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Experiment is the interpreter of nature. Experiments never deceive. It 

is our judgment which sometimes deceives itself because it expects 

results which experiment refuses. We must consult experiment, 

varying the circumstances, until we have deduced general rules, for 

experiment alone can furnish reliable rules. 
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Resumo  

As nanopartículas metálicas de ouro, prata e platina surgiram como ferramentas poderosas com uma 

ampla gama de aplicações em diferentes campos, como biomedicina, catálise e ciências ambientais. A 

modificação da composição, tamanho e forma do metal das nanopartículas leva a propriedades 

totalmente diferentes do nanomaterial. Essa versatilidade sintonizável é responsável pela vasta gama de 

aplicações de nanomateriais que afeta a maneira como vivemos agora e no futuro. 

O projeto desta tese de doutorado foi projetado com o objetivo principal de desenvolver novas 

metodologias nanossintéticas verdes e sustentáveis para obter novas nanopartículas para aplicações 

biomédicas, químicas e ambientais. 

No capítulo dois, descreve-se a síntese química de novas nanopartículas funcionalizadas de ouro e prata, 

projetadas para obter a detecção a olho nu de um íon metálico tóxico, a saber, o mercúrio, em líquidos 

aquosos e não aquosos. Tais realizações foram publicadas na revista Chemistry Open of Wiley, e 

também destacadas como capa da revista (IF 2.938). 

Nos capítulos 3 e 4 é descrita a síntese de novas nanopartículas de platina com formas esféricas ou 

dendríticas como catalisadores. Além disso, as aplicações catalíticas foram avaliadas na redução de p-

nitrofenol em meio aquoso. Além disso, nosso sistema mostra a atividade da catecol-oxidase, que 

permite a oxidação do aminoácido L-3,4-dihidroxifenilalanina, um medicamento para tratar a doença de 

Parkinson. Os resultados foram publicados no Scientific Reports (IF 4.122) e na Nano Research (IF 

7.994), da editorial Springer Nature. 

No capítulo cinco é descrita uma nova metodologia para a preparação de nanobastões de ouro recobertos 

com uma camada de sílica mesoporosa. Os novos sistemas foram conjugados com doxorrubicina e azul-

de-metileno e estudados como novos nanocarreadores de drogas. As propriedades foram testadas com 

sucesso contra células do Adenocarcinoma de Mama Humana (MCF7) e bactérias Gram-negativas e 

Gram-positivas como novos antibióticos para combater a resistência microbiana. Os resultados são 

apresentados em um manuscrito sob revisão. 

Palavra Chaves 

Ouro, Plata, Platina, Nanopartículas e Nanobastões, Catalises, Biomedicina 
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Abstract 

Gold, Silver and Platinum metallic nanoparticles have emerged as powerful tools with a wide array of 

applications in different fields, such as biomedicine, catalysis, and environmental sciences. The 

modification of nanoparticles  ́metal composition, size, and shape lead to totally different properties of 

the nanomaterial. This tunable versatility is responsible for the vast array of applications of 

nanomaterials that affects the way we live now and will in the future.  

The project of this PhD thesis was designed with the main objective of developing new green and 

sustainable Nano-synthetic methodologies to obtain new Nano-particles for biomedical, chemical and 

environmental applications.  

In Chapter two it is described the chemical synthesis of new gold and silver functionalised nanoparticles, 

engineered to achieve naked-eye detection of a toxic metal ion, namely mercury, in aqueous and non-

aqueous liquids. Such achievements were published in the journal Chemistry Open of Wiley, and also 

highlighted as journal front cover (IF 2.938). 

In chapters three and four the synthesis of new platinum nanoparticles with spherical or dendritic shapes 

to be used as catalysts is described. In addition, the catalytic applications were assessed in the reduction 

of p-nitrophenol in aqueous media. Moreover, our system shows catechol-oxidase activity, which allows 

oxidation of amino acid L-3,4-dihydroxyphenylalanine, a drug to treat Parkinson disease. The results 

were published in the Scientific Reports (IF 4.122), and in the Nano Research (IF 7.994), from Springer 

Nature editorial. 

In chapter five a new methodology for the preparation of gold nanorods covered with a mesoporous 

silica shell is described. The new systems were conjugated with doxorubicin and methylene blue and 

studied as new drug nanocarriers. Properties were successfully tested against Human Breast 

Adenocarcinoma (MCF7) cells and Gram-negative and Gram-positive bacteria as new antibiotics to 

fight microbial resistance. Results are presented in a manuscript under revision. 
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1.1 Material Chemistry 

The International Union of Pure and Applied Chemistry (IUPAC) defines material chemistry as its 

application to the design, synthesis, characterisation, processing, understanding and utilisation of 

materials, particularly those with useful, or potentially useful, physical properties1. This definition 

perfectly fit the works related to nanomaterials, which are particles of any shape with dimensions in the 

1 and 100 nm range. Exist several examples using nanomaterials in the history, and probably one of the 

most famous is the Lycurgus cup (Figure 1.1), a 4th-century Roman glass cage cup containing gold and 

silver nanoparticles in colloidal form, and showing a different colour depending on whether light is 

passing through it; red when lit from behind and green when lit from in front. Also, the use of different 

types of nanomaterials in the stained glass of the St Chapelle, in Paris (France) gives to the cathedral 

and stunning aspect. 

 

Figure 1.1: Lycurgus cup in the British museum. 

 

However, it was not until 1857 when Michael Faraday described, in the Bakerian Lecture to the Royal 

Society of London, the interaction of the light with metal particles that are “very minute in their 

dimensions”2. This lecture is considered the birth of modern colloid chemistry. Since then, several 

scientists have contributed to the study and development of the nanoscience and nanotechnology.  

Studies like the ones of Thomas Graham3 (1861), John Tyndall4 (1869), Wilhelm Ostwald5 (1896) , 

Gustav Mie6 (1908), Richard Gans7 (1912), Knoll and Ruska8 (1932), John Turkevich9 (1951) or Richard 
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Feynman10 (1959), just to cite few of them, helped to the understanding, developing and growth of the 

so-called nanotechnology.  

The nanotechnology field is an increasing and essential area of research as can be noted for the number 

of scientific communications published in the last years, with more than 100.000 documents in total. 

 

1.2 Classifications of nanoparticles 

There are several ways to classify the nanomaterials. We can do the classification taking in consideration 

different aspects like the composition, the synthetical route, or their dimensions, among others. Here is 

presented a classification based on their composition that can cover a vast range of nanoparticles. 

In this way, we can have organic based, carbon-based and inorganic-based nanoparticles, as well as 

composites. 

1.2.1 Organic based nanoparticles 

Polymer nanoparticles, dendrimers or liposomes are some of the examples that can be included in the 

organic-based materials. 

1.2.1.1  Dendrimers  

Dendrimers are highly-branched biomolecules with nanometre dimension. They present a globular 

structure with three different parts: i) the core, ii) the interior or branches and iii) the terminal groups. 

(Figure 1.2). They are widely used due to their exciting properties. It can host molecules or metal ions 

in the internal cavities and acting as carriers, while the external surface may be tailored with different 

functional groups. In this sense, the applications that could have varied from drug delivery, gene delivery 

or magnetic resonance imaging among others11. 

 

 



Chapter 1 

5 

 

 

Figure 1.2: Illustration of a dendrimer structure. Reprinted from reference 11. 

 

1.2.1.2 Liposomes 

Amphiphilic phospholipids that are able to self-assemble into a spherical vesicle in which at least one 

lipid bilayer exist, are called liposomes. (Figure 1.3) In a usual conformation, the polar end is facing 

the outside, and the non-polar ends facing the core, forming the bilayers. They are useful in the delivery 

of hydrophobic drugs, and the surface can be easily functionalised12. 

 

Figure 1.3: Representation of liposomes and functionalisation capabilities. Reprinted from reference 12. 
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1.2.1.3 Polymeric nanoparticles  

Polymers are macromolecules organised in a chain like structure that presents many repeating units in 

their structure. It is possible to obtain polymeric nanoparticles with different types of polymers, natural 

or synthetic, giving to the system different properties. Nanocapsules, nanospheres or micelles can be 

formulated to specific applications. One of the most extended and important applications lies in the 

poorly soluble compounds encapsulation, used in a new drug formulation for biomedical delivery 

applications13, 14.(Figure 1.4) 

 

Figure 1.4: Representation of two polymeric nanoparticles, nanosphere and nanocapsule. Reprinted from 

reference 13. 

1.2.1.4 Carbon based materials 

Nanoparticles that are composed mostly of carbon can be included in this definition, as the fullerenes or 

carbon nanotubes. (Figure 1.5) Carbon-based nanomaterials present unprecedented physical and 

chemical properties. Their excellent resistance, high strength, stability and exceptional thermo-electrical 

conduction have allowed their implementation in a wide range of applications, from nanomedicine, to 

energy storage or biology15,16. 
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Figure 1.5: Representation of a) fullerene and b) carbon nanotube. Adapted from reference 15. 

1.2.2 Inorganic based nanoparticles 

We can find several types of inorganic-based nanoparticles, like the metal-based, silica nanoparticles or 

quantum dots. 

1.2.2.1 Metal based 

There exists a huge amount of work related to this type of nanoparticles. Gold, silver and platinum are 

ones of the most studied nowadays due to the properties that present in their nanometric form17. (Figure 

1.6) 

Metal oxides are also important, presenting useful properties, like the superparamagnetic iron oxide or 

the titanium dioxide capable of reflecting all the light in the visible region18. 

 

Figure 1.6: Microscopy images of Gold Nanorods with different sizes. 
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1.2.2.2 Silica nanomaterials 

In general terms, the silica nanoparticles can be subclassified as amorphous or mesostructured silica, 

taking into account the different structural arrangements of the SiO2 polymers that compose it. The first 

ones are characterised by the presence of mesostructured porous (2-50 nm pore size) (Figure 1.7), giving 

the ability to encapsulate different types of molecules. This structure is obtained using amphiphilic 

surfactants acting as templates, directing the growth and condensation of the precursors. The second 

ones do not present mesostructured porous; they are solid colloids with an empty or not core. Both cases 

offer an easy surface functionalization via siloxane chemistry, to conveniently create the desired 

nanomaterials19,20. 

 

Figure 1.7: Microscopy image of Silica Mesoporous Nanoparticles. Reprinted from reference 20. 

 

1.2.2.3 Quantum dots 

Nanocrystals that are made mostly of semiconductor materials and that exhibit quantum mechanical 

effects are often called quantum dots. (Figure 1.8) The properties that present are a consequence of the 

composition and size. Several examples of quantum dots, like GaAs, PbS, CdSe, CdTe, ZnO or Silicon 

quantum dots exist. The applications vary from optical uses to photodetectors or photovoltaic, among 

others21. 
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Figure 1.8: Representation of a colloidal quantum dot made of Pb and S. Adapted from reference 21. 

1.2.3 Composites 

Through the combination of two or more components in the nanometer scale arise the composites or 

nanocomposites. (Figure 1.9) Such combinations result in new properties that differ from the separate 

components that compose it. Core/shell materials are one of the most important composites, giving to  

the new material a surface with different functionalities, like protective biocompatibility, or allowing 

the dissolution in organic/non-organic solvents22. 

 

Figure 1.9: Microscopy images of Gold Nanorods@Mesoporous Silica nanocomposites. 
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1.3 Metals in colloidal chemistry 

Metals have been used since a long time ago in human history. During the metal age, 3rd. 2nd and 1st 

millennia before common era (BCE), the bronze (an alloy composed mainly of copper) or the iron was 

started to be used in materials for practical objects, changing the population’s life completely. In this 

sense, the use of metals in the nanoscale, due to the different properties that exhibit in comparison with 

the bulk material, can also lead to essential changes. 

Regarding the inorganic nanomaterials, exists a vast variety of examples using different metals, however 

because the main body of this PhD thesis was based in three of them, we will center the introduction in 

Platinum (Pt), Silver (Ag) and Gold (Au). 

1.3.1 Platinum 

 The platinum was first discovered in South America in 1735 by the Spanish navy officer and astronomer 

Antonio de Ulloa. It was named as platinum due to the visual similitude with the silver (“plata” in 

Spanish)23. 

Pt has an atomic number of 78 and an electronic configuration of [Xe] 4f14 5d9 6s1. 

The dominant oxidation states for Platinum are Pt(II) and Pt(IV). Pt(II) forms almost exclusively low-

spin, square planar complexes, while Pt(IV) forms a wide range of kinetically and thermodynamically 

inert octahedral complexes.  

Bulk platinum has several applications, as catalysers for vehicles24 , electrical applications25 or in 

petroleum production26. Also, it is used in medical applications27, e.g. as the cis-platinum, used 

worldwide for the cancer treatment. 

We can find in the literature several examples of Platinum nanoparticles (Pt NPs).  Different shapes can 

be obtained, and we can see that is possible do Pt NPs in a spherical28, cubic29, tetrahedral29, octahedral30, 

or dendrimer type31, among others shapes. The most extended use to Pt NPs is in catalysis. 

Electrocatalytic applications, as well as hydrogenations, or electro-oxidation, are reported applications. 

Sensing is also a use of Pt NPs, and the use in biomedicine is related32.  

1.3.2 Silver  

Silver has one of the most ancient names and has an uncertain origin. Berzelius accepted the Latin name 

Argentum and used the symbol Ag consequently. The name that is used in Galician, Portuguese or 

Spanish (“prata”/”plata”) probably is a derivation from the Greek name “platys” (wide and plane). The 
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name in English (“silver”) has an origin in the ancient German and Slavic languages (“silbar” in ancient 

German or “sirebro” in old Slavic)23.  

Silver (Ag) has an atomic number of 47 and an electron configuration of [Kr] 4d10 5s1. 

The only stable oxidation state of Silver is Ag(I). Their salts (except for AgF, AgNO3 and AgClO4) are 

sparingly soluble in water.  Linear and tetrahedral complexes are common for Ag(I). 

Silver is the best reflector of visible light, and was used in the fabrication of mirrors. The use in 

photography also was extended. Batteries, electrical contacts, or dental alloys are other uses of the silver. 

The synthesis and applications of silver nanoparticles is a field in constant growth. The exciting 

properties of the silver in the nanometric range gives to these materials a vast range of applications. 

Different shapes can be obtained, such as spheres, platelets, cubes, or rods33. 

Silver nanoparticles have been used extensively for sensing, being used for detecting toxic ions like 

Hg(II), Pb(II) or As(V). Also, detection of Cu(II), Ni(II), Zn(II) or Co(III) is related34,35. They are also 

used as small molecule detector (e.g. cysteine or dopamine)36. The use of silver nanoparticles for Surface 

Enhancement Raman Spectroscopy (SERS) is an active field with brilliant results37. The studies of the 

antimicrobial property of the silver nanoparticles are also related in the literature, with a significant 

number of works reporting it33. 

1.3.3 Gold  

The Latin name, “aurum”, probably comes from the ancient word “ausom”, which means yellow.  In 

Galician, Portuguese or Spanish, “ouro”/“oro”, the name comes from the Latin “aurum”. In English, 

“gold”, probably is a derivation from the Anglo-Saxon word “geolo”, that can have the origin in the 

Sanskrit word “jual” (that shines)23. 

Gold (Au) has an atomic number of 79 and an electron configuration of [Xe] 4f14 5d10 6s1. 

For gold, Au(I) and Au(III) are the most usual oxidation states, but Au(III) is the dominant due to be the 

most stable. Au(I) disproportionate in water to yield Au(III) and Au(0). For Au(III), square planar 

coordination is the predominant, while for Au(I) complexes linear coordination is usual. 

Jewellery is one of the primary uses of gold. Is also used in computer and electric materials due to the 

excellent conductivity or in medicine to treat rheumatoid arthritis.  

The synthesis and applications of gold nanoparticles is a relevant area of research in the nanomaterials 

field. The applications of gold nanoparticles are broad, and the properties are different depending on the 

size and shape, so that we can find different synthetic methodologies for spheres, rods, triangles, stars, 

nanocubes or nanocages, among others38. 
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The applications vary from sensing, plasmonics, photodynamic and photothermal therapy or drug 

delivery, citing just a few of them39. 

 

1.4 General approaches to nanoparticles synthesis 

Several approaches can be followed for the synthesis of nanomaterials. One of the most common 

synthetic routes to classifies them is in the “top-down” and “bottom-up” methodologies40,41,42. 

1.4.1 “Top-down” 

Through this strategy, the bulk material is reduced in size to produce nanoparticles. Mechanical milling, 

where the macroscopic material is converted into smaller particles by attrition; or laser ablation, where 

high-energy laser light is used to remove and vaporize the material from a solid surface, are some of the 

most applied techniques.  

1.4.2 “Bottom-up” 

In this approach, the nanoparticles are produced assembling atoms or molecules in a liquid or gas phase. 

In Flame Synthesis the starting material is evaporated, mixed with fuel and an oxidizing agent, and 

injected in a flame, forming the nanoparticles within the flame. 

Reducing metal precursors in a liquid phase to form nanoparticles, often called wet colloidal synthesis, 

is also one of the most commons methodologies. It is completed upon mixed solutions of different ions 

or molecules, under controlled conditions to form the final nanomaterials. 

 

1.5 Nucleation, growth and stability of the nanoparticles 

In general, the synthesis of metallic nanoparticles can be divided into two main stages, namely 

nucleation (related to the formation of a new phase) and growth (which involves the growth of the nuclei 

in the final NPs). Besides, a stabilisation mechanism must be present; otherwise, the growing NPs 

inevitably result in the formation of bulk material through aggregation. 
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1.5.1 Nucleation 

Paying closer attention to the colloidal synthesis, we can distinguish between heterogeneous and 

homogenous nucleation43,44,45. 

Heterogeneous nucleation occurs at nucleation sites contacting the liquid or vapour. It has preferential 

sites as phase boundaries or impurities. This type of nucleation sees as the driving force in the seed-

mediated synthesis. 

Homogenous nucleation occurs spontaneously and randomly, but requires some factors, as a 

supersaturation state, that we will discuss below.  

In base to the classical nucleation theory (CNT), and considering spherical particles as the final entity, 

the nucleation will take place when it lowers the Gibbs’ free energy (Equation 1.1):   

∆G =
4

3 
πr3∆GV + 4πr

2γ    (1.1) 

Here it is necessary to consider two critical parameters. First, Gibb’s free energy of the bulk crystal, 

ΔGV (which is expressed as per unit volume of newly formed particles), and secondly the surface energy, 

γ (expressed as per unit area of the material), with r as the nucleus radius. Both energies act in opposite 

directions. The ΔGV produces an energy reduction due to the formation of the new volume, while γ 

result in an increase, as a consequence of the new surface created. Gibbs free energy will be the sum of 

these two parameters. 

ΔGV can be expressed as follow (Equation 1.2): 

∆GV = 
−kBTln(S)

V
   (1.2) 

The crystal-free energy depends upon the Boltzmann constant (KB), the temperature (T), the molar 

volume of the species (V) and the supersaturation of the solution (S). The supersaturation depends on 

the concentration, and it can be defined as (Equation 1.3): 

S =
(C − C0)

C0
   (1.3) 

Where C is the concentration of the solute and C0 the equilibrium concentration or solubility. 

Therefore, the supersaturation of the solution is a crucial factor in the nucleation process. Without 

supersaturation (i.e S = 0), the crystal free energy will be zero and the nucleation will not occur 

spontaneously. When C > C0, ΔGV is negative and nucleation occurs spontaneously. 
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Plotted ΔG vs r (nuclei radio), the graph reaches a maximum that corresponds with the critical radius 

(rcrit). (Figure 1.10) At the critical size, r = rcrit, dΔG/dr = 0, and the critical energy ΔGcrit and rcrit can be 

defined as the minimum size in which the nanoparticles could be formed (Equations 1.4 and 1.5). 

Smallest radius will cause the redissolution of the metal in the solution. 

 

 

Figure 1.10: The dependence of the cluster free energy, ΔG, on 

the cluster radius, rc according to the CNT. Adapted from 

reference 43. 

 

 

 

 

 

∆Gcrit =
16πγ3

3(∆GV)
2
=
4πγrcri

2

3
   (1.4) 

rcrit = 
−2γ

∆GV
= 

2γV

kB Tln(S)
   (1.5) 

 

  

     

In the base of these considerations, the nucleation ratio can be increased through: 

 A) Increasing the supersaturation level, leading to a decrease in the energy barrier to nucleation. 

 B) Increasing the temperature will increase the average atomic energy, favouring the critical 

energy overcoming. 

 C) With a variation in the surface free energy, that can be caused using different surfactants, the 

nucleation can be increased. 

 

To describe easily the previously mentioned parameters, it is necessary to involve an Arrhenius type 

equation that relates the nucleation ratio (N) during the adjusted time (t) with a pre-exponential factor 

(A) (Equations 1.6 and 1.7): 

dN

dt
= Aexp (

∆Gcrit
kBT

)   (1.6) 
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dN

dT
= A exp

16πγ3V2

3kB
3T3(lnS)2

   (1.7) 

Therefore as remarked in the previous equations, there are only three experimental values that can be 

changed: the supersaturation (S), the temperature (T) and the surface free energy (γ).  

When the concentration of monomers (i.e. atoms) falls below the critical supersaturation level, the 

nucleation ends. Therefore, the nucleation can be understood according to the atomic concentration with 

time. 

1.5.2 Growth 

Throughout the last decades, different theories have arisen to explain the phenomena that involve the 

growth of nuclei in final NPs. All of them can be subclassified into two large families. Growth mediated 

by atoms or growth mediated by nanoparticles. In the first family, atoms are used as building blocks 

through surface addition to influence growth. The second family comprises the formation of 

mesocrystalline nanoparticles in which the growth occur by initial nanoparticles addition rather than by 

atoms addition. 

1.5.2.1 Atom-mediated growth 

 

Within this family, it is possible to classify a multitude of theories that explain, in a consolidated way, 

the observed phenomenology for the great majority of NPs. The most relevant growth theories are 

described below: 

1. LaMer mechanism, based on their research on aerosols and sulfur hydrosols46, propose the separation 

between the nucleation and growth into three stages. The first stage is the formation of the metallic 

atoms. When they reach a certain level of saturation (Cmin), the energy barrier for self-nucleation can be 

overcome, and nucleation starts. Afterwards, there is a drop in the concentration of metallic atoms below 

the minimum supersaturation level (Cmin) and no more self-nucleation occurs, leading to the growth of 

the nanoparticles. (Figure 1.11) The Lamer process only describes the nucleation and growth, not 

answering in the evolution of the NPs, shapes or size distribution. 
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Figure 1.11: The principle of nanoparticle nucleation due to LaMer's mechanism of nucleation derived from 

CNT. Adapted from reference 43. 

 

2. Ostwald Ripening. Taking into consideration that the solubility of nanoparticles is not independent 

of their size, according to the Gibbs-Thomson relation, which states that the nanoparticles become 

unstable when the size is decreased (Equation 1.8): 

𝐶(𝑟) = 𝐶0 exp (
2𝛾𝑉𝑚
𝑟𝑅𝑇

)   (1.8) 

Where C(r) is the solubility concentration of a particle with radius r, C0 is the solubility of an atom taken 

from an infinite flat surface, γ the surface free energy, Vm is the molar volume of the particle, R is the 

ideal gas constant and T the temperature. 

The Ostwald ripening theory proposes a mechanism of growing in which the nanoparticles of certain 

dimension go through a process of re-dissolution, leading to the growth of the big ones due to the new 

source of monomers. (Figure 1.12) It states that small particles are more soluble than big ones and tend 

to lose to re-precipitate into larger particles47,48,49. 

 

Figure 1.12: Schematic illustration of the Ostwald ripening with time (t1<t2<t3). Adapted from reference 49. 

 

3. Digestive ripening, on the other side, can be considered as the opposite of Ostwald ripening. Small 

particles will grow at expenses of the biggest ones, which will re-dissolve and act as a source of 
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monomers to the smallest nanoparticles50,51.(Figure 1.13) A more complex equation, derived from the 

Gibbs-Tomson relation, is necessary to explain the digestive ripening52. 

The overall process can be summarised in three steps: 1) The addition of a ligand (e.g. dodecanethiol) 

that will help to break the larger nanoparticles and narrowing the sizes, 2) the purification of the 

nanoparticle to obtain an isolate ligand-nanoparticle system and 3) the heating, usually in high boiling 

point solvents, with the presence of the ligand to obtain monodisperse nanoparticles. 

 

Figure 1.13: Representation of the digestive ripening process. Reprinted from reference 50. 

 

4. The Finke-Watzky mechanism is a simultaneous process where the nucleation and growth happen 

at the same time, but still follow the condition of the critical size explained in the CNT. The nucleation 

occurs with a constant rate K1, and the autocatalytic surface growth with a constant rate K2
53,54,55. 

𝐴
𝐾1
→ 𝐵    

𝐴 + 𝐵
𝐾2
→ 2𝐵  

 

1.5.2.2 Nanoparticle-mediated growth 

 

Thanks to the development of modern electron microscopy techniques (among other technologies) in 

recent decades an increasing number of reports have emerged that inform the synthesis of metal 

nanoparticles for which it is difficult to explain their growth according to atom mediated theories. The 

final products obtained by these processes occur through the fusion of nanoparticles formed in the early 

stages of the reaction, usually evolve into mesocrystalline nanostructures. Attending to the nanoparticles 

attachment method, nanoparticle-mediated growth can be classified in: 
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1. Coalescence. During the formation of nanoparticles, they can present coalescence. Coalescence can 

be seen as the overall nanoparticle growth, where first occurs the aggregation of separate particles, 

followed by subsequent nanoparticle growth. For this process, there is no preference in the 

crystallographic planes56,57.(Figure 1.14) 

 

Figure 1.14: Representation of coalescence in the synthesis of gold nanoparticles. Adapted from reference 56. 

 

2. In the oriented attachment, the growth involves a self-organization of adjacent particles, sharing a 

common crystallographic orientation, and following by joining this particles at a planar interface58,59. 

(Figure 1.15) 

 

Figure 1.15: Representation of an oriented attached mechanism. Reprinted from reference 58 

 

1.5.3 Stability 

Once the nanoparticles forms, the colloidal stability in the dispersing medium plays an important role. 

Van der Waals (VdW), electrostatic or magnetic force can lead to nanoparticles agglomeration, 

aggregation or coalescence.  

Van de Waals interactions60 (Figure 1.16) govern nanoparticles aggregation at the most basic level. 

Permanent or induced dipoles within the nanoparticles can result in net attractive forces between them 

and posterior aggregation.  
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Figure 1.16: Representation of Van der Waals interactions that can lead to nanoparticle aggregation. Adapted 

from reference 60. 

An electric double layer (EDL, Figure 1.17) formed by solvated ions or molecules can shield the surface 

charge, create repulsive interparticle forces and stabilise the system. We can distinguish two parts, the 

Stern layer, which consists of counter-ions adsorbed on the charged surface of the nanoparticle (NP), 

and the diffuse layer, an atmosphere of ions of opposite net charge surrounding the NP. The thickness 

of the EDL is called the Debye length.60  

 

Figure 1.17: Representation of the EDL, composed by the Stern layer and the Diffuse layer. The total thickness 
of both is called the Debye length. Adapted from reference 60. 

 

The DLVO theory (Derjaguin, Landau, Verwey and Overbeek, developers of the theory), for the 

colloidal stability, assumes that the total force between colloidal particles is composed for the van de 

Walls forces (attractive) and the EDL (repulsive). In Figure 1.18 we can see the combination of that 

forces, in which the maximum is the aggregation barrier and determine the colloidal stability.44 
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Figure 1.18: Representation of the Total Interaction Potential (TIP) from the DLVO theory. Adapted from 

reference 44. 

 

On the other hand, the steric stabilisation can be carried out absorbing large molecules at the surface of 

the particles, which creates a physical barrier that prevents aggregation. (Figure 1.19) It can be used 

surfactants (e.g. hexadecyltrimethylammonium bromide, CTAB), polymers (e.g. Polyvinylpyrrolidone, 

PVP), proteins or other types of macromolecules. The stability is now determined by the solubility, 

average chain length, concentration or temperature, among others.44,60 

 

Figure 1.19: Representation of nanoparticles covered with a polymer avoiding particle interaction due to steric 

repulsion. Adapted from reference 60. 

 

1.6 Surface Plasmon 

The unique electronic properties of the nanomaterials arise from their interaction with an incident 

electromagnetic radiation61,62,63,64,65,66.  
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Plasmons are the collective oscillations of free electrons in metals. In bulk materials, with an incident 

light, propagating surface plasmon polariton (PSPP) can occur under certain conditions. When the 

metals are in nanometres range, i.e. as a nanoparticle with a comparable size of a wavelength, and are 

illuminated with the appropriate wavelength (to produce resonance), the particle’s free electrons 

participate in the collective oscillation, and it is called localised surface plasmon resonance (LSPR). 

LSPR in nanoparticles is strongly dependant on several factors, such as the metal type, size or shape of 

the nanoparticle, and also to the surrounding media. The existence of the LSPR makes that the 

nanoparticle behaviour changes drastically; for example, their optical properties will be greatly affected. 

As a consequence of the formation of LSPR in metallic nanoparticles, the electromagnetic field near the 

surface of the nanoparticle is strongly increased and rapidly falls off with distance. Furthermore, noble 

metal NPs present an extinction cross section that can be much larger than their geometrical size. The 

optical extinction presents a maximum at the surface plasmon resonance frequency, and for gold and 

silver NPs is located at visible wavelengths. 

The most convenient analytical treatment consist in the use of a homogenous and isotropic sphere, with 

radius a, using the quasi-static approximation, (where the particle is much smaller than the wavelength 

of light) located at the origin in a uniform, static electric field E=E0ẑ, with εm as the dielectric constant 

of the medium and ε as the metal-dielectric function. (Figure 1.20 a) This electric field will create a 

dipole within the nanoparticles, where the charges are located in the surface. Only light with frequency 

in resonance with the oscillation can excite the local surface plasmon. (Figure 1.20 b)  

 

Figure 1.20: a) Representation of a homogeneous sphere set into an electrostatic field b) illustration of the 
surface plasmon resonance, with the collective oscillation of the conduction band electrons due to an incident 

light. 

 

The metal polarizability (α) express the distortion of the electron cloud in the opposite direction to the 

electric field, and can be expressed as (Equation 1.9): 
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𝛼(𝜆) = 3𝜀𝑚(𝜆)𝑉𝑁𝑃
𝜀 (𝜆) − 𝜀𝑚  (𝜆)

𝜀 (𝜆) + 2𝜀𝑚  (𝜆)
   (1.9) 

Where ε (λ) is the dielectric function of the particle, εm (λ) dielectric constant of the surrounding media 

and VNP is the volume of the nanoparticles. 

With the analytical solutions of Maxwell's equations, Gustav Mie provided a solid description of the 

absorption and scattering produced in spherical metal particles. The section of a nanoparticle that absorb 

all the photons that reach its surface is defined as the absorption cross-section. Moreover, the section of 

a nanoparticle that scatters any photon that reaches its surface, is defined as the scattering cross-section. 

The sum of the absorption and scattering cross-section is defined as the extinction cross-section (σExt), 

which represent the efficiency of the particle to remove photons from an incident beam. (Figure 1.21) 

 

 

Figure 1.21: Representation of scatter, absorption and transmission process in a nanoparticle. 

Considering a quasistatic regime (i.e. when the size of the nanoparticle is smaller than the further 

wavelength), the extinction cross-section in a spherical gold nanoparticle can be expressed as (Equation 

1.10): 

𝜎𝐸𝑥𝑡 =
18𝜋[𝜀𝑚(𝜆)]

3/2

𝜆
𝑉𝑁𝑃

𝐼𝑚[𝜀(𝜆)]

[𝑅𝑒[𝜀(𝜆)] + 2𝜀𝑚(𝜆)]2 + 𝐼𝑚[𝜀(𝜆)]2
  (1.10) 

 

Where λ is the light wavelength, VNP the nanoparticles volume, ε the dielectric function of the particle 

and εm the dielectric constant of the medium. 

It should be noted in Equation 1.10 that the LSPR extinction peak and metal polarizability are dependent 

on the dielectric function ε (λ), which correlates the response of a material to an electric field, as a 

function of the wavelength (λ). For this type of nanomaterials, the complex wavelength-dependent 

dielectric function can be expressed as (Equation 1.11): 

𝜀(𝜆) = 𝑅𝑒[𝜀(𝜆)] + 𝑖𝐼𝑚[𝜀(𝜆)]   (1.11) 
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Where the real part, Re[ε] is related with the resonance frequency of a plasmonic system, and the 

imaginary part iIm[ε] describe it losses (due to radiate damping, structural imperfections or intraband 

transitions, among other). (Figure 1.22) 

 

 

Figure 1.22: (A) Real and (B) Imaginary part for Au (black) and Ag (green). Adapted from reference 61. 

 

The σExt and α maximum will occur when met the Fröhlich condition (Equation 1.12), i.e. when the 

denominator is minimised, so the LSPR is excited at a frequency where: 

 

𝑅𝑒[𝜀(𝜆)] = −2𝜀𝑚    (1.12) 

 

For instance, for spherical 10 nm gold nanoparticles in water, with a εm ≈ 1.77, and if we consider the 

Frölich condition, 𝑅𝑒[𝜀(𝜆)] = −2𝜀𝑚, the expected wavelength will be about 520 nm (in consonance 

with experimental values), according to the real dielectric function of gold. For silver, the LSPR will 

present a blue shift when compared with gold. 

The imaginary part also plays an important role in plasmon resonances, related to the resonance peak 

broadening. In Figure 1.22 B, we can see that the silver has lower losses than gold, resulting in a reduced 

plasmon intensity for gold nanoparticles. Despite this, gold is more used due to chemical stability and 

biocompatibility. 

Platinum, on the other hand, present a small band in the ultraviolet (UV) region, ca. 215 nm, due to 

interband transitions which overlaps this region67. (Figure 1.23) 
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Figure 1.23: Resonant frequency and extinction cross section of various metallic nanoparticles with 10 nm size 

in air. For Ag, the extinction cross section was divided by 20. Reprinted from reference 63. 

 

It is important to notice that the plasmonic properties of any material are defined by the dielectric 

function ε, and that σExt scales with the particle volume. Due to the dependence of the dielectric function, 

refractive index (RI) of the surrounding media should play an essential role in the LSPR phenomenon. 

Applying the Drude classical model of electronic transport in conductors, the relationship between the 

LSPR and the refractive index can be expressed as (Equation 1.13): 

 

𝜆𝑚𝑎𝑥 = 𝜆𝑝√2𝑛𝑚
2 + 1   (1.13) 

 

Where λmax is the LSPR peak wavelength, λp the wavelength corresponding to the plasmon frequency of 

the bulk metal, and nm the metal refraction index. For visible and near infrared frequencies, and for small 

changes in the refractive index, the LSPR shift is nearly linear. 

If we consider a nanomaterial with a non-spherical shape, in the quasi-static approximation, Richard 

Gans theory can be applied to calculate the LSPR, approximating the nanostructure to an ellipsoid. This 

is the case of gold nanorods. The extinction cross-section can be calculated (Equation 1.14): 

 

𝜎𝐸𝑥𝑡 =
2𝜋𝑉𝑁𝑃𝜀𝑚

3/2

3𝜆
∑

(
1
𝑃𝑗
)
2

𝐼𝑚[𝜀]

(𝑅𝑒[𝜀] +
1 − 𝑃𝑗
𝑃𝑗

𝜀𝑚)
2

+ 𝐼𝑚[𝜀]2𝑗

   (1.14) 
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Pj represents de depolarization factor along the three Cartesian axes. For a prolate spheroid (an important 

type of ellipsoid, with volume V=4πa2b/3), Pj includes PA, PB and PC, termed depolarization factors, 

where A>B=C. 

With this theory, the LSPR spectra of gold nanorods have been described qualitatively applying the 

previous factors. Their LSPR were calculated, including the redshifts due to the increasing size of the 

nanoparticle. It can be seen comparing Equations 1.10 and 1.14. In Equation 1.10, the factor weighting 

εm is 2, while in Equation 1.14 is ((1-Pj)/Pj), which increase with the aspect ratio and can be greater 

than 2, resulting in a red-shift in the LSPR. Also, it will lead to an increased sensitivity of the surrounding 

medium εm. 

Note that the extinction spectrum that arises from the previous Equation presents two peaks, one 

corresponding to the transverse plasmon mode, from the x and y contributions to the sum, and another 

due to the longitudinal plasmon mode from the z contribution. (Figure 1.24) 

 

Figure 1.24: a) Representation of a gold nanorod with charge accumulation in the surface and b) absorption 
spectra of gold nanorods with different aspect ratio. Adapted from reference 63. 

The particle shape plays an essential role in the extinction spectra. For other situations where the 

approximation to a sphere or ellipsoid is not possible, it is not feasible to obtain the LSPR analytically, 

and they should be studied numerically. Discrete Dipole Approximation (DDA), Finite Difference Time 

Domain (FDTD) or Finite Element Method (FEM), are some of the numerical methodologies developed 

to provide solutions for these more complicated situations. 
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1.7 General synthetic methodologies of gold and silver 

nanoparticles  

 

Centring this introduction in the bottom-up methodologies due to be highly used at laboratory scales 

and the strategy employed in this thesis, we can differentiate two approaches for the obtaining of 

different types of nanomaterials: Direct (or In Situ) Synthesis and Seed-Mediated Synthesis. 

 

1.7.1 Direct Synthesis 

One-pot (also so-called direct synthesis) involves the production of metallic NPs only in one synthetic 

step, which requires the control of nucleation and growth simultaneously. 

The two mains aspects in the one-pot strategy are the reduction of the metal precursor and the 

stabilisation of the newly formed nanoparticles. To achieve metal precursor reduction, usually, 

molecular agents with specific redox capabilities like sodium citrate (SC), sodium borohydride (NaBH4), 

hydrazine (N2H4) or ascorbic acid (AA) are used. Also, metal reduction promoted by ultrasounds 

irradiation or temperature can be employed. The nanoparticles stabilisation can be done through 

molecular agents such as sodium citrate, sulphur ligands, polymers or surfactants.  

Probably, one of the most used direct synthesis nowadays is the so-called Turkevich methodology for 

the obtaining of gold nanoparticles. In this process, the gold solution, usually tetrachloroauric(III) acid 

(HAuCl4), is reduced and stabilised by trisodium citrate at 100 ºC in water. Using citrate as a reducing 

and stabilising agent is possible to get spherical gold nanoparticles with sizes around 20 nanometres. 

Despite being a synthesis that was first published in 1951, there are, still nowadays, several remarkable 

works going into explain the mechanism behind this process68,69,70, as well as great efforts for improve 

the methodology71,72,73. 

Kumar et al.68 proposed that the synthesis of gold nanoparticles with the Turkevich methodology can be 

seen as multiple steeps reaction, occurring in series and parallel, in which the initial step is the oxidation 

of the trisodium citrate to form acetonedicarboxylate and the reduction of the Au(III) to Au(I). (Figure 

1.25) 
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Figure 1.25: Scheme of the citrate oxidation. 

The acetonedicarboxylate will form a coordination compound with the Au(I), facilitating the 

disproportionation of Au(I) into Au(0) and Au(III). This will lead to the nucleation and growth of Au 

(0) into gold nanoparticles. (Figure 1.26) 

 

Figure 1.26: Scheme of the complex of dicarboxy acetone with the gold and formation of the nanoparticles. 

Polte et al.69 proposed a four step-process, where the first step is the partial reduction of gold precursor 

and formation of small clusters. They will form gold seed in the second step, which will attract the 

remaining ionic gold in solution, and lead to the reduction of the ionic metal and growth of the gold 

nanoparticle. 

It is interesting to notice that a factor affecting the final outcome of the synthesis is the order of addition. 

In a standard synthesis, the sodium citrate is added to the pre-heated gold solution. Changing the order 

of addition (maintaining the final concentrations) can lead to smaller nanoparticles.69,70 

It is also possible to obtain silver nanoparticles in the presence of citrate as a reductant and stabiliser, 

but this methodology leads to larger silver nanocrystal of various sizes and shapes. This result was 

attributed to the complexation of the first Ag nanoparticles with the citrate, making the reduction of the 

remaining Ag+ slower, and leading to a growth methodology via Ostwald ripening.74. Taking this into 

consideration, a stronger reducing agents was used for the synthesis of more monodisperse silver 

nanoparticles.  
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Sodium Borohydride is a common reducing agent used in this type of synthesis. However, the reduction 

of metal ions with it is a complicated process. For metals with a positive redox potential the chemical 

Equation can be written as follow75: 

𝑀𝑧+ + 𝑧 𝐵𝐻4
− + 𝑧 3 𝐻2𝑂 → 𝑀

0 + 𝑧𝐵(𝑂𝐻)3 + 𝑧 3.5 𝐻2 

 

Boric acid serves as Lewis acid giving place to the formation of tetrahydroxyborate anion: 

𝐵(𝑂𝐻)3 +𝐻2𝑂 ↔ 𝑧 𝐵(𝑂𝐻)4
− + 𝑧 3.5 𝐻2 + 𝑧 𝐻

+ 

 

The overall reaction can be re-written as: 

𝑀𝑧+ + 𝑧 𝐵𝐻4
− + 𝑧 4 𝐻2𝑂 → 𝑀

0 + 𝑧𝐵(𝑂𝐻)4
− + 𝑧 3.5 𝐻2 + 𝑧 𝐻

+ 

 

But is also important take in consideration the hydrolysis of the borohydride anion in water: 

𝐵𝐻4
− + 4 𝐻2𝑂 → 𝐵(𝑂𝐻)4

− + 4𝐻2 

 

Polte et al.76 proposed a mechanism for the growth of silver nanoparticles, in which the sodium 

borohydride plays an important role. They demonstrate that classical nucleation and growth process, 

like the LaMer model, is not applicable in this case. The growth of the nanoparticles is driven by two 

different coalescence processes. (Figure 1.27) The first one happens after the reduction of Ag+ into Ag0, 

which occurs in within less than 200 ms (faster than the growth process). The cluster coalesces and 

generate small nanoparticles. The next step is a metastable state in which the nanoparticles maintain the 

size. When most the BH4
- is converted (due to the reduction and hydrolysis), a decrease in the colloidal 

stability is produced, and the second coalesce process begins, giving places to the final nanoparticles.  
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Figure 1.27: Schematic representation of the growth silver nanoparticles mechanism. Adapted from reference 

76. 

 

The addition of a steric stabilizing (like PVP) agent does not affect the growth mechanism, but has an 

impact in the size, reaction time, as well as, in the long-term stability.  

In this sense, we followed a methodology77 that contains sodium citrate as stabilizing agent and sodium 

borohydride as reductant. Taking as source of silver ion the silver nitrate (AgNO3), the overall reaction 

can be described as: 

𝑁𝑎𝐵𝐻4(𝑎𝑞) + 8𝐴𝑔𝑁𝑂3(𝑎𝑞) + 4 𝐻2𝑂 (𝑙) → 𝑁𝑎[𝐵(𝑂𝐻)4](𝑎𝑞) + 8 𝐴𝑔(𝑠) + 8 𝐻𝑁𝑂3(𝑎𝑞) 

The citrate will not only help in the stabilisation of the newly formed nanoparticles, but is believed that 

act as a buffer, neutralizing the nitric acid formed and maintaining a less acid environment: 

𝑁𝑎3𝐶3𝐻5𝑂(𝐶𝑂𝑂)3 (𝑎𝑞) +  𝐻𝑁𝑂3 (𝑎𝑞) ↔  𝑁𝑎2𝐻𝐶3𝐻5𝑂(𝐶𝑂𝑂)3 (𝑎𝑞) + 𝑁𝑎𝑁𝑂3 (𝑎𝑞) 

Also, for the synthesis of different shapes (triangular or truncated triangular platelets) was added 

hydrogen peroxide (H2O2) as an etching agent. It will oxidize the less stable newly formed silver 

nanoparticles, allowing a shape control and avoiding overgrowth: 

2𝐴𝑔0(𝑠) +  𝐻2𝑂2(𝑎𝑞) + 2𝐻
+(𝑎𝑞) ↔ 2𝐴𝑔+ (𝑎𝑞) + 2𝐻2𝑂 (𝑙) 

Potassium bromide (KBr), as a bromide ion source, can be used to stop the particle growth, being able 

to allow a size control. The bromide will bind to the silver surface, forming silver bromide and 

hampering the nanoparticle growth. 

𝐴𝑔+ + 𝐵𝑟− → 𝐴𝑔𝐵𝑟 

In this case, it is possible to obtain different sizes just varying the amount of bromide added to the 

reaction.  
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1.7.2 Seed mediated synthesis 

This process involves the production of seeds (larger nuclei) and their growth into metallic NPs in 

differentiated steps. 

The seed-mediated synthesis is an interesting technique in the obtaining of nanomaterials, due to the 

possibility of a high control in the final composition, size or shape. In 2001 Murphy et al.,78 were among 

the first using the seed mediated methodology to synthetise nanoparticles, obtaining, with this technique, 

gold nanorods. Since then, many efforts have been made to improve and understand the synthesis.79 

Using seed-mediated strategies, it is possible to obtain a large variety of gold and silver nanostructures 

with different geometry. Gold or silver triangles, cubes, stars or dendrimers have become accessible, 

also demonstrating greater control in size and dispersion.  

Given that the only nanomaterial based on a seed-mediated strategy presented in the thesis is the Au 

nanorods, the following revision of this section will focus on this gold geometry specifically. 

There are some critical parameters to take into consideration when the growth of gold nanorod is the 

final goal. The first one to have in consideration is the synthesis of the seeds. It was pointed out that 

different seeds will lead to different shapes, and they not only depend on the metal but on the surfactants 

or reductants.79 

In the presence of CTAB as a surfactant and NaBH4 as a reductant, the obtention of a good cuboctahedra 

structure is mainly achieved.80 

The growth solution, in which the seeds are added, is composed by gold (HAuCl4 as a gold source), a 

surfactant (CTAB), a week reductant (ascorbic acid) and silver (with AgNO3 as the source).  

The presence of silver is believed to have a role in the anisotropic growth and symmetry breaking of the 

seeds. Have been proposed more than one mechanism explaining the role of the silver.  Some of them 

propose that the silver, alongside with the CTAB, will be absorbed preferentially in gold high-energy 

side facets and will slow down further gold deposition, leading to the formation of the gold nanorod. It 

can be in the reduced form, i.e. Ag(0), or in the silver complex with bromine, i.e. AgBr. Was even also 

proposed a mechanism involving the CTAB. Above ∼1mM (the first critical micelle concentration of 

CTAB) the silver may alter the micellar structure and lead to the gold nanorod formation81,82.  

The presence of halides in the reaction media has an important role in the growth of gold nanorods. It 

was noticed that the change in the counter ion (cetyltrimethylammonium chloride, CTAC, with Cl-, 

instead Br- in the CTAB), or the presence of I-, can change the product substantially.  

In the presence of CTAB, the chloride ligand are replaced with the bromide: 
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[𝐴𝑢𝐶𝑙4]
− ↔ [𝐴𝑢𝐵𝑟4]

− 

It can be seen due to a change in the colour from pale-yellow to dark-orange-yellow. The gold complex 

AuBr4
- has been identified as the main gold source into the growth solution, and with different amounts 

of Br- ions in solution, there is a variation in the gold nanorods yield and aspect ratio. It can be added as 

an external source, but a minimum concentration (about 1mM) is required for the obtaining of the 

nanorods83,84. 

With an iodine concentration in the CTAB above 50 μM, the favoured product is not a rod, it will either 

be a prism or a nanoplate. For this reason, it is important not only the correct choice of the reagents, but 

also their purity. It was found that some reagents can present iodine contamination at a significant level, 

thus leading to a variation of the final shape of the product85,86,87. 

The reduction of the gold (III) complex anion, AuBr4
-, can be carried out with mild reductants. One of 

the most used is ascorbic acid. Under acidic conditions, the ascorbic acid will be mostly in the form of 

L-ascorbate, and the net reaction can be described as seen in Figure 1.28. (Note that only Au(0) are 

adjusted, bromide ions are not.): 

 

 

Figure 1.28: Scheme of the net redox reaction for the reduction of Au(III) to Au(0). 

 

But the ascorbic acid is not strong enough to reduce the gold from Au3+ to Au0 without a gold surface, 

and the reduction occurs in two steps. First, the ascorbic acid reduce the Au3+ to Au1+, and Au0 is 

achieved once the seeds are introduced in the growth solution. 

It was noticed that, for a complete reduction of the Au3+ to Au1+, also the radical anionic L-ascorbate 

has to participate in the reduction. (Figure 1.29) 
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Figure 1.29: Scheme of reduction of Au(III) to Au(I) by ascorbic acid. 

 

For the second step, the reduction of Au1+ to Au0, were proposed two mechanism. The first mechanism 

(Figure 1.30) is the disproportionation of Au1+, leading to Au0 and Au3+: 

 

Figure 1.30: Scheme of the disproportionation of Au(I) to Au(0) and Au(III). 

 

The second mechanism (Figure 1.31) is the direct reduction of Au1+ to Au0: 

 

Figure 1.31: Scheme of the direct reduction of Au(I) to Au(0). 

 

The complete oxidation of L-ascorbic acid can be seen in Figure 1.32: 
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Figure 1.32: Scheme of the complex oxidation of L-ascorbic acid. 

 

Other factors that have a direct relationship in the gold nanorod synthesis are the temperature and the 

pH.  

Despite the fact that they can be synthesised at room temperature, the usual protocols use mild 

temperatures. The solubility of the CTAB marks the limit. With a concentration of 100 mM, 

temperatures above 27 ºC are necessary to avoid the crystallization in solution. Higher temperatures will 

lead to a fast reduction process, decreasing the size of the nanorods and presenting a higher 

polydispersity.88. 

With different pH conditions, the aspect ratio of the final gold nanorods can be tailored. Lowering the 

pH will slow the kinetic growth, and will be achieved higher aspect ratios.  That is due to the dependence 

of the ascorbic acid reducing ability with the pH, which is weaker at acidic environments (pH 2.5) than 

in mild acidic ones (pH 6.5).89 

Despite the fact that a lot of efforts have been made in order to understand the mechanism of the gold 

nanorods synthesis using the seed-mediated process, there are still factors that needs to be better 

understood, as well as different study parameters that can have an essential role in the final product, 

alone or in combination with the others81. 
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1.8 General synthetic methodologies of Platinum 

nanoparticles 

One of the most common synthetic routes to platinum nanoparticles is a wet chemical reduction (WCR). 

For the specific case of platinum, there are different synthetic routes for the obtention of a variety of 

structures90,91. Was El-Sayed et al. among the first synthetizing colloidal platinum nanoparticles using 

polymers capping agents. Since then, much research has been made with similar approaches for the 

obtention of different Pt nanoparticles due to their properties. In this sense, several synthetic routes for 

the formation and growth of Pt NPs can be applied.  

The polyol methodology is one of the most used techniques. Polyols, such as ethylene glycol, propylene 

glycol or polyethylene glycol, present high boiling points as well as a reduction potential, making them 

good candidates for the synthesis of different kind of nanoparticles. With this methodology, cubic, 

cuboctahedra and octahedral particles with PVP as a stabilizing and AgNO3 as a shape-directing agent 

has been synthetised.92 Also, a polyol methodology with PVP as a protecting agent and methylamine as 

shape directing agent can lead to a concave polyhedral structure.  

Different structures were obtained when the nanoparticles are synthetised in an N2 atmosphere or an 

open-air environment, suggesting that the nitrogen can bind to the surface and act as a shape directing 

agent.93 The addition of NaNO3 to the reaction can alter the reaction kinetics causing a slow in the 

reduction process and changing the final structure of the particles.94 

In water, different routes have been used. With Pluronic F127 copolymer and ascorbic acid as the 

reducing agent, dendritic nanoparticles were obtained. The presence of Pluronic is crucial, and it was 

acting as a structure directing-agent. The polymer, as well as the Pt concentration in the reaction 

synthesis method, plays also an important role in the synthesis.95 

In this sense, several methodologies for the synthesis of Pt nanoparticles exist, but even small variations 

in the conditions can lead to a change in the structure and is likely that the control mechanism for each 

system is different.96 

1.9 Silica coating 

The implementation of silica as building blocks in hybrid nanomaterials construction has brought 

numerous advantages flowing from their intrinsic properties. Silica provided high stability, especially 

in aqueous media but also in polar organic solvents, it is chemically inert and optically transparent, 

which favours the retention of specific intrinsic properties of the metals coated with it.97 Furthermore, 
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silica coatings offer the attractive possibility of easy functionalisation (via siloxane chemistry) with a 

wide variety of molecular agents with different functionalities. 

One of the most used technique to cover metal nanoparticles with a silica layer is based on the so-called 

Stöber methodology. Using a silicon alkoxide like tetraethylorthosilicate (TEOS, Si(OC2H5)4) or 

methyltriethoxysilane (MTES, Si(OC2H5)3CH3) as silica precursor, the controlled silica layer deposition 

with desired thickness can be achieved under controlled conditions (in the presence of a suitable 

catalyzer such as high pH condition or amine derivatives). 

Interestingly, when the silica polymerisation process is completed in the presence of CTAB acting as a 

template, is possible to induce the formation of mesostructured porous in the silica layer with a size pore 

usually between 0.5 and 3 nm in diameter. For carrying out this procedure a base is employed as a 

catalyser, and a co-solvent methodology is applied, using water and an organic solvent like methanol, 

ethanol or isopropanol, due to the alkoxysilanes immiscibility with water. The process undergoes in two 

steps, hydrolysis and condensation: 

Si(OC2H5)4 + 4 H2O → Si(OH)4 + 4 C2H5OH (Hydrolysis) 

Si(OH)4 → SiO2 + 2 H2O (Condensation) 

 

Several parameters are affecting the hydrolysis and condensation of the alkoxysilanes. The temperature, 

solvents, concentration, reaction time or pH can have an influence in the final product98,99,100. 

1.10  Sustainable Chemistry 

Were Anastas and Warner the catalyst within the scientific community for the development of 

sustainable chemistry. Was in 1998 when they published the 12 principles of green chemistry101, which 

preceded the publication in 2003 by Anastas and Zimmerman of the 12 principles of green chemical 

engineering102. In those publications, it is brought to the attention of scientist and engineers the need for 

the development of a more sustainable scientific activity. We can list the 12 principles of sustainable 

chemistry as are listed in the green chemistry section of the American Chemical Society: 
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1. Prevention 

It is better to prevent waste than to treat or clean up waste after it has been created. 

2. Atom Economy 

Synthetic methods should be designed to maximize the incorporation of all materials used in the process 

into the final product. 

3. Less Hazardous Chemical Syntheses 

Wherever practicable, synthetic methods should be designed to use and generate substances that possess 

little or no toxicity to human health and the environment. 

4. Designing Safer Chemicals 

Chemical products should be designed to affect their desired function while minimizing their toxicity. 

5. Safer Solvents and Auxiliaries 

The use of auxiliary substances (e.g., solvents, separation agents, etc.) should be made unnecessary 

wherever possible and innocuous when used. 

6. Design for Energy Efficiency 

Energy requirements of chemical processes should be recognised for their environmental and economic 

impacts and should be minimised. If possible, synthetic methods should be conducted at ambient 

temperature and pressure. 

7. Use of Renewable Feedstocks 

A raw material or feedstock should be renewable rather than depleting whenever technically and 

economically practicable. 

8. Reduce Derivatives 

Unnecessary derivatization (use of blocking groups, protection/ deprotection, temporary modification 

of physical/chemical processes) should be minimised or avoided, if possible, because such steps require 

additional reagents and can generate waste. 

9. Catalysis 

Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 

10. Design for Degradation 

Chemical products should be designed so that at the end of their function they break down into 

innocuous degradation products and do not persist in the environment. 
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11. Real-time analysis for Pollution Prevention 

Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and 

control prior to the formation of hazardous substances. 

12. Inherently Safer Chemistry for Accident Prevention 

Substances and the form of a substance used in a chemical process should be chosen to minimize the 

potential for chemical accidents, including releases, explosions, and fires. 

Taking a close look at the 12 principles, we can use strategies that help to follow them, by using better 

solvents, energy sources that can faster the chemical process, obtaining better catalyst or obtaining new 

sensor that can drive to a fast recognition of toxic analytes.  

1.10.1  Solvents 

Solvents play an essential role in the reactions. They are used most of the times in more quantity than 

any reactive species and are one of the most important waste generators. Solvents like hexane or toluene 

are petroleum derivate, other can be volatile like acetone or flammable like diethyl ether, making 

dangerous the work with them. The easy dispersion, accumulation and toxicity of chlorinated solvents 

in the environment is an important source of contamination. A purely solvent-based process, avoiding 

mixing of solvents, can be a strategy to reduce the waste if we are able, for example, to recover and use 

it again. However, the use of preferentially water as well as new solvents can also have a positive impact 

in the environment as in the laboratory results.103,104 

Water has several advantages. It is not dangerous, not toxic, cheap and non-flammable. It allows to work 

at moderate temperature conditions (0-100 ºC), but also in near critical conditions (near-critical water 

(NCW), 150-350 ºC, 4-200 bar) or supercritical conditions (supercritical water (SCW), >374 ºC, >221 

bar), in which properties as density or polarity are strongly modified. 

However, there are few organic compounds soluble in water, what makes that new solvents must be 

developed in order to improve the “classic” ones. 

Those new solvents can include ionic liquids, perfluorinated compounds or supercritical fluids. All of 

them has advantages and drawback, showing that, nowadays, the perfect solvent does not exist, just the 

most convenient to the chemical process. 
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1.10.2  Catalyst 

A catalyst is a compound that affects the reaction rate, speeding up or slowing down (also called 

inhibitors), but that does not appear in the stoichiometry of the reaction. The catalyst is not consumed 

during the reaction process and must be regenerated, so it can be reused in the reaction more than 

once.105,106 

We can classify the catalyst in homogeneous and heterogeneous. 

1.10.2.1  Homogeneous catalyst 

The catalyst as well as the reagents are in the same phase (usually in dissolution). They can be acids, 

bases, or Lewis acids like AlCl3, TiCl4 or BF3. The use of metals like Pd, Pt, Fe, Ni, Co or Cu with d 

orbitals partially occupied have also a widespread use. They have several advantages like a more 

homogeneous distribution within the solution, or the possibility to use a more specific catalyst. 

One of the main problems is the separation of the catalyst and the reaction products with the consequent 

waste generation. 

1.10.2.2  Heterogeneous catalyst 

In this case, the catalyst and the reagents are in different phases (for example the catalyst as a solid and 

the reagents as a liquid).  

Heterogeneous catalyst presents some advantages, such as an easy way to separate the products and the 

catalyst, or the thermally and chemically stable materials used. Zeolites are an important type of 

materials used in several catalytic processes.  

The reaction conditions used to be more severe than with homogeneous catalyst. 

1.10.3  Ultrasounds and Microwaves.  

The use of ultrasounds and microwaves in the synthesis procedure can lead to improved methodologies, 

with the following lower use of time and energy in the process, making them more suitable for industrial 

scale.  

1.10.3.1  Ultrasounds 

Ultrasounds are acoustic waves with more than 20 KHz, until the 10 MHz. The use of high frequency 

and intensity waves can present several advantages in the synthesis of new products, like faster 



Chapter 1 

39 

 

conversions, mild reaction conditions or lowering the number of steps in a procedure. When the 

ultrasounds are applied in a liquid, they lead to the formation of microbubbles that collapse and give 

arise to temperatures in the order of 4.000-6.000 K and pressures of 1.000 - 2.000 bar107,108,109. 

They have been used extensively in analytical chemistry110,111,112,113. 

Ultrasounds can be considered as a clean source of energy, with no toxicity and with cheap equipment. 

1.10.3.2  Microwaves 

Microwaves are electromagnetic waves, with a wavelength  range between 1 cm and 1 m. It corresponds 

to frequencies between 300 and 3.000 MHz. It is possible to introduce thermal energy in chemical 

reactions with the use of microwaves. It has several advantages like lowering the time of heating, present 

different temperatures in the mixture or a selective heating114,115,116. 

1.10.4  Electrochemistry and Photochemistry 

Electrochemistry and photochemistry are called to have an important place in the development of 

greener process, giving rise to new products and methodologies with fewer wastes and use of energy 

than the usual procedures. 

1.10.4.1  Electrochemistry  

When a chemical process causes electrons to move, they give place to the oxidation-reduction (redox) 

reactions. If we do this process placing different electrodes connected with a saline environmental in a 

solvent, we are talking about an electrochemical reactor. 

The electrochemical process offers several advantages like mild and easy control of the conditions, 

almost no risk process and high atom efficiency.  Once the electrodes are usually in a dissolution, they 

can be considered as a heterogeneous catalyst. They are used to avoid the addition of oxidants or 

reducers that can lead to sources of contamination. 

The main inconvenient can be the high cost of electrochemical reactors for laboratory scale or the high 

energy consumption in an industrial application117,118,119. 

1.10.4.2  Photochemistry 

Taking advantage of the use of light, ultraviolet, visible or near infrared, to produce new chemical 

products, is a growing field of research. With the reasonable use of light and under certain conditions, 

it is possible to obtain new results in the chemical synthesis as well as produce or induce interesting 
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properties in some materials. Photovoltaics, the ability to convert sunlight into electricity, can be 

improved with the use of nanostructures and give a new option for solar cell devices. 

The main advantages of the photochemical process are the possibility to reduce the number of reactive, 

the use of mild temperatures or being a selective process. Some molecule or materials interact at an 

electronic level with the light, and this can lead to specific reactions. 

The photochemical process still presents several drawbacks, among them, the low absorption of the 

radiation or the higher price of apply the photochemistry to obtain the same product in comparison to 

another methodology120,121. 

1.10.5  Analytical methodologies 

The development of new analytical methodologies is an essential field of research. The identification 

and quantification of analytes in a fast and reliable way is useful in several areas. The quick identification 

of toxic analytes, or precursors of toxic analytes, can lead to prevention or an implementation of a 

necessary action to minimise the adverse effects derived from their presence. For this reason, it is 

essential to develop new and fast strategies that can avoid the use of expensive equipment. Colourimetric 

methodologies that can give a response to a particular analyte with colour changes, or related 

fluorescence process (enhancement or quenching), can be fundamental in an in-situ analysis122,123. 

1.10.6  Toxicity 

As we saw in the previous sections, it is highly vital to take into consideration the toxicity and toxicology 

effects, not only in the synthesis and manufacturing but also in the applications.  

Metals like mercury where used in the past in several fields, as an antibacterial agent, to control plant 

diseases in the agriculture or for the manufacturing of hats. The ingestion or exposure to its vapours can 

lead to memory loss or hyperactivity, among others. Also, the organic mercury compounds, like 

methylmercury, can cause death. In this sense, the toxicity studies are highly essential to avoid the use 

of potentially toxic materials.124 

Likewise, is well known that the toxicity of some substances depends on the dose, and when some 

substances may be innocuous, beneficial or even necessary for life at low doses, at high doses may be 

harmful. A notable case of toxicity can be seen in the chemotherapy compounds. The use of different 

drugs against cancer disease can have a harmful effect on the healthy parts of the body. An application 

or combination of new treatments that will eliminate or reduce the use of these drugs without 

compromising the beneficial effect would be preferred125. 
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1.11  Material Chemistry and Green Chemistry 

Taking in consideration the previous sections is interesting to notice that green chemistry is not a new 

field of research but is something that takes advantage of the fundamental pieces of knowledge of the 

organic and inorganic chemistry, as well as the physical and analytical chemistry. Moreover, with the 

help of new analytical methodologies, is possible, for example, to obtain new, cleaner and safer 

procedures at the laboratory or industrial scale. On this regard, material chemistry is not only called to 

have an essential role in the improvement of the actual methodologies, but also in the design and 

application of new ones, that can lead to better and sustainable science, and consequently, to a “greener” 

future. 

In the present thesis work, we take advantage of the properties of nanomaterials, to help increase the 

scientific knowledge in systems that are capable of identifying toxic analytes (Chapter 2); in the 

realization of new materials with potential applications in catalysis (Chapters 3 and 4); or materials with 

applications in biomedical systems (Chapter 5) 

1.11.1  Nanomaterials and Sensing 

The use of noble metals in the detection or quantification of target analytes is a relevant research field. 

A colour change is produced when nanoparticle aggregation occurs, as was initially exploited by Mirkin 

et al.126,127. Exist several products in the market that are nanoparticle-based. The use of gold 

nanoparticles in pregnancy or drug-abuse test are well-known applications.17 In this regard, and due to 

their properties, it can be used as fast colourimetric sensors.  

On the other hand, polyamines are polycations that present a high biocompatibility128, water solubility 

and flexibility. Polyamines also have shown an excellent sensing capacity against different metal and 

cations extensively129. This characteristic make them a useful component for the functionalization of 

different types of nanomaterials, and we can take advantage of the properties of both materials. On this 

topic, exists several works relating the functionalization of carbon quantum dots130,131, silica132, 

magnetic133, silver134 or gold nanoparticles135 with different polyamines.  

In Chapter 2, it has been exploited the binding ability of a polyamine molecular linker bearing different 

functional groups, which favours the self-assembling of silver nanoparticles (AgNPs) and gold 

nanoparticles (AuNPs) into 1D nano-chains in aqueous solution. The chainlike assemblies of AuNPs 

and AgNPs were structurally stable for an extended period, during which their characteristic optical 

properties remained unchanged and the sensing of Hg2+ in aqueous solution was carried out. 
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1.11.2  Nanomaterials and Catalysis  

The synthesis and the use of Pt and Pt NPs have several advantages as was stated in the previous sections. 

With a reduction in the size, and consequently an increase in the surface area of the metal, we can have, 

for example, better catalytic properties using less amount of metal. Also, the combination of the platinum 

properties with other compounds, metals or semimetals, is of increasing interest. It will give to the 

system new properties that can be an advantage in fields like catalysis, sensing or biomedicine. For these 

reasons, the application of noble methodologies to the synthesis of nanomaterials is still a challenge in 

many different technological and scientific fields. New efficient and reproducible synthetic methods 

that produce fewer residues and reduce the cost of raw materials must be developed.  

1.11.2.1  Platinum Composites 

Combination of the platinum properties with other materials, can lead to characteristics that are distinct 

than its constituent materials.  In this regard, tellurium compounds136 has several uses, as in catalysis137, 

antibacterial138 or therapeutic applications139. Yang et al.,140 demonstrated that when Te nanoparticles 

are below 120 nm, they perform like plasmonic nanoparticles, but when the size is bigger than 120 nm, 

behave like an all-dielectric material, having a potential application in solar cells. Thomas Webster 

group141 synthesised Tellurium nanorods coated with PVP to test their antibacterial and anticancer 

properties. Similarly, Lin group142 fabricated nanowires to use in antibacterial applications. Tiangfen 

Chen143 group synthesised and applicate the tellurium nanorods as antioxidant and anticancer agents. 

Several materials have been synthesised containing tellurium,  like quantum dots of CdTe144 or HgTe145, 

MoTe2 nanowires146,147,148, ZnTe nanowires149,150, SnTe nanoplates151, Ag2Te nanowires152,153 or AuTe 

nanowires142,154. 

With platinum, we can find Pt-Te nanowires or nanotubes155,156, with applications in catalysis or 

SERS,136 which demonstrate the different properties that can achieve. 

The synthesis often requires several steps reaction, long time procedures or elevated temperatures.155  

In chapter 3 is reported the synthesis of new PtTe2 multi-crystallite nanoparticles (NPs) in different sizes 

through an annealing process using new nanostructured Pt-Te organometallic NPs as a single source 

precursor. This precursor was obtained in a single reaction step using Ph2Te2 and H2PtCl6 and could be 

successfully size controlled in the nanoscale range. The resulting organometallic composite precursor 

could be thermally decomposed in 1,5 pentanediol to yield the new PtTe2 multi-crystallite NPs. The 

final size of the multi-crystallite spheres was successfully controlled by selecting the nano precursor 

size. The sizes of the PtTe2 crystallites formed using the large spheres were estimated to be in the range 

of 2.5–6.5 nm. 
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1.11.2.2  Platinum Nanoparticles 

For the synthesis of Pt NPs, one of the most commonly methodologies is the polyol process. Using 

ethylene glycol, Tsuji et al.157, Zang et al.158, or Nogami et al.159, reported the synthesis of different 

structures but with one common point, that is the use of high temperatures (up to 160 ºC) during times 

from half to several hours. Water in oil microemulsion, using water and n-heptane are also reported 

methodologies160. The reduction of the precursor can be achieved with Hydrogen (H2), NaBH4, Ascorbic 

acid or Hydrazine (N2H4), among others161 

In chapter 4, the attractive possibility of applying the cheap iron (II) sulphate salt in the reduction process 

of the K2PtCl4 to produce colloids suspensions is studied. The synthesis took places in water at mild 

temperatures (60 ºC) and was assisted by sodium citrate (SC) using polyvinylpyrrolidone (PVP) as a 

surfactant. The adjustment of this novelty process allows obtaining well-dispersed and sub-20 nm 

dendrimer-type platinum nanoparticles (Pt D-NPs). 

1.11.3   Nanomaterials and Biomedical Applications  

Gold nanorods have several applications like photodynamic therapy, sensing or SERS. The unique 

properties arise from their LSPR which present two peaks. The transverse peak, at approximately 520 

nm, and the longitudinal peak, that can be tuned from 650 to 1300 nm.162,163 The interaction with the 

visible and near infra-red (NIR) light is an attractive property that can be exploited in biological 

applications. On this regard, near infra-red light can penetrate better the biological tissue than the visible 

light. As the NIR light can penetrate from mm to several centimeters164,165,166, has the potential to interact 

with the nanoparticles in a non-invasive and non-harmful approach. Also, due to the fact that the first 

and second biological window for optical imaging, from 650-950 nm and 1,000-1,350 nm respectively, 

are separated from the major absorption peaks of blood and water, can be used as contrast agents. 

When gold nanorods are exposed to laser light with a wavelength in resonances with their surface 

plasmon oscillations, they can absorb the light and convert into heat through a series of photophysical 

process. In biological media, temperature increases of 10 ºC, or 1000 ºC in local zones around the 

nanoparticles has been reported.167,168 

The use of gold nanorods in biomedicine is in constant growth.169 Applications in cancer cells170 or 

against bacteria171 have been reported.  One of the most significant drawbacks in the use of gold rods is 

that the CTAB, the compound mostly used for the synthesis and stabilisation, can present cytotoxicity.172 

It lead us to have to make alterations for its replacement or elimination. The use of mesoporous silica is 

an exciting approach. Mesoporous silica covering brings new properties to the system, such as greater 

stability in an aqueous medium173, and are being studied in several bio-applications 

methodologies170,174,175,176,177,178,179. 
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In chapter 5 is reported the synthesis and characterization of gold nanorods with a longitudinal band 

centred approximately in 650 nm, covered with a mesoporous silica layer. The mesoporous silica was 

loaded with different molecules or drugs, such as Methylene Blue or Doxorubicin.   

In this sense, the use of nanomaterials can have a positive impact on the treatment of diseases and 

infections, reducing the necessary amount of chemotherapeutic agents, and lowering the side effects 

related to them.  
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2 Chapter 2 

Polyamine Ligand-Mediated Self-Assembly of Gold and Silver 

Nanoparticles into Chainlike Structures in Aqueous Solution: 

Towards New Nanostructured Chemosensors. 
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2.1 Introduction 

Noble metal nanoparticles (MNPs) have been intensively pursued in recent years, not only for their 

fundamental scientific interest180,181 but also for their technological applications, ranging from analytical 

sensors to catalysis and fuel cells182,183.  Recently, the attention paid to one-dimensional (1D) 

nanomaterials has been increasing significantly, because of the need to fabricate alternative functional 

1D nanostructures for applications in the fields of nanoelectronics and nanobiotechnology184,185,186,187  

due to the fact that they can act as interconnects between functional nanoscale components188.  

Several experimental routes have been recently proposed to efficiently self-assemble preformed MNPs 

into 1D chains: methods involving hard189, polymeric190 or surfactant-based191 templates, molecular 

recognition192,193,194, specific functionalization195, and surface- or solvent-induced phase separation196,197 

have been successfully demonstrated198. Chains of MNPs also have been prepared by using linear 

macromolecular templates, such as, DNA199,200,201,202, peptide203,204,205,206,207,208,209, insulin fibrils210, 

protein fibrils211,212 or carbon nanotubes213.  

The growth mechanism of self-assembled metal nanostructures using (macro)molecular ligands has 

been also reported to exhibit common features with molecular step-growth polymerization214. Similar to 

functional monomers, metal nanostructures assemble to form chains. The assembly was performed by 

small molecules (< 2 nm), called molecular linkers, that contain at least two reactive ending groups, 

capable of attaching to a solid surface by chemisorption (thiol, amine) or interacting electrostatically 

with other functional groups (hydroxy, carboxyl, amine) present on the surface of nanoparticles (NPs)214. 

The governing factor in linker-mediated assembly of MNPs is the equilibrium between the attractive 

and repulsive forces215. In particular, fabrication of anisotropic 1D noble MNP chains to obtain 

integrated optics operating below the diffraction limit of light has attracted much attention216,217,218. 

Stellaci and co-workers196 have introduced anisotropic properties on ligand-stabilised AuNPs. Face-

centered cubic (fcc) metallic NPs exhibit no intrinsic electric dipole, however, heterogeneities in surface 

charge and polarity, associated for example with the non-uniform spatial distribution of capping ligands 

on different crystal faces219,220,221, or nanophase separation in mixed-ligand stabilisation layers222, are 

possible driving forces for anisotropic self-assembly223. In the case of spherical NPs, controlling the 

surface chemistry of the fabricated NPs allows the creation of an anisotropic ligand organization224. 

Enthalpy minimization, is obtained by promoting dipole alignment and reducing interdipole distances 

through the formation of linear chains of single NPs. This facilitates the orientation of specific 

interactions in one direction, which helps directing the selfassembly into 1D arrays. The self-assembly 

of the NPs into a well-defined 1D array is also influenced by interparticle chemical bonding, hydrogen 

bonding, van der Waals interactions, electrostatic forces, or any combination of these forces. In addition, 
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entropy can be maximised at finite temperature by introducing some disorder in the linear chain, which 

corresponds to the incorporation of branching junctions and to chain reticulation that should be favored 

at elevated temperature.  

Aggregation of NPs induces variations in absorption spectra accompanied by significant color changes 

of solutions225. Similar color changes can be observed upon the addition of an analyte, which initiates 

the aggregation of noble MNPs, and this feature can be used for permitting their industrial application 

in biosensing, immunological, and biochemical investigations226,227,228,229,127,230,231,232. In the particular 

case of AgNPs, the geometrical shape also plays an important role in determining plasmon resonance 

properties233. For example, triangular, pentagonal, and spherical silver particles can be colored red, 

green, and blue, respectively. Consequently, it is important to develop approaches that can manipulate 

NPs into different shapes and dimensions. While many studies have tackled the synthesis and 

characterization of gold dimers and networks with peculiar plasmon resonance behavior234,235, 

organization of AgNPs in two-dimensional (2D) superlattices is less common236,237,238. For example, 

Chang et al. Reported a variety of 1D and 2D-nanostructured assemblies formed from AgNPs by 

variations in pressure, temperature, and time in supercritical water without the need for any external 

linking agents239.  

To follow the group interest in new emissive materials, and functionalised NPs and to explore their 

applications129,240,241,242,243,244, herein, we investigate the mechanism of AuNP and AgNP chain assembly 

associated with the induction of electric dipole–dipole interactions. The nano assembly capacity arises 

from the partial ligand exchange of surface-adsorbed negatively charged citrate ions, by covalently 

bound neutral molecular ligand L to produce a final mixed-ligand surface layer. 

 We show that exchange of surface adsorbed citrate with L, results in the formation of chain-like 

superstructures with topological features that are dependent on the extent of surface ligand substitution. 

We determine the time-dependent structural changes associated with the formation of 1D NP 

superstructures. Morphological and optical characteristics of various nanostructures were investigated 

by Transmission Electron Miscroscopy (TEM) and Ultraviolet/Visible (UV/Vis). 

2.2 Experimental Section 

2.2.1 General Instrumentation  

Elemental analyses were carried out with Fisons Instruments EA1108 microanalyzer (Ipswich, UK) at 

the University of Vigo (CACTI), Spain. Fourier Transform infrared spectroscopy (FTIR) spectra were 

recorded in KBr windows using a JASCO FT/IR-410 spectrophotometer (Spain). 1H and 13C NMR 

(Nuclear Magnetic Resonance) were carried out on a Bruker Advance III 400 at an operating frequency 
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of 400 MHz for 1H NMR and 100.6 MHz for 13C NMR using the solvent peak as an internal reference 

at 25ºC. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) analyses were 

performer with a MALDI-TOF/TOF MS model Ultraflex II (Bruker, Germany) equipped with nitrogen 

from the BIOSCOPE group. Each spectrum represents accumulations of 5x50 laser shots. The reflection 

mode was used, and the ion source and flight tube pressure were less than 1.80x10-7 and 5.60x10-8 Torr, 

respectively. The MALDI mass spectra of the soluble samples (1 or 2 µgµL-1) were recorded using the 

conventional sample preparation method for MALDI MS. One microliter was put on the sample holder 

on which the ligand had been previously spotted. The sample holder was inserted in the ion source. 

UV/Vis absorption spectra (220–900 nm) were performer using a JASCO-650 UV/Vis 

spectrophotometer (Oklahoma City, OK, USA) and fluorescence spectra on a HORIBA JOVIN-IBON 

Spectramax 4 (Irvine, CA, USA). All measurements were performer at 298 K. 

2.2.2 Limit of detection 

The limit of detection (LOD) for Hg2+ with the small fluorescent molecular systems L and the nano 

assembly system AgNPs@(L)2- (spherical) were performed having in mind their use for real ion 

detection and for analytical applications. The LOD was obtained using Equation 2.1:  

 

𝑦𝑑𝑙 = 𝑦𝑏𝑙𝑎𝑛𝑘 + 3𝑠𝑡𝑑  (2.1) 

 

where ydl=signal detection limit and std=standard deviation. 

2.2.3 Concentration determination 

Assuming a spherical shape and uniform face centered cubic structure, the molar concentrations of the 

silver nanoparticles (AgNP) and gold nanoparticles (AuNP) solutions was calculated using Equations 

2.2 and 2.3.245 

𝑁 =
𝜋𝜌𝐷3

6𝑀
  (2.2) 

 

where N is the number of atoms per AgNP or AuNP, ρ [g cm-3] is the density of face centered cubic 

(fcc) silver (10.5 g cm-3) of gold (19.3 g cm-3), and M [gmol-1] is the atomic mass of silver (107.86 gmol-

1) or gold (196.97 gmol-1). 
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𝐶 =
𝑁𝑇
𝑁𝑉𝑁𝐴

  (2.3) 

where C is the molar concentration of AgNPs or AuNPs, NT is the total number of silver atoms added 

as AgNO3 or gold atoms added as HAuCl4, N is the number of NPs, V is the volume of the reaction 

solution in L, NA is Avogadro’s constant (number of atoms per mole). 

 

2.2.4 Characterization of the assemblies of AgNPs and AuNPs 

We characterised the AgNPs, AuNPs and the chainlike assemblies of AgNPs and AuNPs using a number 

of optical tools including, transmission electron microscopy (TEM) and dynamic light scattering (DLS). 

To collect TEM images, the samples were prepared dropping 1 µL of the colloidal suspension onto a 

copper grid coated with a continuous carbon film and allowing the solvent to evaporate. TEM images 

were obtained using a JEOL JEM 1010F TEM operating at 200 kV. To perform the Fourier 

transformations, we used the Digital Micrograph (Gatan) software246. The NP size distributions were 

measured using the DLS system, Malvern Nano ZS instrument (Worcestershire, UK) with a 633 nm 

laser diode. We investigated the optical properties of these structures using a JASCO-650 UV/Vis 

spectrophotometer. 

2.2.5 Synthesis 

2,2’-((Thiobis(ethane-2,1-diyl))bis(azanediyl))bis(N-(naphthalen-1-yl)acetamide) (L): A solution of 

20% NaOH (3.4 g, 0.085 mol) was added to a stirred solution of 1-naphthylamine (9.34 g, 0.051 mol) 

in CH2Cl2 (30 mL). The mixture was cooled to 0 ºC and chloroacetyl chloride (9.29 g, 0.083 mol) was 

added dropwise for 45 min. After stirring at 0 ºC for 100 min, the mixture was allowed to warm to room 

temperature (RT). The aqueous layer was separated and extracted with CH2Cl2 (225 mL). The combined 

organic phases were washed with HCl (5% v/v), NaHCO3 (5% v/v) and H2O, dried over MgSO4 and 

filtered to obtain a white solid. The crude product was purified by silica column chromatography and 

characterised as 2-chloro-N-(1-naphthyl) acetamide (74 %). A solution of 2-chloro-N-(1-

naphthyl)acetamide (439.34 mg, 2 mmol) in tetrahydrofuran (THF; 25 mL) was added dropwise to a 

solution of 2,2’-thiobis(ethylamine) (120 mg, 1 mmol) and triethylamine (202.24 mg, 2 mmol) dissolved 

in THF (50 mL) over 1 h in an ice bath. After the addition was completed, the reaction mixture was kept 

at reflux for 4 h. The solvent was removed in vacuo, and the residue was washed with H2O/CHCl3 (1:3 

v/v; 420 mL). The resulting organic phase was dried in vacuo to give L as a pink powder (407.05 mg, 
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84 %): 1H NMR (500 MHz, CDCl3): d=2.81 (t, 4 H), 3.12 (t, 4H), 3.72 (m, 4H), 5.84 (s, 2H), 7.41–7.59 

(m, 2H), 7.72 (m, 2 H), 7.80 (m, 2H), 7.92 (m, 4 H), 8.10 (m, 4 H), 10.35 ppm (s, 2H); 13C NMR (500 

MHz, CDCl3) d=30.32, 54.85, 58.37, 120.69, 124.80, 125.73, 125.90, 127.20, 128.05, 128.19, 133.03, 

133.56, 169.83 ppm; IR (KBr): 𝜈̃=1436 ((C=C)ar), 1676 (C=O), 3262 cm-1 (N H); MALDI-TOF MS: 

m/z 487.21 [M+H]+; Anal. calc for C28H30N4O2S: C 69.1, N 11.5, S 6.6, H 6.2, found: C 69.3, N 11.2, 

6.4, H 6.6. 

2.2.6 Preparation of AgNPs 

 Citrate-stabilised AgNPs of different shape (spherical and triangular) were synthesised in aqueous 

solution following the Frank methodology77. For the synthesis of AgNPs with triangular shape, sodium 

citrate (2.0 mL, 1.25x10-2 M), AgNO3 (5.0 mL, 3.75x10-4 M), and H2O2 (5.0 mL, 5.0x10-2 M) were 

mixed. After that, freshly prepared NaBH4 (2.5 mL, 5.0x10-3 M) was added. To obtain AgNPs with 

spherical shape, before the addition of NaBH4, KBr (40 µL, 1.0x10-3 M) was added to the solution. Once 

all reagents were combined, the resulting solutions were carefully swirled to fully mix the reactants. 

Almost immediately, the progression of the reaction becomes evident through the visual changes 

consistent with the growth of silver nanoprisms. Yellow and blue colors were observed for the spherical 

and triangular AgNPs, respectively. (Figure 2.1)  

 

Figure 2.1: Transmission electron microscopy (TEM) images of AgNPs@citrate: A) yellow (25 ± 3 nm 
polidisperse quasispherical particles); B) blue (64 ±10 nm; average lateral dimension of triangular particles). 

 

Using Equations 2.2 and 2.3, N=30.70 D3, and the resulting spherical AgNPs solution had a 

concentration of CAgNP=7.8x10-10 M with AgNPs of (25 ± 3) nm size.  
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2.2.7 Preparation of AuNPs 

Preparation of AuNPs was performed following the Turkevish method247,248,249,250 through reduction of 

tetrachloroaurate ions (AuCl4) by boiling in aqueous sodium citrate solution. HAuCl4·3H2O (49.5 mg, 

0.125 mmol) dissolved in nanopure H2O (125 mL; 18.2 MΩ cm) was added to a preheated solution of 

sodium citrate (12.5 mL, 1 wt %). The resulting solution was heate to 100 ºC for 60 min and turned 

colorless before changing to violet and finally to ruby red. AuNPs obtained using this method appear as 

almost monodispersed globular structures with a size of (20±5) nm, which are stabilised by weakly 

bound citrate anions. Using Equations 2.2 and 2.3, N=30.896D3 for AuNPs and the resulting AuNPs 

solution was found to have a of CAuNPs= 3.7x10-9.  

2.2.8 Chainlike assemblies of AgNPs and AuNPs 

We used the polyamine molecular probe L2- to investigate the effect of the presence of different donor 

atoms in the AuNP assemblies and their optical properties. The formation of chainlike assemblies of 

AuNPs was controlled and modulated observing that the total formations were obtained by adding an 

acetonitrile solution of L2- (5 µL, 1x10-3 M) into a suspension of AuNPs and AgNPs (circular and 

triangular) in nanopure H2O (≈ 10-8–10-9 M in 3 mL). 

2.3 Results and Discussion 

2.3.1 Formation of chainlike structures from AgNPs and AuNPs 

1D metallic silver or gold nanostructures, can be obtained by exploiting the binding ability of the linear 

polyamine molecular probe L in water (Figure 2.2).  

 

Figure 2.2 Scheme of the synthetic route to compound L. 

 

The donor atoms presented in the structure of compound L could be responsible for the formation of NP 

chainlike aggregates and the partial removal of the citrate ion from the starting metal nanoparticle 

surface. This method is similar to that reported by Zhang et al.251,252 and it is different to that in which 
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the assembly was induced by electrostatic interactions and the disassembly was labile in the presence of 

stronger chelating agents253. 

In that case, firstly, we assumed that the level of ionization (protonation-deprotonation of functional 

groups) of potential modifying compounds, might play a role in the process of MNP functionalization, 

and consequently, could affect the stability of their dispersions. Therefore, the pH of the mixture was 

modified with a NaOH solution, to an approximate value of pH 12, which leads to the change in the 

linker ionization degree. After the addition of base to a solution of L, this compound was dissociated 

bearing negative charges L2- because of deprotonation of the amine groups. Second, we assumed that 

the chemisorption of the linker on the AuNP surface could take place through the sulfur atom and/or by 

deprotonated amine groups, leading to the modification of the ζ-potential from ζ0 (initial potential) to ζ 

(potential that determines the equilibrium between attractive and repulsive forces). 

Finally, it is well known that changing the medium surrounding the nanoparticles (NPs) for another 

medium, having a markedly different refractive index, strongly alters the surface plasmon resonance 

(SPR) band of the NPs in the UV/Vis spectrum. The position, intensity, and shape of SPR band strongly 

depends on the dielectric constant of surrounding medium, the size and shape of NPs as well as the 

electronic interaction between the stabilizing ligand and NP254. Therefore, UV/Vis absorption 

spectroscopy is an important analytical tool to probe the stability, surface chemistry, and aggregation 

behavior of AgNPs and AuNPs. 

2.3.2 Formation of chainlike structures from AgNPs  

2.3.2.1 Spherical shape 

Initial characterization of spherical AgNPs prepared by citrate reduction of a silver nitrate solution 

revealed an absorption maximum (λmax) of the SPR peak for single particles at ≈ 420 nm. (transverse 

SPR band; Figure 2.3 (A,B)) Analyses of TEM imaging shows that the prepared citrate-capped silver 

NPs (AgNPs@citrate) are nearly monodisperse spheres with an average size of about (25±3) nm. The 

AgNP concentration was estimated to be 7.8x10-10 in terms of molar concentration. This value was 

obtained taking into account that the entire mass of silver in AgNPs employed for colloidal dispersion 

preparation was fully transformed into NPs.  
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Figure 2.3:  UV/Vis absorption spectra of spherical AgNPs@citrate during titration to A) AgNPs@L and B) 

AgNPs@(L)2-. C) Size distribution diagram for AgNPs@(L)2-. TEM images of silver nanowire formed from 

D,E) AgNPs@L and F,G) AgNPs@(L)2-. Visual color changes and TEM images obtained H) before and I) after 

the addition of L2- to an aqueous solution of spherical AgNPs@citrate. 

 

Figure 2.3 A and 2.3 B show the absorption titration of spherical AgNPs@citrate with compound L and 

L2-, respectively. As mentioned above, because AgNPs@citrate are highly dispersed in solution, the 

spectrum is characterised by a single SPR band at ≈420 nm (transverse SPR band). AgNPs@L and 

AgNPs@(L)2- exhibit two absorption bands, at 420 nm and a new band at ≈580 nm, respectively. In both 

cases, the appearance of the second band (longitudinal SPR band) is a clear evidence of the assembly of 

AgNPs in solution, and a color change from yellow (Figure 2.3 H) to deep red (Figure 2.3 I) was also 

observed.  

Chainlike structure formations of AgNPs in aqueous solution were induced in both cases by L and L2-, 

with the contact between AgNPs being easier at higher concentrations of L and L2-. The ζ potential 

distribution plays the major role in linkermediated self-assembly of MNPs, and the development of 

linear chains and branched chain network is directed by the fact that the electrostatic double layer is 

rearranged around the dimers and becomes anisotropic. 

The replacement of citrate ions most probably takes place after the addition of the negatively charged 

ligand L2-. In that case, the amount of negative charge on the surface of NPs does not decrease 

significantly, and as a result, a slight change of the ζ-potential was observed from ζ0 ≈ -33.5 mVcm-1 to 
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ζ0  -27.8 mVcm-1. The formations of chain-like superstructures with topological features are dependent 

on the extent of surface- ligand substitution. The replacement of citrate ions of the AgNPs surface by 

L2- probably induces less electric dipole– dipole interactions, observing that the 1D NP assembly takes 

place less prominently (Figure 2.3 F,G) compared with that observed with L. (Figure 2.3 D, E)  

In that case, IR spectra were recorded to demonstrate the replacement of citrate ions of the AgNP surface 

by polyamine ligand L. The IR spectrum of compound L shows peaks characteristic of the carbonyl 

group at 1676 cm-1 and the 𝜈̃ (C=C) stretching mode at 1436 cm-1.(Figure 2.4)  

 

Figure 2.4: IR spectra of AgNPs@citrate, compound L and AgNPS@L in 550-4000 cm-1 region (x-axis = cm-1, 
y-axis = intensity). 

In addition, a peak at 3262 cm-1 is observed due to the 𝜈̃ (N-H) stretching mode. A decrease in the 

intensity of the 𝜈̃ (C=O) band was observed in the IR spectra of AgNPs@L in comparison with L. The 

most interesting part of the spectrum is the region from 3000 to 3200 cm-1 due to 𝜈̃ (N-H) stretching 

modes. The IR spectrum for AgNPs@L is very different from the spectrum of L in the same region. 

These results suggest the interaction of L with the MNP surface through the carbonyl and amine groups, 

confirming the replacement of the citrate ions from the NP surface. 
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2.3.2.2 Triangular shape 

Because better results were obtained after titration of spherical AgNPs@citrate with the deprotonated 

ligand L2-, we used the same method with the triangular AgNPs@citrate. The formation of triangular 

AgNPs@citrate in aqueous solution with sizes in the range of (64±10) nm was confirmed by the 

presence of the blue SPR band at ≈700 nm in the UV/Vis spectrum. (Figure 2.5 A) 

 

Figure 2.5: A) UV/Vis absorption spectra of triangular citrate@AgNPs during titration to AgNPs@(L)2- and B) 

size distribution diagram for AgNPs@(L)2-. Visual color changes and TEM images obtained C) before and D) 

after the addition of L2- to an aqueous solution of triangular AgNPs@citrate. 

 

As shown in Figure 2.5 C, the triangular AgNPs@citrate were well dispersed in milli-Q water before 

adding L2-, and they remained well separated on the TEM grid. After the addition of 5 µL of L2-                                          

(1x10-3 M) to a solution of triangular AgNPs@citrate in aqueous solution, a redshift in the absorption 

band was observed to ≈780 nm, due to the formation of chains in which L2- ions played the role of 

connectors between the AgNPs (Figure 2.5 (D)). As shown in Figure 2.5 C,D, a slight color change 

from intense to pale blue was also observed. 

2.3.3 Formation of chainlike structures from AuNPs 

As a model experiment, we also used citrate-capped spherical gold NPs (AuNP@citrate) with a 

hydrodynamic diameter of (20±5) nm. (Figure 2.6)  
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Figure 2.6: Absorption spectra and transmission electron microscopy (TEM) images of AuNPs in aqueous 

solutions. 

The self assembly was performed using a AuNP@citrate solution with a CNP=3.7x10-9m (2.2x1015 

particle L-1) and a concentration of 1.6x10-6 M for L2- (≈ pH 12) (CL/CNP≈4.5x102).  

As we mentioned above, the assembly of AuNPs has a significant effect on the optical properties of the 

NPs, reflected by a dramatic change of the UV/Vis extinction value of the SPR band. As shown in 

Figure 2.6 A, single spherical AuNPs were characterised by an extinction transverse plasmon band at 

λ1 ≈520 nm255.  

After addition of the linker L2-, a second low energy longitudinal surface plasmon band (λ2) appears at 

higher wavelengths (630–710 nm), which is a result of the plasmonic coupling of linearly assembled 

NPs. (Figure 2.7 (A)) The position of this longitudinal surface plasmon band (λ2) could be modified in 

function of the topological distortions in the chains (Y-junction, zigzag defects defects, loop domains) 

in place of a strictly linear assembled superstructure. The second band shifts with time toward higher 

wavelengths and its intensity (Iλ2) increases. As the interparticle spacing decreases, the first peak 

becomes weaker, while the second peak intensifies and shifts to longer wavelengths. The wide range of 

different chain morphologies observed in the extended networks accounts for the broadness of the 

emerging longitudinal plasmon band and the absence of isosbestic points in the time-dependent        

spectra 204. 
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Figure 2.7: A) UV/Vis absorption spectra recorded in real-time (one spectrum per minute) during the self-

assembly of AuNPs@citrate by L2- to form AuNPs@(L)2-. B) Size distribution diagram for AuNPs@(L)2-. 

Visual color changes and TEM images of C) AuNPs@citrate and D) gold nanowire formed from AuNPs@(L)2-. 

 

The spectral change associated with the progressive aggregation of the NPs into chains and branched 

networks was also demonstrated by TEM. (Figure 2.7 C,D) Consequently, the number of single NPs 

progressively decreases, leading to a decrease in the intensity of the first peak (Iλ1).  

The ζ-potential of the original AuNPs@citrate solution was ζ0 ≈ -33.5 mVcm-1, which is high enough 

(in absolute value) to keep the NPs electrostatically stable, and avoid aggregation due to repulsive forces 

between the negatively charged citrate ions. The use of citrate permits a controlled ligand exchange of 

the ions adsorbed on the surface. This spontaneous assembly is attributed to the electric dipole formed 

by the anisotropic organization of the ligands on the surface of the NP256. After the addition of L2-, a 

destabilisation of the system was obtained with a value of ζ-potential ≈ -27.0   mVcm-1. The effect of 

amine functionality on binding to the surface of AuNPs has been investigated257, and recently Chegel et 

al. reported experimental and theoretically studies about the cooperative functionalities of amine and 

thiol groups for aggregation of AuNPs258. However, some authors have claimed that one type of amine 

group can readily bind to Au colloids, whereas others cannot259. In that case, an efficient surface 

displacement of citrate ions on the presence of L2- could take place due to a cooperative functionality of 

the deprotonated amine groups, and the sulfur atom capable of forming stable chimica bonds with gold 

atoms.  
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In the absence of linker molecules, the aggregation of gold nanospheres could be mainly caused by van 

der Waals attraction, yielding random and irregular geometries and usually leading to rapid 

precipitation. The presence of a functional linker as L2- in the surface of NPs minimizes the effect of 

van der Waals attractions by significantly increasing long-range interactions represented by electrostatic 

forces260. Experimentally speaking, the ζ-potential distribution seems to play the major role in linker-

mediated self-assembly of AuNPs. As shown in Figure 2.7 C,D, a color change from intense red to blue 

was also observed.  

In this particular case, the chainlike-structured AuNPs@(L)2- were observed after no longer reaction 

time (45 min) due to connection between one particle with other NPs from solution. These 

superstructures remained unchanged even for prolonged incubation times such as two weeks.  

2.3.4 Interaction of AgNPs@(L)2- and AuNPs@(L)2- with Hg2+  

Trying to apply the obtained nanostructures as optical effective nano chemosensors, the sensing of Hg2+ 

using the colloidal systems AgNPs@L2- and AuNPs@L2- was carried out in aqueous solution. Changes 

in the absorption spectra of the colloidal systems AgNPs@(L)2- with spherical (Figure 2.8 (A,B)) and 

triangular (Figure 2.9) shapes were observed after the addition of increasing amounts of HgCl2. In both 

cases, a shift of the SPR bands in the UV/Vis spectra suggest a continuous deformation of the chains, 

that is confirmed by TEM microscopy. (Figure 2.8 D,E and Figure 2.9 D,E) The ζ-potentials of the 

spherical and triangular AgNPs@(L)2- solutions were ζspherical -27.8 mVcm-1 and ζtriangular -19.1 mVcm-1, 

respectively. In both cases, after the addition of Hg2+, a destabilisation of the systems was observed, and 

the value of ζ-potentials changes to ζ spherical -22.5 mVcm-1 and ζ triangular -17.0 mVcm-1. 

Given these results, we can conclude that the destabilisation of the spherical and triangular 

AgNPs@(L)2- systems and the loss of the assembly, could be due to the more favorable interaction of 

L2- with Hg2+ to that observed for L2- with AgNPs. The exchange of L2- adsorbed on the surface produces 

a decrease of the negative net charge in the NP surface, which causes an increase of the ζ-potentials.  
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Figure 2.8: A) Spectrophotometric titration of spherical AgNPs@(L)2- with the addition of increasing amounts 

of HgCl2 in aqueous solution. B) Modification with time in the absorption spectra of AgNPs@(L)2- with the 

addition of 6 µL of HgCl2 (1:1 L/M). TEM images of an aqueous solution of spherical AgNPs@(L)2- C) before 

and D,E) after the addition of HgCl2 (1 equiv, [HgCl2]=1.10x10-3 M). 
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Figure 2.9: A) Modifications with time in the absorption spectra of triangular AgNPs@(L)2- with the addition of 

HgCl2 (22 µL, 1:1 L/M). B) Size distribution diagram for an aqueous solution of triangular AgNPs@(L)2- after 

the addition of HgCl2 (1 equiv, [HgCl2]=1.10x10-3 M). TEM images of an aqueous solution of triangular 

AgNPs@(L)2- C) before and D, E) after the addition of HgCl2 (1 equiv, [HgCl2]=1.10x10-3 M). 

 

 

On the other hand, different results were obtained for linker L2- adsorbed on the AuNPs surface because 

a more stable bond is formed compared with that obtained for L2- and Hg2+, explaining that the 

AuNPs@(L)2- assembly remains unchanged after the interaction with this metal ion.  

The sensitivity of this nanoassembly system AgNPs@(L)2- (spherical shape) toward Hg2+ was found to 

be comparable to the small fluorescent molecular system L. The value for the limit of detection (LOD) 
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shows that the best candidate for the detection of this metal ion is system AgNPs@(L)2-, with the 

minimum amount of Hg2+ detectable being 8.3 ppm, whereas the LOD value with compound L was 19.0 

ppm. The selectively of system L towards Hg2+ was also explored as shown in Figure 2.10 and Figure 

2.11. 

 

Figure 2.10: Spectrophotometric (A) and spectrofluorimetric (B) titrations of compound L as a function of 

added Hg2+ in absolute ethanol. The inset shows the normalised fluorescence intensity at 366 nm (B) λexc = 295 

nm; λem= 366 nm, [L] = 1.00.10-5 M. 

 

Figure 2.11: Normalised fluorescence intensity of receptor L in the absence and presence of one equivalent of 
different metal ions (Ag+, Cu2+, Zn2+, Cd2+, Hg2+) in absolute ethanol. λexc = 295 nm; λem= 366 nm, [L] = 

1.00x10-5 M. 
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2.4 Conclusions 

This study of 1D self-assembly of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) 

demonstrates direct evidence of the cooperative interaction between the metal nanoparticles (MNPs) 

and the deprotonated polyamine compound L2- at the nanoscale in aqueous solution.  

The unexpected symmetry-breaking that occurs when L2- is added to an aqueous suspension of citrate-

capped isotropic AgNPs and AuNPs was attributed to the ligand-mediated induction of a surface 

electrical dipole. At least three features of potentially modifying L2- could influence citrate-stabilised 

AgNPs and AuNPs: (1) the presence of a sulfur atom, which can form covalent bonds with silver and 

gold atoms; (2) the presence of ionizable functional groups (amine); and (3) the charge (+/-) of ionizable 

functional groups. Electrostatic repulsion between AgNPs and AuNPs was progressively reduced, and 

the stability of the electric dipole associated with charge separation on the nanocrystal surface was 

potentially enhanced by spatial partitioning of L2- and citrate-capping ligands. As a consequence, highly 

extended 1D NP assemblies in the form of discrete chains, bifurcated and looped chains, or 

interconnected chain networks are assembled spontaneously as the concentration of surface-adsorbed 

L2- molecules increases. 

 Monoanionic compound L2- causes shifts to the initial absorption spectra of AgNPs and AuNPs, and 

can be used for development of a surface plasmon resonance (SPR) chemical and biomolecular sensing 

platform because the interaction of citrate- stabilised AgNPs and AuNPs with the aforementioned 

compound is a very sensitive easy-to-visualize process.  

The sensing of Hg2+ in aqueous solution using AgNPs@(L)2- and AuNPs@(L)2- was carried out. A 

destabilisation of the system AgNPs@(L)2- (spherical and triangular shape) and the loss of the assembly 

were observed due to the interaction of L2- with Hg2+ is more favorable to that observed for L2- with 

AuNPs. Linker L2- binds to AuNP surfaces and forms a more stable bond compared with that obtained 

between L2- and Hg2+, explaining that the AuNPs@(L)2- assembly remains unchanged after the 

interaction with this metal ion. 
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3.1 Introduction 

The development of materials at the nanoscale has attracted the attention of the scientific community 

because of their new and improved properties compared with those of their bulk counterparts261. Their 

physicochemical properties have been revealed to be dependent on their final composition, size and 

shape, among other factors262,263,264. In this regard, nanostructured metal chalcogenide (MC) materials 

are the subject of increasing research as a result of the numerous applications reported for these systems, 

primarily in electronics and energy conversion and storage263,264,265,266, but also in catalysis267, aerogel 

fabrication268,269, semiconducting materials270, among others. 

Among the different MCs reported in the literature, binary systems containing tellurium have been 

extensively explored in recent years, largely due to their potential applications in memory devices271, 

photovoltaic cells272, thermoelectrics273, catalysis274 and biochemical275 applications. Specifically, 

binary-phase systems based on Pt-Te provide an excellent combination of platinum as metal and 

tellurium as a semiconductor to provide enhanced thermoelectric properties in binary-phased 

nanocomposites276 or photothermal therapy277. 

A convenient route for the production of MC materials is the use of organometallic derivatives as a 

single source precursor by thermal decomposition278,279,280,281,282,283. 

The chemistry of platinum with sulphur derivatives has been widely explored; to a lesser extent, so has 

that with selenium-containing ligands. By contrast, organic tellurium-based ligands have received less 

attention, such as in the case of organic ditellurites (R2Te2). This knowledge gap regarding the role of 

organic tellurides in coordination chemistry led to early assumptions that they behaviour similar to their 

chalcogenide counterparts S and Se; however, the rapid development of this field in recent decades has 

led to this preconception being discarded284. 

It is commonly accepted that R2Te2 produces a variety of tellurolate metal complexes with low-valent 

Pt precursors through different mechanisms, with the most common being Te-Te oxidative addition 

and/or Te-C reductive cleavage284. The evident structural differences between these platinum tellurolate 

complexes have revealed their large dependence on different experimental factors, such as the type of 

platinum precursor applied, the nature of the R group in the Te reagent, and the solvent or temperature 

used during the reaction284,285,286,287,288. However, reports about intact coordinated R2Te2 compounds are 

limited289. Moreover, to the best of our knowledge and in contrast to the commonly used low-valent 

platinum organometallic precursors, the use of platinum precursors in high oxidation states has been 

rarely reported.  

Recently, Fernández-Lodeiro et al. reported on the spontaneous tendency of Ph2Te2 to reduce Au(III) 

into Au(0) nanoparticles290. This reaction presumably occurs via Te-Te cleavage with concomitant 
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formation of PhTeCl3 and an Au(I) intermediate. This phenyl tellurium trihalide is prone to hydrolysis 

and could be transformed into oxohalides (PhTe(O)Xn), tellurinic acids (PhTeOOH) or their 

corresponding anhydrides [PhTe(O)n] as a result of different hydrolysis stages291292. Additionally, in the 

presence of O2 and H2O as well as coordinative solvents, the photodecomposition of Ph2Te2 produced 

similar tellurinic acids or anhydride derivatives293. These organotellurium derivatives with a simple 

phenyl group usually evolve into a random polymeric structure via aggregation/condensation 

processes294, producing an organometallic shell over gold cores. With these precedents in mind, we have 

now applied this novel organotellurium chemical approach to fabricate new monodisperse and size-

modulated (nano- and micrometre scale) organometallic Pt-Te NPs, which can be easily dispersed in 

common organic and environmentally friendly solvents. Moreover, multi-crystallite PtTe2 NPs with 

well-defined spherical shapes and dimensions (depending on the original size of the precursor) were 

obtained upon annealing the initial Pt-Te polymeric nanomaterial. These results provide an exciting 

opportunity to advance the knowledge of organotellurium chemistry applied to noble metal nanomaterial 

fabrication and offer the opportunity to better comprehend the properties of these new 

platinum/tellurium nanomaterials. 

3.2 Experimental Section 

3.2.1 Materials 

Hydrogen hexachloroplatinate (IV) hydrate (99.99 % metal basis, CAS: 26023-84-7), Diphenyl 

ditelluride (98%, CAS: 32294-60-3), Calcium hydride (95%, CAS: 7789-78-8), Polyvinylpyrrolidone 

(PVP40, CAS: 9003-39-8), 1,5-Pentanediol (97%, CAS: 111-29-5) were purchased from Sigma Aldrich. 

3.2.2 Synthesis of organometallic Pt-Te NPs.  

The one-pot synthesis of the nanoparticles was performed as follows: an acetonitrile (2 mL) solution of 

Ph2Te2 (3 × 10−5 mol) was quickly added into a two-neck round bottom flask, coupled with a drying 

tube, containing H2PtCl6.H2O (1 × 10−5 mol) in boiling acetonitrile (48 mL). 

The resulting dark red solution was maintained under reflux for an additional 1 h and then cooled on an 

ice/water bath. Immediately after cooling, the nanoparticles were isolated by centrifugation (8000 rpm 

× 30 min). The centrifugation procedure was repeated three times. To study the effects of water, light 

and/or oxygen on the formation of the organometallic Pt-Te NPs, this general procedure was performed 

in different conditions (summarised in Table 3-1).  
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Table 3-1: Experimental reaction conditions ([Reagent] in n/L and % H2O in V/V; P= Presence and A= 

absence). 

 

The syntheses in the presence of oxygen was performed under an open atmosphere. For the synthesis in 

the absence of oxygen, the entire reaction occurred under nitrogen atmosphere, and the solvent was 

deoxygenated under US and nitrogen bubbling for 30 minutes prior to use. 

3.2.2.1 Reverse order of reagent addition (entry R4).  

A solution of 2 mL of acetonitrile containing 1 × 10−4 mol of H2PtCl4 was added to 48 mL of boiled 

acetonitrile solution containing 3 × 10−4 mol of Ph2Te2 (Table 3-1). 

3.2.2.2 Synthesis in the presence of CH2Cl2/acetonitrile mixture (entry R5).  

A dichloromethane/acetonitrile (1:1, 1 mL) solution of Ph2Te2 (3.6 × 10−4 mol) was quickly added to a 

flask containing a boiling acetonitrile (14 mL) solution of H2PtCl6 (1.2 × 10−4 mol). The solids were 

isolated by filtration on a sintered glass plate (No. 4) and washed repeatedly with acetonitrile and diethyl 

ether. The solid was then dispersed in acetonitrile (50 mL) under sonication and then isolated by 

centrifugation (3 cycles of 2000 rpm × 10 min). (Table 3-1) 

3.2.2.3 Synthesis of multi-crystallite NPs.  

The synthesis of PtTe2 multi-crystallite NPs used an annealing process, which consisted of dissolving 

the organometallic Pt-Te NPs (11 mg) in 1,5-pentanediol (10 mL) under sonication. PVP40 (50 mg) was 

added to this brownish-red solution, and the sonication was maintained for an additional 10 minutes. 

The mixture was heated to 220 °C during 1 h. Colour changes from brownish-red to black developed 

during the heating process. After this heating time, the reaction mixture was cooled in an ice/water bath, 

and then the resulting crystalline nanoparticles were isolated by centrifugation 2 cycles (10000 rpm × 1 

h) followed by washing with ethanol, ending the process by resuspending the clean PtTe2 multi-

crystallite NPs in absolute ethanol. 
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3.2.3 Fourier transform ion cyclotron resonance mass spectrometry analysis.  

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) studies were performed 

at the Scientific and Technological Research Assistance Centre (CACTI), University of Vigo using an 

APEXQe FT-ICR MS (Bruker Daltonics, Billerica, MA, USA), equipped with a 7 T actively shielded 

magnet. To follow the reaction by FT-ICR MS, 100 μL aliquots were removed directly from the reaction 

medium at different time intervals (1, 20 and 60 minutes). Each aliquot was diluted to 1 mL with 

70:29.9:0.1 (v/v/v) CH3CN/water/formic acid prior to injection into the mass spectrometer. 

Ions were generated using a Combi MALDI-electrospray ionization (ESI) source. The mass spectra were 

obtained by ionization via an electrospray, using a voltage of 4500 V applied to the needle and a counter 

voltage of 300 V applied to the capillary. 

3.2.4 Transmission electron microscopy analysis.  

Microscopy analyses were performed at the CACTI, University of Vigo. A JEOL JEM1010 TEM 

working at 100 kV was used to obtain low-magnification TEM images. A JEOL JEM 2010F field-

emission gun TEM working at 200 kV was used to obtain high resolution transmission electron 

microscopy (HRTEM) images. Energy Dispersive X-ray Spectrometry (EDS) maps were acquired by 

coupling the scanning unit of the microscope to an INCA 200 EDS system. Electron energy loss 

spectroscopy (EELS) spectra were collected in Scanning Transmission Electron Microscopy (STEM) 

mode using a Gatan GIF Quantum spectrometer with an energy resolution of 1.75 eV (Full width at half 

maximum (FWHM) Zero Loss peak), 0.5 eV/channel energy dispersion and an EELS collection semi-

angle of 16 mrad. The EEL spectral background was subtracted using standard Digital Micrograph 

routines. All TEM samples were prepared by placing drop of the sample on a TEM copper grid coated 

with holey carbon thin film and then air dried. To avoid the interference due to the carbon foil grid, the 

EEL spectra were collected from areas of sample situated in a hole. 

3.2.5 Scanning electron microscopy. 

Scanning electron microscopy (SEM) images were taken using a Quanta environmental scanning 

electron microscope (FEI Quanta 650) operating between 20 and 5 kV with a spot size = 3.5. Samples 

dispersed in ethanol were deposited in aluminium holders used as support and metallised with platinum 

sputtering (sputter coating = 3 nm) before analysis. 
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3.2.6 X-ray photoelectron spectroscopy.  

X-ray photoelectron spectroscopy (XPS) measurements were performed using a Phoibos 150 analyser 

(SPECS GmbH, Berlin, Germany) in ultra-high vacuum conditions (base pressure 1 × 10−10 mbar) with 

a monochromatic aluminium Kα X-ray source (1486.74 eV). All the spectra were referenced to aliphatic 

carbon at a binding energy of 284.8 eV. 

3.2.7 UV/Vis and FT-IR spectroscopy studies.  

The UV/Vis spectroscopy studies were performed using a JASCO 650 spectrophotometer provided by 

the PROTEOMASS-BIOSCOPE facility. A Bruker TENSOR (REQUIMTE-Chemistry Department, 

FCT-UNL) spectrophotometer was used to obtain the FT-IR spectra; All FT-IR experiments were 

performed in KBr disks. 

3.2.8 Inductively coupled plasma analysis.  

The Pt and Te contents in each studied sample were determined in the REQUIMTE-Chemistry 

Department, FCT-UNL analytical laboratory using an inductively coupled plasma (ICP) instrument 

from Horiba Jobin–Yvon (France, model Ultima), equipped with an RF of 40.68 MHz, a 1.00 m Czerny–

Turner monochromator (sequential), and an AS500 autosampler. 

3.2.9 Elemental analysis.  

The elemental analysis (EA) was done in the REQUIMTE-Chemistry Department, FCT-UNL analytical 

laboratory by using an Elementar Thermo Finnigan-CE Instruments (Italy) Flash EA 1112 CHNS series. 

3.2.10  Thermogravimetric analysis.  

The thermogravimetric analysis (TGA) was performed in the CACTI, University of Vigo using a Setsys 

evolution (TG/DSC/DTA) Setaram instrument. 
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3.3 Results and Discussion 

3.3.1 Synthesis and morphological characterization of organometallic Pt-Te 

NPs.  

An acetonitrile solution of Ph2Te2 and H2PtCl6 was used as the starting material for the synthesis of Pt-

Te NPs. The coordinating nature of this solvent plays a major role during the photodecomposition of 

the Ph2Te2 to form phenyltellurinic anhydride derivatives293. In a typical synthesis, a boiling acetonitrile 

solution containing H2PtCl6 was quickly added to an acetonitrile solution containing Ph2Te2. At the 

moment of addition, the dark red solution shifted to reddish brown, after which it was left for one hour 

at boiling temperature, resulting in the formation of a precipitate.  

We also found a correlation between the water percentage during the reaction and the resulting 

organometallic nanocomposite; a distinctly lower yield and higher polydispersity were obtained at lower 

water contents. (Figure 3.1)  

 

Figure 3.1: Low magnification electron transmission microscopy images obtained for R1 (a, b), R2 (c, d) and R3 
(e, f). 
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Under low water-content conditions the crude reaction present red/Brown colour with transparent 

aspect. Only with centrifugation process at 14000 rpm x 1h was possible to obtain enough material for 

characterization. R2 and R3 were obtain in pure form with three centrifugation cycle at 8000 rpm x 30 

min. in acetonitrile. This result can be correlated with the hydrolysis of phenyl tellurinyl chlorides 

(PhTeCln) formed as a sub-product of Ph2Te2 oxidation, similar to that observed for the previously 

reported gold system290.  

By contrast, no significant differences were observed for the reactions conducted under dark or inert 

atmosphere conditions. (Figures 3.2 to 3.5, Table 3-1) 

 

Figure 3.2: Histogram obtained for R2 and R3 samples. (Histogram was obtained counting a minimum of 100 

particles per sample). 

 

Figure 3.3: Histogram obtained for R2.1 (oxygen absence) and R2.2 (light absence) samples. 
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Figure 3.4: Low magnification TEM images obtained for R2.1 (a, b), R2.2 (c, d). 

 

Figure 3.5: Overview X-ray photoelectron spectroscopy of R4 obtaining under N2 or O2 atmosphere. 

 

In this respect, Ph2Te2 photodecomposition processes or additional oxidation by O2 did not show any 

impact on the final nanostructuring of the obtained polymeric material.  

Additionally, an increase in the initial reagent concentrations induced a size increase of the final 

nanoparticles, although with a higher resultant polydispersity. (Figures 3.6 to 3.9, Table 3-1)  
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Figure 3.6: Histogram obtained for R4 and R5 samples. 

 

 

 

Figure 3.7: Low magnification SEM images obtained for R4. 
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Figure 3.8: Low magnification TEM (a, b) and SEM (c, d) images obtained for R5. 

 

 

Figure 3.9: (a) Low magnification TEM (a,b,d,e) and SEM (c,f) images of different sizes of organometallic Pt-

Te NPs obtained under higher initial reagent concentrations ([Pt(IV)] = 2.10−4 M, [Te-Te] = 6.10−4 M) (a,b,c) 

and ([Pt(IV)] = 8.10−3 M, [Te–Te] = 2.4.10−2 M) (d,e,f). 
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Modifying the reactant sequence addition also modified the reaction output, resulting in a more 

polydispersed material and a partial loss of the spherical morphology. (Figure 3.10)  

 

Figure 3.10: Low magnification SEM images obtained for R4 in normal condition (a and b) and modifying the 

reactant sequence addition (c and d). 

 

 

The final organometallic Pt-Te NPs can be dispersed in absolute ethanol or water. (Figure 3.11)  

 

Figure 3.11: Low magnification electron transmission microscopy images obtained for R2 dispersed in absolute 

ethanol (a, b) and in water (c, d). 
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This observed behaviour with nucleophilic solvents is contrary to that observed with pure condensed 

tellurinic acid or anhydride derivatives formed in the previous reported gold system290, indicating that 

in this case, the Pt ion was likely directly coordinated into the organometallic structures. This new 

polymeric material is not dissolved or disrupted in absolute ethanol as previously observed with the gold 

nanomaterial. 

3.3.2 Chemical characterization of organometallic Pt-Te NPs.  

Based on the electron microscopy evidence, the materials obtained in the presence or absence of oxygen 

and/or light have similar nanostructures; thus, we selected samples obtained in the presence of oxygen 

and light to perform a more complete characterization.  

Figure 3.12 (panels 1 to 6) shows a High-Angle Annular Dark Field (HAADF) image together with five 

energy-dispersive EDS obtained for a group of Pt-Te NPs. These maps show that the major elements 

present in the particles are tellurium, platinum and carbon. In addition, the presence of oxygen and 

chlorine as minor elements was also confirmed.  

 

Figure 3.12: (a) STEM-HAADF image of a group of Pt-Te NPs and Te, Pt, C, O and Cl EDS elemental maps 

(1–6). (b) HAADF-STEM image: one group of isolated Pt-Te NPs (1) and two close ups (2) showing the 

complex structure and the nodules composed of high atomic-number elements (3). (c) HRTEM image and 

diffraction pattern showing the structure and demonstrating the lack of a crystalline structure in the nodules. 
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Similar results were obtained with the EDS X-ray microanalysis obtained from an individual particle. (Figure 

3.13)  

 

Figure 3.13: EDS X-ray microanalysis obtained from an individual particle. 

Even though the spectrum shows a high Cu peak due to the contribution of the copper grid used in the 

TEM sample preparation, the main elements present in the particle are Te, Pt, C, O and Cl. Combined 

HRTEM and HAADF images were also obtained, as shown in Figure 3.12 (B 2,3). As seen in Figure 

3.12 (B 1), the general trend indicates an increase in brightness from the outside to the centre of the 

particles, consistent with a spherical geometry and a mass-thickness contrast mechanism. The presence 

of a hole, or a non-uniform distribution of the elements within the particle, was discarded in light of the 

elemental profiles along the diameter of the particle. (Figure 3.14)  

 

Figure 3.14: : (a) STEM-HAADF image of an as obtained organometallic Pt-Te NPs. (b) EDS intensity profiles 

of the PtLα1 signal (a), and O-Kα1, Pt-Lα1 Te-Lα1, and C-Kα1-2 along the white arrow marked in (a). 

Images at higher magnification (Figure 3.12 B 2,3) showed the presence of a complex inner 

nanostructure; the contrast was not distributed evenly but showed grainy small nodules forming with 
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higher contrast levels. These images suggest that Te and/or Pt tend to concentrate in these approximately 

1.4 nm nodules, and the other elements (C, O, and Cl) are mainly surrounding those nodules. 

Interestingly, TEM images at higher magnification (Figure 3.12 C) did not show the presence of lattice 

fringes in areas containing these nodules, nor any feature indicating the presence of a crystalline 

structure in the centre of the nodules. The amorphous character of the obtained Pt-Te NPs was confirmed 

by the electron diffraction pattern obtained from a group of those particles (Figure 3.12 C-3) and 

corroborated by the powder X-ray diffraction pattern obtained for the material. (Figure 3.15)  

 

Figure 3.15: X-Ray diffraction pattern of organometallic Pt-Te NPs in different size. 

 

Additionally, characterization using electron energy loss espectroscopy is displayed in Figure 3.16.  

 

Figure 3.16: EEL spectrum in the region of the C K-edge (a) and Te, O edge (b) obtained for organometallic Pt-

Te NPs. 

 

The EELS spectrum in the carbon K-edge region shows two bands corresponding to two different 

electronic bonding states, one assigned to the π C=C bond peak at 285 eV and the other assigned to the 

σ C-C bond peak close to 297 eV. The oxygen and tellurium edges region is shown in Figure 3.16 B; 

in this region, the oxygen edge displays a relatively low intensity, especially compared with the intensity 
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and shape of the TeO2 edges295. This result provides clear evidence of a large oxygen deficit compared 

with the relative content of oxygen in the TeO2. Conversely, the Te edge shows an intense broad band, 

suggesting the presence of a large Te content and a mixture of electronic states in the Te bonds.  

The X-ray photoelectron spectroscopy spectrum shown in Figures 3.5 and 3.17 shows a high Te (53%) 

percentage compared with those of C (35%), Pt (7%) and Cl (4.5%). Moreover, two signals can be 

assessed for Pt, namely, Pt 4f7/2 at 73.23 eV, Pt 4f5/2 at 76.58 eV and Pt 4f7/2 at 74.80, Pt 4f5/2 78.15 eV. 

Thus, the nanostructure contains mainly Pt(II) (4f7/2 = 73.23 eV, 4f5/2 = 76.58 eV) with a small proportion 

of Pt(IV) (4f7/2 = 74.80 eV, 4f5/2 = 78.15 eV), and the ratio of the areas of Pt(II):Pt(IV) is 4:1. (see Figure 

3.17a) 

 

Figure 3.17: XPS spectrum of organometallic Pt-Te NPs. Binding energy spectrum of Pt 4 f (a), Te 3d3/2 and 

3d5/2 (b), and C 1 s (c). 

 

Three components were found for Te, presumably associated with the different oxidation states as 

revealed by EELS analysis. (Figure 3.17 B) The XPS chemical shifts for tellurium (3d5/2 and 3d3/2) in 

different oxidation states appear in a narrow region. The main peaks appear at 576.1 (3d5/2) and  
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586.4 (3d3/2) eV, which correspond to telluroxide (TeO) functionalities296,297. If we focus on the 3d5/2 

sub-spectrum of which one of the minor components (21%) at 574.2 (3d5/2) and 584.6 (3d3/2) eV could 

be attributed to (Ph2Te2)–Pt units, the other minor component (18%) at 577.7 (3d5/2) and 588.0 (3d3/2) 

eV should be attributed to oxidised species of telluride. Finally, two energy peaks appear in the C 1 s 

region associated with aromatic C-C bonds (284.6 eV) and the C-Te bond (285.7 eV). (Figure 3.17)  

FT-IR spectroscopy of the Pt-Te NPs (Figure 3.18) show characteristic bands of phenyl Csp2-H (3051 

cm−1), C=C stretches (1568 cm−1, 1469 cm−1, 1431 cm−1), and C–H bending in-plane (1053 cm−1, 1014 

cm−1) and out-of-plane (727 cm−1, 686 cm−1). Additionally, aromatic ring overtones can be observed in 

the region of 2000–1630 cm−1 298,299.  

 
Figure 3.18: FT-IR spectrum (overview a, different spectra close-ups b, c, d) of organometallic Pt-Te NPs in 

KBr disk. 

 

Attempts to characterize the nanomaterial with Raman spectroscopy were unsuccessful, as the 

nanocomposite was burned during the measurements by the action of the laser, and the results were 

inconclusive. 

The composition of the material was studied by elemental analysis and inductively coupled plasma 

(ICP). We analysed two different particle sizes, denoted as R4 and R5. In this way, we obtained the 

following values, expressed as a percentage (R4/R5): %C (22.51/22.81), %H (1.52/1.59), %Pt 
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(26.03/24.37) and %Te (44.55/45.84). The slight difference in percentages obtained may be related to 

the partial change in the reaction conditions. (Table 3-1) 

The composition differences obtained by XPS and ICP/EA show increased tellurium and carbon 

percentages for XPS analysis. The XPS spectrum gives information about the elemental composition of 

the shallow surface region. As photons possess a limited penetrating energy (up to 10 nm), only those 

electrons pertaining to atoms near the surface can be counted. This quantitative technique provides the 

average composition over an approximate 10 nm depth inside the nanoparticle. Taking into account 

these considerations inherent to the technique, the comparatively increased tellurium and carbon 

percentages can be explained as a result of the adsorption and/ or coordination of the remaining Ph2Te2 

molecules on the surface-formed nanocomposite. 

Using thermogravimetric analysis, we determined the thermal behaviour of organometallic Pt-Te NPs 

with the aim of delimiting the parameters for the annealing process. We observed that the decomposition 

occurred under multistage process between 25 °C and 1500 °C. The first mass loss (−37.22% completed 

above 400 °C) is associated with three exothermic changes, as seen in the differential thermogravimetry 

(dTGA) curve, with the first exothermic signal appearing near 200 °C. We believe that this first 

exothermic signal could be related to the crystallization of PtTe2. (Figure 3.19) 

 

Figure 3.19: TG/dTG curves obtained for organometallic Pt-Te NPs. 
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3.3.3 Metal-ligand interaction during the reaction.  

Metal-ligand interaction and the formation of the Pt-Te NPs was investigated using UV/Vis 

spectroscopy and FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry) studies. 

The spectroscopy profile of Ph2Te2 presents two absorption bands, one near 300 nm, which was assigned 

to the nTe-π* transition (phenyl group charge transfer band), and one near 397 nm, corresponding to the 

nTe-σ* transition (Te-Te charge transfer band)300,301. To study the interaction of the Te-Te residue with 

the Pt cation, we selected two ligand:metal stoichiometries (L:M = 3:1 and 1:1).  

Upon addition of 1 equivalent of Pt4+ a new absorption band centred in 407 nm with a shoulder at ca. 

500 nm is observed. The evolution of the absorption spectrum over time presents an increase in the 

region between ca. 320 and 600 nm, with an increase in base line as derived of organometallic Pt-Te 

nanocomposite formation. The interaction study upon addition of 1/3 equivalent of Pt4+ presents a 

similar time dependent behaviour, but with a lower increase of absorption between 300 and 600 nm. 

Additionally the formation of the band centred at 407 nm is not clearly observed. A slight blue shift in 

Te-Te charge transfer band from 397 to 395 nm is observed. In both cases, we observed a time-

dependent Te–Te charge transfer band increase upon addition of the metal cation, indicating the 

coordination interaction between the Pt ions and the Ph2Te2 ligand. (Figure 3.20)  
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Figure 3.20: UV/Vis study of the time depend interaction of Ph2Te2 ([L] = 1.10- 4 M) with addition of 1:1 (a, b) 

and 1:3 (c, d) equivalents of H2PtCl6 in acetonitrile solution. 

 

Surprisingly, FT-ICR-MS analysis, performed just 1 minute after mixing the reagents, showed only the 

presence of some signals with clear Te isotopic distribution. Interestingly, we observed that the two 

most intense signals consistent with the Te isotopic distribution (at 616.833 and 853.398 m/z) are 

coincident with those observed in previous reported studies related to Au-Te nanoparticles290. (Figure 

3.21)  



Chapter 3 

86 

 

 

Figure 3.21: (a) FT-ICR MS (+) spectra of the reaction time at (1) 1 min, (2) 20 min. (b) Experimental isotopic 

mass spectra for the peaks at m/z 616.833 and m/z 853.398 for Pt and 616.830 m/z and 853.393 m/z for 

previously reported290 gold reaction. 

These results suggest that similar organotellurium derivatives are formed in both systems. Additionally, 

a signal was observed at 1118.674 m/z displaying a Te isotopic pattern. This signal was attributed to the 

empirical formula [C24H21Cl2O2Te4Pt]+, arising from the coordination of a Pt(II) cation with a Ph2Te2 

molecule and a phenyl tellurium oxidised (PhTeO)2 derivative resulting from the oxidation of Ph2Te2, 

along with two chlorine atoms remaining coordinated to the Pt atom. (Figure 3.22)  
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Figure 3.22: Experimental and theoretical isotopic pattern of 1118.674 m/z. This signal can be formed with one 
Pt(II) metal coordinated with one molecule of Ph2Te2 (blue) and one molecule of an derivative of phenyl 

tellurium oxidised (red) together to Cl atoms (green). 
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After 20 minutes of reaction, the mass spectrum signal intensities were drastically reduced. The limited 

literature related to this type of reaction, associated with the very high kinetics of the involved 

transformations, hinders a better interpretation of the mass spectrometry analysis, as only some plausible 

Te- and/ or Pt-containing isotopic patterns were detected. Moreover, the low solubility of the formed 

organometallic oligomers could be attributed to the signal decrease observed during the ESI ionization 

process.  

Comparing the relative percentages of the structure proposed by theoretical FT-ICR-MS calculations 

with the experimental data, we assume that the final structure is not composed of pure units of 

[C24H21Cl2O2Te4Pt]+ ; this “structure-defect” may be attributed to a subsequent evolution of the proposed 

structure into oligomers/ polymers. 

Based on previous reports290,297,302 related to the ability of organic ditellurides to reduce Au(III) to Au(I), 

we propose here that Ph2Te2 should act as a Lewis base, reducing Pt(IV) to Pt(II) as was observed by 

XPS analysis. Consequently, oxidised phenyl tellurinyl chlorides should be formed. These halogenated 

tellurium derivatives are known to undergo different hydrolysis reactions under specific conditions, 

producing oxohalides (PhTe(O)Xn), tellurinic acids (PhTeOOH) or anhydride [(PhTeO)n] 

derivatives291,292. These oxygenated tellurium entities probably originate from the first obtained 

tellurium chloride species, which imputes high electrophilic character to the tellurium atom, being 

consequently more susceptible to react with water, for instance.  

This hypothesis is linked with the low yield obtained at lower water contents, under which hydrolytic 

events are drastically reduced, hampering the progress of the nanoparticle formation. The low solubility 

of the organometallic structure formed in acetonitrile favours particle formation. 

3.3.4 Synthesis and characterization of PtTe2 multi-crystallite NPs.  

As discussed, when the organometallic Pt-Te NPs were subjected to thermogravimetric analysis, an 

exothermic signal was observed at approximately 200 °C, which was believed to correspond to the 

crystallization process of a Pt-Te species. Thus, we decided to cover the nanoparticles with a stabilizing 

polymer, selecting PVP for this purpose. Examining high boiling point solvents (above 200 °C) in which 

the nanoparticles as well as the PVP could be solubilised, 1,5-pentanediol was found to be efficient for 

the annealing process. The thermal decomposition was completed at 220 °C in 1 h. The red/brown 

solution turned black, indicating the formation of metallic PtTe2 nanoparticles.  

The final size of these multi-crystallite metallic NPs was highly dependent on the organometallic 

precursor. As an example, annealing R2 (approximately 80 ± 20 nm) produced multi-crystallite metallic 

nanoparticles of approximately 45 ± 15 nm. (Figure 3.23)  
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Figure 3.23: In panel a the histograms obtained for organometallic nanoparticles (sample R2) before and after 

the annealed process (1) and the colour solution of organometallic Pt-Te NPs (2) and annealed (PtTe2 multi-

crystallite) NPs (3) can be seen. In panel b images of organometallic Pt-Te NPs (1, 2) and the resulting PtTe2 

multi-crystallite NPs (3, 4). 

 

The same effect was observed for R5. (Figure 3.24)  

 

Figure 3.24: Low magnification electron transmission microscopy images PtTe2 multi-crystallite particles 

obtained after annealing process of R5. 
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We strongly believe that the pre-adsorbed PVP polymer should prevent the aggregation of bulk PtTe2 

material during the thermal decomposition, thereby guaranteeing the final spherical shape of the PtTe2 

multi-crystallite NPs. 

TEM and HRTEM micrographs are shown in Figure 3.25. Interestingly, these particles show clear 

lattice fringes, which reveals the crystalline nature of these nanoparticles.  

 

Figure 3.25: TEM (a), and STEM (b) images of PtTe2 multi-crystallite NPs obtained after the annealing process, 

HRTEM images of isolated NPs showing lattice image fringes (c,d) and electron diffraction pattern obtained 

from a group of PtTe2 multi-crystallite NPs showing clear diffraction rings; this pattern was indexed on the basis 

of the PtTe2 crystalline structure (P −3 m 1, SG: 164) (e). 

 

 

Their crystalline phase was clearly determined by indexing the electron diffraction pattern shown in 

Figure 3.25 (e); this pattern matches quite well with the PtTe2 crystalline structure obtained from the 

database303. At this point, we firmly believe the annealed nanoparticles were formed of a PtTe2 (P −3 m 

1, SG: 164) crystalline structure. The annealing crystallization stage is characterised by two new 

features: first, a large drop in the intensity of the C-Kα1–2 intensity shown in Figure 3.26, and second, 

the presence of brighter areas in the STEM image showing crystalline contrast, contrary to the case of 

the Pt-Te organometallic polymeric particles. (Figure 3.25 b) These two features demonstrate the low 

carbon content of the PtTe2 nanoparticles and indicate the presence of small crystallites in the spheres 

sized between 2.5–6.5 nm. (Figure 3.27)  
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Figure 3.26: EDS X-ray microanalysis spectra of the as obtained organometallic Pt-Te NPs and of the annealed 

(PtTe2 Multi-Crystallite) NPs, note the drop in the relative intensity of the C-Kα1-2 signal in the annealed NPs. 

 

 

Figure 3.27: STEM image of a group of PtTe2 multi-crystallite NPs showing crystalline contrast, brighter areas 

are due to the presence of small crystallites within the NPs. Numbers display the length of the black lines. 
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Similar results were obtained when annealing the R5 sample. (Figure 3.28) 

 

Figure 3.28: (a) STEM-HAADF image of a group isolated PtTe2 multi-crystallite particles and Te, Pt EDS 

elemental maps (1,2) and STEM image of a group of particles. (b) EDS intensity profiles of the PtLα1 and Te-

Lα1, signal along the yellow line. (c) STEM image in high resolution of an isolated particle showing crystalline 

contrast, brighter areas are due to the presence of small crystallites within the particles. Numbers display the 

length of the red lines. 

 

These results clearly demonstrate that the annealing process transformed the initial amorphous 

organometallic Pt-Te nanocomposite into well-formed, spherical PtTe2 multi-crystallite NPs. 

3.4 Conclusion 

Organotellurium chemistry was applied successfully to the construction of new platinum nanomaterials; 

this approach provides a versatile chemical tool in the assembly of novel nanostructured materials. The 

redox and hydrolytic properties shown by the organic tellurium-based entities were necessary for their 

role in the construction and stabilisation processes. The spontaneity of the Pt cation reduction promoted 

by the starting ditelluride reagent, associated with the easily adjustable experimental conditions to 

promote transformations based on the tellurium moiety, can be considered the key draw of this new 

synthetic strategy for obtaining well-defined nanoparticles. 
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New organometallic Pt-Te NPs were formed by a mixture of Te, Pt and C, plus minor amounts of O and 

Cl. This inhomogeneous mixture of elements produces Pt and Te nodules, conferring the final spherical 

shape to the particles. Each of the nodules is approximately 1.4 nm in diameter. Surrounding all the      

Pt-Te nodules are lighter elements, mainly C and O, acting as agglutinant agents. The interior of the 

nodules appears to be a mixture of organometallic Pt compounds, not crystalline Pt. EDS analysis 

demonstrates a low carbon content in the PtTe2 multi-crystallite NPs relative to the initial composite 

NPs. The size of the PtTe2 crystallites forming the large spheres was estimated to range from 2.5 to 6.5 

nm. Further studies related to applications of these new nanoparticles are in progress. 
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4 Chapter 4 

Highly accessible aqueous synthesis of well-dispersed 

dendrimer type platinum nanoparticles and their catalytic 

applications 
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4.1 Introduction 

The remarkable advances that nanochemistry has undergone in recent decades have allowed the 

exponential expansion in the practical applications of metallic nanoparticles in different fields304,305. As 

a result of the interesting and unique physical and chemical properties that arise from the miniaturization 

of certain metals up to the nano-scale306, metal NPs are being applied in several scientific and industrial 

applications, such as chemical detection307, catalysis308, biochemistry309 or even medicine310 among 

others. 

 In this sense, Pt NPs have shown potential to be applied not only in catalysis, but also in energy 

applications311,312, green technologies, and recently in the biomedical field313,314. Among other 

advantages, the construction of Pt particles at nano-scale range results in a higher surface-to-volume 

ratio compared with their bulk counterparts. This property has been extensively exploited in catalytic 

purposes, not only because the amount of material consumed is reduced, but also due to the size-

dependent catalytic activity reported for Pt NPs314,315,316. As a consequence of the low levels of this 

scarce precious metal, considerable effort has been devoted to developing synthetic strategies that allow 

the preparation of well-dispersed Pt nanoparticles with control in size317,318,319.  

Besides the size effects discussed above, the shape of NPs has been showed to play an important role in 

the catalytic properties of Pt NPs320, due to that the different crystalline surfaces exposed exhibit 

different activity and/or selectivity for the same reaction321,322. Between the different shapes reported for 

Pt NPs such as spheres319, cubes318, triangular prisms323, octahedrals94, multi-octahedrals324, or 

polyhedrals325, hierarchical nanostructures such as branched or dendritic NPs326,327,328,329,330,331, have 

shown improved catalytic properties, between other factors, thanks to their large number of edges and 

corners which increases the surface-to-volume ratio, and therefore the absorption sites available. 

Additionally, these three-dimensions porous structures should allow unlimited transport of molecules in 

the medium332,333. 

Up to date, different strategies have been reported to produce these fascinating nano-structures, 

including sonochemical synthesis333, solvothermal method at high temperature313, seed-mediated 

method329, sacrificial template334, interfacial synthesis using oleic acid in water335, or apply organic 

dendrimer as template336. Most of these processes require considerable energetic contributions (high 

temperatures or ultrasound radiation), hard chemical compounds to reduce ion platinum to its metallic 

state, or present synthetic processes in consecutive steps.  Therefore, there is a need to develop low-cost 

and more environmentally friendly strategies to produce dendrimer-type platinum nanoparticles (Pt D-

NPs). In this respect, some simple one-pot synthetic processes, using common eco-friendly reagents, 

with minimal energy contributions have been developed. Furthermore, a size limitation between 30-50 

nm with well-defined dendrimer structures has been achieved328,331,337.  
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On the other hand, according to the published literature regarding the synthesis of Pt multi-branched 

nanoparticles in a polar medium, it can be noticed that the application of a weak reducer agent is usually 

necessary. For instance, Mohanty et al. showed that using ascorbic acid as a reducer, Au, Pd or Pt nano-

flower while with sodium borohydride spherical NPs are obtained338. In this respect, it has been reported 

approaches that use organic weak reducers agents such as ascorbic acid328,329,337, PVP313,326 or ethylene 

glycol327 among the most used. However, less attention has been paid to the application of metal cations 

as reducing agents in the synthesis of Pt NPs. It should be mentioned that the addition of metal cations 

such as Fe(III)/Fe(II) in trace amounts to a polyol or PVP assisted synthesis under high-temperature 

conditions (≥ 90 °C) has been successfully employed to manipulated redox kinetics during Pt 

hierarchical NPs synthesis93,339. However, to the best of our knowledge, Fe(II) has never been used as 

the main reducing agent during the synthesis of Pt NPs.  

An important consequence that arises from the application of metallic redox pairs as a reducer is the 

attractive possibility to modulate the redox potential through complexation with chelating molecules340. 

For the case of redox pair Fe(III)/Fe(II), potentiometric studies showed changes towards more negative 

values through complex formation with, ethylenediaminetetraacetate (EDTA), citrate or oxalate among 

others341,342. 

In the present work, we have developed a new one-pot aqueous-phase, at relatively low-temperature   

(60 ºC) to obtain well-dispersed Pt D-NPs; using FeSO4 in the presence of sodium citrate (SC) as 

reducing agent. This simple Fe(II)/SC-mediated synthesis in the presence of PVP as a surfactant, can be 

exploited to obtain well-dispersed Pt D-NPs in average sizes between 13-20 nm. We have carefully 

inspected the catalytic properties of Pt D-NPs through the analysis of aromatic compounds reduction 

and, particularly, as a new artificial metalloenzyme in the oxidation of L-DOPA. 

4.2 Experimental Section 

4.2.1 Materials 

Potassium tetrachloroplatinate (K2PtCl4), iron (II) sulphate heptahydrate (FeSO4.7H2O), trisodium 

citrate dihydrate (Na3Cit.2H2O), polyvinylpyrrolidone (PVP 40K), polystyrene sulphonate (PSS 70k) 

and ethylenediaminetetraacetic sodium salt (EDTA-Na4) were purchased from Sigma-Aldrich. 

Potassium bromide (KBr) was purchased from Alfa-Aesar. All reagents were used without further 

purification. Water was ultra-pure grade (type I) obtained with a Milli-Q Simplicity system.  
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4.2.2 Methods 

Pt D-NPs were produced through reduction of K2PtCl4 applying FeSO4 assisted by sodium citrate 

with/without the addition of PVP or PSS in aqueous solution. 

4.2.3 Sodium citrate assisted synthesis 

A round-bottom flask with 28 mL of ultrapure water containing SC (0.12 or 0.15 mmol) was immersed 

in a thermostated oil bath at 60°C. With the temperature stabilised and under vigorous magnetic stirring, 

1 mL of an aqueous solution containing 0.03 mmol of K2PtCl4 was added. Then, 1 mL of an aqueous 

solution containing 0.12 mmol of FeSO4 is rapidly injected. The reaction was allowed to elapse for 60 

minutes, and then the solution was cooled to room temperature (RT) under stirring. Finally, the material 

was purified by three centrifugation steps at (8000 rpm x 15 min) in ultra-pure water (3 washing steps). 

The final NPs were resuspended in 8 mL of ultrapure water. Final concentrations explored: [K2PtCl4] = 

1 mM, [FeSO4] = 4 mM, [SC] = 4 mM or 5 mM). 

4.2.4 Sodium citrate/PVP assisted synthesis 

In all synthetic experiments in the presence of PVP, the molar ratio Pt/Fe/SC = 1/4/4 was maintained 

constant. In a typical experiment, a round-bottom flask with 28 mL of ultrapure water containing 0.12 

mmol of SC and PVP (total concentrations explored between 0.25 mM and 5 mM) was immersed in a 

thermostated oil bath. Under vigorous magnetic stirring and temperature of reaction stabilised, 1 mL of 

an aqueous solution containing 0.03 mmol of K2PtCl4 was added. At this point, 1 mL of FeSO4 water 

solution (0.12 mmol) is rapidly injected. The reaction was allowed to elapse for 60 minutes, and then 

the solution was cooled to room temperature under stirring. Finally, the material was purified by 

centrifugations at (14000 rpm x 60 min.) in ultra-pure water (3 washing steps). The final NPs were 

resuspended in 8 mL of ultrapure water.  

Synthesis in the presence of polystyrenesulphonate (PSS70k) were carried out with the same protocol 

previously explained at 60 °C with a molar ratio of Pt/PSS (1/5). Final concentrations explored: 

[K2PtCl4] = 1 mM, [FeSO4] = 4 mM, [SC] = 4 mM and [PSS] = 5 mM). To obtain the sample under 

boiling conditions, we select molar relation Pt/PVP 1/1. The addition of iron salt solution was completed 

under boiling in a similar manner to the lower temperature reactions. The reaction medium was kept 

boiling for 60 minutes, cooled down under stirring and the material was purified in a similar way to 

previous reactions. Final concentrations: [K2PtCl4] = 1 mM, [FeSO4] = 4 mM, [SC] = 4 mM and [PVP] 

= 1 mM). 
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4.2.5 Synthesis of Pt D-NPs for catalysis applications 

The samples used in catalysis experiments were obtained through the SC/PVP assisted synthesis at 60 

°C discussed in the previous experimental section. 

4.2.5.1 Samples PtCat-1 and PtCat-2  

We have selected molar ratio Pt/PVP 1/1 and 1/5 at 60 °C to obtain two new samples denoted as       

PtCat-1 and PtCat-2 respectively. In these cases, the materials were purified by centrifugations        

(14000 rpm x 60min.) using first EDTA solution 2 mM (1 step), and finally in ultra-pure water (2 

additional steps). The final NPs were resuspended in 8 mL of ultrapure water.  

4.2.5.2 Samples PtCat-3 and PtCat-4 

Using a Pt/PVP molar ratio of 1/5 at 60 °C we have obtained the sample PtCat-3 increasing 5-fold the 

concentration of all the reagents (final concentrations: [K2PtCl4] = 5 mM, [FeSO4] = 20 mM, [SC] = 20 

mM, [PVP] = 25 mM). The NPs were purified by centrifugation (13000 rpm x 60 min) using first EDTA 

solution 5 mM (1 step), and in ultra-pure water (3 additional steps). The final NPs were resuspended in 

12 mL of ultrapure water. 

The sample denoted as PtCat-4 was obtained increasing the total concentration reagents by a factor of 

10-fold (final concentrations: [K2PtCl4] = 10 mM, [FeSO4] = 40 mM, [SC] = 40 mM, [PVP] = 5 mM). 

The NPs was purified by centrifugation (13000 rpm x 60 min) with EDTA 10 mM, and then 3 additional 

cycles in ultra-pure water. The final NPs were resuspended in 15 mL of ultrapure water. 

4.2.6 Characterization of Pt D-NPs 

All NPs have been characterised by spectroscopy and common chemical techniques: 

DLS and -potential analysis was done in a MALVERN model ZS instrument (PROTEOMASS 

Scientific Society, BIOSCOPE facility). Ultraviolet-visible (UV/Vis) was done in a Jasco-650 

spectrophotometer with control temperature (PROTEOMASS Scientific Society, BIOSCOPE facility). 

Fourier Transform Infrared (FT-IR) spectroscopy was performed using a Bruker Tensor 27. Samples 

were prepared in KBr disks. To prepare the KBr disks to complete the FT-IR analyses, each sample 

were centrifuged (14000 rpm x 60 min) and washed twice in anhydrous EtOH. Then the solid obtained, 

from each sample, was resuspended in 100 µL of anhydrous EtOH and mixed with KBr powder. The 

solid was quickly dried in a vacuum pump for 6 h before preparing a concentrated KBr tablet. For PVP40k 

analysis, the powder was directly mixed with KBr. Transmission electron microscopy (TEM) analysis 
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was performed using a TEM microscopy JEOL JEM1010 working at 100 kV to obtain low-

magnification images. The high-resolution transmission electron microscopy (HRTEM) were performed 

on a JEOL 2100F microscope equipped with an EDS Inca Energy 200 (Oxford Instruments). All TEM 

samples were prepared by placing a drop of the sample onto a TEM copper grid and let air-dried (TED-

PELLA Co.). Size of particles and dispersion histograms have been calculated from TEM micrographs 

using ImageJ package343. Interplanar spacings in the nanostructures were calculated by Fourier 

transform (FT) using the ImageJ digital micrograph suite. Inductively coupled plasma (ICP) analysis: 

The Pt content of each studied sample was determined in the REQUIMTE-LAQV Chemistry 

Department, FCT-UNL analytical laboratory using an ICP instrument from Horiba Jobin–Yvon (France, 

model Ultima), equipped with an RF of 40.68 MHz, a 1.00 m Czerny–Turner monochromator 

(sequential), and an AS500 autosampler. XRD analyses were obtained in X-ray diffraction system 

(XRD, PANalytical, model X´Pert Pro) in Bragg-Brentano geometry with Cu Kα line radiation (λ = 

1.5406 Å). Samples were deposited in the form of a concentrated slurry and let dry before they were 

analysed. 

4.3 Results and discussion 

According to the standard redox potentials known for [PtCl4]
2-/Pt0 (+0.75 V vs RHE) and Fe(III)/Fe(II) 

(+0.77 V vs RHE) the reduction of Pt2+ mediated by Fe2+ is not a spontaneous process in normal 

conditions. However, the thermodynamics of the reaction should be altered upon addition of different 

chelating molecules such as oxalate, EDTA or citrate341,342,344. Based on this interesting concept, we have 

selected sodium citrate as a chelating agent for Fe(II) given its ability to alter the redox potential of 

Fe(III)/Fe(II) from 0.77 to 0.38 V, as has been previously reported345. With these considerations in mind, 

we have explored this reaction at colloidal level.  

To develop the present synthetic protocol of Pt NPs, a workflow based on three principal work-packages 

has been adapted. Initially, the reduction reaction was studied using Ultraviolet-visible (UV/Vis) 

spectroscopy. Then the reaction was adjusted to obtain uniform and well-dispersed Pt D-NPs, using low-

resolution transmission electron microscopy, dynamic light scattering (DLS) and Fourier transform 

infrared (FT-IR) spectroscopy. In a second work package, were produced four samples of Pt D-NPs 

under selected conditions to explore their catalytic properties. The detailed characterization of these 

samples was carried out, in addition to the techniques mentioned above, also with X-ray diffraction 

(XRD) and high-resolution transmission electron microscopy analysis.  
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4.3.1 Synthetic process adjustment 

Initially, we explored the reduction reaction of Pt(II) mediated with Fe(II) in aqueous solution by 

UV/Vis spectroscopy. After the addition of an iron (II) sulphate solution, it does not observe any changes 

in the characteristics absorption bands of [PtCl4]
2- located at ca. 323, 388 and 472 nm346,347.(Figure 4.1) 

 

 

Figure 4.1: (a) UV/Vis kinetic study of the interaction of K2PtCl4 with FeSO4 ([Pt2+] = 1 mM, molar ratio Pt/Fe 

= 1/4) at 22°C. (b) Extension on the y-axis showing [PtCl4]2- absorption bands. (c) Colour solution at the end of 

the study. 

 

Conversely, in the presence of SC, the production of Pt particles was evident even at room temperature 

(22 °C). Interestingly, we have observed that the process of reduction of Pt(II), and the consequent 

formation of particles in solution, depends not only on the molar ratio of Pt(II)/SC/Fe(II) used, but also, 

on the total concentration of the precursors. (Figures 4.2 and 4.3)  
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Figure 4.2: (a, b) UV/Vis kinetic study of the interaction of K2PtCl4 with FeSO4 in presence of SC ([Pt2+] = 1 

mM, molar ratio Pt/Fe/SC = 1/2/2) at 22°C and (c) colour solution at the end of the study. (d, e)  UV/Vis kinetic 

study of the interaction of K2PtCl4 with FeSO4 in presence of SC ([Pt2+] = 1 mM, molar ratio Pt/Fe/SC = 1/4/4) 

at 22°C and (f) colour solution at the end of the study. 

 

 

Figure 4.3: UV–vis kinetic study of the interaction of K2PtCl4 with FeSO4 in presence of SC ([Pt2+] = 0.25 mM, 
molar ratio Pt/Fe/SC = 1/4/4) at T= 22°C. 
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We have noticed that, using the stoichiometric ratio 1/2/2, the reduction of Pt(II) with the formation of 

particles, seems to be favourable only for concentrations of 1 mM or higher. Otherwise, an excess of    

Fe(II)/SC is necessary to form particles in lower concentrations. (Figure 4.2) For instance, when the   

[Pt(II)] precursor was maintained in 0.5 mM for Pt/SC/Fe = 1/2/2 (Figure 4.4 (a,b)), a steady state was 

observed in which the UV/Vis spectra appeared identical for t ≥ 60 min. This steady state at the end of 

the study showed the absence of exponential features in UV/Vis spectra, that can be associated with the 

formation of structured bands as well as Pt particles348,349. The DLS measurements did not show the 

presence of particles in solution (data not show). When the stoichiometric ratio Pt/SC/Fe was increased 

to 1/4/4, the formation of Pt particles became evident starting from 20 minutes. (Figure 4.4 (d,e)) The 

colour of the solution changed from pale yellow to black at the end of the study. (Figure 4.4 f) 

 

Figure 4.4: (a-c) UV/Vis kinetic study of the interaction of K2PtCl4 with FeSO4 in presence of SC ([Pt2+] = 0.5 

mM, molar ratio Pt/SC/Fe =1/2/2) (a), extension on the y-axis (b) and colour solution at the end of the study (c). 

(d-e) UV/Vis kinetic study of the interaction of K2PtCl4 with FeSO4 in presence of SC ([Pt2+] = 1 mM, molar 

ratio Pt/SC/Fe =1/4/4) (d, e) and colour of the solution at the end of the study (f). 

 

It can be noticed, that after the addition of iron sulphate over Pt(II)/SC solutions, independently of 

leading to effective reduction or not, marked spectral variations were observed between 200-460 nm 
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that evolve towards a red-shift and absorption increases over time. (Figure 4.2 to 4.4) This spectroscopic 

profile seems to be related with the different complex Fe(II)-Citrate formation or them subsequent 

oxidation350,351. To investigate this phenomenon, in our conditions, we have conducted similar 

interaction studies for Fe(II) and citrate interaction, but in the absence of Pt(II). The same spectral 

changes were observed without Pt(II), indicating that the changes observed in the early stages of the 

reaction are associated with complex formation events between Fe(II) and SC. The presence of a 

shoulder centred at ca. 456 nm observed in the interaction studies both in the presence or absence of 

Pt(II) confirm our hypothesis. (Figure 4.5)  

 

Figure 4.5: (a) UV/Vis kinetic study of the interaction of FeSO4 ([Fe2+] = 2mM) upon addition of 1 equivalent of 
sodium citrate. (b) Extension spectra on the y-axis. 

For the case of the interaction of Pt(II) (1 mM) in the stoichiometric ratio of Pt/SC/Fe 1/4/4 (which 

results in a high concentration Pt particles), we proceeded to isolate the supernatant (SN) obtained at the 

end of the study. The UV/Vis spectrum shows a similar profile to that obtained for a solution of 

Fe2(SO4)3 (2 mM) with SC (2 mM). Furthermore, the characteristic shoulder to ca. 456 nm observed for 

the Fe(II)/SC solution was not detected. Besides, the reaction kinetics seems to be strongly affected by 

the reaction temperature, as revealed by the UV/Vis studies. An increase in the complexation kinetics 

between Fe(II) with citrate, as well as in the reduction and formation of particles was observed for slight 

increases of 18 ºC. (Figures 4.4 (d-e) and 4.6). 
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Figure 4.6: UV/Vis spectra of SN of the reaction in Pt/SC/Fe 1/4/4 with [Pt(II)]=1 mM (yellow line) and 

UV/Vis spectra of solution produced mixing FeSO4 or Fe2(SO4)3 in concentrations of 2mM with one equivalent 

of sodium citrate (denoted as Fe(II)-SC and Fe(III)-SC respectively). Colour solutions of SN (b), Fe(II)-SC (c) 

and Fe(III)-SC (d). 

 

To promote a fast reduction of Pt(II), we have selected the molar ratio Pt/SC/Fe = 1/4/4 with the total 

concentration of K2PtCl4 of 1mM at 60 °C to explore the morphology and structure of the metallic 

materials obtained. In a typical experiment, after addition of FeSO4 solution over the Pt2+/SC, a colour 

change from yellow to black in the first 3 minutes of the reaction was observed. The reaction media 

turned to an intense black colour after 10 minutes from the start of the reaction. Transmission electron 

microscopy analysis showed the presence of nanoclusters aggregates in ill-defined form (see Fig. 4.7).  

 

Figure 4.7: Transmission electron microscopy (TEM) images of the sample obtained under the molar ratio Pt 

/Fe/SC = 1/4/4. 
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As expected for the presence of citrate in the SN during the UV/Vis studies discussed above (Figure 

4.6), the citrate molecules seem to remain mostly forming a stable complex with Fe(III). Because of 

this, effective stabilisation of the nanoparticles during the growth could be prevented, resulting in the 

formation of the aggregate material previously commented. An increase in the concentration of citrate 

to 5 mM (Pt/Fe/SC = 1/4/5) did not produce any improvement in the obtained material. (Figure 4.8) 

 

Figure 4.8: TEM images of sample obtained under the molar ratio Pt /Fe/SC = 1/4/5. 

Therefore, under the studied conditions and despite the fact that the reduction of Pt(II) to Pt(0) using 

Fe(II) is a satisfactory process when assisted by citrate, the absence of an additional stabiliser does not 

allow to obtain well-defined Pt NPs under the explored conditions.  

At this point, the water-soluble surfactant Polyvinilpyrrolidone (PVP40k) has been selected because it 

provides control on the formation and deposition rates of metal particles352, and has been widely used in 

synthesis of Pt NPs with catalytic or biomedical properties313,326,327. 

When the reaction was completed in the presence of PVP40k, the size and morphology of the NPs showed 

important changes according to the molar ratio Pt/PVP used during the process (note that PVP 

concentrations have been expressed based on the monomeric unit of PVP). As it can be seen in Figure 

4.9 (a), the low concentrations of PVP explored (Pt/PVP = 1/0.25) did not allow the obtaining of uniform 

NPs. Even so, this material, obtained in the presence of the polymer, showed a tendency to form circular 

aggregates of NPs with porous appearance. Analysis of size and behaviour in solution using DLS 

confirmed the aggregated character of the sample as revealed by the high polydispersity index (PDI) 

and Z-average (0.86 and 1447 nm respectively). (Figure 4.9 (a))  
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Figure 4.9: (a) Low-resolution TEM images of obtained Pt D-NPs in different Pt/PVP molar ratio: 1/0.25, (b) 

1/1 and (c) 1/5 and the corresponding DLS analysis. 

 

Conversely, for the sample obtained under [PVP] 1mM (Pt/PVP 1/1), the DLS analysis showed a lower 

degree of aggregation in solution, as well as a notable decrease in the average size, as evidenced by the 

-average (53.0 nm) and PDI (0.21) obtained for these samples. (Figure 4.9 (b)) Under low-resolution 

TEM analysis, the samples showing the presence of abundant Pt NPs with a shape distribution of 

complete dendritic structure and particles sizes roughly distributed from 15-30 nm. For the highest 

[PVP] explored (Pt/PVP 1/5) the uniformity and dispersion of the nanoparticles obtained was greatly 

improved. (Figure 4.9 (c) and Figure 4.10) 
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Figure 4.10: TEM images of sample obtained under the molar ratio Pt /Fe/SC/PVP = 1/4/4/5. 

 

Aside from the increase in uniformity and well-dispersed character, the samples obtained in higher 

[PVP] seem to present open branched structure. Contrary, with 1mM of PVP, apparently the NPs 

presented a more compact structure. (Figure 4.9) Similar results about the optimal Pt/PVP molar ratio 

during the synthesis and stabilisation of Pt nanoflowers were reported by J. Yin et al. The authors 

produced monodisperse and strikingly uniform Pt nanoflowers in an iodine mediated synthesis using a 

polyol process (at 160 ºC). They have reported as optimal stoichiometric ratios of Pt/PVP between 1/2 

and 1/10158. 

To further illustrate the essential role of PVP in the proposed approach, one reaction was performed by 

replacing PVP40k with PSS70k. The insufficient stabilisation given by the sulfonate subunits of PSS 

during the growth of the Pt D-NPs, seems to prevent the production of well-defined Pt D-NPs. Even so, 

the synthesis in the presence of PSS yields an ill-defined aggregate material but with an apparently 

porous structure. (Figure 4.11) 

 

Figure 4.11: TEM images of sample obtained under the molar ratio Pt /Fe/SC/PSS = 1/4/4/5. 
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The effect of temperature on the final structure and morphology of Pt D-NPs was also investigated. We 

selected molar ratio Pt/PVP = 1/1 to produce a sample under boiling condition. (Figure 4.12 and Figure 

4.13) 

 

Figure 4.12: (a-c) Low-resolution TEM images of obtained Pt D-NPs obtained under molar relation Pt/PVP = 

1/1 at 60 °C and (d-f) under boiling condition. 

 

Figure 4.13: TEM images (a, b and c) and histogram (d) of sample obtained under molar ratio Pt/Fe/SC/PVP = 

1/4/4/1 and under boiling condition. 
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It should be noticed that, under these conditions, well-dispersed Pt D-NPs of small dimensions (13.3± 

2.9 nm) were obtained. More importantly, a more open branched structure was detected. This 

temperature-dependent particle sizes in our synthesis seems to indicate a faster reduction in early 

reaction stage under a higher temperature, favouring nucleation formation against growth. Our 

observations are in agreement with the recent studies reported by Y. Xia and co-workers. The authors 

report about the careful investigations related with how Pt(II) is reduced during the synthesis of Pt 

dendrimer nanoparticles using AA as reducers in presence of PVP at different temperatures (22-100 ºC). 

Furthermore, similarly with Y. Xia work, we believe that in our process the growth of Pt D-NPs should 

not be related to the random aggregation of small crystals of Pt, otherwise, the synthesis under higher 

temperature conditions should produce larger sized nanocrystals, once a more significant number of Pt 

nanocrystals with smaller size, should be produced in the nucleation stage353. Note that in the present 

process, the reduction of Pt(II), and subsequent Pt particles, as highlighted in the UV/Vis studies, was 

favourable even at room temperature at reduced time lapses. This fact makes it difficult to perform a 

reliable ex-situ analysis of the materials obtained during their evolution applying common electron 

microscopy techniques. Currently, additional investigations are being conducted to explore this 

mechanism in more detail. 

In order to understand in more detail the chemical structure and behaviour of the obtained Pt D-NPs, we 

have selected the sample obtained under Pt/PVP 1/5, which presents an increased structural definition 

and dispersion, to complete a more careful chemical characterization. As can be seen in Figure 4.10 and 

Figure 4.14 (a, b and d), under low-resolution TEM analysis, ≈100% of the NPs presented a well-

defined dendritic structure with an average size of 15.3±2.9 nm. Analysis of the colloidal behaviour in 

solution using dynamic light scattering (DLS) revealed a well-dispersed character with PDI of 0.17 and 

-average of 35.35 nm. (Figure 4.9(c)) To investigate the chemical surface composition of the obtained 

Pt D-NPs, Fourier Transform Infra-Red (FT-IR) spectroscopy analysis was performed. As can be 

noticed in Figure 4.14, the FT-IR spectra showed clearly the vibrational modes of C=O, C-N and CH2 

groups, that are attributed to the pyrrolidone ring of the PVP structure. (Figure 4.14(e-f) and Figure 

4.15) 
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Figure 4.14: (a,b) Low-resolution TEM images, (c) colour solution, (d) histogram and (e and f) FT-IR study of 

sample obtained under Pt/PVP = 1/5. 
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Figure 4.15: FT-IR spectrum obtained for pure PVP (dotted line, Y axis left) and Pt D-NPs (sample obtained 

under relation Pt/PVP 1/5) (black line, Y axis right) in KBr disk. Complete spectra between 3100-400 cm-1 and 

different spectrum extensions. The table show different peaks detected with their corresponding assignments. 

Assignments of the signals have been based on previously detailed works on FT-IR analysis of, pure PVP and 
PVP/Pt nanocrystals 354,355,356. 
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4.3.2 Synthesis and characterization of samples for catalysis studies 

Based on the analysis of structural changes produced by the different Pt/PVP molar ratio during the 

synthesis, we have selected 1/5 as the more suitable condition to obtain homogeneous and well-dispersed 

Pt D-NPs. Under these very same synthetic conditions, we have obtained the sample PtCat-1 with the 

aims of: first, to explore the catalytic properties, and second, to analyse the reproducibility of the process. 

As a comparative sample obtained in a lower Pt/PVP ratio, we obtained PtCat-2 under the ratio 1/1. In 

this way, we intended to analyse if the homogeneity and well-dispersed character of the NPs, and/or the 

[PVP] used during the synthesis can affect the catalytic properties of the obtained Pt D-NPs. 

Additionally, to further investigate the effect produced in response to the increasing of precursor 

concentration during the synthesis of Pt D-NPs obtained in ratio Pt/PVP 1/5, we produced the samples 

PtCat-3 and PtCat-4 with a total increase in the reagents concentration of 5-fold and 10-fold, 

respectively. 

Firstly, we have noticed an excellent reproducibility in the size and structure of the Pt D-NPs obtained 

for the samples PtCat-1 and PtCat-2. As an example, PtCat-1 shows an average size of 16.0 nm, very 

close to the 15.3 nm obtained for the previous sample Pt/PVP 1/5. The behaviour in solution was also 

similar, as evidenced by the -average and PDI values obtained. (Figure 4.16) 
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Figure 4.16: TEM images of Pt/PVP 1/5 (a) and PtCat-1 (b). DLS comparative analysis Pt/PVP 1/5 vs PtCat-1 
samples, distribution by number (c) and by volume (d). 

 

High-resolution TEM image indicates that single Pt D-NPs is an entire structure with its branches 

extending in random directions, (Figure 4.17) with a more open branched nanostructure for highest 

[PVP] used, PtCat-1 (Pt/PVP 1/5). (Figure 4.18)   
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Figure 4.17: HRTEM images at different magnification of (a-b) PtCat-1, (c-d) PtCat-3 and (e-f) PtCat-4 

synthesised with [K2PtCl4] 1, 5 and 10 mM respectively. 

 

 

Figure 4.18: HR- TEM images at different magnification (a, b) and histogram (c) obtained for PtCat-1. 
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Secondly, we observed that the increase in the concentration of metal precursor during the synthesis, 

derived in an increase of the average size of Pt D-NPs moving from 16.0 ± 2.8 nm (for 1 mM) to 17.5 

± 2.4 nm and 20.1± 3.0 for 5 and 10 mM respectively. More important, as can be seen in Figures 4.16, 

4.17, 4.18 and 4.19, high platinum precursor concentration promotes the obtainment of more branched 

and compact dendrimer structure.  

 

Figure 4.19: HR- TEM images at different magnification and histogram obtained for PtCat-3 (a-c), PtCat-4 (d-

f). 

 

The increase in precursor concentration is expected to favour the growth rate as a consequence of a 

higher monomers (growth species) concentration in solution, which are added more quickly than their 

subsequent surface diffusion158,353,354,355,357,358. High-concentration reactions in Pt NPs have shown grow, 

at much higher rates than low-concentration, under a kinetically controlled regime, leading to branched 

structures358. Similar structural dependences with metallic precursor were reported for the synthesis of 

Pt hierarchical nanostructures such as nanoflowers158 or nanodendrimers328,337,359,360. 

HRTEM analysis at higher magnification were obtained to investigate the crystal structure in more 

detail. (Figures 4.20 to 4.23) We detected regular lattice fringes in HRTEM images with a regular inter-

planar spacing of 0.225 nm, that is close to the inter-planar distance of the (111) Pt planes reported in 

the literature313,329. Apparently, domains with different crystallographic orientation are present within 

same NPs, those points to a polycrystalline character for the obtained NPs.  
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Figure 4.20: (a) HRTEM images at higher magnification, (b) representative lattice fringe under higher 

magnification and (c) determination of the inter-planar distance using plot profile. 

 

 

Figure 4.21: HRTEM images at higher magnification (a), and the corresponding FFT showing spots assigned to 

Pt (111) (marked as red), Pt (200) (marked as green) and Pt (022) (marked as yellow) (b). c and e shows two 

crystalline sections (marked with white box in a) and their corresponding FFT (d and f respectively) of sample 

PtCat-2. 
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Figure 4.22 HRTEM images at higher magnification (a), and the corresponding FFT showing spots assigned to 

Pt (111) (marked as red), Pt (200) (marked as green) and Pt (022) (marked as yellow) (b). c and d show two 

crystalline sections (marked with white box in a) and their corresponding FFT (d and f respectively) of sample 

PtCat-4. 

The FFT confirms the polycrystalline nature of Pt D-NPs (Figure 4.23). Also, after acquiring the FFT 

of the HRTEM images, we have obtained the spots at 0.22 nm, 0.19 nm, and 0.14 nm corresponding 

with the presence of the (111), (200) and (022) crystalline planes of Pt respectively329, confirming the 

metallic character of our catalyst. 

 

Figure 4.23: (a) HRTEM images at higher magnification and (b) the corresponding FFT showing spots assigned 

to Pt (111) (marked as red), Pt (200) (marked as green) and Pt (022) (marked as yellow). (c) and (e) shows two 
crystalline sections (marked with white box in a) and their corresponding FFT with the assignment of the bright 

spots (d and f respectively). 

 

The analysis of XRD showed the same pattern in all cases. As can be seen in Figure 4.24, only the 

signal at 39.8° assigned to crystalline Pt (111)329 was clearly detected. 
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Figure 4.24: XRD spectra of PtCat-3 (a) and PtCat-4 (b) showing clearly the peaks at 39.8° corresponding with 

Pt (111) crystals planes. 

 

Based on previously reported literature related to the interactions between Fe(III) ions and PVP361, we 

washed with an EDTA solution the Pt D-NPs applied, before the successive washings with water.  

We noticed that the samples purified previously with EDTA, showed a little decrease of the -potential 

towards more negative values. (Figure 4.25) 

 

Figure 4.25: Graphic representation of -potential analysis obtained for PtCat-3 purified only with water 
(denoted as PtCat-3_Water) or with EDTA and water process (denoted as PtCat-3_EDTA). 
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On the other hand, according to the transmission electron microscopy analysis, there were no structural 

morphology changes in the particles neither in their colloidal dispersion. (Figure 4.15)  Likewise, the 

chemical composition on the surface of the NPs did not suffer modifications as revealed by the FT-IR 

analysis. (Figure 4.26) 

 

 

Figure 4.26: FT-IR spectrum obtained for pure PVP (black line, Y axis left) and PtCat-3 (sample purified only 

with water (blue line, Y axis right) or EDTA and water (red line, Y axis right) (black line, Y axis right) in KBr 

disk. Complete spectra between 3100-400 cm-1 and different spectrum extensions. The table show the different 

peaks detected. Assignments of the signals is showed in Figure 4.15. 
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Despite of EDTA purification process applied, ICP-MS analysis of different Pt D-NPs samples used in 

catalysis, a remanent Fe (%w) around 0.5 % was detected in all cases (concerning the total metallic 

mass). 

4.3.3 Catalytic applications 

First, the catalytic application of the Pt D-NPs was evaluated in the reduction of p-nitrophenol (pNP) to 

p-aminophenol (pAP) in aqueous media at room temperature. (Figure 4.27)  

 

Figure 4.27: Scheme of the reduction of pNP to pAP. 

 

All Pt D-NPs, specially PtCat-3 and PtCat-4, proved to be excellent catalysts in the reduction process, 

being able to reduce the totality of 5 mM (695 mg/L) of pNP to pAP in 90 seconds. (Figure 4.28) 
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Figure 4.28: Time-dependent absorption spectra of the metal-catalysed reduction of 5 mM pNP in the presence 

of different Pt D-NPs and NaBH4: a) PtCat-1 (60.6 µg Pt); b) PtCat-2 (89 µg Pt); c) PtCat-3 (71.8 µg Pt); D) 

PtCat-4 (75 µg Pt). 

 

pNP is found as a contaminant of industrial effluents, soil and groundwater. It has been classified as a 

priority pollutant by the United States Environmental Protection Agency (US EPA), which recommends 

restricting pNP concentrations in natural waters. US EPA has established 1 μg/L as the Maximum 

Contaminant Level (MCL) for phenols in drinking water. 

One important parameter for comparing the catalytic activity of the different Pt D-NPs is the turnover 

frequency (TOF) value. The produced pAP moles were calculated using the absorbance values. 

Afterwards, the turnover number (TON, Equation 4.1) and the turnover frequency (TOF, Equation 

4.2) were calculated as follow: 

TON =  
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑝𝐴𝑃 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑚𝑚𝑜𝑙)

𝑃𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑚𝑚𝑜𝑙)
 (4.1)           TOF (𝑚𝑖𝑛−1) =

𝑇𝑂𝑁

𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)
   (4.2) 

 

In order to calculate the TON, the added Pt amounts was considered. A very diluted amount of catalysts 

was used for the reductive reaction and, adjusting the Pt amount of each catalyst, their catalytic profiles 

were determined (Figure 4.29). 
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Figure 4.29: a) Catalytic activity of Pt D-NPs represented as the ratio of the produced pAP mmol per milligram 

of added Pt. b) Turnover frequency (TOF; min-1) of Pt D-NPs. 

 

According to the profiles, PtCat-3 is the most efficient catalyst (Figure 4.28), being able to reduce pNP 

at a higher rate per milligram of Pt, which translates into a TOF value of 253 min-1.(Figure 4.29(b)) To 

the best of our knowledge, this is the highest value of Pt catalyst for this reaction and 1.5 times higher 

than the best value for a palladium catalyst described in literature362. PtCat-1 and PtCat-4 also showed 

a similar TOF value. (Figure 4.29(b))  

Our results showed that the worst catalytic performance obtained was for the sample produced in the 

lower concentration of PVP (PtCat-2). In this sense, it can be noted that the average size and final 

dispersion of the NPs greatly influence the catalytic capabilities of nanodendrimers of Pt. On the other 

hand, between the catalysts, PtCat-1, PtCat-3 and PtCat-4, those obtained in higher Pt precursor 

concentration showed a clear improved catalytic performance, despite being in a similar size range 

(between 15-20 nm). We attribute these observations to the most significant number of branches by 

nanoparticles detected by TEM/HRTEM analysis for PtCat-3 and PtCat-4 when compared with PtCat-

1. This increased number of branches, should lead to a greater number of available sites for catalysis 

reactions. 
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4.3.3.1 Temperature stability 

The stability of the Pt D-NPs at different temperatures was studied. The four catalysts (PtCat-1 to      

PtCat-4) were incubated directly at 40, 60, 80 and 100 ºC. (Figure 4.30(a)) 

 

Figure 4.30: Thermostability at different T. b) Thermostability of the PtCat-4 in 50 % DMSO. 

 

The stability was evaluated considering their activity in the reduction of pNP, taking the catalytic value 

of each catalyst at 25 ºC as 100% activity. pNP activity was evaluated at different times. In all cases, 

the four Pt nanodendrimers were completely stable and maintained more than 95% catalytic activity 

after 24 h incubation at 40 and 60 ºC. (Figure 4.30(a)) At 80 ºC, the catalysts were fully stable after 6 h 

of incubation and at 100 ºC after 4 h. In these two cases, the high value of T caused solvent evaporation, 

which prevented from acquiring further measurements. Also, stability of PtCat-4 in the presence of 50% 

DMSO as co-solvent was evaluated. (Figure 4.30(b)) The catalyst was stable at 60 ºC, but at 100ºC only 

50 % of the activity was conserved after 1 h incubation. 

4.3.3.2 Substrate concentration 

In order to evaluate the catalyst suitability, PtCat-3 reductive activity was evaluated at different 

concentrations of pNP. (Figure 4.31) Using only 10 µL of PtCat-3 solution (28.72 µg of Pt) a full 

conversion was obtained even at high substrate concentrations. In 25 min, PtCat-3 catalyst was able to 
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complete the reduction of 20 mM pNP (2780 ppm). Plotting pNP concentration versus time, a linear 

tendency was observed. (Figure 4.31) These results illustrate this catalyst ability to degrade this 

pollutant, even at high concentrations. 

 

 

Figure 4.31: pNP concentration versus time using PtCat-3 as catalyst. Time value shown is the required to 

complete the reduction of substrate. 

 

4.3.3.3 Application of the Pt D-NPs as an artificial metalloenzyme with catechol oxidase-

like activity 

Another exciting application of metal conjugate is mimicking biological catalytic activities, such as 

oxidases mimicry-for example, polyphenol oxidases, tyrosinases or catechol oxidases. Mushroom 

(Agaricus bisporus) tyrosinase can catalyze: (i) the o-hydroxylation of monophenols to o-diphenols as 

well as (ii) the oxidation of o-diphenols to produce o-quinones. In contrast, and by definition, catechol 

oxidase can only catalyze the oxidation of o-diphenols to their corresponding o-quinones. Here, catechol 

oxidase-like activity of the different Pt D-NPs was evaluated. Using L-DOPA as substrate this catechol 

oxidase activity was determined at two different pHs.  At pH 7, PtCat-3 and PtCat-4 showed the highest 

catechol oxidase activity, with around 10000 U/mg, 2 times higher than the activity achieved by       

PtCat-1 and PtCat-2 and only 5 times less active than A. bisporus tyrosinase (Table 4-1). 
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Table 4-1: Oxidation of L-DOPA catalysed by the different PVP/Pt nanodendrimers. 

 

Entry Sample Buffer (pH) 
a 

ΔAbs/min U 
b 

U/mg 
c 

1 PtCat-1 Na3PO4 (7) 0.0247 (15 µL) 12.35 2717.27 

2 PtCat-1 NaOAc (4) 0 (15 µL) 0 0 

3 PtCat-2 Na3PO4 (7) 0.0314 (15 µL) 15.7 2352.06 

4 PtCat-2 NaOAc (4) 0.0027 (15 µL) 1.35 202.25 

5 PtCat-3 Na3PO4 (7) 0.2104 (15 µL) 105.2 5049.19 

6 PtCat-3 NaOAc (4) 0.0461 (15 µL) 23.05 1106.31 

7 PtCat-4 Na3PO4 (7) 0.211 (15 µL) 105.5 4897.86 

8 PtCat-4 NaOAc (4) 0.021 (15 µL) 10.8 501.4 

9 Tyrosinase Na3PO4 (7) 0.1237 (10 µL) 61.85 50284.55 

10 Tyrosinase NaOAc (4) 0.0017 (10 µL) 0.85 691.06 

 

a Condition: 1 mM L-DOPA in 2 mL of 100 mM Na3PO4 at pH 7 or NaAcO at pH 4. bActivity Unit (U) was 

defined as the amount of enzyme/catalyst causing an increase in absorbance of 0.001/min at 25°C. Specific 

activity (U/mg) was calculated dividing the Units obtained in the reaction by the amount of either enzyme or 

platinum in mg. Added Pt amounts (mg) were: PtCat-1 0.00909, PtCat-2  0.01335, PtCat-3  0.04167, PtCat-4  

0.04308. Added tyrosinase amounts (mg) were:  0.00246 mg. 

 

Interestingly, activity seemed extremely affected by pH. On that subject, at acidic pH (pH 4) all the 

catalysts showed lower activities compared to pH 7 (Table 4-1). At pH 4, PtCat-3 showed the highest 

activity, two-fold higher than the one of PtCat-4, 5 times more than PtCat-2 and PtCat-1 was utterly 

inactive at this pH. Tyrosinase showed a substantial decrease of activity at this pH, becoming less active 

than PtCat-3 or PtCat-4 Pt D-NPs.  

In order to evaluate in more detail, the pH effect, catechol oxidase activity of PtCat-4 and tyrosinase 

were tested at different pHs. (Figure 4.31) 
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Figure 4.32: (a) Catechol oxidase activity assay of PtCat-4 catalyst and mushroom tyrosinase under 100 mM 

Na3PO4 at pH 8 to 6 or (b) NaOAc at pH 5 to 4 buffer and 1 mM of L-DOPA. 

 

The highest activity of the tyrosinase was reached at pH 7, whereas for PtCat-4 the highest value was 

either pH 7 or 8 (it showed the same activity at both pHs). Decreasing the pH resulted in a consequent 

loss in activity for both tyrosinase and PtCat-4. The highest decrease was observed at pH 5 in both cases, 

being more accused in the enzyme. (Figure 4.32) Therefore, this seems to demonstrate that Pt D-NPs 

catalysts could be excellent candidates as catechol oxidase mimics at acidic pHs.  

Another critical point for the application of enzyme as catalyst, is the effect of substrate saturation. 

Concerning this, tyrosinase and PtCat-4 activities were evaluated against different L-DOPA 

concentrations in sodium phosphate buffer pH 7. (Figure 4.33) Tyrosinase activity was affected by 

substrate concentration, shown by the clear saturation of the active site observed at 0.25 mM 

concentration of L-DOPA. However, the enzymatic activity still increased at higher concentrations (up 
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to 5 mM). In contrast, PtCat-4 was rapidly saturated and the activity resulted in almost the same from 

0.25 to 5 mM of L-DOPA. 

 

Figure 4.33: Catechol oxidase activity assay of the PtCat-4 catalyst and mushroom tyrosinase under 100 mM 

Na3PO4 at pH 7 and concentrations of L-DOPA from 5 to 0.25 mM. Pt amount was 0.02872 mg/mL and 

tyrosinase was 0.00246 mg/mL. 

4.4 Conclusions 

We have developed a new synthetic process to obtain Pt dendrimer nanoparticles (Pt D-NPs), based on 

the application of FeSO4 in the presence of citrate as the principal reducing agent. This one-pot, aqueous 

based solution synthesis at relatively low temperature (60 ºC) and using PVP40k as a surfactant, allows 

obtaining polycrystalline well-dispersed Pt D-NPs with sizes between 13 to 20 nm. The molar ratio 

Pt/PVP = 1/5 with the initial concentration of metal precursor (K2PtCl4) between 5 and 10 mM are the 

best conditions to obtain denser branched and quasi-spherical Pt D-NPs. The different dendrimers 

showed excellent catalytic properties in two different processes: reduction, and oxidation reactions. 

Furthermore, all of them were quite stable even at very high Tª (80 °C, or 100 °C). The results obtained 

in the reduction of p-nitrophenol, an organic pollutant, for PtCat-3 catalyst turned out to be most 

effective catalyst displaying the highest TOF value described in literature for a Pt catalyst in this 

reaction, being able to remove up to 2780 ppm of pNP in 20 min using only 10 microliters of catalyst, 

which contains 28.72 µg of Pt. Also, these Pt D-NPs exhibited catechol oxidase-like activity, showing 

around 5000 U/mg at pH 7. These Pt D-NPs were even more active than tyrosinase from A. bisporus at 

pH 4. Finally, we have observed that the optimum Pt D-NPs size to maximize the catalytic activity was 

found in the PtCat-3 sample around 17.5 nm.
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5.1 Introduction  

Since the pioneering works on the synthesis of gold nanorods (AuNRs) using a wet chemistry 

approach,78,363 a growing interest has been awakened in this fascinating nanostructures, mainly due to 

the intriguing optoelectronic properties that arise from this anisotropic nano-shape.364  

AuNRs exhibit localised surface plasmon resonance which occurs from the interaction of an 

electromagnetic field with the free electrons confined in the gold metal nanostructure.61,61 But, contrary 

to isotropic nanostructures, such as spheres which have a unique local surface plasmon resonance 

(LSPR) mode, in AuNRs, two LSPR modes are presents: transversal (LSPRtrans) and longitudinal 

LSPRlong, associated with the collective oscillations of the conduction free electrons in the transverse 

and longitudinal directions of the gold rod respectively.365 The LSPRtrans can be tuned in an 

electromagnetic range coincident with the biological tissue transparency window (650-900 nm). 

Furthermore, the plasmon energy of LSPRtrans is strongly linked with the aspect ratio (AR) of AuNRs - 

unlike gold spheres, which have similar plasmon energy across 4-200 nm in diameter.364 As a 

consequence, after coherent photo-excitation of surface plasmons, the efficient conversion in localised 

heat increments seem to be more pronounced for the case of AuNRs.366,367  

Based on these properties, AuNRs are being widely explored in applications with several biochemical 

applications. For instance, AuNRs can act as photothermal therapy (PTT) agents.186,368,369 After coherent 

excitation of AuNRs, hyperthermia process is produced, in which the biological media is exposed to 

temperatures ranging from 41 to 47 ºC, to produce strong damage into the cancer cells.186,368,369  

Recently, also has been reported AuNRs as photodynamic therapy (PDT) agents, due to the generation 

of reactive oxygen species (ROS), especially singlet oxygen (1O2), directly by the metal surface.370  

One of the main drawbacks in the direct use of AuNRs is the apparent cytotoxicity of the 

cetyltrimethylammonium bromide (CTAB)371,372,373. Also, the stability in biological media plays an 

important role, being prone to aggregation without additional stabiliser. In this regard, to decrease the 

toxicity and increase the stability in biological media, a variety of organic (polymers,374,375 thiols 

terminated derivatives,376 biomolecules376 etc.) or inorganic (amorphous377 or mesoporous378 silica) 

stabilisers have been explored.  

Among the different coatings aforementioned, mesoporous silica offers a series of advantages. With the 

replacement of the CTAB bilayer by a SiO2 coating, cytotoxicity and the non-specific interactions 

should be reduced, as well as showing improved stability in biological media. Furthermore, mesoporous 

silica coating offers additional advantages, namely: high pore volume, high surface area, variable size 

or biocompatibility, among many others.97,379,380,381  
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Furthermore, the presence of pores in the nanostructured silica layer offers the possibility to load with 

molecular cargo for drug delivery approach. 379,380,382,383,384  

It has been demonstrated, therefore, the broad range of application that these nanostructures can have in 

different nano-medical strategies, which make AuNRs@Simes a convenient system for new biomedical 

applications. 

Despite the numerous works in this line, the investigation about the applications of these hybrid 

nanostructures as antibacterial agents remains limited to organic coating.171,385,386,387,388 It should be 

mentioned that relative to inorganic coatings, the application of metallic silver layers over AuNRs has 

shown interesting antimicrobial properties,389 but to the best of our knowledge, a limited amount of 

research has been done to explore the application of AuNRs@Simes nanostructures in antibacterial 

applications390,391 

To avoid the molecular cargo diffusion and possible degradation of the system in a water environment, 

and at the same time, to preserve the properties of the new nanomaterials, the lyophilisation in the 

presence of trehalose has been chosen as an excellent technique to improve the long-term stability.  In 

this regard, the lyophilisation process presents a series of advantages over other dehydration techniques. 

The low temperature and high vacuum at which it operates limit thermal degradation or oxidation 

phenomena in the product. Also, the high porosity of the final product allows easy reconstitution of the 

sample with a simple addition of a specific solvent without the need for external energy inputs (e.g. 

ultrasound or thermal irradiation).392 A large number of different nanomaterials have been successfully 

subjected to lyophilisation processes in specific conditions, without significant alteration of their 

intrinsic properties. Nanostructures such as polymeric NPs393, mesoporous silica NPs394 or even organic 

coating metal NPs like spherical gold nanoparticles395 or AuNRs396 have been reported, but less attention 

has been focused on AuNRs@Simes.  

In the present work, we present the synthesis of AuNRs coated with mesoporous silica in two different 

silica thickness. Conjugation of AuNRs@Simes with the well-known drugs, Doxorubicin (DOX) and 

Methylene Blue (MB) for their application as an anticancer and antibacterial agent. The lyophilisation 

of these conjugated nanosystems was explored using trehalose as a cryogenic protector. 
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5.2 Experimental Section 

5.2.1 Materials 

Hexadecyltrimethylammonium bromide (CTAB), Methylene Blue, Sodium Borohydride (NaBH4), D-

(+)-Trehalose Dyhydrate and Tetraethyl orthosilicate (TEOS) were purchased from Sigma-Aldrich 

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4 x 3H2O) and Silver Nitrate (AgNO3) were 

purchased from Alfa Aesar. L(+)-Ascorbic Acid was purchased from Panreac. Doxorubicin 

Hydrochloride Salt was purchased from LC Labs. All reagents were used without further purification. 

Water was ultra-pure grade (type I) obtained with a Milli-Q Simplicity system 

5.2.2 Synthesis of gold nanorods 

AuNRs were synthesised according to a previously reported seed-mediated silver ion-assisted 

methodology, using CTAB as a template, with some minor modifications.397 Briefly, CTAB solution 

(10 mL, 0.1M) was mixed with HAuCl4 (50 µL, 0.05M) in a water bath at 30°C. Then, an ice-cold, 

freshly prepared solution of NaBH4 (0.6 mL, 0.01M) was rapidly injected. The brownish-yellow seed 

solution was stirred during 30 seconds and left undisturbed at 30 °C. The seed solution was used within 

2~5 hours. The growth solution consisted of a mixture of CTAB (80 mL, 0.1M), HAuCl4 (4 mL, 0.01M), 

AgNO3 (360µL, 0.01M), H2SO4 (1.6 mL, 0.5M) and ascorbic acid (640 µL, 0.1M). Growth was initiated 

after the addition of 192 µL of seeds solution, and the temperature of the reaction growth medium was 

kept at 30°C during the whole process. Two different reactions, RA and RB, were prepared with the 

same methodology. After 3 hours, both reactions were centrifuged 3 times (7000 rpm x15 min.). The 

pellets were re-dispersed in 50 and 100 mL of CTAB 1 mM respectively.  

5.2.3 Silica coating of gold nanorods  

The mesoporous silica coating process was carried out applying a modified Stöber methodology 

reported by Tracy and coworkers397 with some modifications. The different silica thicknesses were 

produced trough change in starting concentration of AuNRs@CTAB and silica precursor. 

5.2.3.1 Preparation of AuNRs_RA@Simes 

To 50 mL of RA ([Au0] = 0.76mM) in a round bottom flask, NaOH 0.1M in deionised water was added 

to obtain a pH between 10.5-11. After 15 minutes of gently agitation, 300 µL of 20 % v/v TEOS in 
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methanol were injected during a period of 6 minutes (50 µL each minute). The AuNRs were gently 

stirred for 30 minutes, and kept undisturbed during 20 hours at RT. 

5.2.3.2 Preparation of AuNRs_RB@Simes 

To 50 mL of RB ([Au0] = 0.38mM) in a round bottom flask, NaOH 0.1M in deionised water was added 

to obtain a pH between 10.5-11. After 15 minutes of gently agitation, 360 µL of 20 % v/v TEOS in 

methanol were injected during a period of 6 minutes (60 µL each minute). The AuNRs was gently 

stirring for 30 minutes, and kept undisturbed during 20 hours at RT.  

 

After 20 hours, both reactions were centrifuged (7000 rpm x12 min), and the pellets dispersed in MeOH. 

Then, the samples were centrifuged several times in MeOH at 6000 rpm for 12 min, and finally re-

dispersed in 20 and 10 mL of MeOH for AuNRs_RA@Simes and AuNRs_RB@Simes respectively.  

5.2.4 Drug Loading 

Before the incubation, the AuNRs@Simes were washed extensively in water through centrifugation at 

7000 rpm for 12 min, to remove all MeOH. Finally the samples were dispersed in 20 or 10 mL of MilliQ 

(MQ) water for AuNRs_RA@Simes and AuNRs_RB@Simes respectively. 

AuNRs_RA@Simes were loaded with Doxorubicin (DOX), while AuNRs_RB@Simes were loaded with 

Methylene Blue (MB). The procedure is identical for the two compounds.  

To one milliliter of AuNRs@Simes was added 1 mL with 0.1 mg of the different drugs prior to the 

immersion in a ultrasonic water bath of 35 KHz in agitation during one min. They were let 10 minutes 

undisturbed and centrifuged at 7000 rpm x 15 min, adding MQ water to the pellets, until the supernatant 

became clear. The AuNRs@Simes-Drugs were brought to a final volume of 1 mL in MQ water. All the 

supernatants were collected, and the entrapment efficiency of each drug was determined from the 

relation:  

%𝐸𝑛𝑡𝑟𝑎𝑝𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦:
𝐷𝑟𝑢𝑔 𝑎𝑑𝑑𝑒𝑑 − 𝐹𝑟𝑒𝑒"𝑢𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑑𝑟𝑢𝑔"

𝐷𝑟𝑢𝑔 𝑎𝑑𝑑𝑒𝑑
 𝑥 100 

5.2.5 Freeze Drying of AuNRs@Simes-Drug 

To the system of AuNRs@Simes-Drugs, was added a solution of 1 mL with 30 mM of Trehalose, leading 

to a final volume of 2 mL, before to inmerse in liquid nitrogen during 5 minutes. The samples were 
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lyophilised and a blue powder was obtained. Empty AuNRs_RA@Simes and AuNRs_RB@Simes were 

treated equally but without the addition of the drugs. 

5.2.6 Cell cytotoxicity assay 

Cells were seeded into a 96-well plate at a cell density of 3.0 × 103 cell/well and incubated for 24 h 

before the addition of the nanorods in concentrations ranging from 0 to 200 μg/ml. The growth inhibitory 

effect was measured after 72 h treatment by the PrestoBlue assay. Briefly, 10 μL of PrestoBlue 

(resazurin-based solution) were added to each well. After 2 h incubation (37 ºC, 5 % CO2, 98% 

humidity), the fluorescence formed was quantified by a fluorescent multilabel plate reader (Victor3, 

PerkinElmer) exciting at 531 nm and recording at 572 nm wavelength. Cell cytotoxicity was evaluated 

in terms of cell-growth inhibition in treated cultures and expressed as % of the control conditions. Each 

experiment was repeated at least three times, and each concentration tested in at least three replicates. 

5.2.7 In vitro photothermal assay 

Human Breast Adenocarcinoma cells line (MCF7) were cultured in DMEM/F-12 containing 10 % fetal 

bovine serum at 37 °C under 5 % CO2. MCF7 cells were seeded at 10,000 cells per well in 96-well plates 

for 24 hours to allow cell attachment. Next, cells were treated with doxorubicin-loaded nanorods at 

concentrations of 200 µg/ml and 500 µg/ml. After 16 hours incubation at 37 °C, the growth medium 

was removed, and the cells were washed with PBS and exposed to a continuous red-light laser at 650 

nm (33.33 W/cm2) for 30 minutes. After incubation for 72 hours at 37 °C, cell viability was determined. 

Cells exposed to the red light laser but unexposed to the nanorods were regarded as controls.  

5.2.8 Antibacterial activity 

Antimicrobial activity was assayed against Escherichia coli ATCC8739 (Gram-negative bacteria) and 

Staphylococcus aureus ATCC6538 (Gram-positive bacteria). Glycerol stock cultures stored at −80 ºC 

were inoculated in Tryptic Soy Agar (TSA) (Biokar, Allone, France) and incubated overnight at                    

35 ± 2 ºC. Subsequently, isolated colonies were transferred to 0.85 % NaCl solution and the turbidity of 

the suspension was adjusted to 0.5 on the McFarland scale (Mc-Farland densitometer, Model Den-1B, 

Grant Instruments, England), corresponding to 1 to 2 x 108 CFU/mL (CLSI, 2012). 

Samples (AuNRS_RB@Simes, and AuNRS_RB@Simes-MB), were dissolved in double-distilled water (2 

mg/mL). MB solutions were also prepared in double-distilled water, at a concentration similar to that 
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found in samples, namely 0.02 mg/mL for MB. All solutions were prepared and handled under light-

restricted conditions. 

The antibacterial assays were performed according to the procedure described by Pérez-Laguna et al.398 

with little modifications. Briefly, the bacterial suspensions (0.5 McFarland) were deposited in 96-well 

microplates and mixed with the same volume of the different samples under study (AuNRS_RB@Simes, 

AuNRS_RB@Simes-MB and MB) or, in the case of the control, with double-distilled water. Microplates 

were prepared in duplicate being one of them kept in the dark and the other irradiated with a red laser 

(JD-850, max output power  200 mW, wavelength 650 nm ± 10), at a distance of 2.5 cm from the top of 

each well, during 4 min. Then, irradiated and non-irradiated bacterial suspensions were diluted in 0.85% 

NaCl (from 10-1 to 10-5), cultured on TSA and incubated overnight at 35 ± 2 ºC. Viable bacteria, colony-

forming unit (CFU), were determined by colony counting in TSA plates containing between 30 and 300 

colonies. All experiments were carried out at least three times. 

5.2.9 Statistics in bacterial samples 

As the assumptions of normality and homogeneity of variance (Cochran, Hartley and Bartlett tests) were 

verified, one-way analysis of variance (ANOVA) followed by Tukey’s test were used to identify 

significant differences between results. Statistical analyses were tested at 0.05 level of probability with 

the software STATISTICA™ 7.0 (StatSoft).  

5.3 Results and discussion 

5.3.1 Synthesis of gold nanorods 

The present work has been focused on the synthesis and application of hybrid nanomaterials 

based on AuNRs and mesoporous silica for cellular or bactericidal applications. It was stated out that 

the amount of heat that a plasmon nanoparticle can produce increase as nanoparticle size is 

decreased.229,399 Additionally, smaller sized NPs should offer better cell uptake when compared with the 

bigger ones229,400  

Based on these considerations, first, gold nanorods (AuNRs) were synthesised using the well-

known seed-mediated surfactant directed synthesis. Two different reactions, RA and RB were prepared 

with the same methodology. 
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 As showed in Figure 5.1(a), the as prepared RA sample presented two absorption bands, one 

weak band centred at ca. 514 nm and a strong band centred in ca. 662 nm assigned to transverse 

(LSPRtrans) and longitudinal (LSPRlong) plasmon band respectively.  

 

Figure 5.1 Normalised extinction spectra (A), representative TEM images (B), histograms and graphic 

representation of obtained AuNRs (C-E). 

 

 

Transmission electron microscopy (TEM) images showed a colloidal solution essentially 

composed of rod-shaped gold nanoparticles with a length of 47.4±8.7 nm and a width of 21.1±3.5 nm. 

With these dimensions the AuNRs presented an aspect ratio of ≈2.3. (Figure 5.1) Similar results were 

obtained for the sample RB. In Figure 5.2 can be noticed that little difference in AR between the two 

samples is produced, being  AuNRs of sample RB with a length and width of 42.4 nm and 19.2±3.8 nm 

respectively (AR ≈ 2.2). 
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Figure 5.2 Normalised extinction spectra spectra (A), representative TEM images (B), histograms and graphic 

representation of AuNRs sample RB obtained (C-E). 

 

Both colloidal solutions solution were purified using CTAB solution (1 mM). The purified colloids (RA 

and RB) were used as precursor in the subsequent mesoporous silica coating process. 

 

5.4 Synthesis and purification of AuNRs@Simes 

Mesoporous silica coating was achieved using a modified Stöber methodology as reported by Tracy et 

al. with some modifications.397 The controlled deposition of mesoporous silica was completed using 

TEOS as silica precursor in basic medium (pH≈10.5-11). The presence of CTAB in the colloidal solution 

of AuNRs serves as a template to obtain mesostructured silica growth. Two different silica shell 

thickness were obtained using slightly different methods (see experimental section). This allowed us to 

obtain two-shell thickness (denoted as AuNRs_RA@Simes and AuNRs_RB@Simes). 
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Both samples were obtained using the same experimental conditions, with difference in the initial 

concentration of AuNRs and silica precursor concentration.  

5.4.1 The case of AuNRs_RA@Simes 

To complete the silica coating on RA, we used a starting concentration of AuNRs equal to 0.76 mM 

(referred to [Au0])84 and 300 µL of TEOS (20 %) solution. After the process of deposition of silica on 

RA, AuNRs_RA@Simes presented a relatively homogeneous coating with thickness of 8.4±2.1 nm. More 

important, silica free core NPs were not detected in the TEM images. (Figure 5.3) 

 

 

Figure 5.3: Normalised extinction spectra spectra (A), representative TEM images (B, C and D), histograms and 

graphic representation of AuNRs_RA@Simes (E). 

 

In order to eliminate the CTAB, due to its toxicity, the AuNRs were subjected to a purification 

process through subsequent centrifugation steps. The purification of the sample using water resulted in 

a red-shift the LSPRlong to ca. 670 nm.  

Conversely, upon successive MeOH and water washes, the LSPRlong of the colloid solution 

resulted in a slight blue-shift, bringing the LSPR near to that of AuNRs without mesoporous silica shell. 

The analysis of the ζ-potential of sample purified in water showed a positive potential (+7 mV), while 

in the other case, the purification in MeOH, showed negative values (-20 mV). This behaviour has been 
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conveniently explained recently by J. B. Tracy and coworkers.401 The authors attributed this blue-shift 

to the dissolution of CTAB molecules that remain as a template in the mesostructured silica shell. 401  

Alternatively, it has been pointed out in numerous works that a successful methodology to remove 

CTAB molecules from mesostructured silica materials is based on the treatment of silica derivative with 

methanolic boiling solutions of Ammonium nitrate.402 As can be seen in Figure 5.4 the purification 

through a methanolic solution of  boiling ammonium nitrate (1h), or exhausts MeOH washes offer 

similar results, visible in the LSPR shift and -potential values. Under these results, and to limit the 

possible presence of residues such as ammonium or nitrates in the purified AuNRs, we applied only 

MeOH to complete the purification in all cases. 

 

Figure 5.4: Normalised extinction spectra spectra (A) and (B), and graphic representation of the ζ-potential 
obtained for AuNRs@Simes purified with water (red), ammonium nitrate (green) and successive MeOH whased 

(blue) (C-E). 

 

To further demonstrate the convenient purification of CTAB molecules through successive MeOH 

washes, we investigated the chemical composition of AuNRs_RA@Simes after purification with water 

or MeOH using Fourier-transform infrared spectroscopy (FT-IR) spectroscopy. FT-IR spectra of CTAB 

alone and AuNRs_RA@Simes purified with water or MeOH are showed in Figure 5.5. CTAB spectra 

showed clearly the typical vibrational modes previously reported in literature associated with the                

-CH2, -CH3 or [-N(CH3)3]
+ groups that form the molecule. (Figure 5.5)403,404,405,406 



Chapter 5  

143 

 

 

On the other hand, FT-IR spectra of AuNRs_RA@Simes, regardless of the purification method, showed 

the signal of about 3448 cm-1, which can be assigned to the O-H stretch of surface silanol groups or 

adsorbed water molecules. Deformational vibrations of adsorbed water molecules produce the bands 

located at 1634 cm-1. The signals generated by the Si-O-Si and Si-O groups located between 1094-1044 

and 471-456 cm-1 respectively were clearly detected. More importantly, the signals from CTAB groups 

are only evident in the spectrum obtained from the sample purified in water. (Figure 5.5) 

 

Figure 5.5: FT-IR spectra (a-d) of CTAB (black line), AuNRs@Simes only purified with water (blue line) and 
AuNRs@Simes purified with MeOH and water (red line).  The table show the different peaks detected (e). 
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The blue shift in the LSPRlong in agreement with previous reports,401,407 the negative ζ-potential and the 

marked decrease in the signals produced by CTAB groups in FT-IR analysis for AuNRs_RA@Simes 

purified in MeOH, suggest a substantial CTAB removal. 

5.4.2 The case of AuNRs_RB@Simes 

The colloidal suspension of AuNRs_RB@Simes was used as a precursor to obtaining the hybrid 

nanomaterial used with the antimicrobial approach. 

J. Tracy and coworkers401 showed a modulation on the silica thickness deposited on AuNRs through 

variation in starting concentration of AuNRs, or [TEOS] used. Based on these considerations, in our 

case, we have decreased the initial concentration of AuNRs from 0.76 mM (RA) to 0.38 mM (RB) 

together with an increase in silica precursor (see experimental section). 

After the mesoporous silica deposition on RB, a relatively homogeneous coating was obtained with an 

increase in the silica thickness to 20.1 ± 5.7nm. The displacement of the LSPR, ζ-potentials and FT-IR 

analysis obtained yielded similar behaviour to those obtained for AuNRs_RA@Simes (data not shown). 

 

Figure 5.6: Normalised extinction spectra (A), representative TEM images (B, C and D), histograms and 

graphic representation of AuNRs_RB@Simes (E). 

 

 

AuNRs_RA@Simes and AuNRs_RB@Simes were used to complete the drug loading experiments with 

the selected molecules. Both colloidal solutions were gently washed in water to remove any remaining 

MeOH. 
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5.5  Drug loading experiments 

With the aim to explore the anticancer effect, we have selected the drug Doxorubicin (DOX). DOX and 

its bioactive derivatives, which are among the most used anticancer drugs in chemotherapy 

strategies.408,409 On the other hand, Methylene blue, a cationic hydrophilic dye, is one of the most widely 

used antimicrobial photosensitizer.410 We further investigated the drug loading capacity exploring the 

encapsulation of these two different drugs; doxorubicin in AuNRs_RA@Simes and methylene blue in 

AuNRs_RB@Simes using an ultra-sound assisted technique in 15 min. The entrapment efficiency was 

calculated analysing the UV/Vis supernatants from the calibration curve. (Table 5-1) 

 

Table 5-1: Encapsulation efficiency obtained for AuNRs_RA@Simes and AuNRs_RB@Simes with the different 

drugs explored. 

 Doxorubicin (%) Methylene Blue (%) 

AuNRs_RA@Simes 11.6 ±5.1 - 

AuNRs_RB@Simes - 13.6±3.2 

 

 

 

After the loading process and the corresponding purification, the LSPRlong suffered a red-shift in both 

cases. It can be explained due to the sensitivity of the AuNRs to the refractive index of the medium, in 

agreement with previous reports, where the LSPRlong also were modified after the internalization of the 

different molecules in the mesoporous matrix380,407. 
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Figure 5.7: Normalised extinction spectra (a and b), with the representation of the initial spectra of the AuNRs 

(black), the two different molecules (red) and the final spectra of the AuNRs@Simes-Drug (Blue). 

 

 

5.6 Freeze drying experiments of AuNRs@Simes-Drug 

The composite AuNRs@Simes-Drug was subject to a freeze-drying process. Sugars, and specifically 

trehalose, are known to be excellent candidates to lyophilise pharmaceutical products, due to the absence 

of internal hydrogen bonds, less hygroscopicity, low chemical reactivity or higher glass transition 

temperature (Tg)411,412,413,414. Nanoparticles encased in high Tg amorphous carbohydrates, allow us to 

store the products at room temperature. Trehalose was stated as the best cryoprotectant for lyophilising 

mesoporous silica nanoparticles when compared against other common cryoprotectants, like mannitol 

or sorbitol. The presence of trehalose can avoid the aggregation, and allows an easy reconstruction, 

maintaining the same size and polydispersity index (PDI) in comparison with the prior wet 

formulation415,416. 

After the lyophilisation process, blue powders were obtained. The powders offered an easy redispersion 

in water without the need to apply external inputs. As can be seen in Figures 5.8 and 5.9, regardless of 

the thickness of silica or encapsulated drug, the optical and nanostructural characteristics were not 

appreciably affected. Similar spectroscopic profiles and nanostructure cores were detected before and 

after the lyophilisation process. 
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Figure 5.8: Normalised extinction spectra of AuNRs_RA@Simes-DOX after resuspension (a), and representative 

SEM images (b, c and e). 

 

 

Figure 5.9: Normalised extinction spectra of AuNRs_RB@Simes-MB after resuspension (a), and representative 

SEM images (b and c). 
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5.7 Exploring the application of AuNRs_RA@Simes-DOX in 

cell experiments 

As a first step, the toxicity of empty AuNRs_RA@Simes against MCF7 cell was tested. They were 

incubated with several concentrations (from 0 to 200 µg/mL) during 72 hours. After this time, the 

cytotoxity assays were performed. Figure 5.10 shows that no citotoxity on MCF7 cells in any of the 

tested concentration is visible.  

 

Figure 5.10: Effect of various concentrations of AuNRs_RA@Simes without doxorubicin for 72 h on viability of 

MCF-7 cells as measured by Presto Blue assay. 

 

Once was determined that AuNRs_RA@Simes, with the absence of drug and a laser exposure were 

nontoxic, was carried out the experiment with the laser and the drug. For this, two different amounts of 

sample were used (200 µg/mL and 500 µg/mL), and were exposed to the laser (see experimental 

section). Control samples were used, without nanoparticles. Figure 5.11 shows that there is no 
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significant toxicity even after the laser treatment with the higher dose of nanoparticles, in comparison 

with the control treated with the laser beam.  

 

Figure 5.11: Effect of various concentration of AuNRs_RA@Simes/DOX, in the presence and absence of the 

laser treatment (LT). Control states for cells without nanoparticles. 

 

The unexpected results, showing no toxicity even after long laser exposures, can be explained for the 

presence of the trehalose in the nanoparticle formulation.  

Trehalose, even at low concentrations, can protect the cells against the heat-shock, reducing aggregation 

of denatured proteins.417,418 Recent reports using the trehalose to functionalize gold nanoparticles for 

application in neuronal cells, or in combination with silver nanoparticles in a prostatic cancer cell line, 

relate that the presence of the trehalose enhances the cell survival.419  
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This is in concordance with our experiments, in which we think that the presence of trehalose, even in 

low concentrations, can hamper the effect of the photothermal therapy associated to the gold nanorods, 

as well as to the chemotherapy-associated to the doxorubicin.  

 

5.8 Exploring the application of AuNRs_RB@Simes-MB in 

antibacterial applicattions 

Bacteria can be classified into Gram-negative and Gram-positive cells based on their cell wall 

composition. Gram-positive bacteria contain a thicker peptidoglycan layer with wall teichoic acids and 

lipoteichoic acids covalently attached; Gram-negative bacteria contain a thinner peptidoglycan layer 

involved by an outer membrane. The outer membrane is a lipid bilayer, where the inner leaflet is 

composed of phospholipids and the outer leaflet of highly negatively-charged lipopolysaccharides 

(LPS)420. Gram-negative bacteria tend to be more resistant to antimicrobial agents than Gram-positive 

bacteria, because of the presence of the additional protection afforded by the outer membrane421. 

Based on these differences in composition and sensitivity, the antibacterial activity of 

AuNRs_RB@Simes-MB was assayed against gram-negative (Escherichia coli) and gram-positive 

bacteria (Staphylococcus aureus) (Table 5-2). Neither Escherichia coli (E. coli) nor Staphylococcus 

aureus (S. aureus) was affected by laser irradiation as no significant differences were observed between 

the numbers of CFU/mL and between irradiated and no irradiated controls. 

Regarding AuNRs_RB@Simes-MB and MB, the results obtained showed that the antibacterial activities 

of both samples were strongly affected by the exposure to the red laser. Accordingly, after irradiation, 

both MB and AuNRs_RB@Simes-MB showed a pronounced antibacterial activity (~ 8 Log10 unit 

reduction) against E. coli and S. aureus. However, MB without laser exposure reduced the number of 

CFU/mL of E. coli in about 2 log10 cycles, an effect that was not observed with AuNRs_RB@Simes-MB 

without laser (Table 5-2).  This effect can indicate that there is nor release nor a significant interaction 

of the MB without a laser exposure in our system, making possible a potential use in control release. 
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Table 5-2 Antibacterial activity of samples against E. coli and S. aureus. Different letters within the same 

column indicate statistically significant differences among samples (p < 0.05). 

Sample 

E. coli S. aureus 

Log10CFU/mL Log 

Reduction 

Log10CFU/mL Log 

Reduction 

Control 

 Irradiated 

7.58 ± 0.20a - 7.55 ± 0.11a - 

Control 

 Non-irradiated 

7.70 ± 0.24a - 7.51 ± 0.06a,b - 

AuNRs_RB@Simes 

(1mg/mL) Irradiated 

7.88 ± 0.03a < 1 6.70 ± 0.26d < 1 

AuNRs_RB@Simes 

 (1mg/mL) Non-Irradiated 

7.98± 0.09a < 1 6.97± 0.13c,d < 1 

AuNRs_RB@Simes/MB  

(1 mg/mL) Irradiated 

< 1 >7.58 ± 0.00 < 1 >7.55 ± 0.00 

AuNRs_RB@Simes/MB  

 (1 mg/mL) Non-Irradiated 

7.87± 0.04a < 1 7.15± 0.26b,c < 1 

MB (0.02 mg/mL)  

Irradiated 

< 1 >7.58 ± 0.00 <1 >7.55 ± 0.00 

MB (0.02 mg/mL)  

Non-Irradiated 

5.57± 0.02b 2.13 ± 0.02 6.98± 0.06b,c,d < 1 

 

The results obtained suggest that E. coli has a higher sensitivity to MB than S. aureus. Positively charged 

photosensitizers are expected to be more effective bacterial inactivators than neutral molecules against 

Gram-negative bacteria, whose outer membranes are composed of negatively charged 

lipopolysaccharides. In contrast, Gram-positive bacteria may be inactivated more effectively by neutral 

or negatively charged agents422. 
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According to the above, under the same experimental conditions, E. coli proved to be more sensitive to 

the bactericidal effects of AuNRs_RB@Simes/MB than S. aureus (Figure 5.12) as a more pronounced 

log10 unit decrease was achieved with the same concentration of AuNRs_RB@Simes-MB (3 and 4 log10 

unit decrease with 0.5 mg/mL for S. aureus and for E. coli, respectively). 

 

Figure 5.12: Inactivation of S. aureus (left) and E. coli (right) using different concentrations of ROD_MB after 
exposure to red laser. Different letters within the same curve indicate statistically significant differences among 

Log10 CFU/mL (p < 0.05). 

5.9 Conclusions 

We have successfully synthesised AuNRs@CTAB in aqueous solution with aspect ratio 2.3. The 

controlled deposition of mesoporous silica with two different thicknesses (around 8 o 20 nm) on AuNRs 

was successfully produced.  

Conjugation with DOX and MB was obtained proceeding to its subsequent lyophilisation in the presence 

of trehalose as a cryo-preservation molecule. We have observed that after resuspension, there were no 

substantial changes in the core@shell structures studied. 

The anticancer and antibacterial properties of the final nanoformulations obtained were analysed against 

MCF7 cells and S. aureus and E. coli bacteria. Despite the lack of toxicity in the cells, the antibacterial 

result shows that the nanoformulation is effective against the two bacterial strains studied. The absence 

of toxicity in the AuNRs system without the laser exposure, even with the presence of MB, as well as 

the toxicity after the laser exposure, indicates the possibility to use this system as an external drug 

delivery system
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General Conclusions and Future Work 
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Chapter 2 

Polyamine Ligand-Mediated Self-Assembly of Gold and Silver Nanoparticles into Chainlike 

Structures in Aqueous Solution: Towards New Nanostructured Chemosensors. 

 

In chapter two, the synthesis of different systems of nanoparticles is presented. Spherical, gold and 

silver, as well as triangular silver nanoparticles, were successfully synthesised. 

The functionalization with a new polyamine ligand was carried out, leading to the formation of 1D 

assemblies, and the consequent changes in the UV/Vis band as well as the physical aspect. 

The use of the assemblies as nano chemosensors was investigated, being selective for Hg2+ among all 

the ions tested, and being able to improve the polyamine limit of detection by itself. 

The use of nano-assemblies can produce faster recognition systems for the detection of toxic analytes. 

In this sense, functionalization of nanoparticles with different ligands with specific recognition abilities 

can be a successful tool for biosensing. Changing the type of structures, and doing the functionalization 

with other nanoparticles like gold nanorods, can change the properties of the systems, as well as their 

sensing capabilities. 

 

Chapter 3 

Synthesis and Characterisation of PtTe2 Multi-Crystallite Nanoparticles using Organotellurium 

Nanocomposites. 

 

In chapter three, a spherical nanocomposite based on platinum and tellurium was successfully 

synthesised and characterised.  It was successfully done using a new approach based on the reduction 

and stabilisation of platinum cations with organotellurium derivates. 

The methodology present easily adjustable experimental conditions. 

Nowadays, platinum metal has a key-role due to the excellent properties as a catalyser. The obtention 

of well-defined platinum nanoparticles and doing it in combination with other elements like the 

semiconductor tellurium can give to the systems useful applications in several technological fields. A 

mesoporous silica cover of the nanoparticles, being able to provide more stability to the system can be 

investigated. Also, the versatility of the procedure may be possible the obtention of other 



Chapter 6 

156 

 

nanocomposites just varying the metal cation. In this sense, it can be carried out new nanocomposites 

applying the same methodology. 

 

Chapter 4 

Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and 

their catalytic applications. 

 

In chapter four, dendritic type platinum nanoparticles were successfully synthesised.  

A new methodology was applied using the inexpensive and environmentally friendly iron in a water 

environment. 

The reaction shows good reproducibility. 

The catalytic activity test of the obtained platinum nanoparticles was carried out, showing excellent 

performance in reduction and oxidation reactions.  

The results obtained in the reduction of p-nitrophenol displayed to have the highest TOF value described 

in the literature for a platinum catalyst. 

The use of platinum, as stated above, is, nowadays, of great importance. The improvement and change 

in the methodology of the reaction, with the aim to obtain new PtNPs with different morphologies, can 

be studied. The functionalisation with ligands or polymers can modify and give to the nanomaterials 

better properties for specific catalytic applications.  Moreover, the use of iron seems to be a feasible 

procedure, fast, inexpensive and environmentally friendly. It can be applied to the synthesis of other 

types of nanomaterials, leading to new clean methodologies. 
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Chapter 5 

Synthesis of Gold Nanorods with mesoporous silica shell containing Doxorubicin and Methylene 

Blue as drugs, and their applications as anti-cancer and antimicrobial nanotools. 

 

In chapter five, the synthesis of gold nanorods is presented. The successfully covering with mesoporous 

silica, and the variation in the thickness with small modifications in the synthetic procedure was 

reported.  

The elimination of the cytotoxic component CTAB was studied. 

The combination with the drugs was carried out using an ultrasound assisted technique. 

To preserve their properties, a lyophilisation process was carried out with the cryoprotectant trehalose. 

After resuspension of the obtained powder, the nanomaterials retained their properties. 

The new systems were tested with an anti-cancer and antibacterial approach. 

The bacterial tests show that they can be activated remotely with the use of laser light (red), being good 

candidates for drug delivery systems. 

The properties of the gold nanorods are well known, in photothermal and photodynamic therapy. Their 

combination with a mesoporous silica layer, where can carry different molecules or drugs, can be a new 

system for use in the future nano biomedicine. In this sense, the work realised varying the size and 

composition of a gold nanorod, as well as the introduction of new active compounds, can give the gold 

nanorods new exciting uses. The lyophilisation process is a fascinating technique for the preservation 

of the nanoparticles, being able to be stored and used when needed for long periods.  Also, it can provide 

new forms of administration, once in the powder can be administrated easily, e.g., via oral.
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