
Advanced Approach for Effective Verification
 of Component Based Software Systems

Irena Pavlova and Aleksandar Dimov

Dept. of Software Engineering, Faculty of Mathematics and Informatics,
Sofia University

5 James Bourchier blvd. 1164 Sofia, Bulgaria
{irena_pavlova, aldi}@ fmi.uni-sofia.bg

Abstract. The development of complex systems based on reusable
components has many advantages such as lower costs and shortened
development lifecycles. At the same time this innovative approach
continues to place significant challenges towards integration and testing
of such systems. The paper analyses the difficulties of components
testing and proposes a combination of Built-In-Testing, Aspect Oriented
Software Development, Test Driven Development and Test Governance
to realize a method for effective verification in component based
systems.

Keywords: component, component based development, built-in-testing,
aspect oriented development, test driven development, test governance

1 Introduction

Increased requirements for quality, reduced costs and shortened “Time–to-Mar-
ket” are the main aspects that determine the shift from traditional software de-
velopment to modern advanced approaches. The process is focusing more and
more on reusing preexisting software units and developing reusable entities and
Component-based Software Engineering (CBSE) is becoming dominant [1].

The main principles of CBSE inherited from Object Oriented Development,
such as encapsulation and information hiding, as well as the separate develop-
ment of components and systems appeared to be quite a challenge when testing
and verifying components during their integration into systems [2]. The lengthy
and costly verification activities directly undermine the benefits of reusing the
design and implementation efforts put into a component [3].

Although very promising, CBSE shows weaknesses in testing and verifica-
tion aspects, which are also a consequence of lack of methodology, process and
tools support. In this paper we analyze and propose to adapt and combine four
advanced approaches in order to realize an effective method that will encom-
pass the whole component and system development lifecycle and will decrease
significantly the verification and integration efforts.

The rest of the paper is organized as follows. Section 2 introduces the basic
principles of CBSE. Section 3 analyses the main challenges of components
verification. Section 4 describes the advances and limitations of several tech-
nologies, in respect with component verification. In Section 5 a proposal is
made on how the technologies could be combined in a really effective solution.
In section 6 a conclusion is made and future research directions are outlined.

Advanced Approach for Effective Verification of Component Based Software Systems 197

2 Component-Based Software Engineering Main Principles

2.1 Components and COTS

CBSE emerged as a result of the increased interest in reuse of pre-existing enti-
ties. Introduction of the notion of component [4] is the key innovation in this
discipline. Here, we adopt the definition given in [5] and refer to the component
as to a unit of composition with contractually specified interfaces and context
dependencies only, that can be deployed independently and is subject to com-
position by third parties.

One of the main specifics of the component is its black box nature, i.e. the
internal implementation is hidden. The only interaction point with the rest of
the system is called interface. It should be very clearly specified, because it
defines the services that components provide to and require from the deploy-
ment environment, as well as the configuration requirements for their execution
[6]. When provided, components may have specific individual requirements
that can be violated when composed and deployed with other components [7].
Hence, techniques are needed to guarantee that these requirements do not inter-
fere with each other during components’ integration.

2.2 The Asynchronous Development Process

In CBSE the development of components is separated from development of sys-
tems [8]. Two sub-processes exist: component development and development
with components. There is a slight difference in the requirements and business
ideas in this two cases and different approaches are needed accordingly.

During the development of component based systems, the emphasis is not
on the implementation of the system designed, but on the reuse of pre-existing
components [6]. Hence, the most critical part is namely the selection, evalua-
tion (including testing) and integration. A number of open issues exist and one
of them is related to efficient testing and verification of components in order to
guarantee that they will meet the requirements specified, will be compliant with
the system design and will work as specified in the target system.

Components are developed as reusable entities to be used in many products,
many of them still not existing. For this reason they must be abstract and ge-
neral enough but also sufficiently specific to be easily identified, understood,
adapted, delivered, deployed, and replaced if needed. The above requirements
raise some important questions towards components testability, as stated in [9],
since testing is still the main approach used for technical evaluation of compo-
nents to be integrated into systems.

3 Problems of Testing Component Based Systems

Practice has shown that standard testing techniques are inefficient for com-
ponent based systems [10]. The main principles of CBSE, reusability, encap-
sulation and independent development are controversial to the basic elements
determining testability, as defined in [11]: observability, traceability, controlla-
bility and understandability. Further analysis on component testability is made
in [2].

198 I. Pavlova and A. Dimov

As already mentioned, components are described to users, by component’s
interface specifications. Testing is equivalent to black-box testing where speci-
fications are available but no design or code is. Unfortunately, the component
specification does not contain sufficient information for the system engineer
to test adequately and fully the available components. The limited options for
describing comprehensively the component functionality affect strongly an im-
portant element of testability, namely understandability. Verification is addi-
tionally hampered by the independent development. Components are provided
to be reused in different systems; hence they are developed more general and
described at a higher level of abstraction, which sometimes leads to misunder-
standing of their functionality.

In this context it is clear that due to the limited testability of components,
new methods and techniques should be developed, in order to overcome the
testing and verification problems and performance overheads.

4 Advanced Approaches for CBD
4.1 Built-in-Testing (BIT)

It is possible that a component possess facilities capable of generating test cases
which can be accessed by the user or which the component can use to test itself
and its own methods. These capabilities are called built-in testing (BIT) capa-
bilities [12].

By developing a methodology for integrating BIT into COTS components,
COMPONENT + FP5 project has widened the application of self-test tech-
niques for component-based software [13]. In order to avoid the shortcomings
of storing the test cases in the component, an architecture consisting of three
types of components - BIT components, testers, and handlers is defined in [14].
BIT component interfaces are extended with one or more “testing interfaces”
that provide information for the internal states of the component during testing.
Testers are components that contain the test cases accordingly and invoke the
built-in testing methods and handlers log and manage the testing information.
BIT interfaces provide access to methods, builtinto the component, without re-
vealing its internals i.e. the component encapsulation is preserved during test-
ing and at the same time – testability is increased.

BIT is a Design-for-Testability (DFT) technique, because it encourages de-
veloping comprehensive tests synchronously with developing the functionality
of the component. Here some important questions appear, such as separating
testing concerns from functionality and ensuring more seamless integration of
tests without influencing the normal component operation. These issues could
be addressed by combination of BIT with Aspect Oriented techniques.

Unfortunately the BIT approach still lacks a clear methodology on how to
analyze the testing requirements and formalize the testing considerations. That
is why the adoption of approaches such as Test Driven Development (TDD)
that fosters test development upfront could be very beneficial.

4.2 Aspect Oriented Software Development

Aspect-oriented software development (AOSD) seeks modularizations of soft-
ware systems in order to isolate secondary or supporting functions from the

Advanced Approach for Effective Verification of Component Based Software Systems 199

main program’s business logic. AOSD focuses on the identification, specifica-
tion and representation of crosscutting concerns and their encapsulation into
separate functional units, as well as their automated composition into a working
system.

In the recent years, research activities are focused on combining aspect
orientation with CBD. A good example is Aspect-Oriented Component Re-
quirements Engineering (AOCRE) [15] that focuses on identifying and speci-
fying the functional and non-functional requirements related to key “aspects”
of a system each component provides or requires.

4.3 Test Driven Development

The last testing approaches have proved to be ineffective for complex systems.
A new way to develop systems is required where testing is performed much
earlier in the system lifecycle and the development evolves in an iterative and
incremental manner [16]. Test Driven Development (TDD) emerged from Agile
Development of the 80’s to combat the above mentioned issues and completely
turns traditional development around. Instead of writing functional code first
and then testing it, the test code is written before the functional one. In other
words - the most risky phase, testing, is moved from the end to the front of the
life cycle.

4.4 Test Governance

To ensure that integration of independently developed pieces of software is
successful, component producers and consumers should make an effort towards
introduction of standardized notations, interfaces, data coding and semantics.
Further, in order to ensure interoperability, it is necessary to put in place some
organization to govern the interaction between the participating parties by some
agreed rules. This is what Governance is conceived for. Here, we will adopt
the definition given in [18]: Test Governance (TG) specifically concerns the
establishment and enforcement of polices, procedure, notations and tools that
are required to enable distributed testing of component integrations. Though
[17] specifically targets Service Oriented Architecture (SOA), the governance
principles are fully applicable in CBSE as well, as SOA evolved from compo-
nent based approach.

5 An Approach for Effective Verification

Apart from the clear advantages, BIT has some limitations such as lack of for-
mal methodology to cover the overall development process of components and
systems, no clear roles and responsibilities, mixing testing with core functiona-
lity and others. We propose a new approach for realizing BIT, by advancing it
trough other approaches that will lead to a more effective solution for verifica-
tion of components.

From the viewpoint of aspect-oriented techniques for testing components
it may be assumed that testing is a crosscutting concern, hence all testing
functionality should be encapsulated in an aspect [18]. Further, following the

200 I. Pavlova and A. Dimov

identified testing aspects, the BIT methods support will be realized through as-
pect programming language as well. For example, BIT technology relies on the
state based nature of components, as well as on the contract based interactions
between the different components. BIT methods for putting the component un-
der test (CUT) into a specific state before test and checking the state after exe-
cution might be realized through aspects. They have privileged access to the
adapted implementation. The original source code is not modified and aspects
can be easily removed.

The “test first approach” advocated by TDD will be very useful in the pro-
cess of identification of testing aspects early in the development process and
clearly separating the testing from functional concerns. In contrast to TDD,
where testing is considered at a very low level i.e. unit testing, here it should be
considered at component level. It is also important to note that both functional
(Contract) and nonfunctional (Quality of Service) testing should be taken into
account.

And last but not least, in order to ensure smooth implementation, the re-
levant polices, procedure, notations and tools should be in place to govern the
overall process of testable component development and seamless integration
into software systems and here is the place of the Test Governance.

6 Conclusions and Future Work

Although promising, reuse of independently developed software code hides
some problems, especially in the area of component testing and verification.
BIT technology promises to resolve these problems, by providing an architec-
ture that makes it possible to reuse test code and develop self-testable software
components. Apart from the clear advantages, BIT has some limitations, but we
believe that they can be efficiently diminished by combining BIT with AOSD,
TDD and TG. In order to validate the effectiveness of our approach, a case
study will be realized: the proposed technologies will be combined and applied
in the development of several components and their integration and testing into
a system and the process will measured on the time, effort and the number of
defects found basis. Further, a specification and formalization of the metho-
dology and tool support is needed. They should cover the entire component
and system lifecycle including technological, organizational, legal, and other
aspects.

Acknowledgements. The work presented in this paper was partially supported
by grants from the National Science Fund in Bulgaria under the MU-01-143
(ADEESS) project and the SISTER project, funded by the European Commis-
sion in FP7-SP4 Capacities.

References

I. Crnkovic, Component-Based Software Engineering-New Challenges in Software 1.
Development, Journal of Computing and Information Technology, Vol 11, No 3
2003
I. Pavlova, Testability of Component Based and Service Oriented Systems, Pro-2.
ceedings of 12 International Conference Automatics and Informatics, 2008

Advanced Approach for Effective Verification of Component Based Software Systems 201

I. Pavlova, M. Akerholm, J. Fredriksson, Application of Built-In-Testing in Com-3.
ponent-Based Embedded Systems, ISSTA 2006, p. 51-52, ISBN:1-59593-459-6
D. D’Souza, A. Wills, Objects, Components and Frameworks: The Catalysis Ap-4.
proach, Reading, MA: Addison-Wesley, 1998
C. Szyperski, D. Gruntz, S. Murer, Compnent Software – Beyond Object-Oriented 5.
Programming, Component Software, Addison-Wesley, 2nd ed., 1999.
Crnkovic, M. Larsson, Building Reliable Component Based Systems, Norwood, 6.
MA, USA: Artech House, Inc, ISBN 1-58053-327-2
D. Garlan, A. Robert, Architectural Mismatch or why it’s Hard to Build Systems of 7.
Existing Parts; 17th ICSE p.179-185, 1995
M. Morisio, C.B. Seaman, COTS-Based Software Development: Processes and 8.
Open Issues, Journal of Systems and Software Volume 61, Pages: 189 – 189, 2002
S. Beydeda, V. Gruhn, State of the art in testing components, Proceedings of Third 9.
International Conference On Quality Software, ISBN: 0-7695-2015-4, 2007
St. De Panfilis, A. Berre, Open issues and concerns on Component Based Software 10.
Engineering, Deliverable of results of CBSEnet IST-2001-35485, 2005
J. Gao, Component Testability and Component Testing Challenge. Ph.D. Thesis, 11.
San Jose State University, USA, 2000
S. Beydeda, V. Gruhn, Merging components and testing tools: The Self-Testing 12.
Components (STECC) Strategy, 29th Euromicro Conf. , ISBN: 0-7695-1996-2,
2003
Y. Wang, G. King, A European COTS Architecture with BIT, Lecture Notes Com-13.
puter Science, Springer Vol. 2425, p. 69-74, ISBN 978-3-540-44087-1, 2002
Y. Wang, G. King, H. Wickburg. A method for built-in tests in component-based 14.
software maintenance. European Conference on Software Maintenance and Re-
engineering, p. 186–189. 1999.
J. Grundy, Aspect-oriented Requirements Engineering for Component-based Soft-15.
ware Systems, 4th IEEE International Symposium on Requirements Engineering,
ISBN: 0-7695-0188-5, 1999
B. S. Mattu, R. Shankar, Test Driven Design Methodology for Component Based 16.
Systems, 1st Annual IEEE Systems Conference, 2007
A. Bertolino, A. Polini, SOA Test Governance: enabling service integration test-17.
ing across organization and technology borders, IEEE International Conference on
Software Testing, Verification and Validation Workshop, 2008
D. Sokenou, S. Herrmann. Aspects for Testing Aspects. Workshop on Testing As-18.
pect-Oriented Programs, AOSD 2005, Chicago, USA, March 2005

