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Abstract. This paper describes a personal journey in the world of 
Mathematics and Mechanics and the actual process of reinventing 
devices with focus on their mathematical and mechanical properties. A 
set of important accompanying skills have been identified along the path 
of constructing these devices.
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1  The mechanics of trigonometric functions

One of the most notable features of the modern life is that many things are con-
verted into virtual things. We could pay with virtual money, we could enroll in 
virtual distant courses, we could visit virtually a tourist destination and we can 
have a virtual talk with virtual friends.

(Un)fortunately we have our temptation to make and to construct drifted 
away towards virtual artifacts. It is unfortunately, because we do not use our 
hands – we cannot touch, smell and taste our work. Nevertheless, it is also for-
tunately, because the virtualization revives the almost lost joy of constructing 
things.

Mechanical devices are one of the most interesting machines built by hu-
mans that are not as sophisticated as electronic devices, but can provide a per-
fect possibility to see and to understand how a set of components work together 
in an ideal synchronization.

Fig. 1. Devices drawing sine (left) and sine/cosine graphs (right).

After a talk with a virtual friend, it was decided to make a model of a device 
that draws the graph of the sine function using Elica (www.elica.net) as a devel-
opment environment. Elica uses the programming language Logo, specifically 
designed for education. Additionally, Elica supports 3D graphics – the basis of 
virtual reality [1].
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Fig. 2. Modeling tangent with a sliding pencil.

The initial idea is to have a pen attached to a rotating disk. However, most 
likely such device will draw a cycloid. The solution is to use orthogonal orien-
tation as shown in Fig 1 (left). The sine device leads us to a new problem – co-
sine has the same shape. Is it possible to build a device that draws both graphs 
at the same time?

Instead of shifting joints “along” the angle of rotation, it is possible to shift 
them along time. Then we can convert this shift into a shift in space by moving 
the pencils away of each other – Fig 1 (right). Depending on the pedagogical ar-
rangements, the constructions in Fig 1 can utilize or develop an important skill 
to have an active knowledge of the functions’ properties. In this context active 
means that the student can pick and use the right property in the right time.

Sine and cosine are mathematically bound to the tangent. It has nice geomet-
rical and algebraic explanations, though none of them is practical if we want 
to build a mechanical device. There is one problem – the infinity. The tangent 
function can produce infinitely large and small values. To make the situation 
worse, the graph jumps abruptly from positive infinity to negative infinity [2].

An interesting solution is to use a double-sided pencil, which slides forward 
and backward. Thus, the gravity does all the work – it slides the pencil in the 
right direction. When the pencil is horizontal, its tips point towards both infini-
ties at the same time. This solution relates to the next important skill, which is 
to transform the impossible things into possible.

2  The cycloid family

A device similar to the sine device can draw all forms of cycloids. Fig 3 (top) 
shows a device drawing a prolate cycloid and a modification for drawing 
nephroid [3].

A specific challenge is how to roll over the pencil. One of the possible solu-
tions is to make small niches at every place where the pencil is between the 
two circles. This approach expects some mathematical study ahead of mak-
ing the model, because the number of niches and their positions must be pre-
calculated.

This solution relies on the skill of discovering various tricks that resolve the 
conflicts between the ideal mathematics and the physical world. Unfortunately, 
this skill is very hard to teach and it is not possible to provide a prescription 
for it.
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Fig. 3. Prolate cycloid (left), nephroid (right) and niches.

3  Linears and circulars – interchanged

Cycloids, epicycloids and hypocycloids are families of quite rounded curves. 
Someone may intuitively expect that rounded objects are suitable for generat-
ing round curves, but would it be possible to construct straight lines? As shown 
in Fig 4 (left), a hypocycloid may become a segment for a specific ratio of the 
radii. It is a nice mathematical exercise to prove that the curve is really a frag-
ment of a line.

We could also ask the question how to make a round object by using only 
straight linear objects and linear movements. The bars of the device in Fig 4 
(right) perform only linear movement along perpendicular rails and draws an 
ellipse. It is even possible to find a way to flatten the ellipse completely into a 
segment as shown in Fig 5 (left).

Fig. 4. A segment from a hypocycloid and an ellipse from a straight line.

Fig. 5. Segment (left) and the family of curves (right).
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A mechanism combining the drawing of a circle, ellipses and a segment is 
displayed in Fig 5 (right) and is an illustration of the transformation from a circle 
to a segment via different phases of ellipses. The construction of this combined 
device relates to the skill of finding the common features of distinct models and 
converting them into special cases of a single united global model.

4  One for all

Circles and ellipses are members of the family of conic sections. A plane cross-
ing a cone generates intersection, which could be a circle, an ellipse, a parabola 
or a hyperbola [5]. Is there a single device can generate any of the conical sec-
tions? The answer is “yes” if we assume that the paper is the plane, and that a 
pencil rolls over the surface of a cone. Apart from rolling, the pencil slides up 
and down the cone to ensure that it reaches the paper and leaves a trace.

Fig 6 demonstrates a disk with tilted pencil that is capable of drawing all 
four conical figures. While the disk is rotating, the tilted pencil shapes an imagi-
nary cone. By tilting the disk and the holder, we can control which of the figure 
we want to produce. For a circle, we need a horizontal disk. A slight change in 
orientation will generate an ellipse. When the pencil becomes horizontal at its 
highest position, then we have a parabola (i.e. the pencil is “trying” to write in 
the infinity). A hyperbola is generated when a double-tipped pencil draws from 
both sides of the disk.

Fig. 6. Ellipse (left) and hyperbola (right).

The design of a device that can draw various conical curves requires not only 
the skill to unite various cases into one, but also the skill to capture, explore and 
interpret the fundamental characteristics.

5  More complex models

Lemniscate of Bernoulli. A linkage may produce the famous pendant ribbon 
curved called lemniscates of Bernoulli [6] – Fig 7 (left). The pencil is in the 
middle of the central bar. What will happen if it is placed elsewhere? The 
curve’s shape must be something between the shape of 8 and a circle. How 
would it look like? A modification of the program shows how one of the loops 
gradually shrinks into a cusp and then melts into the circle emerging from the 
other loop. The case with the cusp is presented in Fig 7 (right).
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Fig. 7. Lemniscate of Bernoulli (left) and lemniscate drop (right).
The hyperboring (sic) cosine. Initially the graph of the hyperbolic cosine 

function was considered by the author as a boring curve, not worth implement-
ing as a device. However, it has been found that the curve has many names 
– catenary, alysoid, funicular, chainette. This is an indication that the curve 
is something special. In reality, the hyperbolic cosine function is very popu-
lar – its graph is the shape of the freely hanging chain or high-voltage cables, 
the silhouette of an igloo, and the arks in a cathedral. Many of the suspension 
bridges utilize the properties of the hyperbolic cosine, because it allows a per-
fect distribution of forces.

The designs of suspension bridges are shown in Fig 8. The lengths of the 
wires in both models in are the same. The top ends of the left bridge forms a 
catenary. The same wires can be focused into one point as shown in the right 
bridge.

A device that would use variable length bars is hard to design, but is it pos-
sible to use fixed-length bars? The positive answer needs some mathematical 
experiments. If we consider the scheme of the right bridge as a side view of a 
cone, then all bars would physically have the same lengths and the hyperbolic 
cosine will emerge in their shadows (or orthogonal projections). Adding some 
more supplementary elements leads to an interesting solution of a catenary 
drawing device – Fig 9 (left).

The central point of the upper beam is moving like an upwards pendulum and 
traverses the semiperimeter of the base of an imaginary cone in Fig 9 (right).

Fig. 8. Suspension bridges.
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If this central point were connected with the cone vertex with a bar, then 
the length of its shadow would be the same as the length of the shadows of the 
two bars that hold the pencil. These shadows are the same as the wires in the 
suspension bridges in Fig 8.

The hyperbolic cosine device demonstrates one very math-aware skill: 
sometimes a person needs to build virtual constructions in order to cross the 
problem and reach the solution on the other side.

6  The square puzzle

A dozen of different devices are shown in this paper so far, some of them are 
simple, others – not so simple. It is not feasible to provide device for all known 
curves, but it would be nice to give an idea of how we can approach the con-
struction of any curve including polygons.

Fig. 9. A device drawing a hyperbolic cosine (left) and the imaginary bridges (right).

Fig. 10. Virtual model (left) of a floor turtle and a photo of a real turtle-robot1 (right).

1 National Education Network Gallery, http://gallery.nen.gov.uk/image79109.html.

Imagine a square – this is quite common curve. The problem is how to draw 
it with a device that has two disks and a bar. Although this looks impossible, as 
promised in the title of the paper, we will re-experience the engineering inven-
tions. 

Fig 10 shows the virtual skeleton and a photo of a floor turtle. This is a 
wheelbased robot, which can go forward and backward, as well as turn left or 
right. By controlling the rotation of the wheels, we can make the robot draw any 
curve that can be expressed algorithmically with a sequence of Turtle graphics 
commands. We used a programming language (Elica Logo) to build devices 
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drawing curves in order to evolve to the ultimate drawing programmable device 
– the turtle. A similar evolution occurred in the history of mankind, mechanical 
devices from the past are now being replaced by electronic, requiring a new 
skill: algorithmic thinking and programming!

7  Conclusion and Ideas

The presented journey in the world of designing mechanical devices for draw-
ing mathematical curves reveals the coherent linkage between the world of 
Mathematics and the real life. Whatever we design and construct, we need some 
way of representing our ideas. Whether we use real tools and materials, or just 
programs and virtual worlds, we still need to spend some time in researching, 
exploring and constructing.

The design and development of these devices can be used in a variety of 
educational situations. They can be used in Mathematical classes for explor-
ing curves and their properties, in Engineering classes for designing linkage 
devices, in Computer science or Computer graphics classes for programming 
3D virtual microworlds … and finally they can be used to develop a set of mul-
tifunction interdisciplinary skills:

Resolving theory-practice conflicts and transforming the impossible • 
into possible
Identifying, interpreting and exploring fundamental characteristics of • 
objects/phenomena 
Simplification, unification and optimization• 
Cross-disciplinary know-how transfer• 
 Algorithmic thinking• 

Additionally, another specific skill is silently embroidered throughout the 
whole journey. This skill is the devising of problems which solutions push us 
further along the path of constructionism.

A short 30-seconds long animation of each device is uploaded on the You-
Tube in the ElicaTeam profile. The future plans for these devices span over 
several directions. Obviously more devices will be added to the list, but it will 
be important to build a constructor’s microworld where the elements of the 
devices are available as programmable objects. Thus, even novice Logo us-
ers will be able to experiment with their own custom-designed devices. From 
educational point of view, it would be nice if the topics discussed in this paper 
were converted into learning and teaching activities. The design, the reasoning 
and the implementation of each device is worth a whole lesson by itself. A real 
in-class application of the ideas in the paper is still something essential to be 
done in the future, because this will provide information about how applicable 
this approach is, as well as it will be a source of new ideas and developments.
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