2010), the MIT

Restaurant and the MIT Movie datasets1 (Liu

et al., 2013; Liu and Lane, 2017a) on restau-

rant reservations and movie information respec-

tively. Each dataset provides a number of conver-

sational user utterances, where tokens in the ut-

terance are annotated with their domain specific

slot. As for the NER dataset, we use two datasets:

CoNLL 2003 (Tjong Kim Sang and De Meulder,

2003) and Ontonotes 5.0 (Pradhan et al., 2013).

For OntoNotes, we use the Newswire section for

our experiments. Table 2 shows the statistics

and example labels of each dataset. We use the

training-test split provided by the developers of

the datasets, and have further split the training data

into 80% training and 20% development sets.

Implementation. We use the multi-task learn-

ing implementation from (Reimers and Gurevych,

2017) and have adapted it for our experiments. We

consider slot filling as the target task and NER as

the auxiliary task. We use a pretrained embedding

1https://groups.csail.mit.edu/sls/downloads/

Model
ATIS MIT MIT

Restaurant Movie

Bi-model based 96.89 - -

(Wang et al., 2018)

Slot gated model 95.20 - -

(Goo et al., 2018)

Recurrent Attention 95.78 - -

(Liu and Lane, 2016)

Adversarial 95.63 74.47 85.33

(Liu and Lane, 2017b)

Base model (STL) 95.68 78.58 87.34

MTL with CoNLL 2003 95.43 78.82 87.31

MTL with OntoNotes 95.78 79.81†† 87.20

MTL with CoNLL 2003 + OntoNotes 95.69 78.52 86.93

Table 3: F1 score comparison of MTL, STL and the state of
the art approaches. †† indicates significant improvement over
STL baseline with p < 0.05 using approximate randomiza-
tion testing.
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Slot
ATIS MIT Restaurant MIT Movie

STL MTL STL MTL STL MTL

PER - - - - 90.73 89.58

LOC 98.91 99.32 81.95 83.47†† - -

ORG 100.00 100.00 - - - -

Table 4: Performance on slots related to CoNLL tags on the
development set (MTL with CONLL).

Dataset #training sents STL MTL-C MTL-O

ATIS 200 84.37 83.15 84.97

400 87.04 86.54 86.93

800 90.67 91.15 91.58††

MIT Restaurant 200 54.65 56.95†† 56.79

400 62.91 63.91 62.29

800 68.15 68.52 68.47

MIT Movie 200 69.97 71.11†† 69.78

400 75.88 75.23 75.18

800 79.33 80.28†† 78.65

Table 5: Performance comparison on low resource scenar-
ios. MTL-C and MTL-O are MTL models trained on CoNLL
and OntoNotes datasets respectively. †† indicates significant
improvement over STL with p < 0.05 using approximate
randomization testing.

from (Komninos and Manandhar, 2016) to initial-

ize the word embedding layer. We did not tune

the hyperparameters extensively, although we fol-

lowed the suggestions in a comprehensive study of

hyperparameters in sequence labeling tasks from

(Reimers and Gurevych, 2017). The word and

character embedding dimensions, and dropout rate

are set to 300, 30, and 0.25 respectively. The

LSTM size is set to 100 following (Lample et al.,

2016). We use CNN to generate the character em-

bedding as in (Ma and Hovy, 2016). For each

epoch in the training, we train both the target task

and the auxiliary task and keep the data size be-

tween them proportional. We train the network us-

ing Adam (Kingma and Ba, 2014) optimizer. Each

model is trained for 50 epochs with early stopping

on the target task. We evaluate the performance

of the target task by computing the F1-score of

the test data following the standard CoNLL-2000

evaluation2.

5 Results and Analysis

Overall performance. Table 3 shows the com-

parison of our Single Task Learning (STL) and

Multi-Task Learning (MTL) models with the cur-

rent state of the art performance for each dataset.

For the ATIS dataset, the performance of the STL

model is comparable to most of the state-of-the-art

2https://www.clips.uantwerpen.be/conll2000/chunking/
output.html

approaches, however not all MTL models lead to

an increase in the performance. As for the MIT

Restaurant, both STL and MTL models achieve

better performance compared to the previously

published results (Liu and Lane, 2017a). For the

MIT movie dataset, STL achieves better results by

a small margin over MTL. Both STL and MTL

performs better than the previous approach for the

MIT movie dataset. When we combine CoNLL

and OntoNotes into three tasks in the MTL setting,

the overall performance tends to decrease across

datasets compared to MTL with OntoNotes only.

Per slot performance. Although the overall per-

formance using MTL is not necessarily help-

ful, we analyze the per slot performance in

the development set to get better understand-

ing of the model’s behaviour. In particular, we

want to know whether slots that are related to

CoNLL tags perform better through MTL com-

pared to STL, as evidence of transferable knowl-

edge. To this goal, we manually created a map-

ping between NER CoNLL tags and slot tags

for each dataset. For example in the ATIS

dataset, some of the slots that are related to the

LOC tags are fromloc.airport name and

fromloc.city name. We compute the micro-

F1 scores for the slots based on this mapping. Ta-

ble 4 shows the performance of the slots related

to CoNLL tags on the development set. For the

ATIS and MIT Restaurant datasets we can see

that MTL improves the performance in recogniz-

ing LOC related tags. While for the MIT Movie

dataset, MTL suffers from performance decrease

on PER tag. There are three slots related to PER

in MIT Movie namely CHARACTER, ACTOR, and

DIRECTOR. We found that the decrease is on

DIRECTOR while for ACTOR and CHARACTER

there is actually an improvement. We sample 10

sentences in which the model makes mistakes on

DIRECTOR tag. Of these sentences, four sen-

tences are wrongly annotated. Another four sen-

tences are errors by the model although the sen-

tence seems easy, typically the model is confused

between DIRECTOR and ACTOR. The rests are

difficult sentences. For example, the sentence:

“Can you name Akira Kurusawas first color film”.

This sentence is somewhat general and the model

needs more information to discriminate between

ACTOR and DIRECTOR.
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Low resource scenario. In Table 5 we compare

STL and MTL under varying numbers of training

sentences to simulate low resource scenarios. We

did not perform MTL including both CoNLL and

OntoNotes, as the results from Table 3 show that

performance tends to degrade when we include

both resources. For the MIT Restaurant, for all the

low resource scenarios, MTL consistently gives

better results. In the MIT Restaurant dataset, it is

evident that the less number of training sentences

that we have, the more helpful is MTL. For the

ATIS and MIT Movie, MTL performs better than

STL except for the 400 sentence training scenario.

We suspect that to have a more consistent MTL

improvement in different low resource scenarios,

a different training strategy is needed. In our cur-

rent experiments, the number of training data is

proportional between the target task and auxiliary

task. In the future, we would like to try other train-

ing strategies, such as using the full training data

from the auxiliary task. As the data from the target

task is much smaller, we plan to repeat the batch

of the target task until we finish training all the

batches from the auxiliary task in an epoch. This

strategy is similar to (Jaech et al., 2016).

Regarding the variation of results that we get

from CoNLL or OntoNotes, we believe that se-

lecting promising auxiliary tasks, or selecting data

from a particular auxiliary task, are important to

alleviate negative transfer. This also has been

shown empirically in (Ruder and Plank, 2017;

Bingel and Søgaard, 2017). Another alternative to

reduce negative transfer, which would be interest-

ing to try in the future, is by using a model which

can decide which knowledge to share (or not to

share) among tasks (Ruder et al., 2017; Meyerson

and Miikkulainen, 2017).

6 Conclusion

In this work we train a slot filling domain-specific

model adding NER information, under the as-

sumption that NER introduces useful “general” la-

bels, and that it is cheaper to obtain compared to

task specific slot filling datasets. We use multi-

task learning to leverage the learned knowledge

from NER to slot filling task. Our experiments

show evidence that we can achieve comparable or

better performance against the state-of-the-art ap-

proaches and against single task learning, both in

full training data and low resource scenarios. In

the future, we are interested in working on datasets

in Italian and explore more sophisticated multi-

task learning strategies.
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Sinem Tekiroğlu for helpful comments and feed-

back. This work was supported by the grant of

Fondazione Bruno Kessler PhD scholarship.

References
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