
International Scientific Conference Computer Science’2008

Testing software based on design by contract

Diana Berberova, Boyan Bontchev
Department of Software Engineering,
Faculty of Mathematics and Informatics,

Sofia University, 5, James Bourchier blvd., 1164 Sofia, Bulgaria
e-mail: didana@yahoo.com; bbontchev@fmi.uni-sofia.bg

Abstract: In the last decade, several proposals have been done for construction of aspect-
oriented system for testing software products. The article presents results from design and de-
velopment of a new aspect-oriented system for testing software created in Java 5 as an open
source project named CodeContract, by using Design by Contract methodology. The system
provides means of describing contracts and conditions during the design of software systems
that should be satisfied during the system work process. Various conditions used in the con-
tracts are able to be defined by means of preconditions, post-conditions and invariants. In order
to describe these conditions in contracts, Java annotations are used. When using the Code-
Contract system, contracts should be created during the development of software application.
Then runtime checks of contracts are executed during the testing of the software application.

Keywords: design by contract, testing, aspect-oriented programming.

1. INTRODUCTION

In the last twenty years, the software industry has grown tremendously. The software
products become more and more complex, as well as more and more critical to every-
day life. The public needs for quality software products of all kind of areas are con-
stantly increasing. But despite the economic growth and productivity gains enabled by
software, persistent complaints about the quality of software remain [5].

The paper presents results of design and development of an aspect-oriented system
for testing software products, which has been created on the base of Design by
Contract [6] methodology. The system is called CodeContract

1
 and is composed by

several components created using aspect-oriented programming and Java 5 features
like annotations. It provides means of describing contracts and conditions during the
design of software systems that should be satisfied during the work of the systems.

The article goes through several of the most important system design issues, such
as the definition of the different conditions used in the contracts – preconditions, post-
conditions and invariants. It explains the usage of Java annotations to describe these
conditions in contracts and behaviour of components evaluating the conditions,
described in annotations, and checking at run time the described conditions, during the
work of the system.

1
 CodeContract is developed as an open source project hosted on

http://code.google.com/p/codecontract/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research at Sofia University

https://core.ac.uk/display/213561171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Scientific Conference Computer Science’2008

2. ASSURING SOFTWARE QUALITY

When thinking of new software development methods and tools, it is very usual to
view productivity as the major expected benefit. In object-oriented programming
productivity benefits follow not just from the immediate benefits of the approach but
from its emphasis on quality. One major component of quality in software is reliability.
System’s reliability is the ability of the system to perform its job according to the specifi-
cation (correctness) and to handle abnormal situations (robustness). Every developer
wants the systems to be also readable, modular, structured and easy to maintain. Ob-
viously these adjectives describe two different sorts of qualities [8].

The other qualities applicable to a software product, such as being modular, or read-
able, are internal factors, perceptible only to software developers who have access to
the actual software code and are concerned with its implementation and maintenance.
These other qualities are called internal factors.

In the end - when defining software quality, only external factors matter. But the key
to achieving these external factors is in the internal ones. For the users to enjoy the
visible qualities, the designers and implementers must have applied internal techniques
that will ensure the hidden qualities. Although it is possible in many cases to find a solu-
tion that reconciles apparently conflicting factors, often it is needed to make tradeoffs.

Traditional style of testing software checks whether a software product meets its
specifications; based on black and white box methods. No matter what kind of testing is
done, black-box or white-box, it usually follows the scenario: first the tester studies the
software system, then writes individual test scenarios and finally executes the tests on
the system. The test scenarios are individually crafted and can be executed either
manually or by some form test tool. But manual testing and is a labor-intensive and in-
efficient way to test modern software.

Unit testing [3] provides a strict, written contract that the piece of code must satisfy.
It is more time consuming to write code and tests than only code, but on the long run it
pays back with several benefits. Regression testing includes writing test cases for all
functions and methods so that whenever a change causes a regression, it can be
quickly identified and fixed. Good unit test design produces test cases that cover all
paths through the unit with attention paid to loop conditions. Test Driven Development,
referred as TDD [4], is a core methodology used in Extreme Programming. TDD is also
known as “Test First”. In TDD first test cases are written, then the code is implemented
and finally the test cases are executed. The biggest benefit of Test Driven Development
is verification. Defensive programming uses different techniques to avoid creating secu-
rity problems and software bugs [9]. One technique is reducing source code complexity.
A programmer should never make code more complex than necessary as the complex-
ity leads to bugs.

Finally, Design by Contract (DbC) methodology prescribes that software designers
should define precise checkable interface specifications for software components
based upon the theory of abstract data types and the conceptual metaphor of a busi-
ness contract. It complements several Extreme Programming practices, particularly unit
testing and refactoring. The term Design by Contract was coined by Bertrand Meyer [6]
in connection with his design of the Eiffel programming language. The first language
that has provided support to Design by Contract was Eiffel, but the idea is gaining
popularity and there are several tools have emerged recently for using this methodology
when programming in Java, C++ and other programming languages.

DbC involves a partnership between the producer and consumer of a class and be-
tween the features promised in the class and the responsibility of using these features

International Scientific Conference Computer Science’2008

correctly. If both parties adhere to this contract, the resulting software has the potential
to be more understandable and reliable. The user requirements are given by a set of
preconditions and the producer requirements are given by a set of post-conditions. In
other words, DbC defines and manages the responsibilities between a class and its us-
ers. The methodology is very useful and clear concept for software development, al-
though it is not very popular. So it is chosen for basis of the testing system developed in
this work and is described in details in the following chapter.

3. ASPECT-ORIENTED PROGRAMMING OF DESIGN BY CONTRACT

The central idea of DbC is a metaphor on how elements of a software system col-
laborate with each other, on the basis of mutual obligations and benefits. The metaphor
comes from business life, where a "producer" also called “client” and a "consumer" also
called “supplier” agree on a "contract". The producer has to provide a certain product,
which is producer’s obligation and is entitled to expect that the consumer has paid its
fee, which is producer’s benefit. The consumer must pay the fee, which is consumer’s
obligation and is entitled to get the product, which is consumers benefit. Both parties
must satisfy certain obligations, such as laws and regulations, applying to all contracts.

In the means of DbC and object-oriented programming, the method’s precondition
is an obligation for the client and a benefit for the supplier. It frees the supplier from
having to handle cases outside of the precondition. The method's post-condition is an
obligation for the supplier, and obviously a benefit for the client. The class invariants are
certain properties, assumed on entry and guaranteed on exit of every call to a method.

So preconditions and post-conditions are two fundamental elements of contracts.
The third fundamental element - which is really useful mostly in an object-oriented con-
text, is invariants. A class invariant is a condition that applies to an entire class. It de-
scribes a consistency property that every instance of the class must satisfy whenever
it's observable from the outside. That means that this property, the class invariant, must
be satisfied whenever an instance of the class is created.

The contracts are expressed as Boolean expressions, intended precisely to express
runtime true or false properties - properties that at any point in the execution may hold
or may not hold. There are rules for proper behaviour of inherited contracts, based on
the Liskov Substitution principle (LSP), which is a minimal definition of inheritance [1].
In the context of DbC methodology if class B is considered a child class of class A
(where A can be another class or interface) then B must obey A's contract, including all
the class, method, and field checks, i.e. B inherits A’s contract. However, there is one
special feature that affects derived preconditions and post-conditions described in [7].
When using an object through its base class interface, the user knows only the precon-
ditions and post-conditions of the base class. Thus, derived objects must not expect
such users to obey preconditions that are stronger then those required by the base
class. They must accept anything that the base class could accept. So if the method
preconditions are overridden, they should get looser, not stricter. In the terms of client
and suppliers: the precondition tests are obligations that the client must meet; if a client
already meets a strict test defined by the overridden test, then it will also satisfy a looser
derived test transparently.

Aspect-Oriented Programming restores modularity by developing the cross-cutting
concerns, or aspects, in isolation and then combining them with other modules using
declarative or programmatic mechanisms that are modular [7]. Thus, the AOP paradigm
appears to be very suitable for realisation of the Design by Contract methodology. The

International Scientific Conference Computer Science’2008

points of intersection are defined once, in one place, which makes them easy to under-
stand and maintain. The other modules require no modifications to be advised by the
aspects. This "intersection" process, sometimes called weaving, can occur at build or
run time. Aspect-oriented software development weaving is a key innovation that pro-
vides very fine grained query and composition semantics. Where traditional code linking
has the ability to resolve method and variable names, weaving adds the ability to re-
place method bodies with new implementations, insert code before and after method
calls, instrument variable reads and writes, and even associate new state and behav-
iour with existing classes, typically for adding special behaviours. Specially, for allowing
adding metadata available to the programmer at run-time to Java source code, Java
annotations [2] are used.

4. REALISATION OF THE CODECONTRACT SYSTEM

Functional requirements of the system CodeContract define that it should provide:

• DbC support for Java 5 applications

• Runtime checks for class invariants and pre- and post-conditions that are asso-
ciated with methods in classes and interfaces.

• If the runtime check of a contract fails, the program execution should be termi-
nated, providing proper error message.

• Contract propagation via the Java type extension mechanisms - class extension,
interface implementation and interface extension

• Support for inheritance of contracts for public methods according to Liskov Subs-
titution principle and Design by Contract inheritance principle

• Additional support for inheritance of contract definitions on non-public methods,
static methods, and constructors

• No modification of the source code of tested application

• No modification of the build process of the tested applications
The currently developed system has two types of actors - application developers

(create Java 5 applications using DbC for testing) and testers (validate Java 5 applica-
tions written with DbC support). Each method call from a class declared with @Contract
annotation is intercepted and the following actions are executed:

• preconditions are checked

• method is executed

• postconditions are checked
In case that preconditions or post-conditions are evaluated to false, then runtime

exception is thrown and program is terminated. The use case Check Post-conditions
(fig. 1) represents the case for a single check of post-condition contracts defined for a
specified method. This use case is extended by four use cases, representing the differ-
ent cases of checking post-conditions - public, non-public, static methods and construc-
tors.

All the use cases that represent checks for preconditions and post-conditions in-
clude some of the following sub use cases according to the algorithm for gathering pre-
conditions/post-conditions:

International Scientific Conference Computer Science’2008

Check Non Public Method

Preconditions

Check Public Method

Preconditions

Check Static Method

Preconditions

Check Preconditions

<<extend>>

<<extend>>

<<extend>>

Check Constructor Preconditions

<<extend>>

<<include>>

Check Class Contract

Check Invariants

Check Declared Method

Preconditions

Check Public Method

Preconditions

<<include>>

<<include>>

Fig. 1: Use case diagram for Check Preconditions. Fig. 2: Use case diagram for Check Public Method
Preconditions.

• Check whether the class of the method has annotation @Contract;

• Check Declared Method Preconditions use case - check preconditions specified
for the method in the current class (fig. 2);

• Check All Method Post-conditions use case - check all post-conditions specified
for the method in the hierarchy of classes;

• Check Declared Method Post-conditions use case - check post-conditions speci-
fied for the method in the current class;

• Check Class Invariants use case - check all invariants contracts specified for the
class in the hierarchy of classes.

@Contract
public class Student {

public String name;
private String address;

@Invar ("id > 0")
public int id;

@Post ("name != null")
public void setName (String newName) {
name = newName;
}

@Post ("$return != ‘’")
public String getName () { return name; }

@Pre (”$args0.startsWith(‘’Sofia”))
public String setAddress(String newAddress)
{
 address = newAddress;
}

}

Fig. 3: Software architecture of the CodeContract system. Fig. 4: A sample contract

Fig. 3 represents the architecture of the system CodeContract. The CodeContract
system is composed by an annotations component and runtime part. The runtime part
contains method interceptor (handles of calls to methods of annotated classed during

International Scientific Conference Computer Science’2008

the work of the tested application), contract handling (extracts the active contracts), and
expression handling (evaluates the expressions of the contracts).

All classes that specify with contracts should have class annotation @Contract. The
contracts are defined using "@Pre", "@Post", and "@Invar" annotations, for precondi-
tion, post-condition, and invariant respectively. The contract is described with the value
of the annotation. In the example of fig. 4, the field "id" has an invariant test that it can-
not be less or equal to 0. The method setName() has post-condition that the field name
cannot be null. The method getName() has a post-condition that the return value can-
not be the empty string “”.The method setAddress() has a precondition that the first ar-
gument value should start with the string “Sofia”.

5. CONCLUSIONS

The CodeContract system is based on a methodology that ensures system correct-
ness - Design by Contract, and provides means for designing and creating contracts
between different software components. Compared to other implementations of DbC
such as IContract, JContrcator and Barter, it offers many advantages:

• all scopes of methods can be contracted – public, private, protected and pack-
age, although different types of check politics are used

• CodeContract supports contract inheritance and contract propagation via all four
mechanisms – class extension, interface implementation and interface extension. The
contracts are checked according to the LSP and the preconditions check is optimized

• the contracts are described via Java annotations and JEXL
• supports instrumentation of the code at runtime time. The source code is not

needed. Neither the source code nor the byte code is modified
• CodeContract uses the load time weaving provided by AspectJ to modify the

classes during the loading in JVM. In this way, CodeContract does not change the de-
velopment and compilation process of the tested applications.

6. REFERENCES

[1] Briand, L., Dzidek, W., Labiche, Y. 2005. Software Maintenance, In Proc. of the
21st IEEE Int. Conf. ICSMapos, pp. 687-690.

[2] Friesen J. 2007. Beginning Java™ SE 6 Platform: From Novice to Professional,
Apress.

[3] Hunt A., Thomas D. 2003. Pragmatic Unit Testing in Java with JUnit, The Prag-
matic Programmers, 1

st
 edition.

[4] Kosleka L. 2007. Test Driven: TDD and Acceptance TDD for Java Developers,
Manning Publications, 1st edition.

[5] McConnel S. 2004. Code Complete, Microsoft Press, 2
nd

 edition.
[6] Meyer B. 1992. Applying "Design by Contract. In Computer (IEEE), vol. 25, no.

10, pp. 40-51.
[7] Piattini M., Garzas J. 2004. Object-Oriented Design Knowledge: Principles, Heu-

ristics and Best Practices, IGI Global, 2
nd

 edition.
[8] Tian J. 2005. Software Quality Engineering: Testing, Quality Assurance, and

Quantifiable Improvement, Wiley-IEEE Computer Society Press; 1
st
 edition.

[9] Qie X., Pang R., Peterson L. 2002. Defensive programming: using an annotation
toolkit to build DoS-resistant software, In ACM SIGOPS Operating Systems Re-
view archive, Vol. 36, Issue SI: Robustness, pp. 45-60.

