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ABSTRACT 

Over the last decade, several banks have developed models to quantify credit risk. In addition to the 

monitoring of the credit portfolio, these models also help deciding the acceptance of new contracts, 

assess customers profitability and define pricing strategy. The objective of this paper is to improve 

the approach in credit risk modeling, namely in scoring models to predict default events. To this end, 

we propose the development of a three-stage ensemble model that combines the results 

interpretability of the Scorecard with the predictive power of machine learning algorithms. The 

results show that ROC index improves 0.5%-0.7% and Accuracy 0%-1% considering the Scorecard as 

baseline. 
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1. INTRODUCTION 

Over the last decade, several banks have developed models to quantify credit risk (Basel Committee 

on Banking Supervision, 1999). The main objective of credit risk modeling is to estimate the expected 

loss (EL) associated with credit portfolio that is based on the Probability of Default (PD), the Loss 

Given Default (LGD) and the Exposure At the time of Default (EAD). The portfolio’s expected loss is 

given by the product of these three components (Basel Committee on Banking Supervision, 2004). 

This paper focuses only on PD that is typically computed using scoring models built from historical 

information of several actual/past customers. The compiled data set will include various attributes 

and whether the customer has defaulted. Specifically, the credit scoring objective is to assign credit 

applicants to either good customers (non-default) or bad customers (default), which makes it part of 

the classification problem domain (Anderson, 1978). 

Currently, credit scoring models are used by about 97% of banks that approve credit card 

applications (Brill, 1998). Using scoring models increases revenue by augmenting volume, reducing 

the cost of credit analysis, enabling faster decisions and monitoring credit risk over time (Brill, 1998). 

From the previous, credit risk measurement has become increasingly important in the Basel II capital 

accord (Basel Committee on Banking Supervision, 2003; Gestel et al., 2005). 

In the banking industry, credit risk modeling has been based mostly on logistic regression due to the 

need to conciliate predictive and interpretative power. Recall that regulators require banks to explain 

credit application decisions, thus transparency is fundamental to these models (Dong, Lai, & Yen, 

2010; Hand & Henley, 1997). In this paper, a three-stage ensemble model is proposed to reinforce 

the predictive capacity of a scorecard (logistic regression) without compromising its transparency 

and interpretability. 
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2. LITERATURE SURVEY 

In recent years, several attempts have been made to improve the accuracy of Logistic Regression 

(Lessmann, Baesens, Seow, & Thomas, 2015). Louzada et al. (2016) reviewed 187 credit scoring 

papers and concluded that the most common goal of researchers is the proposition of new methods 

in credit scoring (51.3%), mainly by using hybrid approaches (almost 20%), combined methods 

(almost 15%) and support vector machine along with artificial neural networks (around 13%). The 

second most popular objective is the comparison of new methods with the traditional techniques, 

where the most used are Logistic Regression (23%) and neural networks (21%). One of these studies 

was done by West (2000), who compared five neural network models with traditional techniques. 

The results show that neural networks may improve the accuracy from 0.5% to 3%. Additionally, 

logistic regression was found to be an alternative to the neural networks. In turn, Gonçalves and 

Gouvêa (2007) obtained very similar results using Logistic Regression and neural network models. 

However, the proposed new methods tend to require complex computing schemes and limit the 

interpretation of the results, which makes them difficult to implement (Liberati, Camillo, & Saporta, 

2017). 

Lessmann et al. (2015) state that the accuracy differences between traditional methods and machine 

learning result from the fully-automatic modeling approach. Consequently, some advanced classifiers 

do not require human intervention to predict significantly more accurately than simpler alternatives. 

Abdou and Pointon (2011) carried out a comprehensive review of 214 papers that involve credit 

scoring applications to conclude that until now there is no overall best statistical technique used in 

building scoring models that can be applied to all circumstances. This result is aligned with the 

Supervised Learning No-Free-Lunch (NFL) theorems (Wolpert, 2002). 

Marqués et al. (Marqués, García, & Sánchez, 2012) evaluated the performance of seven individual 

prediction techniques when used as members of five different ensemble methods and concluded 

that C4.5 decision tree, Multilayer Perceptron and Logistic Regression were the best algorithms for 

most ensemble methods, whereas the nearest neighbor and the naive Bayes classifiers appear to be 

the worst. Gestel et al. (2005) suggested the application of a gradual approach in which one starts 

with a simple Logistic Regression and improves it using Support Vector Machines to combine good 

model readability with improved performance. 

Summing up, we verified that the most common goal of researchers is the proposition of new 

algorithms and comparison of new methods with the traditional techniques, where Logistic 

Regression and machine learning algorithms take a central place. Additionally, it seems that there is 

no overall best statistical technique used in building scoring models that can be applied to all 

circumstances. Thus, a natural way to improve the state-of-the-art is to consider an ensemble 

architecture that can combine traditional methods (as Logistic Regression) with complex algorithms 

(as machine learning algorithms). 
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3. THEORETICAL FRAMEWORK 

 

3.1. CREDIT SCORING PROBLEM 

Credit scoring objective is to assign credit applicants to either good customers (non-default) or bad 

customers (default) in the format of a classification problem (Anderson, 1978). Specifically, for each 

customer historical attributes are recorded and whether the contract has defaulted (failed to pay). 

Thus, the credit scoring model captures the relationship between the historical information and 

future credit performance. This relationship can be described mathematically as follows: 

 𝑃(𝑦𝑖 = 1|𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖) = 𝑓(𝑥1𝑖, 𝑥2𝑖, … , 𝑥,𝑘𝑖) (1) 

where 𝑥1, 𝑥2 , … 𝑥𝑘 represent the customer’s attributes, 𝑦𝑖  denotes the type of customer (for 

example good or bad), and 𝑓 is the function, or the credit scoring model, that maps between the 

customer attributes (inputs) and his creditworthiness (output). In the credit scoring industry, the 

most popular method to capture this relation is the Logistic Regression (Hand & Henley, 1997). Then 

a transformation is needed to convert the creditworthiness into a classification (default/non-default). 

Usually this is done ,using a threshold (𝑐): 

 �̂�𝑖 = {
0, 𝑃(𝑦𝑖 = 1|𝑋) < 𝑐

1, 𝑃(𝑦𝑖 = 1|𝑋) ≥ 𝑐
 (2) 

In this paper, we aim to improve the approach used in credit scoring models through the 

development of an Ensemble Model (Three-Stage Ensemble Model) that combines the results 

interpretability of Logistic Regression with the predictive power of machine learning algorithms. 

 

3.2. BASE LEARNERS 

An ensemble model combines several algorithms which are usually called base learners (Zhou, 2012). 

The base learners used in this paper are addressed in the following subsections. 

 

Scorecard (Logistic Regression) 

The scorecard (SC) model consists in a logistic regression on a set of categorical inputs: 

 𝑦𝑆𝐶 = 𝛿0 + ∑ ∑ 𝛿𝑗
𝑥𝑖𝐵𝑗

𝑥𝑖
𝑏𝑥𝑖

𝑗=1

𝑘

𝑖=1
 (3) 

where 𝛿0 stands for the independent term, 𝐵𝑗
𝑥𝑖 is a binary variable associated to one of the 𝑏𝑥𝑖

 

classes of 𝑥𝑖  (the ith input variable) and 𝛿𝑗
𝑥𝑖 is the coefficient associated to that binary variable. 

Prior to scorecard estimation, the numerical inputs must be binned. This process consists in grouping 

the values that had similar event behavior in the target variable. In the present study, the cutoffs 

used maximized the Weight of Evidence (WOE), which is a metric for variable Information Value (IV) 
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(Zeng, 2014). The binning outcome are new categorical input variables, which are then used in a 

stepwise selection algorithm. Regarding the score points, they increase as the event rate decreases. 

The estimation parameterization ensures that a score of 200 represents odds of 50 to 1, that is 
𝑃(𝑁𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡)

𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡)
= 50, and an increase of 20 score points corresponds to twice the odds. 

 

Decision Tree 

In the paper from Debeljak et al, , a classification decision tree (DT) is used to find the sequence of 

rules on the input variables that might predict the target (Debeljak & Džeroski, 2011; Pradhan, 2013). 

This way, it may be considered a Boolean function where the input is a set of hierarchical rules and 

the output is the final decision: 

 𝑓 ∶  { 0 , 1 }𝑛  →  { 0 , 1 }   (4) 

To determine which input is selected to integrate the next rule the variance criterion was used for 

the numerical variables and the entropy for the categorical. Each splitting rule could only produce a 

maximum of two subsets, and each subset could not have less than 5 instances. To avoid oversized 

structures, and possibly overfitting, each tree was limited to 10 branches. 

 

Multilayer Perceptron (Artificial Neural Network) 

The Multilayer Perceptron (MLP) is a specific artificial neural network with at least three layers 

(input, output and hidden layer) were each node connects with every node in the following layer. 

Due to the simplicity of the network’s architecture, MLP is often referred to as "vanilla" neural 

network (Hastie, Tibshirani, & Friedman, 2009). 

Given this is an iterative algorithm, we start by defining how to obtain 𝑥𝑖
𝑗
, which is the neuron 𝑖 from 

layer 𝑗: 

 𝑥𝑖
𝑗

= 𝑓𝑗 (𝑏𝑖
𝑗

+ ∑ 𝑤𝑙𝑖
𝑗
𝑥𝑙

𝑗−1
𝑘

𝑙=1
) (5) 

where 𝑓𝑗 is the activation function of neurons in the 𝑗𝑡ℎ layer (in our case we will use always the 

same activation function for each neuron in a specific layer), 𝑤𝑙𝑖
(𝑗)

 is the weight associated to input 𝑙 

and neuron 𝑖 at 𝑗 layer, 𝑏𝑖
𝑗
 the bias associated to neuron 𝑖 at 𝑗 layer and 𝑥𝑙

𝑗−1
 the input variable 𝑙 

from the previous layer. The formula (5) may be generalized to express all neurons in each layer: 

 𝑥𝑗 = 𝑓𝑗 (𝑏𝑗 + 𝑤𝑗𝑥𝑗−1) (6) 

where 𝑥𝑗 is a vector containing all neurons from layer 𝑗, 𝑓𝑗 is the activation function of neurons in 

the 𝑗𝑡ℎ layer, 𝑏𝑗 the bias vector from layer 𝑗, 𝑤𝑗 the weight matrix from layer 𝑗 and 𝑥𝑗−1 the input 

variables vector from the previous layer. 
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The MLP used in this paper was designed with three hidden layers, each with 3 neurons and the 

𝑇𝑎𝑛ℎ activation function.  

 

3.3. COMMONLY USED ENSEMBLE LEARNING TECHNIQUES 

The idea behind ensemble algorithms is to combine multiple base learners to improve the final 

model predictive power. By this,it is possible to achieve better performance than by considering 

solely each of the base learners (Opitz & Maclin, 1999; Polikar, 2006; Rokach, 2010). In the following 

subsections, some technics commonly used are going to be addressed. 

 

Bootstrap aggregating (bagging) 

In this method, a base learner is used in several random samples of the training set. The prediction is 

obtained by averaging the base learner’s outcome in different random samples. The random forest 

algorithm is widespread use of bagging (Breiman, 1996a). 

 

Boosting 

Boosting is an iterative method that increases the weight of misclassified observations using the 

previous step results. The objective is to decrease the bias error, yet it may lead to overfitting to the 

training data. A very well-known application of this method is Adaboost (Breiman, 1996b; Schapire, 

1990). 

 

Stacking 

This method consists of using a base learner to combine the output from different learners. Firstly, all 

base learners are trained using the training sample. Secondly, each outcome is used as input in a 

combiner algorithm. The most used combiner is a logistic regression. Comparing with the previous 

methods, Stacking has the advantage of being able to reduce both error and variance (Wolpert, 

1992). 

 

3.4. THREE-STAGE ENSEMBLE ALGORITHM 

The proposed algorithm is a Three-Stage Ensemble Model (3SEM) which reinforces the predictive 
power of a Scorecard without compromising its transparency and interpretability. The concept is 
based on the idea of achieving a better performance, using several algorithms combined to 
outperform each one applied individually (Rokach, 2010). Firstly, it is used a Scorecard (SC) model to 
estimate the probability of default. Secondly, the SC Residual is used as target variable by another 
base learner. Thirdly, the SC estimate (first step) and SC Residual (second step) are combined using 
logistic regression. Thus, 3SEM might be considered a variation of the Stacking method. 
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The objective of the 3SEM is to let SC capture the linear effect, while the base learner algorithm 
covers the remaining variability. The proposed architecture for the Ensemble Model is presented in 
Figure 1: 
 

 

Figure 1: Proposed architecture for the three-stage ensemble model (3SEM) 

 

In Figure 1, 𝑋 is the set of inputs, 𝑦 the target variable, while �̂� and �̂̂� are the target and residual 

estimates, respectively. The box operator stands for a specific algorithm (for example SC or LR) and 

the circle is a sum operator with a sign for each of the variables. The components of Figure 1 are 

better described in Table 1. 

 

Component Description 

𝑦 Target variable 

𝑋 Input variables 

�̂�𝑆𝐶  Scorecard estimate 

�̂�𝑆𝐶  Scorecard residual 

�̂̂�𝑆𝐶  Scorecard residual estimate 

휀3𝑆𝐸𝑀 Three-Stage Ensemble Model error 

�̂�3𝑆𝐸𝑀 Three-Stage Ensemble Model estimate  

Table 1: Three-stage ensemble model components description 

 

This ensemble architecture may also be defined through the mathematical formula(7): 

 𝑦3𝑆𝐸𝑀 = 𝑃(𝑦 = 1|𝑋) =
1

1 + 𝑒−(𝛽0+𝛽1�̂�𝑆𝐶+𝛽2�̂�𝑆𝐶+𝜀3𝑆𝐸𝑀)
 (7) 
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To estimate (7) the following steps should be done: 

1. Estimate a Scorecard (�̂�𝑆𝐶) using the available data (inputs) and the target (𝑦); 

2. Compute the Scorecard residual (�̂�𝑆𝐶): 

 �̂�𝑆𝐶 = 𝑦 − �̂�𝑆𝐶  (8) 

3. Estimate the base learner using �̂�𝑆𝐶  as target and the inputs used on step 1. This estimate is 

noted �̂̂�𝑆𝐶; 

4. Estimate a Logistic Regression using the target (𝑦), Scorecard estimate (�̂�𝑆𝐶) and Scorecard 

residual estimate (�̂̂�𝑆𝐶) as inputs. 

 

3.5. PERFORMANCE METRICS 

Following Hamdy & Hussein (2016) performance assessment approach, we will rely on Confusion 

Matrix and ROC index (area under the ROC curve) to compare the predictive quality of the 3SEM and 

the base learners. These two methodologies are presented in the following subsections. 

 

Confusion Matrix 

The Confusion Matrix is a very widespread concept that allows a more detailed analysis of the right 

and wrong predictions. As depicted in Table 2, there are two possible predictive classes and two 

actual classes. The combination of these classes originates four possible outcomes: True Positive 

(TP), False Negative (FN), False Positive (FP) and True Negative (TN) (Powers, 2011). 

 

 
Prediction 

Default Non-Default 

Actual 
Default True Positive (TP) False Negative (FN) 

Non-Default False Positive (FP) True Negative (TN) 

Table 2: Confusion Matrix 

These classifications have the following meaning: 

 True Positive: includes the observations predicted as default and are actually default; 

 False Positive: includes the observations predicted as default but are actually non-default 

(error type I); 

 True Negative: includes the observations predicted as non-default and are actually non-

default; 

 False Negative: includes the observations predicted as non-default but are actually default 

(error type II). 

 

To ease up the matrix interpretation the following measures may be computed (Powers, 2011): 
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Metric Description Formula 

Accuracy determines how often the classifier is correct  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity 
determines how often the classifier is correct 

predicting Defaults 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
determines how often the classifier is correct 

predicting Non-Defaults 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Positive Predictive 

Value 

is the proportion of true positive prediction in all 

defaults 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative Predictive 

Value 

is the proportion of true negative prediction in all 

non-defaults 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Table 3: Performance metrics based on th Confusion Matrix 

Among the previous metrics, accuracy is easy to understand and takes a central place in the 

literature (Louzada et al., 2016). However, this metric must be used carefully, especially on 

unbalanced datasets. For example, in a data set with 1% event rate, a unary prediction of non-event 

would have an accuracy of 99%, higher than most stochastic models. Clearly, this metric is not robust 

for comparisons between algorithms applied on datasets with different event rate. However, we may 

use it to compare models on the same data set. 

 

ROC index 

Another measure for assessing predictive power is the Area Under Curve (AUC) Receiver Operating 

Characteristic (ROC). The curve is created by plotting the true positive rate (Sensitivity) against the 

false positive rate (1- Specificity) at various cutoff points. The true positive rate is the probability of 

identifying a default, while the false positive rate is the probability of a false alarm. The AUC=0.5 

(random predictor) is used as a baseline to see whether the model is useful or not (Provost & 

Fawcett, 2013). 

The ROC index has the advantage of not requiring the cutoff definition, as the confusion matrix 

demands. Besides, it is also suitable for unbalanced datasets (Hamdy & Hussein, 2016). However, the 

use of the ROC Curve as unique misclassification criterion has decreased significantly in the articles 

over the years. More recently the use of metrics based on the confusion matrix is most common 

(Louzada et al., 2016). 
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4. EMPIRICAL STUDY 

 

4.1. STUDY DESIGN 

The empirical study consists of estimating the Three-Stage Ensemble Model (3SEM) and compare the 

results with the base learner included in the algorithm. In this sense, three base learners are used: 

Logistic Regression (LR), Decision Tree (DT) and Multi-Layer Perceptron (MLP) neural network. 

According to Louzada et al. (2016), almost 45% of the reviewed papers in their survey consider either 

Australian Credit Approval Data Set (AU) or German Credit Data Set (DE). To ensure that our results 

are replicable and comparable, we use datasets from the University of California at Irvine (UCI) 

Machine Learning Repository. 

These datasets were split into a training set (80%) and testing set (20%) using stratified sampling on 

the target variable to ensure its representativeness. This procedure is widely used in previous studies 

and it is meant to improve the assessment metrics quality (Antunes, Ribeiro, & Pereira, 2017; du 

Jardin, 2016). Furthermore, the 10-fold cross-validation method was used to minimize the influence 

of variability in the training set (Olson, Delen, & Meng, 2012; Wang, Ma, & Yang, 2014). According to 

Kohavi (1995) this is the best method for model selection. 

 

4.2. DATASETS 

In our study two widely used data sets were employed, the Australian Credit Approval Data Set (AU) 

and the German Credit Data Set (DE). Both datasets can be found at the UCI Repository of Machine 

Learning Databases (Lichman, 2013). 

The AU has 690 instances, being 307 of good applicants, a binary target and 14 input variables, 

where 8 are numerical. The DE consists of 1000 records, where 30% are bad applicants, and 20 input 

variables are available to describe the applicant socio-economical and behavioral attributes. Unlike 

the previous data set, most variables are categorical (13). 

Regarding the cost matrix, AU does not have one while for DE it is recommended to have a five-fold 

impact of failing in predicting a default against mislabeling a non-default. Nevertheless, the use of 

any cost matrix is outside the scope of this paper, which means that both failing to predict a default 

and a non-default have the same cost. 
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The basic details of these data sets are shown in Table 4. 

 

Characteristics AU DE 

Number of Instances 690 1000 

Number of good applicants 307 700 

Number of bad applicants 383 300 

Number of categorical attributes 8 13 

Number of numerical attributes 6 7 

Table 4: Basic details of the data sets 

4.1. RESULTS AND DISCUSSION 

In this section, we compare each base learner with the homologous 3SEM. To illustrate the 

discriminative power of the model, the default rate distribution through predicted status (probability 

of default) is presented in Figure 2. The test data set was ascending sorted by predicted status, thus 

the default rate is expected to be monotonically increasing. This is usually a requirement in a 

probability of default model. 

 

Figure 2: Default rate and predicted status (probability of default) distribution through quintiles for 
the 10th fold 

Average default rate in the quintile Average probability of default in the quintile

Australian Credit Approval Data Set (AU) German Credit Data Set (DE)
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In Figure 2, the quintiles are presented in the x-axis while y-axis show the default rate and predicted 

status (probability of default) distribution through quintiles for the 10th fold.Analyzing these plots, 

we identify that for AU only SC and 3SEM MLP have a monotonic default distribution, while on DE 

only 3SEM LR and 3SEM MLP violate this behavior. 

However, classification accuracy along with interpretability are the most important criteria in 

choosing the credit classification approach (Zhu, Li, Wu, Wang, & Liang, 2013). Thus, the 

performance of 3SEM is compared with three base learners.  

 

Australian Credit Approval Data Set German Credit Data Set 

  Base Learner 3SEM Δ Base Learner 3SEM Δ 

Logistic Regression 88.80 89.40 0.60 80.30 80.70 0.40 

Decision Tree 82.60 85.50 2.90 75.60 80.30 4.70 

MLP 77.90 89.10 11.20 81.40 72.60 -8.80 

Table 5: Area Under the ROC Curve (ROC Index) for AU and DE 

 

The results in Table 5 show that the 3SEM improves the ROC index in all base learners except for MLP 

in DE. Additionally, Logistic Regression seems to be the winner algorithm for both AU and DE. In the 

case of LR, the 3SEM improves the ROC index by 0.7% (+0.6pp) in AU and 0.5% (+0.4pp) in DE. 

 

Australian Credit Approval Data Set German Credit Data Set 

 
Base Learner 3SEM Δ Base Learner 3SEM Δ 

Logistic Regression 85.00 85.00 0.00 74.53 75.27 0.75 

Decision Tree 81.43 80.71 -0.71 72.79 74.68 1.89 

MLP 80.00 84.29 4.29 73.83 73.73 -0.10 

Table 6: Accuracy (%) for AU and DE 

 

Regarding Accuracy, the results in Table 6 reinforce the previous findings. Also, we conclude that the 

algorithm fitting is not consistent between data sets. Namely, MLP seems to be the least adjusted 

model for AU, while for DE is the best base learner (without considering 3SEM). However, Logistic 

Regression reinforces its place as winner algorithm and that 3SEM improves the accuracy of this 

estimator for DE by 1% (+0.75pp). 
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The results obtained are now compared with 30 papers reviewed by Louzada et al. (2016). Table 7 

summarizes the accuracy on AU and DE in these papers. 

 

Paper AU DE  Paper AU DE 

Baesens et al. (2003) 90.40 74.60  Nieddu et al. (2011) 87.30 79.20 

Hsieh (2005) 
98.00 

98.50 
 Marcano-Cedeno et al. 

(2011) 
92.75 84.67 

Somol et al. (2005) 92.60 83.80  Ping and Yongheng (2011) 87.52 76.60 

Lan et al. (2006) 86.96 74.40  Yu and Li (2011) 85.65 72.60 

Hoffmann et al. (2007) 85.80 73.40  Chang and Yeh (2012) 85.36 77.10 

Huang et al. (2007) 87.00 78.10  Wang et al. (2012) 88.17 78.52 

Tsai and Wu (2008) 97.32 78.97  Hens and Tiwari (2012) 85.98 75.08 

Tsai (2008) 90.20 79.11  Vukovic et al. (2012) 88.55 77.40 

Tsai (2009) 81.93 74.28  Marques et al. (2012) 86.81 76.60 

Luo et al. (2009) 86.52 84.80  Ling et al. (2012) 87.85 79.55 

Lahsasna et al. (2010) 88.60 75.00  Sadatrasoul et al. (2015) 84.83 73.51 

Chen and Li (2010) 86.52 76.70  Zhang et al. (2014) 88.84 73.20 

Zhang et al. (2010) 91.97 81.64  Liang et al. (2015) 86.09 74.16 

Liu et al. (2010) 86.84 75.75  Tsai et al. (2014) 87.23 76.48 

Wang et al. (2011) 86.57 76.30  Zhu et al. (2013) 86.78 76.62 

Table 7: Accuracy (%) results for AU and DE according to Louzada et al. (2016) 

 

Comparing the results obtained with some other studies we identify that the 3SEM’s accuracy is not 

very high. The accuracy obtained in the literature ranges from 81.93% - 98% in AU and 72.6% - 98.5% 

while 3SEM got 85% and 75.27%, respectively. So, despite the proposed ensemble architecture 

potential, there is still room for future developments to improve its predictive power. 

 

4.2. FURTHER WORK 

This study has some limitations that give space for further research. On the one hand, the results 

should be verified using other data sets. Recalling the Supervised Learning No-Free-Lunch (NFL) 

theorems (Wolpert, 2002), there is no overall best statistical technique used in building models, thus 

the best technique always depends on the data set specificities. We expect that regardless of the 

data used, the performance of the 3SEM will always be at least as good as the best algorithm that 

integrates it (LR, DT and MLP). However, it is still to be determined the propensity for overfitting. 

On the other hand, in the context of machine learning, there is a multiplicity of classification 

algorithms. The selected algorithms, accompanied by the set of choices such as the activation 

function or the neuron structure (MLP), are only illustrative. We stress that there is no hard evidence 

that the algorithms used are the best fit. Thus, in future work, there is room for further study using 

other techniques.  
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Finally, a generalization of the ensemble architecture should be developed, turning the algorithm 

into an n-stage ensemble model. In this approach, the researcher would apply more powerful 

methods from layer to layer. Once residuals are used as the target in the next layer, the largest fit is 

obtained in the first layers. Thus, the simplest algorithms produce the majority of the prediction, 

preserving most of the interpretability. 
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5. CONCLUSION 

Credit scoring models attempt to measure the risk of a customer failling to pay back a loan based on 

his characteristics. In the banking industry, the most popular model is the scorecard which conciliates 

predictive and interpretative powers. Notice that banks are required to explain the credit application 

decisions, thus transparency is fundamental to these models. In this paper, we propose a new 

ensemble framework for the credit-scoring model to reinforce the predictive capacity of a scorecard 

without compromising its transparency and interpretability. 

Our three-stage ensemble model consists on a Stacking of the Scorecard estimate and the Scorecard 

residual estimate, obtained through a base learner. Thus, the Scorecard estimate accounts for the 

majority of 3SEM predictive power, while the base learner aims to help to correct the prediction 

failures. This ensemble framework may be considered as estimation by layers, where modeling is 

done using more powerful methods from layer to layer. The advantage of this approach lies in the 

use of residuals as the target in the next layer. As the largest fit is obtained in the first layers, the 

majority of the model components is produced by the simplest algorithms, preserving the 

interpretability of most of the prediction. 

Results indicate that the default rate distribution produced by the Scorecard is monotonic, which is 

usually a requirement in the probability of default models, yet there is no evidence that 3SEM keeps 

this behavior. Furthermore, the ROC index improves by 0.7% (+0.6pp) in AU and 0.5% (+0.4pp) in DE. 

However, Accuracy only improves in DE by 1% (+0.75pp). 

Several other paths are still open. Firstly, other algorithms and parameterizations may be tested to 

check if the second stage contribution may be improved as there is no hard evidence that the 

algorithms used are the best fit. Secondly, a generalization of the ensemble architecture should be 

developed, turning the algorithm into an n-stage ensemble model. Finally, the results should be 

obtained also for other data sets, to ensure that they are not a lucky guess. 



15 
 

REFERENCES 

Abdou, H. A., & Pointon, J. (2011). Credit Scoring, Statistical Techniques and Evaluation Criteria: a 
review of the literature. Intelligent Systems in Accounting, Finance and Management, 18(2–3), 
59–88. https://doi.org/10.1002/isaf.325 

Anderson, T. W. (1978). An Introduction to Multivariate Statistical Analysis. Wiley. 

Antunes, F., Ribeiro, B., & Pereira, F. (2017). Probabilistic modeling and visualization for bankruptcy 
prediction. Applied Soft Computing, 60, 831–843. https://doi.org/10.1016/j.asoc.2017.06.043 

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). 
Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the 
Operational Research Society, 54(6), 627–635. https://doi.org/10.1057/palgrave.jors.2601545 

Basel Committee on Banking Supervision. (1999). Credit Risk Modelling: Current Practices and 
Applications. Bank for International Settlements. 

Basel Committee on Banking Supervision. (2003). The New Basel Capital Accord. Bank of 
International Settlements. 

Basel Committee on Banking Supervision. (2004). International Convergence of Capital Measurement 
and Capital Standards. Bank for International Settlements. 

Breiman, L. (1996a). Bagging Predictors. Machine Learning, 24(2), 123–140. 
https://doi.org/10.1023/A:1018054314350 

Breiman, L. (1996b). Bias, variance and arcing classifier. Berkeley. 

Brill, J. (1998). The Importance of Credit Scoring Models in Improving Cash Flow and Collections. 
Business Credit, 100(1). 

Chang, S.-Y., & Yeh, T.-Y. (2012). An artificial immune classifier for credit scoring analysis. Applied Soft 
Computing, 12(2), 611–618. https://doi.org/10.1016/J.ASOC.2011.11.002 

Chen, F.-L., & Li, F.-C. (2010). Combination of feature selection approaches with SVM in credit 
scoring. Expert Systems with Applications, 37(7), 4902–4909. 
https://doi.org/10.1016/J.ESWA.2009.12.025 

Debeljak, M., & Džeroski, S. (2011). Decision Trees in Ecological Modelling. In Modelling Complex 
Ecological Dynamics (pp. 197–209). Springer. https://doi.org/10.1007/978-3-642-05029-9_14 

Dong, G., Lai, K. K., & Yen, J. (2010). Credit scorecard based on logistic regression with random 
coefficients. Procedia Computer Science, 1(1), 2463–2468. 
https://doi.org/10.1016/J.PROCS.2010.04.278 

du Jardin, P. (2016). A two-stage classification technique for bankruptcy prediction. European Journal 
of Operational Research, 254(1), 236–252. https://doi.org/10.1016/J.EJOR.2016.03.008 

Gestel, T. Van, Baesens, B., Dijcke, P. Van, Suykens, J. A. K., Garcia, J., & Alderweireld, T. (2005). 
Linear and non-linear credit scoring by combining logistic regression and support vector 
machines. Journal of Credit Risk, 1(4). 

Gonçalves, E., & Gouvêa, M. (2007). Credit Risk Analysis Applying Logistic Regression, Neural 
Networks and Genetic Algorithms Models. POMS 18th Annual Conference. 



16 
 

Hamdy, A., & Hussein, W. B. (2016). Credit Risk Assessment Model Based Using Principal component 
Analysis And Artificial Neural Network. MATEC Web of Conferences, 76, 02039. 
https://doi.org/10.1051/matecconf/20167602039 

Hand, J., & Henley, W. (1997). Statistical Classification Methods in Consumer Credit Scoring: A 
Review. Computer Journal of the Royal Statistical Society Series a Statistics in Society, 160(3), 
523–541. 

Hastie, T., Tibshirani, R., & Friedman, J. H. (Jerome H. . (2009). The elements of statistical learning : 
data mining, inference, and prediction (2nd ed.). Springer-Verlag New York. 
https://doi.org/10.1007/978-0-387-84858-7 

Hens, A. B., & Tiwari, M. K. (2012). Computational time reduction for credit scoring: An integrated 
approach based on support vector machine and stratified sampling method. Expert Systems 
with Applications, 39(8), 6774–6781. https://doi.org/10.1016/J.ESWA.2011.12.057 

Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., & Vanthienen, J. (2007). Inferring descriptive and 
approximate fuzzy rules for credit scoring using evolutionary algorithms. European Journal of 
Operational Research, 177(1), 540–555. https://doi.org/10.1016/J.EJOR.2005.09.044 

Hsieh, N.-C. (2005). Hybrid mining approach in the design of credit scoring models. Expert Systems 
with Applications, 28(4), 655–665. https://doi.org/10.1016/J.ESWA.2004.12.022 

Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on 
support vector machines. Expert Systems with Applications, 33(4), 847–856. 
https://doi.org/10.1016/J.ESWA.2006.07.007 

Kohavi, R., & Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation 
and Model Selection. International Joint Conference on Artificial Intelligence (IJCAI), 1137--1143. 

Lahsasna, A., Ainon, R. N., & Wah, T. Y. (2010). Enhancement of transparency and accuracy of credit 
scoring models through genetic fuzzy classifier. Maejo International Journal of Science and 
Technology, 4(1), 136–158. 

Lan, Y., Janssens, D., Chen, G., & Wets, G. (2006). Improving associative classification by incorporating 
novel interestingness measures. Expert Systems with Applications, 31(1), 184–192. 
https://doi.org/10.1016/J.ESWA.2005.09.015 

Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art 
classification algorithms for credit scoring: An update of research. European Journal of 
Operational Research, 247(1), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030 

Liang, D., Tsai, C.-F., & Wu, H.-T. (2015). The effect of feature selection on financial distress 
prediction. Knowledge-Based Systems, 73(1), 289–297. 
https://doi.org/10.1016/j.knosys.2014.10.010 

Liberati, C., Camillo, F., & Saporta, G. (2017). Advances in credit scoring: combining performance and 
interpretation in kernel discriminant analysis. Advances in Data Analysis and Classification, 
11(1), 121–138. https://doi.org/10.1007/s11634-015-0213-y 

Lichman, M. (2013). UCI machine learning repository. University of California, School of Information 
and Computer Science. 

Ling, Y., Cao, Q., & Zhang, H. (2012). Credit Scoring Using Multi-Kernel Support Vector Machine And 
Chaos Particle Swarm Optimization. International Journal of Computational Intelligence and 



17 
 

Applications, 11(03), 1250019. https://doi.org/10.1142/S1469026812500198 

Liu, X., Fu, H., & Lin, W. (2010). A Modified Support Vector Machine model for Credit Scoring. 
International Journal of Computational Intelligence Systems, 3(6), 797. 
https://doi.org/10.2991/ijcis.2010.3.6.10 

Louzada, F., Ara, A., & Fernandes, G. (2016). Classification methods applied to credit scoring: 
Systematic review and overall comparison. Surveys in Operations Research and Management 
Science, 21(2), 117–134. https://doi.org/10.1016/j.sorms.2016.10.001 

Luo, S.-T., Cheng, B.-W., & Hsieh, C.-H. (2009). Prediction model building with clustering-launched 
classification and support vector machines in credit scoring. Expert Systems with Applications, 
36(4), 7562–7566. https://doi.org/10.1016/J.ESWA.2008.09.028 

Marcano-Cedeño, A., Marin-De-La-Barcena, A., Jimenez-Trillo, J., Piñuela, J. A., & Andina, D. (2011). 
Artificial Metaplasticity Neural Network Applied To Credit Scoring. International Journal of 
Neural Systems, 21(04), 311–317. https://doi.org/10.1142/S0129065711002857 

Marqués, A. I. I., García, V., & Sánchez, J. S. S. (2012). Exploring the behaviour of base classifiers in 
credit scoring ensembles. Expert Systems with Applications, 39(11), 10244–10250. 
https://doi.org/10.1016/j.eswa.2012.02.092 

Nieddu, L., Manfredi, G., D’Acunto, S., & la Regina, K. (2011). An optimal subclass detection method 
for credit scoring. International Journal of Economics and Management Engineering, 75, 349–
354. 

Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for 
bankruptcy prediction. Decision Support Systems, 52(2), 464–473. 
https://doi.org/10.1016/J.DSS.2011.10.007 

Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal of Artificial 
Intelligence Research, 11, 169–198. https://doi.org/10.1613/jair.614 

Ping, Y., & Yongheng, L. (2011). Neighborhood rough set and SVM based hybrid credit scoring 
classifier. Expert Systems with Applications, 38(9), 11300–11304. 
https://doi.org/10.1016/J.ESWA.2011.02.179 

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 
6(3), 21–45. https://doi.org/10.1109/MCAS.2006.1688199 

Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, 
Markedness & Correlation. Journal of Machine Learning Technologies, 2(1), 37–63. 

Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector 
machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & 
Geosciences, 51, 350–365. https://doi.org/10.1016/J.CAGEO.2012.08.023 

Provost, F., & Fawcett, T. (2013). Data Science for Business. (M. Loukides & M. Blanchette, Eds.) (1st 
ed.). Sebastopol: O’Reilly Media, Inc. 

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39. 
https://doi.org/10.1007/s10462-009-9124-7 

Sadatrasoul, S., Gholamian, M., & Shahanaghi, K. (2015). Combination of feature selection and 
optimized fuzzy apriori rules: The case of credit scoring. International Arab Journal of 



18 
 

Information Technology, 12(2), 138–145. 

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227. 
https://doi.org/10.1007/BF00116037 

Somol, P., Baesens, B., Pudil, P., & Vanthienen, J. (2005). Filter- versus wrapper-based feature 
selection for credit scoring. International Journal of Intelligent Systems, 20(10), 985–999. 
https://doi.org/10.1002/int.20103 

Tsai, C.-F. (2008). Financial decision support using neural networks and support vector machines. 
Expert Systems, 25(4), 380–393. https://doi.org/10.1111/j.1468-0394.2008.00449.x 

Tsai, C.-F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120–
127. https://doi.org/10.1016/J.KNOSYS.2008.08.002 

Tsai, C.-F., Hsu, Y.-F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy 
prediction. Applied Soft Computing, 24, 977–984. https://doi.org/10.1016/J.ASOC.2014.08.047 

Tsai, C.-F., & Wu, J.-W. (2008). Using neural network ensembles for bankruptcy prediction and credit 
scoring. Expert Systems with Applications, 34(4), 2639–2649. 
https://doi.org/10.1016/J.ESWA.2007.05.019 

Vukovic, S., Delibasic, B., Uzelac, A., & Suknovic, M. (2012). A case-based reasoning model that uses 
preference theory functions for credit scoring. Expert Systems with Applications, 39(9), 8389–
8395. https://doi.org/10.1016/J.ESWA.2012.01.181 

Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for 
credit scoring. Expert Systems with Applications, 38(1), 223–230. 
https://doi.org/10.1016/J.ESWA.2010.06.048 

Wang, G., Ma, J., Huang, L., & Xu, K. (2012). Two credit scoring models based on dual strategy 
ensemble trees. Knowledge-Based Systems, 26, 61–68. 
https://doi.org/10.1016/J.KNOSYS.2011.06.020 

Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corporate 
bankruptcy prediction. Expert Systems with Applications, 41(5), 2353–2361. 
https://doi.org/10.1016/J.ESWA.2013.09.033 

West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11–
12), 1131–1152. https://doi.org/10.1016/S0305-0548(99)00149-5 

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. 
https://doi.org/10.1016/S0893-6080(05)80023-1 

Wolpert, D. H. (2002). The Supervised Learning No-Free-Lunch Theorems. In Soft Computing and 
Industry (pp. 25–42). London: Springer London. https://doi.org/10.1007/978-1-4471-0123-9_3 

Yu, J.-L., & Li, H. (2011). On Performance of Feature Normalization in Classification with Distance-
Based Case-Based Reasoning. Recent Patents on Computer Science, 4(3), 203–210. 
https://doi.org/10.2174/2213275911104030203 

Zeng, G. (2014). A Necessary Condition for a Good Binning Algorithm in Credit Scoring. Applied 
Mathematical Sciences, 8(65), 3229–3242. https://doi.org/10.12988/ams.2014.44300 

Zhang, D., Zhou, X., Leung, S. C. H., & Zheng, J. (2010). Vertical bagging decision trees model for 
credit scoring. Expert Systems with Applications, 37(12), 7838–7843. 



19 
 

https://doi.org/10.1016/J.ESWA.2010.04.054 

Zhang, Z., Gao, G., & Shi, Y. (2014). Credit risk evaluation using multi-criteria optimization classifier 
with kernel, fuzzification and penalty factors. European Journal of Operational Research, 237(1), 
335–348. https://doi.org/10.1016/J.EJOR.2014.01.044 

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC Press. 

Zhu, X., Li, J., Wu, D., Wang, H., & Liang, C. (2013). Balancing accuracy, complexity and interpretability 
in consumer credit decision making: A C-TOPSIS classification approach. Knowledge-Based 
Systems, 52, 258–267. https://doi.org/10.1016/J.KNOSYS.2013.08.004 

 


