
 

  

P-IRLS-PM 

 A new approach to non-linear formative 

consctructs 

 

Francisco de Sousa Gago Prata Lourenço 

 

Dissertation presented as partial requirement for obtaining 

the Master’s degree in Statistics and Information 

Management  

 



 

 

 

 

 

 

  



 

i 

 

  



 

ii 

 

NOVA Information Management School 

Instituto Superior de Estatística e Gestão de Informação 

Universidade Nova de Lisboa 

 

P-IRLS-PM 

A NEW APPROACH TO NON-LINEAR FORMATIVE CONSCTRUCS 

by 

Francisco de Sousa Gago Prata Lourenço 

 

 

 

 

 

 

Dissertation presented as partial requirement for obtaining the Master’s degree in Information 

Management, with a specialization in Information Analysis and Management 

 

 

 

Advisor: Jorge Morais Mendes 

 

May 2018



 

iii 

ABSTRACT 

The traditional approach to PLS-PM estimated the scores of the formative latent variables as exact 

linear combinations of their associated manifest variables, not allowing for modelling other 

relationships besides the linear ones. The present study intends to overcome this limitation, 

introducing the P-IRLS-PM. The P-IRLS-PM is a new approach to the variance based structural 

equations models, which intends to widen the spectra of how the formative latent scores are 

represented by its associated manifest variables. Throughout this work the core concepts of the 

algorithm P-IRLS-PM will be introduced, followed by a Monte Carlo experiment comparing the new 

approach with the traditional PLS-PM.  
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1. INTRODUCTION 

In the field of Structural Equation Models  the popularity of Partial Least Squares Path Modeling (Wold, 

1975) or just PLS-PM has been increasing in the last years (Ringle et al., 2012). According to Hair et al. 

(2013) Accounting, International Marketing, Management Information Systems, Marketing and 

Operations Management are examples of areas where the phenomenon described above is taking 

place.  

Structural equation modelling is a multivariate statistical analysis, which enables researchers to model 

unobservable variables measured indirectly by indicator variables (Hair et al. , 2014). Within this 

analysis, there are two main approaches that should not be seen as independent but as 

complementary techniques (Hair et al., 2011). Such techniques are the Covariance-Base Structural 

Equation Modeling (Jöreskog, 1978) and Partial Least Squares Path Modeling (Wold, 1975).  Depending 

on the objective of the work, the researcher should take in consideration the purpose of each 

methodology. In the early stages of theory development, when the researcher wants to predict latent 

variable relationships, but there is none or little prior knowledge on how the variables are related, the 

PLS-PM is more suited (Hair et al., 2011). Otherwise, when the objective has more emphasis in 

confirmation than in exploratory research, it should be used the CB-SEM (Reinartz et al., 2009). 

The PLS-PM is known by two terms that reflect its characteristic, variance-based approach to SEM and 

“soft modeling”. The first, comes from how the algorithm works, PLS-PM “estimates model parameters 

to maximize the variance explained for all endogenous constructs intermodal through a series of 

ordinary least squares (OLS) regressions” (Reinartz et al., 2009, p. 332), while the covariance base 

“attempts to minimize the difference between the sample covariance and those predicted by the 

theoretical model.…Therefore, the parameter estimation process attempts to reproduce the 

covariance matrix of the observed measures” (Chin & Newsted, 1999, p. 309). The second term comes 

from the model assumptions are less strictly than the alternative developed by Jöreskog, known as 

“hard modeling” (Hair et al., 2014) and pointed out in the study (Sosik et al., 2009), “Soft modeling” 

allows for greater flexibility from a practical point of view. In other words, the PLS-PM is more suitable 

(Hair et al., 2011), when the CB-SEM assumptions do not hold or this method reach is limit. This is 

experienced when the available data are not normally distributed and sample sizes are small (Sosik et 

al., 2009). Among these strengths is important to highlight the fact the PLS-SEM provides higher levels 

of statistical power compared with CB-SEM for theory testing (Hair et al., 2011) and formative 

constructs are easier to incorporate in variance-based than covariance-based approach (Hair et al., 

2013). On the other side, the PLS-PM has its drawbacks. One of these shortcomings is related with the 

focus on maximizing partial model structures. Thus, it is required to firstly examine the measurement 

model characteristics, before assess the structural model (Hair et al., 2011).  

As described by Monecke and Leisch (2012), the scores of the latent variables, are estimated as exact 

linear combinations of their associated manifest variables. These hypotheses can be hard to hold, 

particularly when faced with nonlinearity and asymmetric data. For example, modeling an attribute 

assuming a symmetric and linear relationship with a variable like customer satisfaction, leads to 

misestimates when that relationship is in fact a asymmetric and nonlinear (Anderson & Mittal, 2000).  
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The main objective of the present work is the improvement of how the latent variables are represented 

by the manifest variables, when faced with formative models and provide a way to overcome the 

misspecifications mention in the previous paragraph. To reach such target, the outer estimation of the 

measurement model will be switched from the traditional linear regression to a thin-plate regression 

spline (Wood, 2003), creating a new approach to the Partial Least Squares Path Modeling the P-IRLS-

PM.   

Bearing in mind the growing popularity of PLS-PM (Becker et al., 2012) especially of reflective 

constructs (Becke et al., 2012), the present thesis has a considerable importance due to its focus on 

the less popular- formative constructs. Moreover, the proposed changes to the algorithm given 

throughout the following chapters, will strengthen the PLS-PM against criticisms. The present study 

uses formative constructs with nonlinear specification, a topic which should receive more attention 

due its relevance. Furthermore, the computational implementation will be done in an open source 

programming language and software (R), aiming to instigate the study in PLS-PM. 

The present work is structured in a Literature Review (chapter 2), where the roots of the PLS-PM are 

discussed, and a brief overview of the advances made for this model are introduced. Chapter 3 

describes the methodology. Chapter 4 presents the theoretical background of the traditional PLS-PM 

alongside with the presentation of the new approach. In chapters 5 the two main algorithms are 

compared, discussed and assessed. Lastly, Chapters 6 and 7 presents conclusions, limitations of present 

work and recommendations to further research. 
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2. LITERATURE REVIEW 

When trying to find the roots of the Structural Equations Models or of its creators, the researcher is 

not confronted with a straightforward answer, nonetheless it is possible to find some mutual outlines. 

According to  Bollen (1989), Kline (2015) and Sanchez (2013), part of its origins date to early days of 

the twentieth century with the development of the Path Analysis (Wright, 1921) and Factor Analysis 

(Spearman, 1904). A few years later, these two methods were integrated into the same model in the 

work of Karl Jöreskog making the Covariance Based Structural Equation Modeling (Jöreskog, 1978). 

Around the time period, the covariance approach was in its first stages, Herman Wold influenced the 

adaptation of the Nonlinear Iterative Partial Least Squares modeling to approach SEM models 

(Sanchez, 2013), creating the Partial Least Squares Path Modeling (Wold, 1975, 1980). The two main 

methodologies of Structural Equation Modeling were developed in the seventies, by Karl Jöreskog and 

Hernan Wold. The latter developed the variance-based approach, also known as soft modeling or PLS-

PM, however, it was the method developed by Karl Jöreskog that became the most popular, the CB-

SEM. Two possible factors that have triggered this preference were that variance-based software was 

only later developed (Hair et al., 2012b, p. 312) and the fact that the literature is not unanimous on 

issues regarding its legitimacy and usefulness of soft modeling. There are studies (e.g., Evermann & 

Tate, 2010; Hwang et al., 2010) who question the model technical value even suggesting its 

discontinuity (Rönkkö et al., 2016). However, other studies (Hair et al., 2011; Hair et al., 2012a; Ringle 

et al., 2012; Sosik et al., 2009) pointing out that some misunderstanding and criticism is often related 

to the lack of knowledge that prevents researchers to fully make use of the method’s capabilities, 

sometimes even using it incorrectly. For example, in a review by Hair et al. (2012b), PSL-SEM was 

misused in three main points: model specification issues, data characteristics, and model assessment.  

The outer model of the variance-based SEM has two main ways to measure non-observable variables 

Hair et al. (2014), the reflective and formative constructs (Monecke and Leisch (2012). More than forty 

years ago, the formative measurement models were introduced in the literature and the debate about 

their methodological advances has been increasing since the nineties (Diamantopoulos et al., 2008). 

However, the use of such measurement models in empirical studies is still scarce (Diamantopoulos & 

Siguaw, 2006). A reason behind this trend relates to the fact that there is a lack of practical guidelines 

on how to create, estimate and validate formative models (Suoniemi et al., 2012, p. 1648) and a 

significant number of researchers engaging in PLS-SEM might still be unaware of the potential of these 

indicators (Bollen, 2002). The traditional PLS-PM, enables the researcher to create and estimate 

models without imposing additional and limiting constraints (Hair et al., 2012a). As Hair at a. (2013) 

states this is the reason behind the increasing popularity of PLS-PM in a wide range of disciplines. 

Over time, soft modeling has witnessed improvements in its methodology. These include, the 

advanced models introduced by Lohmöller (Lohmöller, 1989), a method that allows distinguishing a 

formative indicator specification from a reflective indicator specification (Gudergan et al., 2008), 

improvements on assessing hierarchical component models (Becker et al., 2012), PLS-SEM-specific 

data segmentation techniques (Ringle et al., 2010; Sarstedt, 2008) and developments in assessing the 

robustness of the outer and inner models (Chin & Dabber, 2010, Chapter 2; Shmueli et al., 2016).  
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Regarding the works on nonlinear effects (e.g. Dijkstra & Henseler, 2011; Hackl & Westlund, 2000; 

Ingrassia & Trinchera, 2008; Jakobowicz & Saporta, 2002), there are already some studies that focus 

on the PLS-PM´s inner model with non-linear relationships, which is the case of Henseler et al., 2012. 

However, it is possible to say that there was no empirical evidence found regarding any previous work 

that covers how formative measurement models can capture the non-linear relationships within the 

PLS-PM outer models. As such, the present work will embrace this challenge and introduce a new 

approach to the PLS-PM and its methodology will be discussed in the next chapter.  
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3. METHODOLOGY 

The present study seeks to improve the latent scores obtained from formative specifications of the 

PLS-PM measurement model. To achieve this, the study’s workflow (Figure 1) followed the 

methodology of Hair et al. (2014, p. 25) which can be summarized in three main stages. The first stage 

comprises four essential tasks: specifying the structural and measurement models, data collection and 

examination, while the second stage refers to the estimation of the PLS-PM model. Finally, the last 

stage encompasses the model assessment and its results analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The theoretical framework is composed by a recall of the traditional Partial Least Squares Path 

Modeling (Monecke and Leisch, 2012), alongside the introduction of the Penalized Iteratively Re-

Weighted Least Squares Path Modeling (P-IRLS-PM), providing the core concepts of both models. 

Moreover, the notation used in the present study follows the description of Tenehaus (2005).  

 

Figure 1 – Systematic Procedure for 
Applying PLS-PM (J. F. J. Hair et al., 2014) 
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The comparison between both algorithms was conducted with the use of a synthetic dataset 

specifically designed for this study composed by several types of non-linear relationships, which 

follows the recommendation of (Henseler et al., 2012, p. 110) stating that further research could strive 

to analyze the impact, on PLS-PM, of the quadratic function alongside with other commonly used non-

linear functions such as logarithmic or exponential functions.  

The model used to develop the dataset consists in two endogenous latent variables and one exogenous 

latent construct. The endogenous variables have formative specifications and the exogenous is defined 

by a reflective model. Each measurement model is made of five indicators. After defining the 

underlying true model, a dataset of 1000 observations were generated, with a script in R language and 

the package MASS. Following a Monte Carlo procedure, 1000 samples of 100, 250, 750 and 900 

observations were drawn and used for assessment of both algorithms. The results are then compared. 

The outputs of the traditional PLS-PM computations, obtain through the package plspm, were used as 

benchmark. Then, with the same samples, the new approach was estimated, but at the time this paper 

was written, none of the available PLS-PM software would allow to introduce the changes needed to 

estimate the new algorithm, so was developed a script in the R programing language, where the splines 

of P-IRLS-PM were estimated by the package mgcv. The script to run the P-IRLS-PM in R, is available in 

the appendix.  

To compare the performance of the traditional approach with the P-IRLS-PM parameter accuracy, 

prediction accuracy, model fit and computational cost were assessed. Inspired by Henseler et al.(2012), 

the parameter accuracy was measure by the mean squared error and the prediction accuracy by the 

correlation between estimated and true values. This two metrics were computed in two levels, the first 

was for the latent scores and the second for the partial residuals of the latent scores of LV1 and LV2. 

The 𝑅2 of the structural model was used to assess the model fit and the number of iterations to assess 

the computational cost. To provide a more clear and complete analysis of the partial residuals were 

introduced the plots of this relationships from one sample with 750 observations.  
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4. A NEW APROACH TO PLS-PM 

This section introduces a new approach to Partial Least Squares Path Modeling, in which the standard 

formative measurement model was adjusted in order to account for non-linear relationships between 

the latent indicators and its block of variables. Penalized Iteratively Re-Weighted Least Squares Path 

Modeling (P-IRLS-PM) can be distinguished from earlier models through how the formative construct 

specification is made. 

Herman Wold’s methodology (Wold, 1980) uses multiple linear regressions to model formative 

constructs, leading to measure these relationships as linear. Such approach can be difficult to follow in 

practical experiments and researchers’ attention has shifted toward non-linear models (Henseler et 

al., 2012). Taking into account the previous statements, there is a need to improve how the formative 

latent scores are represented. This can be achieved by replacing the linear regression on this type of 

constructs by a thin-plate regression spline (Wood, 2003). Instead of specifying a detailed parametric 

relationship using a linear regression, the model is solely characterized by smooth functions, allowing 

for a more flexible specification of the latent variable on its manifest variables. This spline basis 

provides a knot free approach that can be applied for any number of manifest variables. Apart from 

the latter major change and few adjustments in the algorithm, the components and methodology of 

the PLS-PM and P-IRLS-PM are very similar. 

The present section is characterized by a stepwise overview of the subjacent theoretical concepts in  

P-IRLS-PM alongside with a recall of the traditional PLS-PM approach. For a more detailed literature on 

the traditional model review (Hair et al., 2014; Monecke, A. and Leisch, 2012; Sanchez, 2013; 

Tenenhaus et al., 2004) 

 

4.1. THE COMPONENTS 

The structural model, the measurement model and the weighting scheme are the three components 

of PLS-PM. The first two are presented in all kinds of structural equation models with latent constructs, 

but the weighting scheme is specific to the PLS-PM approach. Adding to the previous point, is only 

allowed recursive relationships and such relations can be expressed in path digraphs. Like the 

traditional approach, P-IRLS-PM has the same components and similar guidelines, being the 

specification of the formative constructs where the difference between the two models lies. 

 

4.1.1. The Structural Model 

The relationships between latent variables1 are presented is the structural or inner model and the 

structural paths can only head in a single direction. Such variables are split in two classes, exogenous 

and endogenous constructs. The exogenous variables do not have any predecessor in the inner model, 

all the others are endogenous. For the benefit of simplicity, the notation used dismisses the difference 

                                                           
1 Latent variables are measure concepts that are abstract and cannot be directly measured, also called 

factors. 
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between these kinds of variables. The structural model, with 𝑛 number of latent variables, can be 

expressed by: 

 

 𝐿𝑉𝑗 =  𝛽0 + ∑ 𝛽𝑗𝑖𝐿𝑉𝑖 + 𝜈𝑗

𝑖

           𝑖 =   1, … , 𝑛 ∧  𝑖 ≠ 𝑗 (1) 

where 𝐿𝑉 denotes a latent variable, the weights of the structural model are represented by β and the 

error term is represented by 𝜐.  

 

4.1.2. The Measurement Model 

The measurement or outer model is described by the connection between each block of manifest 

variables2 and its corresponding latent variable (LV). Additionally, each manifest variable (MV) is only 

allowed to be connected with one LV and within all MV’s related to one LV all the arrows must point 

in the same direction. This model subdivides in reflective constructs, formative constructs and MIMIC3.  

 

4.1.2.1. Reflective measurement models 

In these type of constructs, the causality is from the latent variable to its measures. The indicators 

presented in reflective models, share the properties that they are all cause by the same construct and 

they should by interchangeable, as long the construct has sufficient reliability (Hair et al., 2014). Hence 

the MV’s must have a high correlation. Each reflective indicator is related to its latent construct by: 

 

 𝑀𝑉ℎ =  𝑤ℎ𝐿𝑉 + 휀ℎ , (2) 

 

where 𝑀𝑉 represent a manifest variable, the 𝐿𝑉 is its corresponding latent variable, 𝑤 denotes the 

loadings and 휀 the error term. For the above model to be valid, it is necessary to confirm the hypothesis 

that the error term was zero mean and is uncorrelated with the manifest variables linked to latent 

variable (Tenenhaus et al., 2004). 

 

 

 

                                                           
2 Manifest variables are the directly measured variables also called raw data or indicators. 
3 MIMIC models is a mixture of formative and reflective constructs.  
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4.1.2.2. Formative measurement models 

The formative way assumes that the indicators cause the latent variable, thus the latter change due to 

variations in the manifest variables. An important characteristic of the indicators of these models is, 

each indicator captures a specific feature of the construct’s domain, thus these variables are non-

interchangeable, like they are in the reflective constructs.  

These relationships in the traditional approach are defined by multiple linear regressions, where the 

latent variable is a linear function of its manifest variables plus a residual term (Tenenhaus et al., 2004) 

and the loadings are estimated using the Ordinary Least Squares. In the standard linear case, formative 

constructs are characterized by the following: 

 

 

 𝐿𝑉 =  ∑ 𝑤ℎ𝑀𝑉ℎ

ℎ

+ 𝛿, (3) 

 

where 𝐿𝑉 denotes a latent variable, 𝑀𝑉ℎ represents the manifest variable ℎ, 𝑤ℎ are the outer weights 

and 𝛿 the error term. This specification implies the hypothesis that the residual term has mean equal 

to zero and is uncorrelated with the indicators related to its latent variable (Tenenhaus et al., 2004). 

The above model infers that the relationships in the formative constructs are supposed to be linear, 

restraining the used of nonlinear models. However, this hypothesis looks to be too restrictive in some 

cases. The P-IRLS-PM suggested an alternative technique, where the model specification is made 

through “smooth functions” terms. The new approach uses a thin-plate regression spline (Wood, 2003) 

to model formative constructs ,that can be represented by:  

 

 𝐿𝑉 =  ∑ 𝑓ℎ(𝑀𝑉ℎ)

ℎ

+ 𝛿 (4) 

 

where 𝐿𝑉 denotes a latent variable, 𝑓ℎ represents the smooth function term of the manifest variable 

(𝑀𝑉) h and 𝛿 is the error term.  

 

4.1.2.3. Weighting scheme 

In the early days of PLS-PM, Herman Wold introduced the centroid weighting scheme, being developed 

later two more schemes by Lohmöller, the factorial weighting scheme and the path weighting scheme. 

Despite differences between these three methods being minor and usually does not leading to 

significantly changes the interpretations of the results (Garson, 2016), the present study will focus is 

attention in the scheme develop by Herman Wold.  
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Centroid weighting scheme: 

In the scheme developed by Herman Wold, the sign of the correlation between a latent variable and 

its adjacent latent variables is used to populate the matrix of inner weights (matrix E), by following the 

next expressions:   

 𝐶 = 𝐷 + 𝐷𝑇 (5) 

 𝑅 = 𝐶𝑂𝑅(𝐿𝑉𝑗, 𝐿𝑉𝑖)            𝑗, i = 1, … , n (6) 

 
𝑒𝑗𝑖 {

𝑠𝑖𝑔𝑛(𝑟𝑗𝑖)            , 𝑐𝑗𝑖 = 1

0                       , 𝑒𝑙𝑠𝑒
 

(7) 

 

The inner design matrix is denoted by 𝐷, in which the structural model is expressed in an upper 

triangular matrix that is populated with the value 1 when 𝐿𝑉𝑗 is a predecessor of 𝐿𝑉𝑖 in the entry 𝑑𝑗𝑖, 

otherwise is placed a 0). 𝐶 represents an auxiliary matrix, 𝐿𝑉 denotes a latent variable, 𝑅 is the 

empirical correlation matrix and the inner weights are represented by 𝑒𝑖𝑗.  

 

4.2. THE ALGORITHM 

As previously mentioned, the new approach follows the method of the traditional PLS-PM, and the 

algorithm is not an exception. Both algorithm have 8 steps, which are divided into 3 stages. The first 

stage encompasses the setup of the data, the prerequisites and the initialization of the algorithm. 

Within the second stage, namely steps two to six, the latent variables scores are estimated following a 

six-step iterative process. The last stage is composed of the step 7, where the estimates for the 

structural path coefficients are computed. The steps in which the outer approximation and the factor 

scores are computed were adjusted to allow the use of a thin-plate regression spline in the algorithm. 

A detailed explanation of these steps will be presented below, explaining the procedure for both 

models.  

 

 

 

 

 

Figure 2 – Algorithm steps 
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Step 0 (Data and Prerequisites):  

The PLS-PM and the P-IRLS-PM are gifted with flexible assumptions, nevertheless should be made an 

exploratory analysis of the dataset. Such analyses comprise a first examination to the dataset following 

(Chatfield, 2006) and which distribution the data follows. “Although the PLS-PM is a nonparametric 

statistical method is important to verify that the data are not too far from normal as extremely non-

normal data.” (Hair et al., 2014).  

After this procedure, the (standardized) manifest variables should be placed in the matrix 𝑋. Hereafter, 

this matrix already presents the standardized data, which will be used as an input to the algorithm.  

After defining a subjacent theory for the structural and measurement models, collected the data and 

the weighting scheme was been chosen is time to pass this information into a matrix form. Starting 

with the relationship between latent variables described in the structural model, the researcher passes 

such information into the inner design matrix (matrix D). This task is done by creating a squared 

triangular matrix with dimensions equal to the number of latent variables, where is placed a 0 when 

the latent variables are not linked in the structural model, otherwise is placed a 1.  

On the other hand, the matrix M describes the measurement model, in columns have the latent 

variables and in rows the manifest variables, if the latent variable and the manifest variable are linked 

in the outer model is placed 1 and 0 otherwise. The matrix W, has the same characteristics as the matrix 

M but the initial weights are replaced by its corresponding estimated outer weights.  

Step 1 (Initialization):  

Grounded by the measurement model, each LV is initialized based on a weighted sum of their MVs, 

and can be written as,  

 

 𝐿�̂�𝑗 =  ∑ 𝑚𝑗ℎ𝑀𝑉𝑗ℎ 

ℎ

           j =  1, … , g  ∧  h = 1, … , c   (8) 

 
𝐿�̂�𝑗 =

𝐿�̂�𝑗

√𝑉𝐴𝑅(𝐿�̂�𝑗)

            j =  1, … , g 
(9) 

 

The number of MV’s in each block is denoted by 𝑐, 𝑔 is the number of LVs, 𝑚 represents the initial 

outer weights and 𝐿�̂�  the latent score obtained from the initialization.  
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Step 2 (Inner approximation):  

In the inner approximation, the LVs are reconstructed by its relationship with its neighboring LVs. The 

estimation of the inner weights depends on the weighting scheme and on the previous defined inner 

design matrix: 

 

 

 𝐿𝑉𝑗
̅̅ ̅̅ =   ∑ 𝑒𝑗𝑖 ∙

𝑖

𝐿�̂�𝑖           j, i =  1, … , g ∧  𝑖 ≠ 𝑗 (10) 

 
𝐿𝑉𝑗
̅̅ ̅̅ =  

𝐿𝑉𝑗
̅̅ ̅̅

√𝑉𝐴𝑅(𝐿𝑉𝑗
̅̅ ̅̅ )

           j =  1, … , g 
(11) 

 

where 𝑔 symbolizes the number of latent variables, the inner weights are represented by 𝑒 and 𝐿𝑉𝑗
̅̅ ̅̅  is 

the latent score j obtain from the inner approximation.  

Step 3 (Outer approximation): 

In the traditional approach, this step is characterized by the search of the best linear combination to 

express each LV by means of its MVs. For such purpose, the Ordinary Least Squares is used to as the 

estimator. It is important to highlight the use of OLS makes the model to restrict the search for a linear 

relationship between each block of variables and its corresponding latent variable. As previously 

mentioned, the measurement model has two main specifications. For the reflective models is applied 

a simple linear regression by each MV and its corresponding LV:  

 

 𝑀𝑉ℎ =  𝑤ℎ𝐿𝑉𝑗
̅̅ ̅̅            j =  1, … , g  ∧  h = 1, … , c  (12) 

 

When faced with a formative construct, the traditional model uses a multiple linear regression, with 

the latent variables as response and its block of manifest variables as regressors, computed by: 

 

 𝐿𝑉𝑗
̅̅ ̅̅ =  ∑ 𝑤ℎ𝑀𝑉ℎ

ℎ

           j =  1, … , g  ∧  h = 1, … , c  (13) 

Through the OLS estimator, the outer weights (𝑤ℎ) are obtain based on the standardized latent scores 

(𝐿�⃛�) from the previous step and its indicators (𝑀𝑉).  

For the reflective models, the P-IRLS-PM follows the PLS-PM methodology, however for the formative 

constructs have a different specification. Instead of applying the linear regression, the P-IRLS-PM uses 
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a thin-plate regression spline, which is estimated by the penalized iterative re-weighted squares (P-

IRLS) and can be expressed by: 

 

 𝐿𝑉𝑗
̅̅ ̅̅ =  ∑ 𝑓ℎ(𝑀𝑉ℎ)

ℎ

           j =  1, … , g ∧  h = 1, … , c  (14) 

 

the 𝐿𝑉 denotes a latent variable, 𝑓ℎ represents the smooth function term of the manifest variable 

(𝑀𝑉).  

Step 4 (Calculating Factor scores):  

Like the previous step, the computation of the factor scores, in the P-IRLS-PM, had to be adjusted to 

allow the use of splines in the formative outer models.  

The PLS-PM used the weights estimated in the former step, to reconstruct the latent variables as a 

weighted sum or a linear combination of its manifest variables. The procedure used is similar to the 

one applied in the first step, but instead of the initial weights, the outer weights from the fifth step are 

used. For the formative models, the factor scores are equal to the fitted values obtained from the OLS 

estimator.  

 

 𝐿𝑉�̃� =  ∑ �̃�ℎ 𝑀𝑉ℎ ℎ         j =  1, … , g ∧  ℎ = 1, … , 𝑐  (15) 

 
𝐿𝑉�̃� =  

𝐿𝑉�̃�

√𝑉𝐴𝑅(𝐿𝑉�̃�)

           j =  1, … . , g 
(16) 

 

Where �̃� denotes the weights computed in the previous steps, g is the number of latent variables and 

c is the number of manifest variables linked in each latent construct.  

The P-IRLS-PM method follows the standard approach for the reflective measurement models and for 

the formative constructs uses the fitted values obtained in the previous step for computing the factor 

scores of the formative latent variables, and can be denoted by: 

 

 𝐿𝑉�̃� =  ∑ 𝑓ℎ(𝑀𝑉ℎ)̃
ℎ           j =  1, … , g ∧  ℎ = 1, … , 𝑐  (17) 

 𝐿𝑉�̃� =  
𝐿𝑉�̃�

√𝑉𝐴𝑅(𝐿𝑉�̃�)
           j =  1, … . , g  (18) 

Where 𝐿�̃� represents the fitted values for the latent variable 𝑗, 𝑓ℎ represents the smooth function term 

of the manifest variable ℎ.  
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Step 5 (Standardize weights):  

As has been shown after each step, the latent variables are standardized by dividing for the standard 

deviation, and this procedure also is applied to the outer weights obtained in the step 4.  

Step 6 (Converge?):  

The PLS-PM algorithm is designed to run until the outer weights stabilize, therefore the five steps in 

stage two are repeated until the sum of the outer weights changes between two iterations drops below 

than a predefined value or when it reaches a maximum number of iterations. In the traditional 

approach studies (Hair et al., 2014; Hair et al., 2011) recommend the use of the threshold value of 10−5 

to ensure the algorithm converges and a maximum number of three hundred iterations and the new 

approach will follow the same recommendations. To compute the tolerance between iterations is 

used: 

 

 |
�̃�𝑗ℎ

𝑜𝑙𝑑 −  �̃�𝑗ℎ
𝑛𝑒𝑤

�̃�𝑗ℎ
𝑛𝑒𝑤 | < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒   ∀ 𝑗 = 1, … , 𝑔 ∧  ℎ = 1, … , 𝑐 (19) 

 

The number of MVs in each block is denoted by 𝑐, 𝑔 is the number of LVs and 𝑤 represents outer 

weights. 

The P-IRLS-PM algorithm follows the same technique and recommendations descried above, but this 

procedure is applied to the latent scores, computed in the step 4, instead of the outer weights.  

Step 7 (Final estimates):  

Once the algorithm converges, the path coefficients can be estimated thru the OLS, according to the 

structural model:  

 

 𝐿𝑉�̃� =  𝛽0 + ∑ 𝛽𝑗𝑖𝐿𝑉�̃� + 𝜈𝑗

𝑖

           𝑖 =   1, … , 𝑛 ∧  𝑖 ≠ 𝑗 (20) 

 

Where 𝐿�̃� denotes a estimated latent variable, the path coefficients of the structural model are 

represented by β and the error term is represented by 𝜐.  
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5. COMPARING THE NEW AND THE TRADITIONAL PLS-PM 

A Monte Carlo experiment was conducted, when comparing the traditional PLS-PM with P-IRLS-PM, in 

order to bring forth generalized patterns. The purpose of this computational procedure is to elucidate 

different performance approaches, when formative constructs are faced with non-linear relationships. 

To conduct the Monte Carlo experiment, an underlying model was defined with the same components 

of a Partial Least Squares Path Model and the formative measurement embody non-linear 

relationships. Graphically, this model is represented by the following path diagram( 𝐿𝑉 represents a 

latent variable and 𝑀𝑉 a manifest variable): 

 

 

 

 

The structural model was a linear specification, with two exogenous and one endogenous latent 

variable and are expressed by: 

 

 𝐿𝑉3 = 0.6 ∙ 𝐿𝑉1 + 0.7 ∙ 𝐿𝑉2 + 𝜐               𝜐~𝑁(0 , 0.2 ) (21) 

 

 

Figure 3 - Path diagram of the underlying model used in the Monte Carlo experiment 
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The measurement model is made by two formative constructs (𝐿𝑉1 and 𝐿𝑉2) and one reflective 

construct (𝐿𝑉3). Each block of formative variables is made up of five manifest variables, which were 

generated from a normal multivariate distribution. The reflective block of variables has also five 

indicators. The underlying outer model is described by the following equations: 

 

  The formative constructs:  

 𝐿𝑉1 =  
1

1 + 𝑒−𝑀𝑉11
+ log(𝑀𝑉12

2 ) + √|𝑀𝑉13| + 𝑀𝑉14
2 + 𝑀𝑉15 + 𝛿1             𝛿1~𝑁(0 , 0.2 ) (22) 

   

 

𝐿𝑉2 =  3 ∙ 𝑐𝑜𝑠(𝑀𝑉21) +  
1

2
∙ 𝑠𝑖𝑛(𝑀𝑉22) + 𝑠𝑖𝑛(𝑀𝑉23) ∙ 𝑐𝑜𝑠(𝑀𝑉23) + 𝑐𝑜𝑠(2 ∙ 𝑀𝑉24) + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑀𝑉25)

+ 𝛿2 

𝛿2~𝑁(0 , 0.2 ) 

(23) 

The reflective construct:    

 𝑀𝑉31 = 0.8 ∙ 𝐿𝑉3 + 휀31          휀31~𝑁(0 , 0.2 ) (24) 

 𝑀𝑉32 = 0.8 ∙ 𝐿𝑉3 + 휀32           휀32~𝑁(0 , 0.2 ) (25) 

 𝑀𝑉33 = 0.8 ∙ 𝐿𝑉3 + 휀33            휀33~𝑁(0 , 0.2 ) (26) 

 𝑀𝑉34 = 0.8 ∙ 𝐿𝑉3 + 휀34            휀34~𝑁(0 , 0.2 ) (27) 

 𝑀𝑉35 = 0.8 ∙ 𝐿𝑉3 + 휀35          휀35~𝑁(0 , 0.2 ) (28) 

 

 

Based on the model described above, a population of 10000 observations was generated. From this 

synthetic dataset, 1000 samples from each subset of 150, 250, 750 and 900 observations were 

withdrawn for posterior analysis. The traditional PLS-PM and P-IRLS-PM were estimated for all the 

samples with the outputs being evaluated afterwards. The input used for the computation of both 

models was based on the original values of the manifest variables. From the outcome of each model, 

the saved output for this study consisted on the estimated latent scores, the number of iterations until 

each model converges and the 𝑅2 of the structural model. Moreover, as previously mentioned in the 

methodology, MSE and the correlation between the estimated and true values were computed for 

each sample.  
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When inspecting the results concerning LV1 (Table 1), they show that the P-IRLS-PM provided the 

lowest values of MSE and the strongest correlations between estimated and true values of the latent 

scores, revealing a higher parameter and prediction accuracy compared to the traditional PLS-PM. 

Although both approaches exhibit slight changes with the increase of sample size, there is a substantial 

difference between these two models. In the MSE, the values of PLS-PM are at least 6 times bigger 

compared to the P-IRLS-PM. Regarding the correlation results, the PLS-PM attained values lower than 

0.4 while the new approach showed an improvement reaching values higher than 0.9. 

In order to identify the reasons that led to the differences pointed in the previous paragraph, the partial 

residuals of 𝐿𝑉1 were analyzed and their results shown in table 2. The manifest variables represented 

by the logistic (𝑀𝑉15) and linear (𝑀𝑉11) functions have very similar results in both models, having the 

highest errors and lowest correlations, with the variable 𝑀𝑉11 showing the worst performance. When 

comparing the two prior variables with 𝑀𝑉13, the latter shows an MSE and correlation improvement, 

presenting better results in P-IRLS-PM than in PLS-PM. The quadratics effect on 𝑀𝑉14 is the second-

best variable within this block of variables, presenting a considerable improvement in terms of the 

correlation values, passing from 0.07 to 0.45, as well as an increase in parameter accuracy. The two 

major improvements occur in the logarithm of the squared values of the 𝑀𝑉12. Firstly, in the new 

approach this indicator presents the lowest MSE of its block of variables, half of the value reached by 

    MSE COR  

VAR OBS P-IRLS-PM PLS-PM P-IRLS-PM PLS-PM 

MV11 

150 2.027 2.007 -0.020 -0.010 

250 2.067 2.043 -0.037 -0.025 

750 2.112 2.120 -0.058 -0.061 

900 2.123 2.129 -0.063 -0.066 

MV12 

150 0.750 2.008 0.623 -0.011 

250 0.724 2.036 0.637 -0.022 

750 0.717 2.160 0.641 -0.082 

900 0.716 2.144 0.642 -0.073 

MV13 

150 1.832 1.938 0.078 0.025 

250 1.815 1.948 0.089 0.022 

750 1.780 2.004 0.109 -0.003 

900 1.783 2.012 0.108 -0.007 

MV14 

150 1.134 1.884 0.429 0.052 

250 1.101 1.849 0.447 0.072 

750 1.088 1.838 0.455 0.080 

900 1.087 1.843 0.456 0.077 

MV15 

150 1.878 1.887 0.055 0.050 

250 1.898 1.902 0.047 0.045 

750 1.908 1.910 0.045 0.044 

900 1.912 1.913 0.043 0.043 

METRIC OBS P-IRLS-PM PLS-PM 

MSE 

150 0.19 1.305 

250 0.143 1.279 

750 0.116 1.278 

900 0.116 1.281 

COR 

150 0.904 0.345 

250 0.928 0.359 

750 0.942 0.361 

900 0.942 0.359 

Table 1 – 𝐿𝑉1 Results 

Table 2 – 𝐿𝑉1 Partial Residuals Results 
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the traditional approach. Secondly, the prediction accuracy registered a change from very weak to 

strong correlation values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plots of the partial residuals were also inspected to provide more complete analysis. In the graphs 

presented above, the traditional approach leads to a misleading representation of variables 𝑀𝑉12, 

𝑀𝑉13 and 𝑀𝑉14. Although the results of the linear function (𝑀𝑉15) and logistic function (𝑀𝑉11) in table 

2 exhibit high MSE values comparing to the other indicators of this block of variables, both models 

display the proper relationships; Furthermore, the P-IRLS-PM shows a noteworthy improvement on 

how the variables 𝑀𝑉12, 𝑀𝑉13 and 𝑀𝑉14 are represented, expressing these variables closer to its true 

relationship. 

 

 

Figure 4 - Parial Residuals Plots of 𝐿𝑉1 
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Table 3 – 𝐿𝑉2 Results 

 

 

 

 

 

 

The computed results regarding 𝐿𝑉2 (table 3) show that when sample size increases, both models 

improve theirs results, however the outcomes of P-IRLS-PM achieved a better performance compared 

to that of PLS-PM. Moreover, the MSE values of the PLS-PM are at least 4 times bigger than the values 

documented in P-IRLS-PM, while the correlations passed from moderate in the traditional approach to 

strong values in the new model. 

The partial residuals of 𝐿𝑉2 on table 4 were evaluated, following the same procedure applied to 𝐿𝑉1. 

Within this block, 𝑀𝑉22 and 𝑀𝑉25 were the variables that attained the highest MSE values and the 

lowest prediction accuracy. In the new approach, the variable 𝑀𝑉23 show a slight improvement in the 

parameter accuracy. When comparing the traditional model with P-IRLS-PM, the results that stand out 

the most are related to 𝑀𝑉24 and 𝑀𝑉21. On the new model, these variables presented the lowest MSE 

and the highest correlation values within its block of variables. The differences observed between both 

approaches are largely due to the performance of 𝑀𝑉21 and 𝑀𝑉24 and in a lesser extent to 𝑀𝑉23. 

 

 

 

 

METRIC OBS P-IRLS-PM PLS-PM 

MSE 

150 0.264 1.108 

250 0.171 1.08 

750 0.077 1.061 

900 0.069 1.06 

COR 

150 0.867 0.444 

250 0.914 0.459 

750 0.961 0.469 

900 0.965 0.47 

 
  

  MSE COR 

VAR OBS P-IRLS-PM PLS-PM P-IRLS-PM PLS-PM 

MV21 

150 0.956 1.956 0.519 0.015 

250 0.929 1.997 0.534 -0.003 

750 0.909 2.081 0.545 -0.042 

900 0.909 2.087 0.545 -0.045 

MV22 

150 2.222 2.241 -0.119 -0.128 

250 2.265 2.288 -0.137 -0.149 

750 2.346 2.383 -0.175 -0.193 

900 2.351 2.394 -0.177 -0.198 

MV23 

150 1.953 2.015 0.017 -0.014 

250 1.948 2.048 0.022 -0.028 

750 1.888 2.123 0.055 -0.063 

900 1.888 2.147 0.055 -0.075 

MV24 

150 1.614 1.977 0.187 0.005 

250 1.547 1.985 0.223 0.004 

750 1.484 2.024 0.257 -0.013 

900 1.485 2.065 0.256 -0.034 

MV25 

150 2.015 2.038 -0.014 -0.026 

250 2.023 2.045 -0.016 -0.027 

750 2.037 2.053 -0.020 -0.028 

900 2.042 2.058 -0.022 -0.030 

Table 4 - 𝐿𝑉2 Partial Residuals Results  
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A joint analysis of table 4 with the partial residuals plots of 𝐿𝑉2, two clear patterns stand out: when the 

traditional PLS-PM applies a linear regression to capture these relationships, it tends to provide 

misleading results, despite the moderate prediction accuracy values in table 3; and the P-IRLS-PM can 

fit a model with a considerably higher parameter accuracy than the traditional approach, although it 

presents problems in the tails distribution of 𝑀𝑉22, 𝑀𝑉23, 𝑀𝑉24 and 𝑀𝑉25. Furthermore, it’s also 

possible to say that 𝑀𝑉21, 𝑀𝑉23 and 𝑀𝑉24 are well represented when applied to the new algorithm, 

contrary to the plots of the traditional approach. Despite the moderate results on table 4, 𝑀𝑉23 shows 

a substantial improvement on how is represented by the new approach.   

 

 

 

 

 

Figure 5 - Parial Residuals Plots of 𝐿𝑉2 
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The model fit assessment measured by the 𝑅2 showed that the P-IRLS-PM values are at least 4 times 

higher than the values recorded for the PLS-PM. The computational cost of the new model is the double 

of the traditional approach, needing twice the iterations that the traditional approach requires to 

converge in order to obtain the final estimates. 

 

METRIC OBS P-IRLS-PM PLS-PM 

MSE 

150 0.003 0.003 

250 0.003 0.003 

750 0.003 0.003 

900 0.003 0.003 

COR 

150 0.999 0.999 

250 0.999 0.999 

750 0.999 0.999 

900 0.999 0.999 

Table 6 – 𝐿𝑉3 Results 

The results of the reflective exogenous variable (𝐿𝑉3) on table 6 shows that, regardless of the 

parameter and prediction accuracy on formative constructs or the 𝑅2 of the inner model, the 

approaches and samples used, had almost indistinguishable results. Taking this into account, it is 

important to highlight that for the results obtained in the present work, the model or sample size do 

not lead to a change in how the models capture the exogenous reflective variable. 

    150 250 750 900 

𝑹𝟐 
P-IRLS-PM 0.868 0.876 0.896 0.898 

PLS-PM 0.212 0.185 0.162 0.16 

ITER 
P-IRLS-PM 8.394 7.514 6.373 6.658 

PLS-PM 3.037 3.003 3 3 

Table 5 – Model Fit and Computational Cost 
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6. CONCLUSIONS 

Since the introduction of the PLS-PM by Herman Wold, the variance approach has experienced several 

advances, however some topics have been left aside, such is the case of how to model non-linear 

formative constructs. In order to fill this gap in the literature, the present study introduces the P-IRLS-

PM. This model proposes an alternative specification of the formative measurement model of the PLS-

PM, with the main objective of improving how the latent variables are represented by its manifest 

variables, when its relationship is non-linear. 

The Monte Carlo experiment used to compare the two models reveals substantial differences between 

the approaches. The P-IRLS-PM has a better overall performance in terms of parameter accuracy, and 

prediction accuracy when faced with non-linear relationships, although it has a higher computational 

cost. Both approaches exhibit similar results, when faced with a linear relationship within the formative 

constructs framework. By analyzing the partial residuals plots of the formative constructs, has 

observed that the traditional approach misrepresents the non-linear relationships, and the splines 

fitted by P-IRLS-PM shown an improvement comparing to the PLS-PM. It was also spotted higher 𝑅2 

values of the structural model in the new approach. Despite the previous differences between the two 

approaches, the reflective exogenous variable has similar results in both models.  

Putting together the developments presented through this study with an implementation of the 

algorithm in an open-source programming language, the present works aims to instigate the scientific 

community to go one step further and bring new advances into the variance approach.   
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7. LIMITATIONS AND RECOMMENDATIONS 

While this study intrudes a new way to work with non-linear formative indicators for the variance 

approach, it has its limitations and opens up further avenues for future research.  

Since this study is restricted to the selected sample sizes and a single population, further insights may 

be gained from using different sample sizes and a different populations. To compare the two models 

conducted a month Carlo experiment, altghouth the achieved results are only valid within the 

boundaries of the scenarios explore, and they only can be applied to the theoretical model on which 

the mount Carlo simulation were based, further research could strive to analyze the impact of an 

alternative design, by using a different number of latent constructs and manifest variables, combined 

with other non-linear functions that were not used in this study. Another limitation of the present 

study, concerns that in practical cases often the available data are integrated and/or categorical and 

this work does not cover this topic. 

Future research might also investigate the impact of different P-IRLS-PM architecture settings (e.g. 

weighting scheme and spline basis) and use different metrics to compare the two models, like the root-

mean-square error (RMSE), normalized root-mean-square deviation or the mean absolute relative 

error (Reinartz et al., 2009) 
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9. APPENDIX 

P-IRLS-PM R script: 

library(mgcv) 

 

#  Model used:  

#  * This script is written to have 3 Latent Variables and 5 Manifest Variables  

#     per bock of varibles, but is easily changeable. 

#  * 3 Latente variables: -2 Formative variables 

#                         -1 Reflective variable 

#  * Structural model 

#    LV3 = beta1 * LV1 + beta2 * LV2 + error 

#  * Measurement model: 

#    LV1 = f(MV11)+f(MV12)+f(MV13)+f(MV14)+f(MV15)+ error 

#    LV2 = f(MV21)+f(MV22)+f(MV23)+f(MV24)+f(MV25)+ error 

#    MV31 = w31 * LV3 + error 

#    MV32 = w32 * LV3 + error 

#    MV33 = w33 * LV3 + error 

#    MV34 = w34 * LV3 + error 

#    MV35 = w35 * LV3 + error 

#  

 

################################### 

# Step 0 (Data and Prerequisites) # 

################################### 

 

# Define a data.frame with the Manifes variables:  

#   Block_variables_of_lv1 have the 5 manifest variables in the columns 

#   dim(data) = 150 rows and 15 columns 

#   data <- data.frame( block_variables_of_lv1, 

#                      ,block_variables_of_lv2 

#                      ,block_variables_of_lv3) 

X <- data.frame(data) 

 

# Define the number of observations:  

obs <- 150 

 

# Define the number of Latent variables: 

numb_lv <- 3 

 

# Define the total number of Manifest variables: 

numb_mv <- 15 

 

# W is the initial outer weights matrix:  

W <-matrix( c( rep(c(1,0,0), times=5)  # 5 is the number of MVs linked with LV1      

              ,rep(c(0,1,0), times=5)  # 5 is the number of MVs linked with LV2    

              ,rep(c(0,0,1), times=5)) # 5 is the number of MVs linked with LV3  

            , nrow= numb_mv, ncol= numb_lv, byrow = T) 

 

 

# Create the matrix to store the tolerance values:   

t0 <- matrix(rep(1, times = obs),obs, numb_lv)  

 

# D is the Inner Disign matrix: 

#  (If LV is linked with other LV put 1, otherwise is 0; 

#   And if LV is exogenous put 1)  

D <- rbind( c(1,0,1)  # LV1 is a exogenous variable and is linked with LV3 

           ,c(0,1,1)  # LV2 is a exogenous variable and is linked with LV3  

           ,c(0,0,0)) # LV3 is a endogenous varible 

C <- (D + t(D)) 

 

X <- scale(X, center = TRUE, scale = TRUE) 

  

tolerance <- 10000 

itera <- 0 
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# E is the inner weights matrix: 

E <- matrix(1, ncol = numb_lv, nrow = numb_lv) 

 

########################### 

# Step 1 (Initialization) # 

########################### 

Y <- X%*%W 

Y <- scale(Y, center = TRUE, scale = TRUE) 

 

while (tolerance > 1e-06){ 

  R <- cor(Y, method = "pearson") # Used Weighting scheme: Centroid 

  for(j in 1:numb_lv){ 

    for(i in 1:numb_lv){ 

                        if(C[i,j] == 1){ E[i,j] <- sign(R[i,j]) 

                        }else{ E[i,j] <- 0} 

                       } 

                      } 

 ################################ 

 # Step 2 (Inner approximation) #  

 ################################ 

 Yold <- Y 

 Y <- Y%*%E 

 Y <- scale(Y, center = FALSE, scale = TRUE) 

  

 ################################ 

 # Step 3 (Outer approximation) # 

 ################################ 

 # For Formative LV1 

 fit_lv1 <- gam(Y[,1] ~ s(X[,1], bs="tp")+s(X[,2], bs="tp") # New 

                +s(X[,3],bs="tp")+s(X[,4],bs="tp") 

                +s(X[,5],bs="tp"))  

 # For Formative Latent Variable 2 

 fit_lv2 <- gam(Y[,2] ~ s(X[,6], bs="tp")+s(X[,7], bs="tp") # New 

               +s(X[,8],bs="tp")+s(X[,9],bs="tp") 

               +s(X[,10],bs="tp"))  

 # For refletive Latent Variable 3 

 # Is used the same approach of traditional PLS-PM 

 outer_coef_LV3 <-c( coef(lm(X[,11]~Y[,3]))[2] 

                    ,coef(lm(X[,12]~Y[,3]))[2] 

                    ,coef(lm(X[,13]~Y[,3]))[2] 

                    ,coef(lm(X[,14]~Y[,3]))[2] 

                    ,coef(lm(X[,15]~Y[,3]))[2]) 

 mv3<- X[,c(11:15)] 

  

 ##################################### 

 #Step 4 (Calculating factor scores) # 

 ##################################### 

 Y1<-  fit_lv1$fitted.values 

 Y2<-  fit_lv2$fitted.values 

 Y3 <- mv3%*%outer_coef_LV3   

 Y <- cbind(Y1,Y2,Y3) 

 Y <- scale(Y, center = FALSE, scale = TRUE) 

  

 ##################################### 

 # Step 5 (Standardize coefficients) # 

 ##################################### 

 outer_coef_LV1 <- fit_lv1$coefficients 

 sd_Y1 <- rep(sd(Y[,1]), times= length(outer_coef_LV1)) 

 outer_coef_LV1 <- outer_coef_LV1/sd_Y1 

    

 outer_coef_LV2 <- fit_lv2$coefficients 

 sd_Y2 <- rep(sd(Y[,2]), times= length(outer_coef_LV2)) 

 outer_coef_LV2 <- outer_coef_LV2/sd_Y2 

     

 outer_coef_LV3 

 sd_Y3 <- rep(sd(Y[,3]), times= length(outer_coef_LV3)) 

 outer_coef_LV3 <- outer_coef_LV3/sd_Y3 
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 ###################### 

 # Step 6 (Converge?) # 

 ###################### 

 for(j in 1:3){for(i in 1:150){t0[i,j] <- abs((Yold[i,j] - Y[i,j])/Y[i,j])}} 

 tolerance <- max(t0) 

 itera=itera+1 

 if(itera > 300 ) break 

} 

 

############################ 

# Step 7 (Final estimates) # 

############################ 

inner_final_fit <- lm(Y[,3] ~ Y[,1]+Y[,2]) 

 

r2 <- summary(inner_final_fit)$r.squared  

 

gam_inner_coef <- inner_final_fit$coefficients 

   

p_irls_pm <- list( tolerance, itera, Y 

               ,outer_coef_LV1, outer_coef_LV2, outer_coef_LV3 

               ,gam_inner_coef 

               ,r2) 

nomes <- c( "Tolerance", "itera", "Y" 

           ,"outer_coef_LV1", "outer_coef_LV2", "outer_coef_LV3" 

           ,"gam_inner_coef" 

           ,"r2") 

names(p_irls_pm) <- nomes 

 

p_irls_pm 

 

 


