
i 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Infrastructure for Machine Learning and
Computer Vision

Dimitri Chikhladze

Dissertaion submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Information Management





Thesis advisor:

Professor Mauro Castelli

at NOVA IMS

iii





Machine learning infrastructure for people detection and tracking.

Copyright © Dimitri Chikhladze, Faculty of Sciences and Technology, NOVA Univer-

sity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dis-

sertation through printed copies reproduced on paper or on digital form, or by any

other means known or that may be invented, and to disseminate through scientific

repositories and admit its copying and distribution for non-commercial, educational

or research purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt




Acknowledgements

Foremost, I want to thank Professor Leonardo Vanneschi who created the Masters in

Advanced Analytics, and made it interesting and enjoyable for us, and my supervisor

Professor Mauro Castelli who was supportive and prompt throughout writing this

thesis. I thank the management, administration and all other people at NOVA IMS for

all their work and help. I want to thank the team of the European startup where I did

the work on which this thesis is based. Cordially, I want to thank all my coursemates

from the Masters program for being cool coursemates. Last but not least, I want to

thank my wife Patricia for her help and support in too many things.

vii





Abstract

The infrastructure surrounding machine learning projects is of utmost importance:

Machine learning projects require data acquisition mechanisms, software for data

processing, as well as a benchmarking platform for evaluating performance of machine

learning algorithms over time. In this report we describe our work aimed at developing

such infrastructure for a Europe based computer vision startup specializing in human

behaviour tracking. We discuss three projects comprising the work. One dedicated

to creating a machine learning dataset for human behaviour monitoring, another to

developing a screen-camera calibration tool, and third to setting up a benchmarking

platform. The projects were integrated with the core technology of the startup, and

will continue to be applied in the future.
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Resumo

A infraestrutura para projetos de machine learning é de extrema importância para

o desenvolvimento da tecnologia: exigem-se mecanismos de aquisição de dados, soft-
ware para processamento de dados e uma plataforma de benchmarking para avaliar o

desempenho de algoritmos de machine learning ao longo do tempo. No presente re-

latório, descreve-se o trabalho destinado a desenvolver essa infraestrutura para uma

Startup Europeia de computer vision, especializada em rastreamento de comportamento

humano atraves de câmeras de videos. Enfoca-se em três projetos que compõem o tra-

balho: o primeiro, dedicado à criação de um conjunto de dados de machine learning
para monitoramento de comportamento humano; o segundo, sobre o desenvolvimento

de uma ferramenta de calibração de câmeras e ecrã; e o terceiro, relata a criação de uma

plataforma de benchmarking. Tais projetos foram integrados com a tecnologia central

da Startup e serão aplicados no futuro.
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1
Introduction

This thesis is a report on the work which the author did at a Europe based startup,

referred to further as a European Startup. The work consisted of three related projects.

Here we give a general summary of these projects.

The European Startup is a computer vision and machine learning company. It is

specialized in human detection and tracking software. Its core technology enables

human detection and tracking in 3D using commodity depth-sensing cameras. On top

of this technology the European Startup develops various products with applications

in areas as diverse as automotive industry, retail, robotics and healthcare to list a few.

My work at the European startup revolved around creating infrastructure for ma-

chine learning and computer vision. Specifically I was working on the three projects:

Project I. Machine learning dataset for people detection and tracking. We worked

on the creation of a machine learning dataset for people detection and tracking, re-

ferred further as the European Startup Dataset. We organized collection of diverse

video data from more then 50 participants, overseeing bureaucratic, organizational

and technical aspects of the data collection. We obtained screen camera calibration

parameters using the tool developed in Project II. We implemented the programming

interface of the dataset.

Project II. Screen camera calibration tool. We developed a screen-camera calibra-

tion tool, a device used for correctly annotating the data with training labels for the

supervised learning for people detection and tracking.

Project III. Benchmarking platform. We designed a benchmarking platform for

evaluating machine learning algorithms for people detection and tracking. This in-

cluded developing a database, data export modules, and a dashboard for visualizing

1



CHAPTER 1. INTRODUCTION

metrics for the machine learning pipelines.

Project Description

Dataset for Human

Detection and Tracking

Data collection/ Data

processing/ Practical 3D

computer vision.

• Created the “European Startup Dataset”

designed specifically for human detection

and body pose estimation.

• Organized collection of video data from

more than 50 people.

• Augmented the raw video data with

screen camera calibration parameters.

• Implemented the programming interface

for the resulting dataset.

Screen-Camera Calibration

Tool

Software development/

Computer vision/ 3D

modeling.

• Developed a tool which finds screen cam-

era calibration parameters which are re-

quired for computing the ground truth of

the dataset.

Benchmarking Platform

Practical machine learning/

Database design/ Data

engineering/ Dashboard

design.

• Built a database for storing results from

ML pipelines.

• Implemented data movement modules be-

tween ML pipelines and the benchmark-

ing platform.

• Designed a dashboard for visualization of

evaluation metrics.

The rest of the report is organized into four chapter. The first chapter gives a review

of methodologies and technologies relevant to the work. While, the next three chapters

are dedicated to each of the projects comprising the work.
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2
Background

In this chapter we give an overview of topics relevant to our work. We discuss in-

frustructure for machine learning. We overview computer vision datasets, and touch

briefly 3D computer vision and human detection and tracking.

2.1 Machine learning and its infrustructure

By a widely cited definition, machine learning is a sub-field of computer science con-

cerned with developing machines with the ability to “learn” without being explicitly

programmed [12]. The importance of machine learning grew with the increase of ca-

pacity and availability of computational resources, leading in the last decades to some

revolutionizing practical applications. Today machine learning is a subject of inten-

sive research. The technology giants and universities are actively pursuing machine

learning research and development. Numerous start-ups have emerged developing

machine learning based products.

A machine learning algorithm is developed for a problem related to some data

generating process. Constructing a machine learning algorithm involves specifying

its architecture and training it on a data obtained from the data generating process.

A trained algorithm is then able to make predictions or other types of intelligent

decisions on a new data from the same data generating process. The ability to perform

well on a new data is called generalizability, and is a crucial property of a machine

learning algorithm. On practical level, validating the performance of the algorithm is

accomplished by testing it on more data.

Research and development crucially requires existence of adequate infrastructure

surrounding it. Some of the important components of these infrastructure, related to

the projects in this report, are:

3



CHAPTER 2. BACKGROUND

• Data acquisition/ data collection framework.

• Software for data processing.

• Benchmarking platform for algorithms.

2.1.1 Data in machine learning

Perhaps, the single most important item in the above list is the availability of data.

Data is used for training machine learning algorithms as well as for testing and quan-

titatively evaluating the performance of algorithms over time. Indeed, the importance

of data for machine learning can not be overestimated. It is argued that datasets are

at least as important for artificial intelligence development as advances in algorithms

themselves [20].

Availability of adequate data is of utmost importance for companies which develop

machine learning based products. This is true because of two reasons: Firstly, machine

learning technology requires training data. Secondly, data is required to be able to

test the performance of the technology at any given time, frequently for a specific use

case. Testing and benchmarking is important for two purposes: For the internal use, it

provides to developers and managers information about the status of the product, and

the ability to see how algorithms are improving with time. For external use, company

is able to provide concrete and verifiable information to its clients, investors and other

stakeholders about its product for specific applications.

Machine learning problems involve making some kind of judgement from the data.

A judgment can be classifying a datapoint into a class or making some prediction from

it. This judgment is the target of the learning. Learning can be divided into two types,

supervised learning and unsupervised learning. In unsupervised learning, one is

learning from data that does not include explicit information about the target. While

in supervised learning the function that maps the input data points to the output

targets is learned from a dataset of sample input-output pairs. For unsupervised

learning we only need samples of input data. While, in the supervised learning, we

need a training dataset which consists of input data samples together with labels which

are values of the target taken as the ground truth. The machine learning algorithm

learns how to make correct judgments from such training data. As an example, for

supervised image classification task, the training dataset would consist of images each

of which is assigned a class label.

Building datasets for supervised learning comprises a major challenge. Labeling

large datasets is a costly process, diligence is needed to automatize it, and sometimes

some degree of human involvement is necessary. Methodologies used to create a

dataset vary. Data may be collected in a lab in controlled experiments. Data can be

sourced from the internet, or though crowdsourcing. Data can be also obtained by

synthesizing it.

4



2.2. COMPUTER VISION DATASETS

Figure 2.1: Example of images labeled with classes

2.1.2 Software for data processing

Creating machine learning datasets besides human input frequently requires data

processing software for various tasks. The Project II in this report is an example of de-

veloping such software for the computer vision task of camera object pose estimation.

2.1.3 Benchmarking platforms

For machine learning companies it is a good practice to have a benchmarking frame-

work. Development of machine learning solutions for complex problems is a con-

stantly evolving process. In this situation, existence of a proper benchmakring plat-

form is important for quantifying errors, for knowing performance metrics for the

current algorithms, and for seeing how the models improve over time. In addition

in the industry application, there might be various use cases to which the algorithms

apply. Then one needs to know what are the performance metrics for each of the use

cases and how they improve over time. To achieve this one needs proper versioning

system for models. One need to define use cases, and which data is relevant to each of

them. One needs a database to store model results. And, one needs a dashboard for

visualization of metrics.

2.2 Computer vision datasets

One of the areas where machine learning has had a tremendous influence in recent

years is computer vision. In particular, the reemergence of deep learning has revo-

lutionized computer vision in the last ten years or so. Modern convolutional neural

networks achieved enormous leaps in pattern recognition, pattern detection and other

computer vision tasks compared to what was previously possible with traditional im-

age processing methods.
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CHAPTER 2. BACKGROUND

In the case of computer vision, the data on which algorithms operate are images.

Supervised training and validation require image data to be annotated, as for example,

for image classification each image is annotated by a label specifying its class. The up-

heaval of machine learning in computer vision, besides development of new machine

learning architectures and improvement in computing capacity, has been accompa-

nied with creation of training datasets. A huge effort has been dedicated to the task

of constructing machine learning datasets for various computer vision applications.

Some of the famous computer vision datasets include MNIST, ImageNet [5], CIFAR-10

[13], Microsoft COCO [14] and many others (see [19] for a long list).

For computer vision applications, data collection involves taking images or record-

ing videos, which can be seen as sequences of images. In 3D computer vision (see

below) in addition to RGB images we also have depth images. For supervised learn-

ing, we need labels for images or video frames in our dataset. Frequently, the raw

data is not annotated with training labels directly. Rather we have annotations about

the recording environment, the world. These annotations may include coordinates

of world objects, coordinate transformation parameters etc. Training labels for some

particular machine learning problem are then inferred from these parameters. In ad-

dition, we may need to record information such as e.g. lighting conditions and time

of recordings, as well as characteristics of world objects and/or persons, such as e.g.

motion speed of an object and age of a person. The decision on what world information

do we keep track of during the recordings is part of the data creation process.

One important characteristics of training dataset is variability. In practice, training

dataset is only a tiny portion of the real data for which the algorithm is trying to

learn the problem. To train a good model the training data has to represent the whole

distribution of the real data which the model is trying to learn. In computer vision

applications, the image or video files that we collect should show extensive degree of

variation. First we should have variability in terms of environment, such as variability

in lighting conditions. Secondly, we should have the problem specific variability: If

for example, our model is trying to learn dogs from images, in our dataset we should

have images of dogs of varied size, colour, appearing in various body position, showing

from different angles etc.

In practice one also has to consider the variability of use cases of the machine

learning application. For example, if we are studying human attention sensing, we

will want to consider use cases for driving, retail shopping, gaming etc. Aside from

training general models, it will be useful to train models for each particular use case.

For this again, adequate data is needed. Therefore, we should know which part of our

data is relevant to which use case.

These are some of the considerations that should be taking into account when

designing and building a computer vision datasets.

6



2.3. HUMAN DETECTION AND TRACKING

2.3 Human detection and tracking

The objective of tracking is to estimate location and pose of an object from a video.

The goal of human tracking is to identify the pose of various body parts (e.g. hands,

fingers, head etc.) at each frame, and track it over time. In applications, eventually the

object of interest may be behaviour recognition, attention sensing, intention estimation,

emotion recognition etc. Computationally however, estimating pose of body parts

involves finding the locations of certain body landmarks, and estimating parameters

defining the pose of the body parts. Tracking then involves estimating these data at

each frame over time.

Figure 2.2: Human pose estimation and tracking from the work [1]

Human detection and tracking dataset consists of images or videos containing

people. The training labels are parameters such as locations of human bodies and

human body landmarks and parameters for various body poses such as head pose.

A number of machine learning datasets exist for human detection and tracking,

many of them specialized to more specific problems such as human pose estimation [2],

face recognition (see [6]), head pose estimation [8], [9] eye tracking [7], [21] and so on.

They have been collected using different methods and means. Some of these were cre-

ated through controlled data collections, others were collected though crowdsourcing

method. While, in other approaches image synthesizing was used.

2.4 3D scanning and 3D computer vision

3D scanning is a technology which captures geometric shape of objects in the real

world and, possibly, analyses characteristics such as color. There are number of 3D

7



CHAPTER 2. BACKGROUND

scanning methods including laser scanning, time-of-flight and structures-light technolo-

gies (for more details see [3]).

Popular modern commodity 3D scanning cameras are Realsence from Intel and

Kinect from Microsoft. The former is supported by an open source cross platform SDK

[10]. These cameras have both 3D scanning depth stream and an RGB stream. From

the depth measurements and the camera pin-hole model it is possible to compute point
clouds, which are sets of points in a 3D space. Point clouds are used to create polygon
meshes. Besides, 3D scanning devices calibrate between depth and RGB streams, and

generate texture mapping which defines color information for the surface scanned by

the depth sensor.

3D computer graphics store geometric objects in 3D space, such as meshes, for

visualizing them in 2D or performing computational operations on them.

3D provides more information than 2D images which can be exploited in comput-

ing. Machine learning, and in particular deep learning, has been applied to depth and

color data for recognition, detection, tracking etc.
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3
Project I: Machine Learning Dataset for

Human Detection and Tracking

The European Startup uses data for training and benchmarking its machine learning

algorithms. The objective of the project was to create a specialized machine learning

dataset for human detection and tracking. The dataset was to be comprised of depth

and RGB video recordings, together with annotations about the recording environment.

The goal was to record more than 50 people of different appearance within varying

ambient conditions and contexts. 1

3.1 European Startup Dataset

As a result of the project a Euroean Startup Dataset was created. The dataset consists

of a few hundred recordings by depth sensing cameras. Each recording is around 2

minutes long. Each of them has an RGB stream and a depth stream. The recordings

show a person doing simple body movements following the content displayed on a

screen placed in front of them. The recordings show great degree of diversity. Par-

ticipants of varied age, gender, race and appearance where recorded. The recording

ambient lighting conditions variability was maximized. Furthermore, recordings were

differentiated by the screen type and the recording scenario. Three types of screens

were used for the recordings. The recordings were done in a number of scenarios, for

each of which specified instructions were given to the participants as to how to move

their head or body during the experiment.

Besides the videos, the following data is included in the dataset. For each recording,

screen camera pose parameters are saved. For each recording, pixel coordinates of

1For confidentiality reasons we can not reveal the exact nature of the dataset, therefore the description
of the dataset and the data collection process are given in general terms.
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DETECTION AND TRACKING

elements of the screen content are saved for about 50 different frames at which it is

assumed that the participant’s body position was engaged with the screen content as

specified by the experiment rules. For each recording, there is a metadata containing

information about the screen type, the recording scenario, as well as recording ambient

conditions and the participant’s characteristics. The following tables summarize the

European Startup Dataset:

European Startup Dataset

More than 200 Recordings

Recording

RGB video

Depth video

Frame-wise parameters of the screen content

Participant

Scenario

Screen type

3.2 Data collection

The data was collected from more than 50 people over three weeks period. The dataset

was collected from volunteer participants.

With each participant a few video recording experiments were made. During a

recording experiment the participant watches content displayed on a screen which

changes through time. The participant moves their body following the shown content,

for example pointing some body parts at various elements of the screen content. A

depth sensing camera is placed in front of the screen facing the participant, and records

the participant (see Figure 3.1). From time to time the participant “clicks” on an input

device (such as a mouse or a space bar) confirming that at that moment their body

was positioned relative to the screen content as specified by the rules. This is when

the pixel coordinates of the screen elements are saved. In this way we ensure that at

the moments of "clicks"the participant was properly engaged with the screen content.

Then, from the position of the elements of the screen content in the world it is possible

to infer the ground truth body pose parameters which are the training labels for our

algorithms.

10



3.2. DATA COLLECTION

Figure 3.1: Recording scene. The participant is asked to change the body position
following the content shown on the screen.

As a result, the raw data produced by the recording experiments consisted of frame-

wise annotated video recordings, which make up the corpus of the European Startup

Dataset.

The data collection process involved a number of design and organizational chal-

lenges and decisions. One had to make sure that the process was followed correctly by

the participants and the organizers. For this purpose a precise data collection protocol

was designed. In particular the protocol defined the rules of engagement by partici-

pants with the screen content. Also on the organizational side, since our experiments

involved people, data privacy issues had to be taken into account. In particular we

ensured that our activity was GDPR compatible [18].

Logistically, one had to secure locations, volunteer participants and other material

for the recordings. These resources had to exhibit sufficient diversity. The recording

environments had to be diverse in illumination condition. As for participants, one had

to secure people of diverse age, gender, ethnicity and other characteristics. In addition,

we want to record the person at different times (over few days). The screen on which

the engagement content was displayed had to be of different size and mobility. We used

a LCD screen, a projector and a tablet which could be hand hold by the participant.

Resource Diversity Dimension

Location Illumination condition

Participant
Age, Gender, Ethnicity, Clothing type,

Time of recording

Screen Size, Mobility

11
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DETECTION AND TRACKING

Diversity was also needed in the contexts in which participants appeared in the

recordings. We sought to record people in diverse angles of view, body positions,

motion etc. To this end we designed a few “scenarios” which a participant had to

follow. These scenarios were specified in the data collection protocol. They imitated

various situations in the real life in which people can be found, such as driving or

retail shopping.

Context Diversity Dimension

Recording scenario
Mobility, Screen content spacial variance,

body and head positions of participants

Another component of data collection was screen-camera calibration. The purpose

of this is to estimate the pose of the screen (translation and rotation) with respect to

the camera. This is needed to transform the 2D pixel coordinates of the screen content

elements saved by the recording software to the 3D coordinates of the world which

we can actually use. The screen-camera calibration is accomplished with the help

of the tool developed in Project II. More details about the tool appear there. From

the data collection perspective, every time a recording scene was set up, the data

necessary for running the calibration tool later was collected. This involved making

some recordings at the recording scene at the start and the end of the experiments

(recording “external” and “internal” recordings for calibration as it is described in

Chapter 2). These recordings were also added to the dataset.

Data collection lasted for over 3 weeks, during which more than 50 volunteer

participants were recorded. We collected a rich dataset of video recordings.

3.3 Annotating data with training labels

Besides the videos the machine learning datasets should have training labels. For our

human detection and tracking dataset a label consists of locations of body landmarks

and pose parameters of body parts. The locations of body landmarks are estimated

through machine learning pipelines. The body pose parameters v = (v1,v2, . . . , vk) then

are inferred from the coordinates of the elements of the screen content (p1,p2 . . . ,pn)

and the body landmark coordinates (x1,x2, . . .xm)

v = F(p1,p2 . . . ,pn,x1,x2, . . .xm). (3.1)

The coordinates are in the World Coordinates System (WCS) which is defined and

fixed with respect to the recording camera. The screen content parameters p can

be estimated from the 2D pixel coordinates of the elements of the screen content

which are stored in the dataset once we know the transformation from the screen

12



3.4. IMPLEMENTATION DETAILS OF THE EUROPEAN STARTUP DATASET

pixel coordinates to the WCS. This transformation is determined by the screen-camera
calibration parameters, and are specific for each recording setup. They are estimated

through the calibration tool developed in Project II.

To find the calibration parameters, the calibration tool was run for each recording

setup on the calibration videos recorded during the data collection. The scree-camera

calibration parameters were found for each recording setup and added to the dataset.

Figure 3.2: Example of screen camera calibration parameters.

3.4 Implementation details of the European Startup Dataset

A machine learning dataset needs a programming interface to allow researchers to

work with it easily. European Startup Dataset interface was implemented in python.

The implementation included programmatic abstractions of dataset components, such

as videos, participants, recording scenarios etc.

13
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4
Project II: Screen Camera Calibration

Tool

As explained in Section 3.3 in the previous chapter, to infer training labels in the

European Startup Dataset we need to be able to compute screen-camera calibration

parameters for each recorded video in it. The objective of this project was to design a

method for computing these parameters, and build a tool for this task.

4.1 Screen camera calibration parameters

We recap the recording process to define the problem more precisely.

During a recording the participant, i.e. the person whose recording is made, is

standing in from of the screen on which engagement content is shown. A depth sensing

camera is placed in front of the screen facing the participant. This recording scene is

diagrammatically shown on Figure 3.1. The two coordinate systems are associated to

the screen and the camera. The world coordinate system (WCS) is associated to the

position of the recording camera. The screen coordinate system (SCS) is associated to

the screen. It’s origin is defined to be the top-left corner of the screen. It’s X axis is

directed along the top horizontal edge of the screen and the Y axis is directed along

the left vertical edge of the screen. It’s Z axis is perpendicular to the screen and facing

towards the participant.

The purpose of the calibration tool is to estimate a transformation between WCS

and SCS. This can be given by a rotation matrix R and a translation vector t. Then, the

training labels, which are the body pose parameters, can be found by 3.1, plugging in

for each element of the screen content p (which is given in WCS)

15



CHAPTER 4. PROJECT II: SCREEN CAMERA CALIBRATION TOOL

Figure 4.1: Visual target and the World and the Screen coordinate systems

p = R(p′) + T , (4.1)

where p′ is the coordinates of the elements of the screen content in SCS. The latter

itself is estimated from the pixel coordinates of the element of the screen q = (qx,qy)

by

p′ = (p′x,p
′
y ,0) = (kxqx, kyqy ,0), (4.2)

where kx and ky are scaling factors which convert pixels to metric units. To summarize,

p is computed from the saved pixel coordinates q as:
px
py
pz

 = RKq+ t =


R00 R01 R02

R10 R11 R12

R20 R21 R22



kx 0 0

0 ky 0

0 0 0



qx
qy
0

+


t0
t1
t2

 (4.3)

The rotation matrix R, the translation vector t, as well as the scaling factors k are the

parameters which are estimated by the screen camera calibration tool.

4.2 Calibration with linear regression

As we can see in the equation 4.3 p depends on q linearly. If we set X = RK , for each

i = 0 . . .2 we have

pi = X0iq0 +X0iq1 + ti . (4.4)

which we can jointly rewrite as

pi = X00q
′
i0 +X01q

′
i0 +X10q

′
i1 +X11q

′
i1 +X20q

′
i2 +X21q

′
i2 + t1d0i + t2d1i + t3d2i . (4.5)
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where

q′ij =

qi , if i = j

0, otherwise.
(4.6)

and

dij =

1, if i = j

0, otherwise.
(4.7)

As we see this is a linear regression problem. Assuming that we have a dataset of

true (q,p) pairs we can find the least squares solution with the usual pseudo-inverse

formula. Solving gives us the first two column vectors X1 and X2 of X. The first

column vectors R0 and R1 of R are then normalizations of these, while kx and ky are

their norms. The third column R2 of R is obtained as the cross product of R0 and R1.

Or, mathematically:

kx = ‖X0‖

ky = ‖X1‖

R0 = X0/kx

R1 = X1/ky

R2 = R0 ×R1

(4.8)

4.3 Calibration tool

The calibration tool works by collecting point correspondences (q,p) and then solving

the linear regression problem . A point correspondence is a pair (q,p) wherein q is a

pixel coordinates of a point on a screen, and p is the 3D WCS coordinates of the same

point.

Figure 4.2: Checkerboard pattern. The coordinates of corners of a checkerboard are
collected by the calibration tool.
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The points whose coordinates the calibration tool will collect are the corners of a

checkerboard pattern displayed on a screen. The pixel coordinates of the checkerboard

pattern are known. The problem is estimating their coordinates in WCS.

The WCS is fixed with respect to the recording camera. Therefore, we can estimate

the WCS coordinates of a point which is visible by the recording camera. However, the

recording camera is placed so that it can not see the screen. This means that we can

not directly estimate coordinates of a point on a screen by the recording camera. The

solution is to introduce another camera in the calibration process. The new camera,

which we will call an external camera is placed so that it sees the screen. At the same

time we get a reference object, and place it so that both the recording camera and exter-

nal camera see it (see Figure 4.3). Then, the external camera can find coordinates of a

point on a screen with respect to its own coordinate system. While since the reference

object is visible by the both cameras, both of them can estimate coordinates of some

reference points in their respective coordinate systems. These reference coordinates

then are used to find the transformation from the external camera coordinate system

to the recording camera coordinate system.

Figure 4.3: Calibration process

The calibration tool was implemented with an online mode and a recording-based

mode. In the online mode the calibration tool runs on live video data from the two

cameras, and collects point correspondences on the fly. In the recorded mode, the

calibration tool runs on saved recordings.

In the online mode the calibration process works as follows:

1. The Screen and the Recording Camera are placed fixed in the positions in which

they will be during the data collection experiment.

2. The External Camera is positioned in a way that it usually sees the Screen.

3. The Reference Object is placed in a way that it is usually visible by the both

cameras.
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4. When the calibration tool starts, at each live video frame the external camera

estimates coordinates of the corners of the checkerboard pattern, while both the

external camera and the recording camera estimate coordinates of some refer-

ence points on the reference object (see Section 4.5). Using the coordinates of

the reference points estimated by both cameras a transformation is found be-

tween the coordinate systems of the two cameras. Using this transformation the

checkerboard pattern coordinates are transformed to the WCS, and are saved. At

the same time the pixel coordinates of the checkerboard pattern are saved. After

few frames, the points collection stops. The collected point correspondences are

fed to the linear regression which finds the calibration parameters.

In the recorded mode the tool runs on recorded videos. Another difference of the

recorded mode from the live mode is that, the reference point coordinates are not

estimated by the recording camera frame-wise, but over the whole video. This means

that, unlike in the live mode, the reference object has to stay fixed at the position.

Calibration in the recorded mode is done as follows:

1. The Screen and the Recording Camera are placed fixed in the positions in which

they will be during the data collection experiment.

2. The Reference Object is placed in a way that it is visible to the Recording Camera,

and it stays fixed.

3. The Recording Camera makes a recording of the Reference Object and a video is

saved, called Internal Video.

4. The External Camera is positioned in a way that it usually sees both the Reference

Object and the Screen, it makes a recording and saves a video, called External

Video.

5. The calibration tool is run on the recorded data. First it processes the Internal

Video from where it get the coordinates of the Reference Points on the Reference

Object. Next it processes the External Video. At each frame the coordinates of

the corners of the Checkerboard patterns are estimated. At the same time the

coordinates of the reference points are estimated and using them a transforma-

tion between the two cameras is found. Then, using this transformation the WCS

coordinates of the checkerboard corners at that frame are estimated and saved

together with the pixel coordinates. After the video data is processed and point

correspondences are collected the calibration parameters are found by solving

the linear regression problem.
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4.4 Estimating 3D coordinates of points

As described above, the calibration process involves estimating 3D coordinates of

points, such as corners of a checkerboard pattern, or reference points on a reference

object.

At each video frame a checkerboard pattern is detected using OpenCV functions

[15]. This returns 2D coordinates of the chessboard corners on the image. Then, the

3D coordinates are estimated either by Perspective-n-Point method or by using depth

video data.

Perspective-n-Point method can estimate 3D coordinates of points from their 2D

projections on the image. OpenCV function SolvePnP is the OpenCV implementation

of this method which we used [15].

The alternative is to use 3D depth data, which brings extra precision to the estima-

tion. In this approach, first using the depth data we estimate the plane on which the

points lie (our points always lie on a plane, either the screen or the reference object

which is planar), by fitting a plane to the point cloud of the depth frame. Next we find

rays from the focal point of the camera going through the 2D projection of the points.

Finally we find the 3D coordinates as intersection points of the estimated plane and

the rays.

4.5 Transformation between camera coordinates

The calibration tool involves finding a transformation form coordinate system of one

camera to another one. This is done with help of a reference object. Reference object

is an object which is seen by both cameras. The two cameras estimate certain points

on the reference object, using which then the transformation is found.

Figure 4.4: Examples of Aruco markers.
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The reference object should have points which are easily detectable by a camera.

We used a cardboard to which we attached Aruco markers [16], [17]. Aruco marker is

a synthetic square marker composed by a wide black border and a inner binary matrix

which determines its identifier. Aruco library [17] contains functions for detecting,

pose estimation and visualization of Aruco markers, making Aruco good tool for pose

estimation applications.

We placed several Aruco markers on our reference object, each Aruco marker gives

four reference points, each of which is uniquely identifiable by the Aruco marker

identifier and the determined index among each four on the same marker. In the

calibration tool, both cameras detect these uniquely identified reference points. As

a result we get 3D coordinates of the reference points in the two camera coordinate

systems. The transformation between these coordinate system then is found with

Kabsch algorithm [11] described below.

Figure 4.5: Transformation between the camera coordinate systems.

Given two sets of corresponding points A and B (as for example, reference points

estimated by the two cameras in our setting above) the algorithm to find optimal

rotation and translation which aligns A to B proceeds as follows:

1. Find centroids of both sets:

centroidA = mean(A),

centroidB = mean(B).
(4.9)

2. Bring both sets to the origin:

Ao = A− centroidA,

Bo = B− centroidB.
(4.10)
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3. Find cross-covariance matrix

H = AT
o Bo.

4. Calculate the SVD of the covariance matrix

H = USV T .

5. Find the rotation matrix by

R = VUT .

6. If det(R) < 0, correct R by multiplying it’s third column by −1.

7. Find the translation by

t = centroidB −R(centroidA).

4.6 Validation of calibration parameters

To validate the calibration parameters we implemented a visualization tool. It runs

on a video made by the external camera filming the recording camera and the screen.

At each frame the screen position is estimated, then using the found screen camera

calibration parameters the position of the camera is found and a camera schema is

drawn on the frame. This allows us to make a visual comparison of the estimated

camera position and the real camera position.
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Figure 4.6: Example of detecting a chessboard patterns and Aruco markers. OpenCV
library is used.
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Project III: Benchmarking Platform

The European Startup develops a cutting-edge technology which it strives to constantly

improve. The European Startup needs a mechanism which will allow seeing how its

technology improves over time, both for internal and external use. The aim of this

project was to kick start a platform for this purpose.

5.1 Benchmarking platform

The benchmarking platform consists of a database for storing the output of machine

learning pipelines and a dashboard for visualization of metrics, as well as data move-

ment modules for import and export of data.

5.2 Metrics and use cases

The processing pipeline requires multiple steps, such as face detection, head pose esti-

mation, body pose estimation, etc. The metrics of interests are quantitative measures

of the performance of the algorithms, such as how many false detections are made,

how many misses the system exhibits, or how large are the errors. In the benchmarking

platform we keep track of these metrics.

People detection and tracking pipelines change as algorithms improve over time.

In the benchmarking platform each pipeline should be uniquely identifiable. This is

done using a git tag.

In addition we designed several use cases, each of them corresponding to applica-

tion use case such as behaviour tracking while driving, or behaviour tracking while

retail shopping. A use case is identified by it relevant data. For example, for a retail
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Figure 5.1: Benchmarking platform

shopping use case we might use videos which show people passing by the camera as

they would in a retail store aisles.

5.3 Database

We built a database for our benchmarking platform using MySQL. Our database

should stores results of people detection and tracking experiments as well as our

pipelines, use cases, persons (experiment participants) and recordings. The database

should also reflect the relationship among these data. During the design process, data

to be stored was identified and data interrelationships defined. We build a normalized

database with a few tables. Some of the tables are for data from machine learning

pipelines, for example a table for body landmark coordinates and a table for head pose

parameters. Other tables are for metadata, for example a table for pipelines and a

table for recordings.

We implemented data export module which exports the results of running a pipeline

to the database. We also implemented modules that import metadata about persons

and recordings from the European Startup Dataset. Use case definintion mechanism

was also implemented.
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5.4 Dashboard

We designed a dashboard with python Plotly Dash library [4]. The dashboard visual-

izes the people detection and tracking metrics. The user of the dashboard can specify

pipeline and/or use case etc. Dash will load data for that specific request, compute

metrics and visualize them.

Plotly Dash defines dashboard page layout similarly to HTML, and it comes with

various widgets for data visualization. Dash supports reactive programming style

which we followed in our implementation. The input of the user is automatically

propagated throughout the dashboard and metrics and visualizations are updated.
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Conclusion

In the work described in this report we created a machine learning dataset for peo-

ple detection and tracking, implemented tools necessary to create the dataset, imple-

mented dataset programming interface, build a database to store results of machine

learning pipelines, and created a dashboard to visualize performance metrics of people

detection and tracking machine learning algorithms.

The machine learning dataset will be used for training people detection and track-

ing machine learning algorithms as well as for testing them. For the later purpose, the

benchmakring platform was set up, which consists of a database and a dashboard. All

of these is a part of an infrastructure surrounding the core technology of the European

computer vision startup. Developing this infrastructure is a continuous process which

will progress with the growth of the company and its technology.
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