
Impact of Ngrams-based indexing on XML
retrieval

Mohamed Ben Aouicha1, Mohamed Tmar2, and Mohand Boughanem3

Institut de Recherche en Informatique de Toulouse,
118 Route de Narbonne, 31062 Toulouse, France

1 mohamed.benaouicha@irit.fr
2 mohamed.tmar@isimsf.rnu.tn

3 bougha@irit.fr

Abstract. We present in this paper a statistical approach of term
clustering. This approach is based on a statistical analysis of NGrams
shared by a pair of terms and is inspired from the t f × idf criterion
commonly used in information retrieval. Being statistical, the approach is
completely independent from the lexical and grammatical characteristics
of the language in which documents to be indexed are written. Classical
indexing is often based on stemming, which consists of transforming a
term into its radical. This allows to provide large issues for customized
information access. As for us, we consider that this can be made by
building term clusters and perform information retrieval based on
this concept. This approach is used for XML retrieval, therefore some
experiments have been undertaken into a dataset provided by INEX to
show its impact compared to Porter stemming method.

Keywords: NGrams, XML retrieval, INEX’2005, VVCAS.

1 Introduction

Many words have slightly different forms, but their significance remains the
same. It is in particular the case of the combined words. For example, the fol-
lowing terms have very similar significance: implement, implementing, imple-
mentation. . .

The dissimilarities between these terms is not useful to consider for informa-
tion retrieval. Contrary, we would like to find documents on implement for a
information need containing implementing. Thus, it is necessary to remove non
meaningful parts of a term, i.e. to bring back these words to an identical form
called stem. It is noticed that these terms have the same stem implement. So,
if one is able to remove the prefix and suffix from terms, and to keep only
the stem, we will have an identical form. It is the idea from which document
management systems are using stemmers. There are several ways of stemming
terms. The most and commonly used consists on examining only the form of
the term, and according to the form, tries to incrementally deduce the stem
[2]. The Porter’s algorithm removes the suffix from an English term in five
steps: the first step consists in transforming plural into singular. The second
tries to remove derivations progressively (example: -ness that we add behind
certain adjectives (happiness), -able added behind a verb (adjustable). . .). This
algorithm transforms sometimes two different terms into the same form. For

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research at Sofia University

https://core.ac.uk/display/213561561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30	 M. Ben Aouicha, M. Tmar, and M. Boughanem

example, derivate/derive, activate/active. However, for the majority of cases,
the transformation seems reasonable.

We can also use a dictionary while stemming. To show if a sequence of let-
ters at the term end corresponds to an actual suffix, it is enough to attempt to
remove or a transform the term in the dictionary. For example, we can accept
the rule which replaces -ation by -er (transformation, elimination, etc), how-
ever, for vocation, if this rule is applied, we will obtain vocer which does not
mean anything in English. We can check in the dictionary if the term exists,
if not we do not transform it. This approach is commonly used for the French
language [1].

The use of a dictionary involves some advantages, but the majority of infor-
mation retrieval systems do not have it, and such an electronic dictionary is still
not very accessible.

A correct stemming often requires a correct recognition of the grammatical
category. Thus, we can think of using an automatic tagger (or a grammatical
analyzer) while stemming. One of the possible approaches is to determine the
category by appreciating it by probabilities computation. To do so, it is neces-
sary to involve a probabilistic model by using the whole of manually catego-
rized texts (the corpus). This model determines the probabilities that a term
belongs to a category according to its form, and the set of terms potentially
related to it.

With such category recognition mechanism, we can transform a term into a
standard stem instead of simply removing its prefixes, suffixes and infixes.

While indexing, we should transform the terms, select a set of candidate
similar terms and measure the similarity between them. The result of indexing
is a cluster of terms to which the stem incarnates its centric. This paper aims to
define such model and to evaluate its contribution and usability.

The remainder of this paper is organized as follows. Section two presents
our approach for term clustering. An XML retrieval system is shown in sec-
tion three where experiments have been undertaken. Section four provides the
experiments and the obtained results. Finally, a summary and future works are
given.

2 Lexical equivalence relationship

The main purpose of indexing is to show if a pair of terms is lexically equiva-
lent, thus if their stems are identical. We define an equivalence relationship R in
the set of terms of the same language by the following:

Where stem(t.) is the stem of a given term t. and L is a given language (a set
of terms).

This relationship is an equivalence (reflexive, symmetrical and transitive).
We can then build clusters of terms according to this relationship. If it is con-
sidered that the objective of indexing is to build lexical clusters of equivalent
terms, it would not be necessary to transform each term into its stem, this trans-
formation has nevertheless the advantage of optimizing the stemming algorith-
mcomplexity. On the other hand, in order to avoid handling stem identification,
it is necessary to define another equivalence relationship which does not con-

∀(ti, tj) ∈ L2, ti R tj ⇔ stem(ti) = stem(tj) (1)

 Impact of Ngrams-based indexing on XML retrieval 31

sider a term stem. We define a relationship R according to the similarity of each
pair of terms by the following:

Where sim is related to the terms similarity and Tsim is a similarity threshold
under which a pair of terms is not potentially similar. It is not possible to affirm
that this relation is an equivalence relation because it is neither necessarily sym-
metrical nor transitive.

2.1 The similarity function

The t f × idf criterion commonly used in information retrieval reflects the im-
portance degree of a term to a document. A term is important in a document if it
often appears in the document (t f) and seldom in the other documents (idf).

This criterion is used in information retrieval to estimate the score of a doc-
ument to a user query, this reflects the fact that a document is relevant to a user
query if they share enough important terms. The t f × idf criterion is necessary
because it provides similarity calculation.

We are inspired from this assumption in order to estimate the similarity be-
tween a pair of terms based on the same assumption: two terms are similar if
they share enough significant elements.

To adapt this criterion to terms, it is first necessary to define which element
characterizes a term as a set of terms characterizes a document. In other words,
while a document is a set of terms, a term needs to be expressed by a set of
elements. The main problem is to define which represents this element. We
chose its NGrams: an NGram is defined by a term factor having length N. For
example, the 3Grams of the term information are inf, nfo, for, orm, rma, mat,
ati, tio and ion. An NGram is significant for a term if it appears at least once
in this term and little in the other terms. This implies that the least significant
NGrams for a term are those which often appear in the other terms, however
the most often met NGams are those that represent the elements to be added to
a given term in order to obtain another starting from its stem, for example, the
term formally is obtained by adding the suffix -ally to the stem form which ap-
pears in a many English terms.

∀(ti, tj) ∈ L2, ti R tj ⇔ sim(ti, tj) ≥ Tsim (2)

Table 1. t f × idf used for terms and documents

Document Term
Components Terms NGrams
t f frequency of the term in the

document
frequency of the NGram in the
term

Collection A set of documents (a corpus) A set of NGrams (a very large
document)

Table 1 presents an analogy of using the t f × idf criterion in the terms ac-
cording to its original definition in information retrieval.

The value of N used in our experiments is 2.

∀(ti, tj) ∈ L2, ti R tj ⇔ sim(ti, tj) ≥ S * min (sim(ti, ti), sim(tj, tj))

gk∈ti∩tjＵti∩tj

32	 M. Ben Aouicha, M. Tmar, and M. Boughanem

2.2 NGram weighting and term similarity

We weight each N Grami by its t f × idf in term tj as follows:

Where fi represents the number of distinct terms in the whole collection that
contain N Grami and fij represents the frequency of N Grami in term tj .

The similarity between a pair of terms is given by the following:

where gi is an NGram, ti ∩ tj is the set of NGrams appearing in ti and tj and
ti∩tjＵti∩tj is the set of NGrams that appear in term ti and that do not appear in
term tj or vice-versa.

According to equation 4, a term is a set of NGrams, and two terms are equiv-
alent if they share enough strongly weighted NGrams (∑gk∈ti∩tj

pki * pkj) and if
the weight of the non common terms are very low (∑gk∈ti∩tjＵti∩tj

pki * pkj).
The similarity threshold is a function of the similarity of each term to itself

with a multiplicative parameter we define experimentally. The relationship R is
then formally defined by the following:

(3)

(4)

Where S is a multiplicative parameter less than 1. We typically choose the
value allowing as well as possible to bring closer the relationship R in an equiv-
alence relationship: the value allowing to construct clusters with the minimal
clustering error.

Fig. 1. Evolution of the up weighting factor as function of the relative NGram position.

pij =
fij
fi

sim(ti, tj) = ∑ pki * pkj – ∑ pki * pkj
gk∈ti∩tj

(5)

 Impact of Ngrams-based indexing on XML retrieval 33

2.3 NGram weight as function of its relative position

To enhance the NGram position in a given term, we up weight all NGrams that
appear close to the middle of the term. In fact, since we consider that prefixes
and suffixes are non important for a term, the NGrams that appear near the
middle of a term are probably the most representative of its sense. We use the
up weighting factor αij defined as follows:

where pij is the position of NGram i in term j, μj is the mean average position of
an NGram that appears in the term j and σj is the standard squared deviation of
positions in term j. After some basic computations, μj and σj are both — where
lj is the length of term j. As function of the term length, the evolution of the up
weighting factor is shown by figure 1 in which we consider a term length 10.

The up weighting factor is taken into account by multiplying the NGram
weight by it. In our experiments, we evaluate the NGram weight with and with-
out the up weighting factor. These experiments have been undertaken into an
XML retrieval system that we introduce in the following section.

3 XML retrieval model

Extensible Markup Language (XML) [7] is becoming widely used as a standard
document format in many application domains. We believe since few years that
a great volume of static and dynamic data were produced in XML.

Therefore, XML information retrieval becomes more and more essential [8].
XML documents covers a big part not only on the web, but also on modern
digital libraries, business to business and business to consumer software and es-
sentially on Web services oriented software. This is due to the great importance
of structured information.

In XML retrieval [9] [10], we take into account the structure and the content
of each XML element [3] [4]. Our approach separates between content and
structure since indexing queries and documents [6]. Structure retrieval is based
on exact matching of flexible representations of a pair of XML trees, which pro-
vides the same result as flexible matching of the original representations. Text
retrieval however is based on traditional term weighting functions adapted to
structured documents. Each XML element text is propagated towards its ascen-
dants. We use the XML tree properties to down weight each propagated term.

4 Experiments and results

Experiments have been undertaken into a dataset provided by INEX. It con-
tains 16819 articles taken from IEEE publications in 24 journals covering the
period of 1995-2004 and totaling about 750 megabytes, and 87 queries (40 for
CO+S and CO tasks and 47 for CAS task on which we place the emphasis in
this paper).

The INEX metric we use for evaluation is based on the normalized extended

lj
2

αij = exp –
pij – μj

σj()

34	 M. Ben Aouicha, M. Tmar, and M. Boughanem

cumulated gain (nxCG) and the mean average effort precision (M Aep). The
extended cumulated gain (xCG) metrics are a family of metrics that are an
extension of the cumulated gain (CG) based metrics [5] and which aim to con-
sider the dependency of XML elements (e.g. overlap and near-misses) within
the evaluation.

Figure 2 shows that the obtained results on MAep are relatively closed to the
obtained results by using the Porter’s stemming method. This shows that our
term clustering method is effective and that the obtained clusters could replace
the stem. However, without considering the up weighting parameter α.., the
obtained results are slightly better then whose obtained with considering it.

According to the nxCG[50], figure 3 shows that the obtained results are bet-
ter than the obtained results by using the Porter stemming method for all gain-
recall values less than 0.3. We notice a clear advantage of using the up weight-
ing factor. For gain-recall values greater than 0.3, a slight advantage to the use
of the term up weighting factor is observed.

Fig. 2. Comparative MAep based results with official INEX participants

Fig. 3. Comparative nxCG based results with official INEX participants

 Impact of Ngrams-based indexing on XML retrieval 35

The experiments were based on unchanging structure scores overall in-
dexing methods (Porter and Ngrams), they do not have any influence on the
obtained results. We have observed however a great variation on the content
scores which have affected the obtained results.

5 Conclusion

In this paper, we have presented a term clustering method based on estimating
the similarity between a given pair of terms. The method is independent from
the language, which is not the case of the commonly used methods and espe-
cially Porter’s method. We have undertaken some experiments on an XML re-
trieval system and the obtained results show the effectiveness of our approach.
The obtained results are closed to those obtained by using Porter’s stemming
method with slight improvements according to nxCG[50]. We have obtained
some improvements in taking into account the position of each NGram rela-
tively in the term in which it appears. The main advantage of our study is that
our approach could be used for several natural languages. As future work, we
plan to improve our approach by using the order of the NGrams in a term. The
main assumption of language modelling in information retrieval is to process a
query as an ordered list of terms instead of a set of terms. We plan to show the
effectiveness of considering a term as an ordered list of NGrams.

References

J. Savaoy. Indexation manuelle et automatique : une ´evaluation comparative 1.	
base sur un corpus en langue franaise Actes 2i`eme COnf´erence en Recherche
d’Information et Applications CORIA’05, Grenoble, mars, pages 9-23 (2005).
M. F. Porter. an algorithm for suffix stripping Program 14, pages 130-137, (1980).2.	
S. Selkow. The tree-to-tree edition problem. Information processing letters, pages 3.	
184–186, 1977.
J. Wolff, H. Flrke, and A. Cremers. Searching and browsing collections of struc-4.	
tural information. Proc. of IEEE advances in digital libraries, Washington, USA,
pages 141–150, 2000.
Inex - initiative for the evaluation of xml retrieval. 5.	
http://inex.is.informatik.uniduisburg.de, 2003.
R. Luk, H. Leong, T. Dillon, A. Chan, W. Croft, and J. Allan. A survey in indexing 6.	
and searching xml documents. em Journal of the American Society for Information
Science and Technology, 6(53), 2000.
World wide web consortium (w3c). extensible markup language (xml) 1.0. 7.	
http://www.w3.org/TR/REC-xml, 2000.
D. Carmel, Y. Maarek, S. Mandelbrod, M. Mass, and A. Soffer. Searching xml 8.	
documents via xml fragments. Proc. of the 24th annual ACM SIGIR conference on
research and development in Information Retrieval, pages 151–158, 2003.
Y. Mass, M. Mandelbrod, E. Amitay, D. Carmel, Y. S. Maarek and A. Soffer. Ju-9.	
ruXML an XML retrieval system at INEX02. http://inex.is.informatik.uniduisburg.
de:2003/proceedings.pdf, pages 73-80, 2003.
S. Amer-Yahia, B. Chavdar, J. Dorre and J. Shanmugasundaram. XQuery full-text 10.	
extensions explained. IBM Systems Journal, pages 335–352, 2006.

