
Fast Information Retrieval
in the Open Grid Service Architecture

Tobias Berka and Marian Vajteršic

Department of Computer Sciences
University of Salzburg

Austria
tobias.berka@gmx.net, marian@cosy.sbg.ac.at

Abstract. Information retrieval offers resource discovery mechanisms for
unstructured information and has thus been identified as a standardization
goal by the open grid forum. We argue that an integration of information
retrieval into the infrastructure is not only an interesting prospect for
grid users, but is in fact necessary because the batch processing approach
supported by the open grid service architecture is at odds with the
requirements of online query processing. The cost of staging the search
indices to an allocated compute node to answer sporadic but frequent
search queries is prohibitive. We advocate the use of web services as
a cross site messaging mechanism and discuss the alternatives. To
investigate, we have designed and built a prototype system for grid
image retrieval. Unfortunately, the statelessness and isolation of web
services proved problematic for our purposes, but we present a software
architecture that can efficiently overcome these issues.

Keywords: information retrieval, Grid computing, distributed computing,
parallel algorithms, open Grid service architecture, web services

1 Introduction

If multiple organizations decide to join forces and create a virtual organiza-
tion (VO) to pool and share their resources, it is clear that we require means
to discover resources of interest, including large collections of images or texts.
Two key issues complicate the situation: the documents are inherently distri-
buted and incoming queries must be answered sporadically and frequently. In
research, expensive tasks of conventional information retrieval systems have
successfully been deployed as batch jobs on the grid [1] or in more intricate
architectural forms using workflow engines [2], but the biggest challenge is to
accelerate the query processing. For conducting information retrieval as a batch
job, it is necessary to move the entire index back and forth between the storage
nodes and the compute nodes. To eliminate the problem of index migration, we
argue that means for information retrieval should be integrated into the grid
infrastructure as a distributed, cross-site activity.

To comply with the overall direction taken by the Open Grid Forum (OGF),
we should design a service-oriented architecture using web services as a means
of communication between nodes. Another approach would be to use methods
for the cross-site deployment of grid-aware implementations of the message
passing interface (MPI) [4], which provide better communication performance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research at Sofia University

https://core.ac.uk/display/213561511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fast Information Retrieval in the Open Grid Service Architecture 203

and allow use of the popular MPI interface. But this limits the openness of the
distributed retrieval system because all local implementations are forced to use
a specialized MPI implementation. Others have investigated the use of middle-
ware for service-oriented architecture other than web services for information
retrieval systems, e.g. the OSIRIS middleware framework [5], but these are
often available only in research implementations and do not enjoy widespread
use. We believe that we should choose the first option, comply with the OGSA
and use web services as a means of communication despite the increase in cost
of cross-site messaging.

2 Fast Image Retrieval for e-Science Grids

One plausible scenario for grid information retrieval is the retrieval of images
in a high-performance grid for e-science applications. We need a very high de-
gree of retrieval accuracy and a complete coverage of the available documents,
because the users of such systems require reliable search results for their work.
In addition, we seek to obtain a maximum of performance in order to provide
a very responsive search engine – key factor in providing a satisfying user ex-
perience [6].

For the sake of efficiency, our system is designed for distributed, parallel re-
trieval with distributed control. The retrieval activity is implicitly controlled by
the exchange of messages and we consequently do not require a coordinating
host. To obtain simplicity in the design and efficiency in the implementation,
we decided to choose a specific retrieval model: the vector space model. Mem-
bers of the VO can all submit documents to the distributed system, but they do
so through a single, designated server. This design decision greatly simplifies
the connection from the clients to the distributed system. Since the actual work-
load is carried out primarily by the back-end hosts, a well-designed front-end
can easily handle large numbers of requests.

The principle distribution scheme is a document partitioning – the docu-
ments are distributed amongst the hosts of the system. In order to conduct a
complete, exhaustive query over the entire document collection, we proceed in
three steps: we distribute the query amongst all hosts, score and sort all local
documents and merge-sort the local results to form a global hit list. Both the
query distribution and merge-sort activities use a communication pattern of a
flat binary tree, allowing us to reach all hosts in a logarithmic number of serial
messaging steps, which is an important feature for a distributed cross-site acti-
vity. The message content for query merging consists only of document-sim-
ilarity-pairs. If the documents are evenly distributed, the total serial message
size is asymptotically linear in the number of documents – a clear advantage
over the traditional approach, where term-by-document matrices have to be
transmitted.

During the implementation of our prototype system, we had to overcome
one major obstacle: the statelessness of web services and the isolation of the
web service containers.

204	 T. Berka and M. Vajteršic

3 Overcoming Statelessness and Isolation of Web Services

In theory, web services are designed to be closed operations without any pro-
tocol-specific state, which are executed within the isolation of a web-service
container. But for many applications, web services must operate on the applica-
tion’s state and these principles are being subverted. The most common way is
to store the application state in a relational database and use a database connec-
tivity driver for manipulation. As a more structured approach, the web service
resource framework (WSRF) is a collection of XML-based standards for the
creation, usage and management of state information for web services using
persistent storage. Similarly, a web service implementation could simply use
the file system to store its state in a custom file format. For a distributed, parallel
information retrieval system, statelessness and isolation are highly problematic.
The key reason for realizing information retrieval as a service was to prevent
index migration for efficiency. Now, web services create a similar problem: we
must avoid moving the index to and from expensive persistent storage. There-
fore, we decided to use remote procedure calls (ONC-RPC). The web service
simply reformats the data to data structures suitable for RPC transmission, dis-
patches a call to the RPC handler, which executes the implementing function
for the call.

The implementation of each remote procedure places the message content in
one of two message queues: one for processing requests and another for deli-
very of intermediate results. These two queues are shared between a messaging
thread for the execution of the remote procedure calls and an application thread,
which is responsible for the primary retrieval functionality. The request queue
is used to keep track of all distributed operations over the shared document
collection, such as managing documents and initiating queries. The application
thread executes a loop, which blocks until a processing request is received, en-
ters the function implementing the corresponding functionality and repeats this
loop until a shutdown-request arrives. Within any such activity, which corre-
sponds to a single function in the implementation, the delivery queue is used to
receive incoming data. It is operated in a push-mode: the sender sends without
waiting for a request, and the receiver is simply blocked when it attempts to pop
a message from the empty queue. In the distributed merge-sort activity every
second host begins simply by sending its local result to the delivery queue of
every first host. This host then pops these results from the queue and merges
it with its own results, which are then sent further along the flat tree topology.
Differences in processing time are automatically balanced where possible, due
to the asynchronous, push-based semantics of the queue. Similarly, process-
ing requests are automatically received and buffered by the whole ensemble of
hosts, allowing them to act as a persistent parallel service to the outside world.
Figure 1 depicts the basic operation of these queues.

Fast Information Retrieval in the Open Grid Service Architecture 205

Fig. 1. Swim lane flowchart illustrating the use of the request and delivery queue to overcome
statelessness and isolation of web services. This diagram depicts an incoming request and associated
handler invocation (1), asynchronous receive operation for incoming data (2) and silent handler
termination (4).

(1)

(2)

(3)

(4)

Web Service
Container

marshal
arguments

dispatch
RPC

RPC
Server

Application
Thread

Request
Handler

inspect
message

request message

enqueue
request

enqueue
delivery

returncomplete
RPC

wait for
request

dequeue
request

process
request

wait for
delivery

receive
data

dequeue
delivery

data
received

send
data

data
sent

request
completed return

4 Conclusions

We have argued that information retrieval for grids is best realized as a persi-
stent parallel service and as part of the grid infrastructure to prevent performance
degradation due to costly migration of search indices. To comply with the open
grid service architecture, we are using web services as a primary means of com-
munication. Based on our prototype implementation, we have designed and
implemented a software architecture that allows us to escape the statelessness
and isolation of the web service container by using remote procedure calls to an
RPC server – on the same computer or within the same local area network.

206	 T. Berka and M. Vajteršic

We believe that our fundamental approach to grid integration for our fast
retrieval system can also be useful in other situations, where sporadic but fre-
quent queries must be answered within a minimal response time. The use of
remote procedure calls and shared in-memory message queues lends itself well
to other applications that benefit from keeping the data model in memory. In
future work, we will extend our current architecture to allow for multiple, pa-
rallel application threads to mitigate the high communication costs across high-
latency network links through multi-programming.

References

Hughes, B., Venugopal, S., Buyya, R.: Grid-based Indexing of a Newswire Corpus. 1.	
In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pp. 320—327. Washington, IEEE Computer Society (2004)
Larson, R.R., Sanderson, R.: Grid-based Digital Libraries: Cheshire3 and Distri-1.	
buted Retrieval. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on
Digital Libraries, pp. 112—113. New York, ACM (2005)
Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., 2.	
Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., von Reich, J.: The Open
Grid Services Architecture, Version 1.5. Online publication of the OGF, available
at http://www.ogf.org/documents/GFD.80.pdf (retrieved June 2010)
Coti, C., Herault, T., Peyronnet, S., Rezmerita, A., Cappello, F.: Grid Servi-3.	
ces for MPI. In: Proceedings of the Eighth IEEE International Symposium on
Cluster Computing and the Grid, pp. 417—424. Washington, IEEE Computer So-
ciety (2008)
Brettlecker, G., Milano, D., Ranaldi, P., Schuldt, H.: DelosDLMS - A Next-Genera-1.	
tion Digital Library Management System. In: Proceedings of the 14th International
Conference of Image Analysis and Processing - Workshops, pp. 83—88. Washing-
ton, IEEE Computer Society (2007)
Chowdhury, A., Pass, G.: Operational Requirements for Scalable Search Sys-2.	
tems. In: Proceedings of the Twelfth International Conference on Information and
Knowledge Management, pp. 435—442. New York, ACM (2003)

