
 65

EDUCATION IN INFORMATICS AT SOFIA UNIVERSITY
 - CURRENT STATUS AND FUTURE PLANS

Roumen Nikolov

FMI – Sofiia University
5, J. Bouchier str., P.B. 48

Sofia 1164, Bulgaria
roumen@fmi.uni-sofia.bg

http://www-it.fmi.uni-sofia.bg/

Sylvia Ilieva
FMI – Sofiia University

5, J. Bouchier str., P.B. 48
Sofia 1164, Bulgaria

sylvia@fmi.uni-sofia.bg
 http://www-it.fmi.uni-sofia.bg/

ABSTRACT
The paper presents some real experiences, emerging models and lessons learnt based on
the case of Sofia University - Faculty of Mathematics and Informatics (FMI), and its
partners. Sofia University has always played a very important role for the development of
the country. The university experiences a lot of challenges related to the overall
transformation of the economic and social system in the country, the changing models of
education, the new role of the universities in the knowledge-based society and the great
demand for Information and Communication Technologies (ICT) specialists. Sofia
University is also challenged by the opportunity to be actively involved in the development
of the European space of higher education. The outcomes of an internal university project
aimed at the establishment of ACM/IEEE based BSc programs in Computer Science,
Software Engineering and Information Systems are described and analyzed. Some
experience in developing a layer of MSc programs as a live link to the professional ICT
society and ICT industry is also described. Some future plans for the development of the
Computing Curricula and its coordination with the European ICT education, research and
innovation agenda are presented as well.

1. Introduction
Sofia University “St. Kliment Ohridski” is the first school of higher education in Bulgaria.
Today it is the largest and most prestigious educational and scientific centre in the country,
with over 35,000 students studying in 76 Bachelor’s and over 200 Masters degree
programs. Since its establishment the university has always played a very important role for
the development of the country. The university experiences a lot of challenges related to the
overall transformation of the economic and social system in the country, the changing
models of education, the new role of the universities in the knowledge-based society and
the great demand for ICT specialists. Sofia University is also challenged by the opportunity
to be actively involved in the development of the European space of higher education.

The Faculty of Mathematics and Informatics (FMI) at Sofia University is a leading
educational and research organization in the field of Informatics and ICT. An internal
university project for re-designing the computing curricula according to the Association for
Computing Machinery/Institute of Electrical and Electronics Engineers (ACM/IEEE)
guidelines started four years ago. Following the ACM/IEEE CC2005 series
recommendations [1] FMI has developed the BSc programs in: Computer Science [1],
Software Engineering [3] and Information Systems [4] – see Figure 1. The main aims were
to introduce some well established curriculum standards and new style of teaching. The
main challenge was how to satisfy recommendations of the ACM/IEEE Computing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research at Sofia University

https://core.ac.uk/display/213561198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 66

Curricula, the Bologna Declaration, and several European ICT curricula recommendations
[5], [6].

Fig. 1. Intersection of the BSc Computing Curricula in Computer Science, Software Engineering and Informa tion

Systems

Quality of education was considered as the major indicator for success while designing and
implementing these programs. In addition, FMI offers large number of Master degree
programs, such as Software Engineering (SE), Information Systems, eBusiness and
eGovernance, Artificial intelligence, Mobile Technologies and Distributed Systems,
eLearning, Information Security, Mechatronics and Robotics, Computer Graphics,
Computational Science and Engineering, etc.

Most of the MSc programs include compulsory internship student placement. The programs
are oriented mostly towards the needs of the global ICT industry and the priorities of the
European RTD Programmes in the field of ICT. In order to satisfy the ICT industry needs of
technology managers Sofia University established a co-operation with Stevens Institute of
Technology, USA, for local delivery of a MSc program in Information Systems [7]. A MSc
program in Technology Entrepreneurship and Innovation is under preparation for the next
academic year. Such measures would help the country to bridge the existing gap of ICT
specialists and managers. The international cooperation opens new opportunities for
improving the quality of education and for positioning Sofia University in the European
Higher Education space. In the process of negotiation and preparation are some joint
Master degree programs with European universities, e.g. a MSc Program in Networked
Computing together with University of Reading, UK. A strategic cooperation with many
outstanding universities in the frames of the Intel Multi-core Computing Program opens new
doors for international cooperation and adaptation of the Computing curricula according the
most recent developments in the field and adapting it to some emerging technologies. Such

 67

international co-operation programs provide direct mechanisms for increasing the quality of
education. They are very attractive for students and motivating for teachers.

One way to have access to contemporary equipment and software is the strong cooperation
with the ICT industry. A good example in this direction is the Sofia University Cisco
Regional Academy, which was established in 2001 in order to implement the Cisco model
of Public-Private-Partnership at a regional and national level. Similar cooperation programs
were initiated with Microsoft (Microsoft IT Academy), Oracle (Oracle Academic Initiative),
HP (HP training centre), SAP labs, IBM and other international IT vendors. The cooperation
with the local ICT industry is considered as a strategic goal of FMI in order to better adapt
the computing curricula according to the needs of this industry, and to open doors for a
professional carrier for every FMI graduate. Several bi-lateral programs for carrying out
student internship programs with some local Information Technology (IT) companies (e.g.
Rila Solutions, Fadata, Technologica, Sirma, etc.) were established. The major Bulgarian
ICT associations, such as BASSCOM (Bulgarian Association of Software Companies),
BAIT (Bulgarian Association of Information technologies) and ASTEL (Telecommunications
Association), also provide their services and support for achieving better cooperation
between FMI and the Bulgarian ICT companies.

This paper describes some real experiences, emerging models and lessons learnt based on
the case of Sofia University

The paper is organized as follows: Section 1 is the Introduction and gives the background
information about Sofia University, FMI, its MSc programs and cooperation with industry.
Section 2 presents the curricula development process in FMI for the BSc program in
Software Engineering. Section 3 describes the real implementation of the BSc of Software
Engineering curricula, as part of education in Informatics, and lists some of the main
courses. Section 4 focuses on project based learning and internships as essential part of
practical units education. Section 5 discusses open issues and perspectives in Sofia
University. Section 6 concludes the paper.

2. Curricula Development Process in FMI
A growing demand for university level education is observed in Bulgaria – there is
increasing number of candidate-students in conditions of a constant annual enrolment.
Changes in the labor market and in the demand for new types of qualifications and a new
graduate profile, as well as a demand for lifelong learning/continuing education, are the
reasons for increasing the number of part-time students and older students. The only
possible solution of this problem is to apply flexible ICT based education at university level
based on advanced research outcomes and technology solutions.

An internal university project for re-designing the computing curricula started four years ago
with Computer Science curricula. In this section we will describe the process we followed in
developing a BSc program in Software Engineering

2.1 Prerequisites and Goals
Bulgaria is among the main destinations of investments of software development
companies who are attracted by the well educated and qualified IT workforce. The
Bulgarian IT industry is rapidly growing and the shortage of professionally educated
software developers is among the main barriers for faster economic development of the
country. Since ICT is recognized as one of the priorities of the country development, we are
very much concerned with the problem of improving the professional education and training
in the field of software development. FMI has got some very good achievements and

 68

traditions related to mathematics and computer science (with some mathematical roots).
The current tendency shows that software development becomes a more ‘engineering’ type
of field where FMI does not have much experience and traditions. It happens, however, that
software design differs from all other forms of design, whether these are “hard design” (for
material objects) or “soft design” (for processes or policies) [8]. Socha and Walter state that
“Understanding whether designing software is different from designing other things will help
our software discipline learn from other disciplines, and contribute to other design
disciplines. We believe that this understanding is critical, since most design fields are
seeing an increasing role for software as aids to the creation of the design, or of software as
part of making a more interactive end product. We believe that in the future hard design
processes will adopt and include many of the methods of successful software design
practice.”

Dym et al, define Engineering Design as “a systematic, intelligent process in which
designers generate, evaluate, and specify concepts for devices, systems, or processes
whose form and function achieve clients’ objectives or users’ needs while satisfying a
specified set of constraints” [9]. The output of the engineering design process is generally a
set of detailed specifications which can range from a simple text document to complex
animated CAD drawings [10]. The steps in a hard design process could be defined as
follows:

• Client Statement and Need;

• Problem Definition;

• Conceptual Design;

• Preliminary Design;

• Detailed Design;

• Design Communication;

• Final Design (Fabrication specifications and documentation);

These steps correspond in great extent to the Waterfall software development model
originally described by Royce [11]. However, the advance of the Agile Programming models
poses some questions like: “Is Design Dead?” [12]. The answer of Fawler is “No”, but he
emphasizes that the nature of the software design has changed: “For many that come
briefly into contact with Extreme Programming (XP), it seems that XP calls for the death of
software design. Not just is much design activity ridiculed as "Big Up Front Design", but
such design techniques as the UML, flexible frameworks, and even patterns are de-
emphasized or downright ignored. In fact XP involves a lot of design, but does it in a
different way than established software processes. XP has rejuvenated the notion of
evolutionary design with practices that allow evolution to become a viable design strategy. It
also provides new challenges and skills as designers need to learn how to do a simple
design, how to use re-factoring to keep a design clean, and how to use patterns in an
evolutionary style”.

Fawler identifies a set of specific skills that an XP software designer has to possess, such
as:

• A constant desire to keep code as clear and simple as possible;

• Refactoring skills so you can confidently make improvements whenever you see the
need;

• A good knowledge of patterns: not just the solutions but also appreciating when to
use them and how to evolve into them;

 69

• Designing with an eye to future changes, knowing that decisions taken now will have
to be changed in the future;

• Knowing how to communicate the design to the people who need to understand it,
using code, diagrams and above all: conversation.

The SE Curricula Task Force at FMI has faced the challenge of lack of any traditions in the
engineering field. This was partially compensated by involvement of a number of new
professors at FMI who had graduated from some engineering discipline. The team has also
faced the lack of enough experience in SE education world-wide. Some of the basic
principles integrated into the FMI SE Curricula are described bellow.

In order to enable undergraduates to become professional software engineers, the
curriculum designers should note the three essential traits of professionalism that are
commonly recognized [13]:

• A body of knowledge unique to the profession;

• High levels of responsibility and accountability via a code of ethics and professional
practice;

• Competence and commitment in the profession demonstrated by certification by a
professional organization or a legally recognized license to practice.

We identify three different levels of knowledge about a subject a person acquires:

• Rote Knowledge : Rote knowledge entails having a basic understanding of the
overall structure of a subject. This knowledge is superficial and de-emphasizes
details. A student with rote knowledge of the area has some intuitive understanding
of the subject but few tools with which they can solve concrete problems.

• Application Knowledge : Application knowledge is deeper than rote knowledge.
Students with application knowledge can solve concrete problems given to them that
pertain to the subject area. To attain application knowledge some amount of
formalization of the subject is required.

• Correlation Knowledge : Correlation knowledge is the deepest form of knowledge.
Given a problem, the student is able to identify a technique that might be used to
solve the problem and then proceed to apply the technique. This knowledge requires
deep intuition on the subject and is consequently the most difficult to teach or
acquire.

The body of knowledge and skills of the SE program graduates were also adapted to some
of the basic ICT job profiles related to software development [8], such as: “Software and
Application Development”, “Software Architecture and Design”, ”Systems Specialist”, “ICT
Project Manager”, etc.

2.2 Development process
The initial step of the Software Engineering Curricula Task Force at FMI was to create a
vision and plan for curricula development. The development process consisted of three
main phases – analyses, design and evaluation. We will briefly describe each phase.

2.2.1 Analyses
During this phase some recommendations and views from different stakeholders and
committees were analysed. A number of strategic documents related to education in ICT
and particularly in Software Engineering were reviewed, such as:

• Bologna and Lisbon strategies

 70

• Career Space Industry Consortium

• ACM/IEEE recommendations

• Industry companies – Intel, IBM, Microsoft, HP, etc - initiatives for Universities

The Career Space ICT Consortium believes that there is no one single way to design the
best ICT curriculum [5]. On the contrary, if the cultural diversity in Europe is to be used to
give competitive advantage to this region, each university must find its own best solution.
They believe that a framework based on experience and best practice can lead to a set of
useful guidelines, and that the universities can find their own way to success. The Career
Space consortium recommends that ICT Curricula should consist of the following core
elements (Figure 2):

• a scientific base of 30%,

• a technology base of 30%,

• an application base and systems thinking of 25% and,

• a personal and business skills element of up to 15%.

Fig. 2. Scope of Competence, showing Model ICT Curr iculum content (adapted from Career Space, 2002)

At the second step a number of well established BSc programs in Software Engineering in
Europe, USA and elsewhere were examined and compared. The needs of the Bulgarian
ICT industry were also identified through a survey with a specially designed questionnaire
followed by a number of individual meetings and discussions. In addition, a representative
of the Bulgarian software companies BASSCOM was associated to the FMI SE task force.

The high school background of the prospective students was analyzed and taken into the
consideration as well.

Depth of Knowledge

Technology Base

Application Base
&

System Solution
Methodology

Scientific Base

~30 % ~30 %

~25 %

Personal & Business
Skills
~15 %

Thesis (Project)
min 3 months

Industry Placement
min 3 months

Width of Knowledge

 71

2.2.2 Design
This was the most difficult and long lasting phase. First, a template for course description
was created, which had to be in line with the requirements of the National Accreditation
Agency. An additional requirement was to meet most of the criteria for accreditation of the
computing programs of the Accreditation Board for Engineering and Computing [14]. Later
on the main courses with their interdependences and relations were identified. Then the
documentation of the courses was developed, which included course distribution, teaching
hours to topics, the most appropriate text books, etc. In case there was no textbook
appropriate, the need of writing such textbook was identified. In both cases the lecturers
were obliged to provide a well prepared course reader and lecture presentations in
powerpoint. More than a half of the courses were prepared for on-line delivery as well.
During the curricula design we were working hard in order to find a well-balanced mix of
theoretical and practical units.

2.2.3 Evaluation
Each of the courses and the curricula as a whole were discussed and evaluated by an
Advisory Board of specialists respected at national level and a number of external experts
in ICT. Based on their feedback the curriculum was refined. A number of surveys among
the students as well as among their employers were also organised.

Having in mind that Software Engineering is extremely dynamic field we need to go through
those 3 phases iteratively all the time. So we foresee that the courses would be refined on
an annual basis and the students are encouraged to give feedback and suggestions.

3. Software Engineering Curricula Implementation at Sofia University
The duration of our BSc program in SE is 4 years. Each course gives the students credits
synchronized with the European credit transfer system (ECTS).

The core of software engineering courses cover all the essential elements required by the
software engineering profession, such as: Software Design, Formal Methods, Human
Computer Interaction, Measurement and Metrics, Process Models, Project Management,
Quality Assurance and Standards, Requirements Specification, Testing, Computer Aided
Software Engineering (CASE)Tools, etc.

• Design and Implementation of Software for the Web. This course teaches
students how to develop software for web applications. The concepts of client-server
computing, theories of usable graphical user interfaces, and models for web-based
information retrieval and processing are covered. Goals are to understand how to
design usable software interfaces and implement them on the web, learn how to
build software that accepts information from users across the web and returns data
to the user, and understand how to interact with database engines to store and
retrieve information. Specific topics that are included are HTML, CGI programming,
Java, Java applets, Javascripts, and Java servlets.

• Software Construction. The students are taught in in-depth study of software
construction using a modern language. Some concepts, such as information hiding,
data abstraction, concurrency, and object-oriented software construction, are
discussed.

• Software Requirements and Prototyping. In-depth study of methods, tools,
notations, and validation techniques for the analysis and specification of software
requirements. Students participate in a group project on software requirements.

 72

• Software Design. The course focuses on concepts and methods for the
architectural design of large-scale software systems. Fundamental design concepts
and design notations are introduced. Several design methods are presented and
compared, with examples of their use. Students participate in a group software
design project.

• Formal Methods and Models in Software Engineering. This course presents
formal mechanisms for specifying, validating, and verifying software systems.
Program verification through Hoare's method and Dijkstra's weakest preconditions
are also covered. In addition, students will learn about integration of formal methods
with existing programming languages, and the application of formal methods to
requirements analysis, testing, safety analysis, and object-oriented approaches.

• Software Project Management. The main topics discussed in the course are:
lifecycle and process models; process metrics; planning for a software project;
mechanisms for monitoring and controlling schedule, budget, quality, and
productivity; and leadership, motivation, and team building.

• Software Project Laboratory. Students are involved in analysis, design,
implementation, and management of a software system project. Students work in
teams to develop or modify a software product, applying sound principles of software
systems engineering. Both industrial and academic standards are used to assess the
quality of the work products.

• Software Engineering Economics. The course covers: quantitative models of the
software lifecycle; cost-effectiveness analysis in software engineering; multiple-goal
decision analysis; uncertainty and risk analysis; software cost estimation; software
engineering metrics; and quantitative lifecycle management techniques.

• Object-Oriented Software Development. The course includes: principles of object-
oriented design, development, and programming; relationships between object-
oriented design concepts and software engineering principles; techniques of object-
oriented design and programming.

• User Interface Design and Development. The students are taught in in-depth study
of principles of user interface design, development, and programming. It includes
user psychology and cognitive science, adaptive user interfaces, icon and window
design, command language design, user guidance systems, and collaborative
working.

• Software Testing and Quality Assurance. The students are taught in concepts and
techniques for testing software and assuring its quality. Software testing at the unit,
module, subsystem, and system levels is discussed. Automatic and manual
techniques for generating and validating test data are taught. The testing process,
static vs. dynamic analysis, functional testing, inspections, and reliability assessment
are presented.

• Software Engineering for the World Wide Web. The course includes detailed
study of the engineering methods and technologies for building highly interactive web
sites for e-commerce and other web-based applications. Engineering principles for
building web sites that exhibit high reliability, usability, security, availability, scalability
and maintainability are presented. Methods such as client-server programming,
component-based software development, middleware, and reusable components are
taught.

 73

• Special Topics in Software Engineering. This course covers special topics not
occurring in the regular SWE sequence. May be repeated for credit when semester
topic is different.

• Advanced Software Requirements. This course focuses on state-of-the-art and
state-of-the-practice in software requirements engineering. In-depth coverage of
selected methods, tools, notations or validation techniques for the analysis and
specification of software requirements. The course work includes a project
investigating or applying approaches to requirements engineering.

• Advanced Software Design Methods. This course covers study of advanced
design methods for large-scale software systems, including concurrent, real-time and
distributed systems. The course work includes a project investigating or applying
software design methods.

• Directed Readings in Software Engineering. The students are obliged to do
analysis and investigation of a contemporary problem in software engineering. Prior
approval by a faculty member who supervises the student's work is required.

• Thesis. The Thesis is based on a research project completed under the supervision
of a faculty member, which results in a technical report accepted by a three-member
faculty committee. The report must be defended in an oral presentation.

A set of courses related to professional practice, computing careers, history of computing,
impact of computers on society, legal and ethical responsibilities, computing profession,
and computer law were introduced. The typical duration of such courses is one semester:

• SP1. History of computing [core]

• SP2. Social context of computing [core]

• SP3. Methods and tools of analysis [core]

• SP4. Professional and ethical responsibilities [core]

• SP5. Risks and liabilities of computer-based systems [core]

• SP6. Intellectual property [core]

• SP7. Privacy and civil liberties [core]

• SP8. Computer crime [elective]

• SP9. Economic issues in computing [elective]

• SP10. Philosophical frameworks [elective]

4. Education materials
For every course a set of materials is prepared including:

• Presentations

• Tutorials

• Exercises

• Tests

• Projects

• List of recommended papers from conferences, journals or technical reports.

In this section we focus our attention to projects and internships as essential parts of the
practical units education.

 74

4.1 Project base learning
The most popular pedagogical model for teaching design is project-based learning (PBL),
i.e. students to learn design by experiencing design as active participants [9]. The ability to
work as an effective member of a development team is a primary goal of the SE education
and one of the the main learning outcomes which the accreditation agencies and
commissions would be happy to observe [15]. The SE Master education at FMI is based on
team work on class projects which are supposed to produce useful tools expected to enrich
either the software environment at the work place of the students or the SE educational
environment. The students are involved in development, maintenance and refinement of
real software which helps them understand the subject better and adapt to a team-work
style. Some of the projects the students work on come from the research areas of the
professors, and they might eventually evolve into diploma theses. In some cases such
projects mature towards a PhD thesis as well. In other cases projects come from the current
internal university needs. An example of such a project is the eLearning Management
System ARCADE [16], which was developed by a team of four MSc students guided by a
university professor. This system has been used as an eLearning platform for delivering
courses at MSc level for more than six years now. The system has been gradually extended
and enriched with new functionalities and services and it was used as a basis for additional
five MSc and two PhD works.

Figure 3. ARCADE – a Learning Management System deve loped as a team work of four MSc students

The ARCADE environment (Figure 3) has been designed and developed as a complex
environment for collaborative and active e-learning. Its main merits include the following:

• It is based on standards – XML/XSL, Java, IMS, LTSC LOM, QTI, SCORM; UML widely
use in development process

 75

• Open - the use of XML import/export will make the system open for information
exchange (including reusable courseware content) with other similar systems;

• Modular - different project modules are made as much independent as possible; easy
plug-in of new functional modules;

• Portable – Java servlets and JSP technology plus MySQL or Oracle support make
ARCADE portable between different platforms and operation systems.

4.2 Internship
Comparing our BSc in SE program with similar programs in UK we can see that we are
missing the 1 year placement. Instead, we have provided internships at the end of the last
academic year. The internship procedure we have accepted is as follows:

• FMI team contacts Bulgarian private software companies and governmental
organizations in order to have every three months the pool of the current requests for
interns updated.

• That pool of requests is made available to the students and they are expected to apply
for the preferred one.

• In case there are more applications for a given request than needed the selection
procedure is started based on students’ skills and motivation. In some cases, depending
on the company/organization, it is possible that the requests are extended to more
people or even that two teams work in parallel on the same task.

• Every student has two tutors – one from the University, and the other from the company

• Each internship ends with evaluation by the company tutor.

Usually after the internship students receive offers for full time position at the same
company.

The other new schema for internships is in the process of establishment. It foresees
internships at other European universities we are cooperating with.

5. Perspectives and open issues
The future plans of the FMI include the following issues:

� Gradual increase of the number of enrolled BSc and MSc students in the ICT related
programs;

� Development of a subset of BSc and MSc programs taught in English and marketing
them on the regional level, mostly in the South-Eastern Europe;

� Development of partnership with other European and USA universities, including
establishment of joint programs with dual degrees;

� Developing a complete educational virtual environment (Sofia University Virtual
Campus) and increasing the courses and programs taught in e-learning mode;

� Establishment of a set of ICT research labs and further involvement of PhDs and other
students in concrete research and technology development activities;

� Strengthening the innovation and entrepreneurship capacity of the university and
establishment of strong technology transfer links with ICT industry and government;

� Extending the network of partnering organizations from ICT industry both locally and
internationally and providing opportunities for cross-sector mobility of students,
researchers, professors and ICT professionals.

 76

6. Conclusions
We consider the educational change in the field of ICT at university level as being among
the main factors for the successful development of Bulgaria’s Knowledge Economy. In
addition, the ICT education and professional development of ICT specialists is a very strong
factor for building a competitive country economy. Sofia University is prepared to take a
leading role in this process.

References
1. ACM/IEEE (2005), Computing Curricula 2005 - The Overview Report, ACM and the

IEEE Computer Society

2. ACM/IEEE (2001), Computing Curricula 2001, Computer Science, ACM and the
IEEE Computer Society

3. ACM/IEEE (2004), Computing Software Engineering 2004, Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering, Report, ACM and the
IEEE Computer Society

4. ACM/AIS/AITP (2002), Model Curriculum and Guidelines for Undergraduate Degree
Programs in Information Systems, Association for Computing Machinery (ACM),
Association for Information Systems (AIS) & Association of Information Technology
Professionals (AITP)

5. Career Space (2001a), Curriculum Development Guidelines: New ICT Curricula for
the 21st Century, Designing Tomorrow’s Education, http://www.career-space.com/

6. Career Space (2001b), Job Profiles, http://www.career-space.com/

7. MSIS (2007), Master of Science in Information Systems, http://www-it.fmi.uni-
sofia.bg/msis/

8. Socha, D., Walter, S. (2006), Is Designing Software Different From Designing Other
Things?, International Journal of Engineering Education, Special Issue on Learning
and Engineering Design, Vol. 22 No. 3,

9. Dym, C., Agogino, A., Eris, O., Frey D, Leifer, L (2005), Engineering Design
Thinking, Teaching, and Learning, Journal of Engineering Education, January

10. Dym C. & X Little, P. (2004), Engineering Design: A Project Based Introduction, John
Wiley and Sons, Hoboken, NJ,

11. Royce, W. (1970), Managing Development of Large Software Systems, Proceeding
of IEEE WESCON, August

12. Fawler, M. (2000), Is Design Dead?,
http://www.martinfowler.com/articles/xp2000.html

13. Tse, T. H. (2004), Computing Curriculum—Software Engineering: Its Impacts on
Professional Software Engineering Education, Proceedings of the 28th Annual
International Computer Software and Applications Conference (COMPSAC’04), IEEE

14. ABET (2006), Criteria for Accrediting Computing Programs, http://www.abet.org/

15. Sims-Knight, J. E,. Upchurch, R. L, Powers, T. A., Haden,S Topciu R (2002), Teams
in Software Engineering Education, 32nd ASEE/IEEE Frontiers in Education
Conference, November 6 - 9, Boston, MA, IEEE

 77

16. Bontchev B., T. Iliev (2003), ARCADE - a Web-based Authoring and Delivery
Platform for Distance Education, 1st Balkan Conference on Informatics (BCI'2003),
Thessaloniki, Greece, 21-23 of November.

 78

