Southern Illinois University Carbondale

OpenSIUC

Theses Theses and Dissertations

5-1-2018

Machine-Insect Interface: Spatial Navigation of a

Mobile Robot by a Drosophila

Suddarsun Shivakumar
Southern Illinois University Carbondale, suddarsun@gmail.com

Follow this and additional works at: https://opensiuc.lib.siu.edu/theses

Recommended Citation

Shivakumar, Suddarsun, "Machine-Insect Interface: Spatial Navigation of a Mobile Robot by a Drosophila” (2018). Theses. 2324.
https://opensiuclib.siu.edu/theses/2324

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in

Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses/2324?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

MACHINE-INSECT INTERFACE: SPATIAL NAVIGATION OF A MOBILE ROBOT BY A
DROSOPHILA

by
Suddarsun Shivakumar

B.S., Southern Illinois University, 2016

A Thesis
Submitted in Partial Fulfillment of the Requirements for the
Master of Science Degree in Mechanical Engineering

Department of Mechanical Engineering and Energy Processes
in the Graduate School
Southern Illinois University Carbondale
May 2018

THESIS APPROVAL

MACHINE-INSECT INTERFACE: SPATIAL NAVIGATION OF A MOBILE ROBOT BY A
DROSOPHILA

By

Suddarsun Shivakumar

A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Degree of
Master of Science

in the field of Mechanical Engineering

Approved by
Dr. Dal Hyung Kim, Chair
Dr. Farhan Chowdhury

Dr. James Mathias

Graduate School
Southern Illinois University Carbondale
April 5,2018

AN ABSTRACT OF THE THESIS OF

Suddarsun Shivakumar, for the Master of Science degree in Mechanical Engineering, presented
on April 5, 2018, at Southern Illinois University Carbondale.

TITLE: MACHINE-INSECT INTERFACE: SPATTAL NAVIGATION OF A MOBILE ROBOT
BY A DROSOPHILA

MAJOR PROFESSOR: Dr. Dal Hyung Kim
Machine-insect interfaces have been studied in detail in the past few decades.

Animal-machine interfaces have been developed in various ways. In our study, we develop a
machine-insect interface wherein an untethered fruit fly (Drosophila melanogaster) is tracked to
remotely control a mobile robot. We develop the Active Omni-directional Treadmill (AOT)
model, and integrate into the mobile robot to create the interface between the robot and the fruit
fly. In this system, a fruit fly is allowed to walk on top of a transparent ball. As the fly tries to
walk on the ball, we track the position of the fly using the dark field imaging technique. The
displacement of the fly will be balanced out by a counter-displacement of the transparent ball,
which is actuated by the omni-directional wheels, to keep the fly at the same position on the ball.
Then the mobile robot spatially navigates based on the fly movements. The Robotic Operating
System (ROS) is used to interface between the ball tracker and the mobile robot wirelessly. This
study will help in investigating the fly’s behavior under different situations such as its response to
a physical or virtual stimulus. The future scope of this project will include imaging the brain

activity on the Drosophila as it spatially navigates towards a stimulus.

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT ...ttt ettt h e et at e st e st et et e nbeebe e bt e st eneenteneensetentennes i

LIST OF FIGURES. ..ottt ettt et st be et et e et esenbenaens il
CHAPTERS

CHAPTER 1 — INtrOQUCHION.coutiiieiieiieeiieitee ettt sttt 1

CHAPTER 2 — SyStem DESIZN ...cuvieiieiiiieiieiiieiieeie ettt ete et seveeveesaeebeessaeesaennneens 4

L. OVEIVIEW ..ottt ettt st 4

2. CoNIOl DESIZN ..cuvviiiiieiiieiieeie ettt eseeeaae e 6

3. Active Omni-Directional Treadmill (AOT) Subsystem Design9

3.1. Kinematics of Active Omni-directional Treadmill........ 12

3.2. Localization of Fruit Flyccccoovevviiiniiniiiieieee 14

4. Mobile Robot Kinematics.........cccuevueeierienenienienieeiesiesieeie s 16

5. SOftWare DeSIZN......uiiiuiieriiieiiie et 18

5.1. Low-level Software Developmentccccoeevveeennnen. 18

5.2. High-level Software Development............c.cccevvreennnen. 18

CHAPTER 3 — Results and DiSCUSSIONcccuiiriiiiiiiniieiieeieete et 20

CHAPTER 4 — CONCIUSION ...ttt 29

REFERENCES ...ttt et sttt et e b ettt s et e bt e st e eae e beeneesaeenseeneas 30
APPENDICES

Appendix A — Sub-System Program Codes..........cceevvuiieriiiieriieeiiieeieeeeeeeee e 32

V2 1 S USRS 60

1

LIST OF FIGURES

FIGURE PAGE

OVETALL SELUP ..ottt ettt et e et e e bt eeabeesbeessbeesseeesseanseessbeensaensseanseensseenseas 5
System’s ROS ATCRITECTUIEieuvieiieeiieeieeiie ettt ettt e te et e eeaeeteeebeessaeesseensaeenseessseasseensseensens 6
IMAGEA FLY oot ettt ettt et e e b e e b e e st e et e e aaeenbeensaeeabeenaaeenseenes 7
CONLTOL DIAZIAM ...ttt ettt ettt e et e e tb e e bt e ssbeesbeessbeenseessseenseensseenseensseenseas 8
ACTYIIC CRAMDET ...ttt ettt ettt e et et e et e e st e esbeessteensaessaeenbeensaesnsaesnesnseennns 9
LED Circuit DIQ@IAMccuveiiieiieeiieiieeieetteeieeteeeteeteeetseeseessseeseessseenseesssesssaessseessessssessseessseans 10
OMNi-directional WHEELSc.eoiiiiiiiiiiiiieieeee ettt 11
3D Printed COUPIET ...ovviiiiieiiieiie ettt ettt ettt e sbe et e e abe e saessbaessaeesseenssesnseensneans 11
Host System — AOT SCHEMALICeoiviiiiieiieeieeiieeie ettt ettt e eebeeseaeebeessseensaessaeens 12
Setup — TOP aANA STAE VIEW ..ovviiiiiiiiiieiieiieeieete ettt ettt et e esbeesseesnseessaeesseenns 13
Image RegION Of INTEIEST.....ccuieiuiiiiieiieeieeite ettt et ee et aeebeestaeesbeessseenseessneens 15
Mobile RObOt KINEMALICSoouiiiiiiiiiiiieeieiie ettt ettt e s eae 17
SYSTEM TN ACTION ..eeeeuiiieeiiie ettt eite ettt e e e ettt e st e esateeessteeessbeeessseeesseesssseeensseeasseesanseeessseeensseesnnses 20
erOr +eeeneee ettt ettt et a et et h et a e e eh e et e e a e ekt et e n b e eh e e et eateeh e e bt enteeheenbeenteeneebeeneas 21
Aerror BETWEEN 228 AN 308 ..uniiiiiiiiiiiiiiee ettt ettt ettt 22
Derror eveeueeeeessteniteniersteeiteseestesstesse st es st e se et e st e b e et et e e st et e st e e st e b e e Rt e st e b e et e st e st et e et e ba et e st e st e saents 23
Ocrror BEtWEEN 228 ANd 30eoiiiiiiiiiiieieeet ettt 24
AQOT Motor Input and Output VEIOCITIEScccuveeiiieieiiieeiie ettt eseree e 25
AQOT Motor Input and Output Velocities Between 22s and 30Sccceeevveeevieeeiieeeiieeeieeeieeens 26
Path 0 the SPRETEcoeeiieeiece e et e et e e et e e e aaeesssaeesnseeesnseeenns 27
Path of the Mobile RODOL........co.oiiiii e 28

111

CHAPTERI1
INTRODUCTION

Insects have known to exhibit complex behaviors [1]. Machine-insect interfaces can be
used to study these behaviors in detail. It also helps in the imaging of the brain activity of these
insects, which in turn will help in understanding insect cognition and neuroscience better.

Machine-animal interfaces have been studied widely in the past few decades. There have
been techniques developed to both study the insect gait patterns and to develop interfaces wherein
insects can control a machine in response to different stimuli. Here, we develop a machine-insect
interface wherein a Drosophila can spatially navigate by controlling a mobile robot. This study
can help in imaging the brain activity of the Drosophila as it navigates spatially using the mobile
robot.

There have been studies on controlling the locomotion of an insect using bioelectrical
interfaces. For instance, Doan and Sato [2] used electrode implants and radio waves to control the
flight of a freely-flying beetle. This study created an insect-machine hybrid system. Similarly,
Bozkurt et al. [3] created a bioelectric implant interface to trigger specific parts of the brain of a
tobacco hawkmoth to control its flight. Son and Ahn [4] created a robot to study the interaction
between an insect and the robot. The study used a stag beetle to get to a target and used fuzzy
logic to create a learning mechanism. This learning mechanism was then used to mimic the
movements of the beetle through a robot. While this is not directly focused on the machine-insect
interface, it helps in learning the behavior and movement patterns of insects. Tsang et al. [5]
experimented in making flexural neural probes to provide stimulation to the brain which can be
used in locomotion controlled experiments. They created the neural probes using a
carbon-nanotube enhanced material that will help in insect-machine interfaces. Ejaz et al. [6]
used the individual cells of the visual system of a tethered Drosophila to create a brain-machine
interface to control a mobile robot. The visual system of the fly is stimulated using a visual
stimulus placed in front of the fly. Bozkurt and his group [7] presented a bioelectric interface

made of micro-fabricated probes placed into insect during the growth cycle. Benvenuto and his

group [8] proposed a machine-insect interface architecture, where the insect is fixed and can be
used to control drones and mobile robots to navigate through space. They hope that the proposed
idea will be used for space applications to control un-manned spaceships and navigate through
outer space. This can be attributed to the complex navigation skills of insects. Another method to
control a mobile robot using a silkworm moth is used by Atsushi and his group [9]. The study
used the signals obtained from the brain of a tethered silk moth using electrodes to control the
movement of the robot. Akimoto et al. [10] and Tsujita ef al. [11] have constructed robots that
have been modeled based on gait patterns in insects. These studies will help in studying the
characteristics of insect strides to create better and efficient robots. Asama [12] reviews the
different methods available to create a cyborg insect wherein the robots and the brains of insects
can be integrated together. Wessnitzer ef al. [13] created a machine-insect interface for crickets to
navigate towards a sound source. The interface uses a trackball mechanism onto which the cricket
is tethered, to navigate towards the sound source. Melano [14] developed a machine-animal
interface wherein the brain signals are obtained from a moth using a copper electrode and the
signal obtained is used to control the rotation of a robot. Ando et al. [15] developed a mobile
robot platform controlled by an adult silk moth reacting to odor. This odor-tracking interface used
a ball tracking mechanism on which the silk moth was tethered. Kain ez al. [16] developed a leg
tracking platform for a Drosophila tethered to a ball. The fly’s individual legs were tracked as the
fly reacted spontaneously. Kanzaki’s research group [17] created a model based on the
odor-tracking capability of a moth and tested the algorithm on a mobile robot. Dahmen et al. [18]
presented a design for an air-cushioned treadmill to study the walking behavior of a tethered
desert ant. The design uses a hollowed-out styrofoam ball, which is air cushioned. In our study,
we use a ball tracking mechanism similar to the one used by Kumagai [19] and his group in their
study where they developed a robot that balances itself on a ball. The robot uses omni-directional
wheels to balance on the ball. Robinson et al. [20] showed a mathematical representation of the
velocity-level kinematics of a spherical orienting device that uses omni-directional wheels for

spherical motion. The kinematics of our system will be similar to this study.

Multiple studies described above have developed passive machine-insect interfaces
wherein the insect is tethered or fixed to an interface due to the lightweight of the insects
compared to the equipment, which may cause biased behaviors. There is limited research that
studies an active Drosophila-machine interface that allows the Drosophila to navigate. We use the
Robotic Operating System (ROS) to interface between the fly tracker and the mobile robot. Our
study will help in studying the behavior of a Drosophila. While multiple studies use virtual reality
as a stimulus, we would use a live stimulus in the real world towards which the fly can navigate
using the mobile robot. This study will also contribute, in the future, to studying the brain activity
of the fly as it spatially navigates using the mobile robot. This research study is aimed at
developing a machine-insect interface to achieve spatial navigation by a freely walking
Drosophila without tethering. This will prove to be useful for further studies on brain activity

imaging of the Drosophila’s brain.

CHAPTER 2
SYSTEM DESIGN

1 Overview

In this study, we developed a fruit fly (Drosophila melanogaster)-operated mobile robot
interface, which enables us to interpret the animal’s behavior. The schematic drawing of the
system is shown in fig.1. The system consists of two major sub-systems: the Active
Omni-directional Treadmill (AOT) and the mobile robot.

The AOT comprises of the three omni-directional wheels which are oriented at an angle
and at a distance from the center such that the transparent sphere rests on all three wheels. The fly
that is housed in the acrylic chamber is allowed to walk on top of the ball and the position of the
fly is tracked using the near-infrared imaging system and the image processing system. The Near
Infrared (NIR) camera is placed directly below the fly and images the fly. The omni-directional
wheels help in producing a counter-motion which resets the fly back to its original position. The
counter-motion produced is based on the velocity commands computed using the algorithm
described in section 3.1 . The interface is controlled by the image-processing system which is
programmed in the host system. The mobile robot moves separate from the interface reproducing
the motion produced by the AOT motors.

The mobile robot has a microprocessor which computes the control input velocity for the
motors in the mobile robot. The servo motors of the mobile robot receive commands from the
Robotic Operating System (ROS). The microprocessor on the mobile robot also enables us to run
ROS, a program which allows interaction with multiple components within the system. In this
system, it has three different nodes which communicate with each other via a central module
called roscore. The image processing system is one of the nodes that communicate with the
mobile robot. It also processes the images obtained from the NIR camera and computes the
position of the fruit fly. This system can be integrated with other techniques (e.g. brain imaging)

easily as it can hold the animal position in one place while it is moving.

Acrylic
" Chamber
Drosophila <

. Transparent
4 Acrylic Sphere

Omni-
directional *-
wheels

Continuous
, ” Servo Motors

BT R S Y

NIR Camera |‘ -

(a) (b)

Figure 1: Front view of (a) Active Omni-directional Treadmill (b) Mobile Robot

The ROS architecture for our system is shown in fig.2. There are three main nodes of the
system, which interact with each other. ROS works on a ‘publisher-subscriber’ architecture which
contains nodes acting in sync with one another via a central core unit called the Roscore. All
publishers publish messages (commands) to the Roscore and all subscribers that are subscribing
to a topic published by a node receive the messages from the Roscore. In fig.2 the mobile robot
tracker node is a subscriber only and it receives just the positions from the robot as it moves. The
image processing node is both a subscriber and a publisher. It receives the images from the
camera node, which publishes the images as raw data. The image processing node computes the

velocity data and publishes to the roscore, which is obtained by the mobile robot.

4

Mobile Robot

ROSCORE

swaIsAg [euondQ

Active Omni-directional Treadmill

Figure 2: ROS architecture for our system

2 Control Design

This section describes the control design of the system. Fig.4 depicts the control block
diagram for the setup described in section 1. As the fly walks on top of the acrylic sphere, the
images captured by the NIR camera are processed using the program described in listing 1 of the
appendix to obtain the centroid position of the fly. The controller 1 computes the control input
based on the position error between the fly position and the origin. Fig.3 shows the fly being
imaged by the NIR camera. The red box shown in the image is the tolerance of 50 pixels, which
corresponds to about 1.3 mm in distance from the origin. The red circle in the image is the

detected centroid of the fly.

Figure 3: A single frame of the system compensating the fly motion. The yellow box represents
the tolerance region within which the system resets the fly. The scale bar indicates 1mm length

The AOT resets the fly in this region with every movement of the fly. This means that
whenever the fly walks on the ball, the ball rotates to reset the fly to the origin. This is achieved
using the omni-directional wheels to create counter-motion. The position of the fly is used to
determine the rotation needed for the ball. As the fly walks on the ball, the error, Az, Ay, and Af
is computed to obtain the compensation error needed. Based on these values, the angular

velocities of the AOT motors, wy, ws, and w3 are computed.

Xfly = /Qspheredt + € (1)

Eq. (1) can be used to determine the position of the fly, X . Qgpnere 1 the angular
velocity of the sphere and e is the error computed based on the fly’s movements.

The position of the fly is also used to move the mobile robot remotely. The actuators in
the mobile robot are servo motors, which will receive velocity commands to move the mobile

robot based on the fly movements. The mobile robot reproduces the motion of the sphere.

Active Omni-Directional Treadmill

| Fly Control I
osition input
Fl ti | Localizer - NIR P P Actuator — omni- Sph.erel
y motiorf Camera Controller 1 wheel motlon:
| _I ______________________ |
Mobile Robot

|

1 Control 1

: input) 1

Controller 2 Actuatroorb—oinoblle Robot motion :

| |

| 1

| 1

Figure 4: Control block diagram of the system

3 Active Omni-directional Treadmill (AOT) Subsystem Design

The AOT mainly consists of the transparent sphere on which the fruit fly walks and three
omni-directional wheels operated by servo motors. The continuous servos contain contactless
absolute encoders which enable us to receive positional feedback from the servo. The AOT acts
as an interface between the fruit fly and the mobile robot and is connected to the host system and
communicate via serial communication. The AOT consists of an acrylic plastic ball of 4-inch
diameter, which rests on three omni-directional wheels oriented at a 40° angle to the axis of the
ball. To prevent the fly from flying off the ball, we cover it with a clear acrylic chamber, which is
shown in fig.5. The enclosure shown in the image is an acrylic chamber bounded by a window in
the front and covered on top with a glass slab. The glass slab is bonded to the acrylic using using
layered Polydimethylsiloxane (PDMS) sheets. The window is made of acrylic as well and is fixed

using acrylic adhesive.

Acrylic Chamber
Base

4
Front Window

4 LED Holder
A

Fruit Fly «

D

with Glass Slab and #

Base

(a) (b)

Figure 5: (a) Top view of the acrylic chamber (b) Side view of the acrylic chamber

The acrylic chamber also has LEDs on either sides that internally reflect through the base
plate of the housing. The LEDs are positioned such that the light scattered from the fly will fall on
the camera’s sensor. The position of the LEDs are shown in fig.5. The LED holders are designed
to hold 12 LEDs each. Twenty four LEDs (twelve on each side of the acrylic housing) have been
used to provide sufficient illumination for the imaging of the fly. The circuit diagram for the LED
circuit is shown in fig.6. Each of the array of 12 LEDs consist of two sub-arrays of six LEDs
connected in parallel. Each LED is rated a forward voltage of 1.5V and a forward current of

100mA. We used a 33(2 resistor for the 24 LEDs based on the voltage and current these draw.

A A A A
K K

Vin from NIR Camera |_l
@ VWA r_—‘ MOSFET
Rin

%GND
Figure 6: Circuit diagram for the LED setup in the system

Fig.7 shows the omni-directional wheels used in this system. These wheels are 100mm in
diameter and are made of aluminum [21]. The omni-directional wheels had to be carefully
selected so that all the rollers are located on the same radius. Any difference in height between
the rollers meant that the acrylic ball would not roll on the wheels smoothly. As is can be seen in
fig.7, the distance between the rollers is almost none. To ensure a smooth rotation of the ball, the

omni-directional wheels shown in fig.7 were chosen.

10

Figure 7: Omni-directional wheels used in the AOT

These are similar to the ones used by and his group to create the ball-balancing robot [19] .
The omni-directional wheels had to be strategically placed from each other so that the ball is
centered with the camera. A custom servo horn shown in fig.8 was designed and 3D printed to

attach the omni-directional wheels to the selected servo motors.

Front View Top View

Figure §: 3D printed custom servo horn for the omni-directional wheels

The motors used in this system are continuous servo motors, which enable us to control
the position of the fly via the rotation of the acrylic ball. Three servo motors placed at 0°, 120°,
and 240° respectively. The three servo motors are connected to each other via Daisy Chain

connections using TTL cables. One of the motors is connected to the micro-controller (OpenCR)

11

and pass on the power and signal to the other two motors. Fig.9 shows the overall system

connection with the host system.

Power Supply to Motors
F========="

0 0@ O P o

AOT Motor1 AOT Motor2 AOT Motor3

1

1

.

' o o 5
| o O © O © O
: o o o
1

1

1

Host System I S
l:l USB Serial Interface
= =]

—

/ \ I 3.3 V to LED Circuit

NIR Camera

Figure 9: Host System-AOT Schematic

This system uses a NIR camera to capture the images of the fly. The camera utilizes a
infrared bandpass filter to selectively pass light of wavelength 850nm. This helps by preventing
other objects in the field of view of the camera in the visible light region from being captured in
the image. Since, infrared LEDs are used in the system, the light scattered by the fly will be

captured by the camera.

3.1 Kinematics of Active Omni-directional Treadmill

In fig.10, the ball resting on the omni-directional wheels are resting on a roller on each
wheel. The wheels are arranged in a triangular setup to provide stability. The geometric
transformation from the omni-directional wheel coordinate system to the global coordinates is

given by [20]:

cosa; sina; 0
T; = | —sina; cosa; 0] - (2)

0 0 1

12

Top View Side View

Figure 10: Top view and Side View of the AOT setup

The angle «; is the angle between the axis of the wheels (located at 0°, 120°, and 240°) and
i corresponds to the i wheel. Eq.(2) can be used to convert the angular velocities of the sphere to

the global coordinates. Our objective is to obtain the velocity to reset the fly back to the origin.

TWy T
rw.| = |y (3a)
W, 0

Where w,, wy,, and w, are the three vector components of the angular velocity of the
sphere, r is the radius vector of each omni-directional wheel, and z, 3, and 0 are the velocities of
the fly in the Cartesian coordinate system, assuming that in the area where the fly is walking on
the sphere, the curvature of the sphere is extremely small. Ideally, the omni-directional wheels are
identical and no slip exists between the omni-directional wheels and the sphere. Using eq.(3a), we

can obtain the angular velocity of the omni-directional wheels as well.

13

we| = (200 |g] = |wy (3b)
W, 001] |6 ws
Where J is the Jacobian,
Ry, Ry cosas R cosas
R
J =]Rl|2 0 —Ry sinay —Ry, sinas (3¢0)

-y -y -y

T x T

and Ry (k € 1,2, 3) is the vector from the center of the sphere to the point of contact on

the omni-directional wheel as shown in fig.10. Therefore, eq.(3b) can be re-written as:

w1

TMX = |, (3d)

w3
010 i
where, M = %0() and X = vl -

001 0
Eq.(3d) can be used to obtain the velocity input required for the servos to rotate the

omni-directional wheels.

3.2 Localization of Fruit Fly

When the light interacts with an object, it reflects off the object and produces an image
when it hits a detector such as a camera. This is known as bright-field imaging. At a certain angle
of incidence, the light does not impinge on the object and creates a dark background. The light
collected by the sensor is no longer reflected off the object but rather scattered or refracted off the
object. This helps us capture images of particular interest. This is called the dark-field imaging

technique. We use this technique to image the fruit fly and locate its position. The LEDs placed

14

on the side of the the acrylic chamber provides the illumination that is scattered by the fruit fly in
the dark-field. This scattered light is captured by the NIR camera and is processed by the imaging
system, which works based on blob image processing, to obtain the centroid of the fly. To create
the pulsing mode of the LEDs, we use a MOSFET transistor as a switch and the pulse signal
output from the camera as the input signal for the LEDs. The NIR camera gives a output pulse
signal with capture of every image. This enables the pulsing mode for the LED. Fig.6 shows the
circuit used to create the pulsing mode. To narrow the image to the range of the fly’s motion, we
chose a frame height and width of 376 pixels and 640 pixels respectively. Fig.11 shows the image

size and the origin of the image.

(XC’ yC’ eC)
Origin
L2
(320, 188, 0°)

Figure 11: Image region of interest

This converts to a width of 16.67mm and a height of 9.86mm in the xy plane on which the
fly walks. The size of the image in standard units of measurement was found by placing an object
of known height and width in the image frame and the conversion was found to be Imm per 38.4
pixels. The origin where the fly is to be reset every time is the center of the image which is

O = (Wim /2, him/2) where wy, and h;,, are the width and the height of the image respectively.

15

This was used to calculate the error between the fly’s position and the origin.

Ax = Le — Ptarget,x (43)
AZ/ = Yec — Ptarget,y (4b)
A = (90 — Ptarget,0 (4C)

Where Az, Ay, and A# are the inputs to compute the velocities, ., y., and 6. are the
x-coordinate, y-coordinate, and the orientation of the centroid of the fly, and
(ptarget7asa DPtarget,ys ptarget,e) = (wim/2a him/2a O)~

The program described in listing 1 of the appendix is used to obtain the position of the
centroid of the fly. Based on this, the program described in listing 1 in the appendix calculates the
angular velocity of each motor to reset the fly back to the original position. This controller

program uses the algorithm described in section 3.1.

4 Mobile Robot Kinematics

The Waftle is a mobile robot, which supports the Robotic Operating System (ROS), which
allows easy integration of other systems. This is one of the main motivation for us to use the
Waffle for this study. The servos of the robot receive the velocity commands based on the
position of the fly. The mobile robot moves based on the movement of the fly. Fig.12 shows the

kinematic model of the mobile robot. The general coordinate of the mobile robot is described as:

Where, x,,, and y,, are the positions in the Cartesian coordinate, and 6,, is the orientation.

Each individual wheel of the robot contributes to its motion. The velocity of the robot is

16

defined as the average velocity of the right, V,. and the left wheel, V; of the robot.

Vi+V.) (w+w)r

v, = — 5b
5 5 (5b)
Similarly, the angular velocity of the robot, is determined by the following equation,

- Ve =V) - (W —wy)r
O =—7F— = 7 (5¢)
Where, r is the radius of the wheels.
Resolving the components of the velocity, we can obtain the kinematic model of the
mobile robot as:
cosf 0
. v(t)
X = |sinf 0 (5d)
w(t)
0 1

yl]l

Xm X

Figure 12: Kinematic model of the mobile robot

17

5 Software Design

5.1 Low-level Software Development

The low-level software programs were implemented on the micro-processor on the robot.
The programs were written for the micro-processor were written based on the Arduino Integrated
Development Environment (IDE) language. The algorithm described in section 3.1 was used to
calculate the control input velocities, wy, ws, and w3 for the three motors in the AOT. This is one
of the nodes that is a part of the system’s ROS architecture. This node receives commands from
the image processing node, which published position data of the fly. This node converts these
position messages into velocity commands for the motors of the AOT and the robot. The

program, which describes this node can be found in listing 1 of the appendix.

5.2 High-level Software Development

The high-level software development was programmed on the host system. This system is
where the NIR camera is connected to as well. The host system is responsible for running the
roscore for the mobile robot and the camera node. The image processing node subscribes to the
camera node and processes the image obtained to extract the position of the fly. In this system, the
image processing is done using OpenCV library. The image processing node is launched along
with the camera node. The launch file described in listing 3 in the appendix shows the different
settings such as the frame rate, shutter speed, gain, strobe duration etc that is being configured
when the node is being launched. This allows us to selectively configure the image to our region
of interest (roi). Along with the camera node, the image processing and the mobile robot tracking
node are launched so that as the images are captured, the images are subscribed by the image
processing node and the image is processed to obtain the centroid. The image moment of the
image is used to compute the centroid of the contour detected. In this case, the detected contour is
the fly. The program is written so that only the largest detected contour in our roi is considered for

processing. The image moment is a weighted average of the pixel intensities in an image. Using

18

the ”Hu Moment” function of OpenCV library, the image is processed to obtain the centroid

coordinates ., ¥., and the orientation, ¢, of the centroid fly.

19

CHAPTER 3
RESULTS AND DISCUSSION

The program to reset the position of the fly back to the origin was written on the host
system. Tests run on the system showed that there was a tolerance needed for the compensation.
The reason for this was that the servo motors used in the AOT did not have smooth torque control
at low velocities. At low velocities, there was jerk associated with the movement of the wheel and
this caused delay in producing the necessary counter-motion to reset the fly. Hence, a tolerance of
50 pixels or 1.3 mm in both the x and y directions from the center of the image and a tolerance of
3 degrees was set for the theta compensation. Fig. 13 shows six frames with fly movement and
compensation. As it can be observed, the red box at the center of the image is the tolerance of 50
pixels around the center of the image. The red circle on the fruit fly is the centroid of fly being
reset back within the tolerance limit. The frame number and the z, y, and 6 (measured in radians)
of the centroid is also displayed in each frame. It can be observed that as the system tries to reset

the fly, the centroid coordinates gets closer to the origin of (320,188,0).

Figure 13: System resets the fly back to the center of the image. The scale bar indicates 1mm
length

As the fruit fly moves on the sphere, an error between the origin and the centroid of the fly

is obtained. Using this, the error can be computed. The error distance is computed using eq.(6)

20

derror =V xgrr =+ y(grr (6)

Where, the d.,.., is the distance the fly moves before compensation, z.,.. is the difference
between the x-coordinate (320 pixel) of the center of the image where the fly will be reset to and
Yerr 18 the difference between the y-coordinate (188 pixel) of the center of the image where the fly
will be reset to. The average error of the distance was found to be 1.821mm. This means that the
fly moved a distance of about 1.821mm before being reset to the origin within the tolerance.
Fig.14 shows how the distance error changes during experimental time and the corresponding
linear velocity of the sphere. It can be observed that when there is a large distance error, the

velocity of the sphere rapidly increases to compensate the motion of the fly. This can be observed

at around 70 seconds for instance.

Distance Error and Corresponding Sphere Velocity During Experimental Time

derror(mm)
H [e)}
1 1

N
1

o -

20 40 60 80 100

Vsphere(Mm/s)
—
(6,}
1

20 40 60 80 100
time(sec)

o -

Figure 14: Distance error during experimental time and the corresponding linear velocity of
the sphere

After the motor compensates the motion of the fly, it comes to rest before moving again

21

for the next compensation. This can also be observed in fig.14. Therefore, the motor has to
overcome the stiction before reaching the desired velocity. The time the motors take to over come
the stiction and start compensating for the error after image processing is about 110 milliseconds.

This can be better observed in fig.15.

Distance Error and Corresponding Sphere Velocity Between 22 and 30 Seconds
5 -

w
1

derror(mm)
N

30
20 1

15 1 |

10 A

Vsphere(mm/s)

22 23 24 25 26 27 28 29 30
time(sec)

Figure 15: Distance error and the corresponding linear velocity of the sphere between 22 and

30 seconds. The motors move approximately 110 milliseconds after the image processing is
done.

Similarly, the 6.,,,, of the system is computed as the amount of rotation needed for the
sphere to align the fly with the x-axis or zero radians. The average 0., of the system was found
to be 7.039° . This means that, the fly rotates about 7.039° before the motor starts to compensate
for its rotation and resetting it back to the center of the image. Fig.16 shows the § error during
experimental time and the corresponding angular velocity of the sphere about the z-axis. The
sphere’s angular velocity changes as the fly’s rotation increases. This indicates that the system is

compensating for the angle error well within the tolerance.

22

0 Error and Corresponding Sphere Velocity During Experimental Time

40 4
20 A
5 0
D
_20 _
0 20 40 60 80 100
100 A
E 50 4
2 0
3
3
_50 _
0 20 40 60 80 100
time(sec)

Figure 16: 6 error during experimental time and the corresponding angular velocity of the
sphere

Fig.17 shows a closer look at the angular velocity of the sphere with respect to the fly. As
it can be seen, the sphere’s angular velocity changes, although with a delay, to compensate the

motion of the fly.

23

0 Error and Corresponding Sphere Velocity Between 22 and 30 Seconds

eerror(a)

22 23 24 25 26 27 28 29 30

22 23 24 25 26 27 28 29 30
time(sec)

Figure 17: 6 error during experimental time and the corresponding angular velocity of the
sphere between 22 and 30 seconds

The input and the output angular velocities of the AOT motors were computed as well.
Fig.18 shows the how the input and output velocities of the motors change to compensate the fly’s
movements. Fig.19 shows the input and output velocities between 22 and 30 seconds of the
experiment. The total experimental time is 100 seconds. It can be observed that the output
velocity is noisy. This can be attributed to the low resolution of the encoder in the motors

providing feedback.

24

Input and Corresponding Output Velocity During Experimental Time

—— Input Velocity

201 —— Output Velocity
Q . | N L A 3
L\, 0 A)RV (L w|| I ! v '|’ n ‘ P = A T’ 1 i \
3 ’ | '
—50 -
0 20 40 60 80 100
50 A
| 1
| M L
@ 01 PRI Wbl A (AL A | ;
i |']\ “‘ | yI N |I\ \‘y Ml 1 Il] n
é\‘ 1 ‘ | | \ Il ‘
_50- I
0 20 40 60 80 100
50 A
251 I nll | | ‘ [1
0& 04 | ‘_I 'I" I | AT |l VA WY “ﬂ ki ﬁ.“ I 1 I
= N I A | | v‘ I \ 1.,
3 —25 4 ‘ [|
—50 -
=75 - T T T T T T
0 20 40 60 80 100

time(sec)

Figure 18: Input and output velocity of the three AOT motors during the experimental time

25

Input and Corresponding Output Velocity Between 22 and 30 Seconds

5017 — Input Velocity
—— Output Velocit
25 p y
Q
< 0-
3
_25 -
22 23 24 25 26 27 28 29 30
time(sec)
50 A
3
_50 -
22 23 24 25 26 27 28 29 30
40 A

20 1 w ‘uu‘lUllUMMwm TN, m-,. ‘m
i ’F*“‘""wﬁﬂlﬂﬂqu.mlmﬂ*qﬁlmm*,ﬂ' ‘r'(r'r il

22 23 24 25 26 27 28 29 30

ws(°/s)

—20 1

Figure 19: Input and output velocity of the three AOT motors between 22 and 30 seconds.
The noise in the output velocity data can be attributed to the low resolution of the encoders.

In this system, the mobile robot was programmed to move like the sphere. The velocities
of the mobile robot motors were sent after image-processing and the position of the robot was
obtained by reading the encoder values of the right and the left wheel of the robot. Fig.20 shows
the path taken by the sphere in this system. This was computed by accumulating the position of
the sphere based on the position data from the AOT motors. The encoders in the motors enabled

us to obtain the position feedback.

26

70 Path taken by the sphere

50 -

40

T
1

30 -

y-position (mm)

20 -

_10 1 ! 1 1 1
-20 0 20 40 60

X-position (mm)

Figure 20: Path taken by the sphere in compensating the motion of the fly

Since, the mobile robot was given the same commands as that of the sphere, the path of
the mobile robot was plotted as well and is shown in fig.21. The similarities in the path taken by
the sphere and the mobile robot can be observed from the two plots. The red circles depicts the
changes in direction in both the sphere and the mobile robot. It can be seen that the mobile robot
does not switch directions as much as the sphere. This can be attributed to the low gain set for the
motors of the mobile robot. To obtain better control, the motor’s gain can be set higher to match
the sphere’s motion better. This will be a part of the continued work that will be done in the future

as the scope of the system increases as well.

27

y-position (mm)

2.5

2.0

1.5

1.0

0.5

0.0

Path taken by the Mobile Robot

1 1 1

-0.5
0

1 1

10 20 30 40 50
X-position (mm)

Figure 21: Path taken by the mobile robot as it navigates spatially

28

60

CHAPTER 4
CONCLUSION

The development of a fruit fly-mobile robot interface was described. The system consists
of the Active Omni-directional Treadmill (AOT) which consists of an acrylic sphere that acts as
the treadmill for the fruit fly on top of the sphere. As the fly walks on the ball, the motion of the
fly is compensated by creating counter-motion. The kinematics of this AOT was described in
section 3.1 in chapter 2. The motion of the sphere is also reproduced in the mobile robot, which
navigates spatially. The mobile robot kinematics used is described in section 4 in chapter 2. The
image processing node processes the images captured by the NIR camera to compute the velocity
needed for the motors to compensate the fly’s movements.

Chapter 3 described the experimental results obtained. The average distance (d;..) the
fly moved before being compensated was found to be 1.821mm and the average orientation
change (6.,,.-) the fly made before compensating was found to be 7.039° . The major limitation
of the system is the delay in compensation of the fly’s movements. The delay was found to be
approximately 110 milliseconds between the end of image processing and motor’s movements.
The future scope of this project will cover using motors in the system with better torque control.
This will reduce the delay significantly as it can overcome the stiction faster. The mobile robot’s
movements were similar to that of the fly but did not match exactly. This is due to the small gain
in the motors of the mobile robot.

In this study, the fruit fly was freely moving and not tethered and can this help in
long-time observation of the anima in the futurel. This research will be useful in brain imaging
research and learning and interpreting the animal’s behaviors. This interface can also be extended

to other animals in the future.

29

REFERENCES

[1] Wehner, R., 2003. “Desert ant navigation: how miniature brains solve complex tasks”.
Journal of Comparative Physiology A, 189(8), pp. 579-588.

[2] Vo Doan, T. T., and Sato, H., 2016. “Insect-machine hybrid system: Remote radio control of
a freely flying beetle (mercynorrhina torquata)”. Journal of Visualized Experiments,
JoVE(115), p. 54260.

[3] Lal, A., Bozkurt, A., and Gilmour Jr., R. F., 2011. “Bioelectrical enhancement in
tissue-electrode coupling with metamorphic-stage insertions for insect machine interfaces”.

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Aug, pp. 5420-5423.

[4] Son, J.-H., and Ahn, H.-S., 2014. “Bio-insect and artificial robot interaction: learning
mechanism and experiment”. Soft Computing, 18(6), pp. 1127-1141.

[5] Tsang, W. M., Stone, A. L., Otten, D., Aldworth, Z. N., Daniel, T. L., Hildebrand, J. G.,
Levine, R. B., and Voldman, J., 2012. “Insect-machine interface: A carbon
nanotube-enhanced flexible neural probe”. Journal of Neuroscience Methods, 204(2),
pp. 355-365.

[6] Ejaz, N., Peterson, K. D., and Krapp, H. G., 2011. “An experimental platform to study the

closed-loop performance of brain-machine interfaces”. Journal of Visualized Experiments :
JoVE(49), p. 1677.

[7] Bozkurt, A., Gilmour Jr, R. F., Sinha, A., Stern, D., and Lal, A., 2009. “Insect-machine
interface based neurocybernetics”. IEEE Transactions on Biomedical Engineering, 56(6),
pp. 1727-1733.

[8] Benvenuto, A., Sergi, F., Di Pino, G., Seidl, T., Campolo, D., Accoto, D., and Guglielmelli,
E., 2009. “Beyond biomimetics: Towards insect/machine hybrid controllers for space
applications”. Advanced Robotics, 23(7-8), pp. 939-953.

[9] Atsushi, T., Ryo, M., Daisuke, K., and Ryohei, K., 2010. “Construction of a brain-machine
hybrid system to analyze adaptive behavior of silkworm moth”. Intelligent Robots and
Systems, pp. 2389-2394.

[10] Akimoto, K., Watanabe, S., and Yano, M., 1999. “An insect robot controlled by the
emergence of gait patterns”. Artificial Life and Robotics, 3(2), pp. 102—105.

[11] Tsujita, K., Tsuchiya, K., and Onat, A., 2001. “Adaptive gait pattern control of a quadruped
locomotion robot”. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference, Vol. 4, pp. 2318-2325 vol 4.

[12] Asama, H., 2007. “Mobiligence: Emergence of adaptive motor function through interaction
among the body, brain and environment”. /EEE Transactions, March, pp. 30-31.

30

REFERENCES

[13] Wessnitzer, J., Asthenidis, A., Petrou, G., and Webb, B., 2011. “A cricket-controlled robot

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

orienting towards a sound source”. In Towards Autonomous Robotic Systems: 12th Annual
Conference, TAROS 2011, Sheffield, UK, August 31 — September 2, 2011. Proceedings,
Springer Berlin Heidelberg, pp. 1-12.

Melano, T., 2011. “Insect-machine interfacing”. PhD thesis, The University of Arizona.

Noriyasu Ando, Shuhei Emoto, R. K., 2016. “Insect-controlled Robot: A Mobile Robot
Platform to Evaluate the Odor-tracking Capability of an Insect”. Journal of Visualized
Experiments, JoVE(118), Dec., p. €54802.

Kain, J., Stokes, C., Gaudry, Q., Song, X., Foley, J., Wilson, R., and de Bivort, B., 2013.
“Leg-tracking and automated behavioural classification in drosophila”. Nat Commun, 4,
p. 1910.

Kanzaki, R., Nagasawa, S., and Shimoyama, 1., 2004. “Neural basis of odor-source
searching behavior in insect microbrain systems evaluated with a mobile robot”. In
Bio-mechanisms of Swimming and Flying, N. Kato, J. Ayers, and H. Morikawa, eds.,
Springer Japan, pp. 155-170.

Dahmen, H., Wahl, V. L., Pfeffer, S. E., Mallot, H. A., and Wittlinger, M., 2017.
“Naturalistic path integration of cataglyphis desert ants on an air-cushioned lightweight
spherical treadmill”. J Exp Biol, 220(Pt 4), pp. 634—644.

Kumagai, M., and Ochiai, T., 2008. “Development of a robot balancing on a ball”. In 2008
International Conference on Control, Automation and Systems, pp. 433—438.

Robinson, J. D., Holland, J. B., Hayes, M. J. D., and Langlois, R. G., 2005. “Velocity-level
kinematics of the atlas spherical orienting device using omni-wheels”. Transactions of the
Canadian Society for Mechanical Engineering, 29(4), pp. 691-700.

Masatoshi, S., Hayato, K., Hajime, A., and Isao, E., 2003. “wheels for all-directional
vehicle”. Japan patent no. JP3421290B2.

31

APPENDICES

APPENDIX A
SUB-SYSTEM PROGRAM CODES

Listing 1: Image Processing Program

J/*

Description:
Program to compensate the movements of a Drosophila melanogaster walking
on
the Active Omni-directional Treadmill (AOT). This program uses OpenCV
Library
to perform image-processing on the images captured by a Near-Infrared
Camera
Written by:
Suddarsun Shivakumar and Dr. Dal Hyung Kim
April 2018

*/
// HEADER FILES INCLUSION

#include <ros/ros.h>

#include <image transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>

#include <sensor_msgs/image_encodings.h>
#include <opencv2/opencv.hpp>

#include "opencv2/core/core.hpp"

#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <image_ coverter/position.h>
#include <geometry_msgs/Twist.h>

#include <fstream>

#include <chrono>

#if defined(__linux__) || defined(__APPLE_)
#include <fcntl.h>

#include <termios.h>

#define STDIN_FILENO O

#elif defined(_WIN32) || defined(_WIN64)
#include <conio.h>

#endif

#include <stdlib.h>
#include <stdio.h>

32

// FOR DYNAMIXEL MOTORS TO BE USED IN CONJUNCTION WITH DYNAMIXEL
DynamizelSDK

#if defined(__linux__) || defined(__APPLE_)
#include <fcntl.h>

#include <termios.h>

#define STDIN FILENO O

#elif defined(WIN32) || defined(WIN64)
#include <conio.h>

#endif

#include <stdlib.h>
#include <stdio.h>
#include "DynamixelSDK.h"

// Control table address

#define ADDR_PRO_TORQUE_ENABLE 64
#define ADDR_PRO_GOAL VELOCITY 104
#define ADDR PRO_PRESENT POSITION 132

// Data Byte Length
#define LEN PRO_GOAL_VELOCITY 4
#define LEN PRO PRESENT POSITION 4

// Protocol version
#define PROTOCOL_VERSION 2.0

// Default setting
#define DXL1_ID 100
#define DXL2_ID 101
#define DXL3_ID 102

#define BAUDRATE 1000000

#define DEVICENAME "/dev/ttyUSBO"
#define TORQUE_ENABLE 1

#define TORQUE DISABLE O

#define ESC_ASCII VALUE Ox1ib

int getch()

{

#if defined(__linux__) || defined(__APPLE__)

33

struct termios oldt, newt;
int ch;
tcgetattr (STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr (STDIN FILENO, TCSANOW, &newt);
ch = getchar();
tcsetattr (STDIN FILENO, TCSANOW, &oldt);
return ch;

#elif defined(_WIN32) || defined(_WIN64)
return _getch();

#endif

}

int kbhit(void)

{

#if defined(__linux__) || defined(__APPLE)
struct termios oldt, newt;
int ch;
int oldf;

tcgetattr (STDIN_FILENO, &oldt);

newt = oldt;

newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr (STDIN FILENO, TCSANOW, &newt);

oldf = fcntl(STDIN FILENO, F_GETFL, 0);

fcntl (STDIN _FILENO, F_SETFL, oldf | O_NONBLOCK) ;

ch = getchar();

tcsetattr (STDIN _FILENO, TCSANOW, &oldt);
fcntl (STDIN _FILENO, F_SETFL, oldf);

if (ch != EOF)

{
ungetc(ch, stdin);
return 1;

b

return O;

#elif defined(_WIN32) || defined(_WIN64)
return _kbhit();

#endif

}

34

using namespace CV;

using namespace std;

typedef std::chrono::high resolution_clock Clock;

auto prev_clock = Clock::now();

// DECLARATION OF GLOBAL VARIABLES TO COMPUTE OMEGA 1, 2, AND 3

double theta = 0.0;

double J1M[9] = {0.0,0.000408326,-0.00856566,-0.000353621,-0.000204163,
-0.00856566,0.000353621,-0.000204163,-0.00856566}; // J inverse * M
double omega 1 = 0.0; // ANGULAR VELOCITY FOR MOTOR 1 IN AOT

double omega 2 = 0.0; // ANGULAR VELOCITY FOR MOTOR 2 IN AOT

double omega 3 = 0.0; // ANGULAR VELOCITY FOR MOTOR 3 IN AOT

double K = 100.0;

double SF = 60.0;
double prev_dth =
double 1lin_vel =0.
double ang vel = 0.0;

double target_location[3] = {320.0, 188.0, 0.0};

double thm = 20%3.141592/180; // IN RADIANS

double csth _thm[2] = {cos(thm), sin(thm)}; // COMPENSATION FOR CAMERA AXIS

Mat src; Mat src_gray;

int threshold value = 125;

int const max_BINARY_ value = 255;
int threshold_type = O;

RNG rng(12345);

int repeat_time = 20;

int width = 640; // IMAGE WIDTH
int height = 376; // IMAGE HEIGHT

// FOR DYNAMIXEL MOTORS TO BE USED IN CONJUNCTION WITH DYNAMIXEL
DynamixzelSDK

dynamixel: :PortHandler *portHandler = dynamixel::PortHandler::getPortHandler
(DEVICENAME) ;

dynamixel: :PacketHandler *packetHandler = dynamixel::PacketHandler::
getPacketHandler (PROTOCOL_VERSION) ;

dynamixel: :GroupSyncWrite groupSyncWrite(portHandler, packetHandler,
ADDR_PRO_GOAL_VELOCITY, LEN_PRO_GOAL_VELOCITY);

dynamixel: :GroupSyncRead groupSyncRead(portHandler, packetHandler,
ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) ;

int dx1_comm_result = COMM_TX FAIL; // Communication result

bool dxl_addparam_result = false; // addParam result

bool dxl_getdata_result = false; // GetParam result

35

uint8_t dxl_error = 0; // Dynamizel error

uint8_t param_goal_position[4];

int32_t dx1l1_present_position = 0, dxl2_present_position = O,
dx13_present_position = 0;

// TO SAVE THE DATA

ofstream OutFile, OutFile Data;

int64_t OutFile_Data_size_byte = 17*sizeof (double); // 13 numbers will be
save per image (you may change)

// OPENING THE FILES TO WRITE DATA
void save_init(){

// my_file_name = "Fly_Image_Mar_28.bin"
OutFile.open("Fly_Image Mar 28.bin", ios::out | ios::binary);
OutFile_Data.open("Fly Data_Mar_ 28.bin", ios::out | ios::binary);
//0utFile_Data.write((char *)OutFile_Data_size_byte , sizeof(

OutFile_Data_size_byte));

// CLOSING THE BINARY FILES AFTER DATA IS WRITTEN

void save deinit(){
OutFile.close();
OutFile Data.close();

}

// INITIALIZING THE MOTORS
void motor init(){

if (portHandler->openPort())

{

printf ("Succeeded to open the port!\n");

}

else

{

ROS_ERROR("Failed, jto open the port!\n");
ROS_ERROR("Press any _key to terminate...\n");
getch();

+

36

// Set port baudrate
if (portHandler->setBaudRate (BAUDRATE))
{

printf ("Succeeded to,change the baudrate!\n");

}

else

{

ROS_ERROR("Failed, to,change the baudrate!\n");

ROS_ERROR("Press_any_key to_terminate...\n");

getch();

}

dxl _comm_result = packetHandler->writelByteTxRx(portHandler, DXL1 ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl_error);

if (dx1_comm_result != COMM_SUCCESS)

{

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

}

else if (dxl_error != 0)

{

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

}

else

{

printf ("Dynamixel#),d has been successfully connected \n", DXL1_ID);

b

// Enable Dynamizel#2 Torque

dx1l_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl_error);

if (dx1_comm_result != COMM_SUCCESS)

{

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl comm_result));

}

else if (dxl _error != 0)

{

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

}

else

{
printf ("Dynamixel#),d has been successfully connected \n", DXL2_ID);

b

dxl _comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl_error);

37

if (dx1_comm_result != COMM_SUCCESS)

{

b

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

else if (dxl _error != 0)

{
ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));
}

e

{
printf ("Dynamixel#),d has been successfully connected \n", DXL3_ID);
}

1se

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL1_ID,

&dx1_error);

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,

&dx1 _error);

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,

&dx1 _error);

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL1_ID,

i

{

b

e

{
}
e

{

}

ADDR_PRO_TORQUE_ENABLE, 1, &dxl error);
f (dxl_comm_result != COMM_SUCCESS)

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));
lse if (dxl _error != 0)

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));
1se

printf ("Dynamixel#),d has been successfully connected \n", DXL1_ID);

// Enable Dynamizel#2 Torque

d

i

{

b

e

{

x1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,
ADDR_PRO_TORQUE_ENABLE, 1, &dxl_error);

f (dx1_comm_result !'= COMM_SUCCESS)

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

lse if (dxl _error != 0)

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

38

11,

11,

11,

b

else

{

printf ("Dynamixel#),d has been successfully connected \n", DXL2_ID);

b

dxl comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,
ADDR_PRO_TORQUE_ENABLE, 1, &dxl_error);
if (dxl_comm_result != COMM_SUCCESS)
{
ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl comm_result));
}
else if (dxl_error != 0)
{
ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));
}
else

{

printf ("Dynamixel#),d has been successfully connected \n", DXL3_ID);

b

dx1l_addparam_result = groupSyncRead.addParam(DXL1 _ID);
if (dxl_addparam_result != true)

{
ROS_ERROR (" [ID:%d]_groupSyncRead, addparam failed", DXL1_ID);
+

// Add parameter storage for Dynamizel#2 present position value
dx1l_addparam_result = groupSyncRead.addParam(DXL2_ID);
if (dx1_addparam_result != true)
{
ROS_ERROR(" [ID:%d]_groupSyncRead, addparam failed", DXL2_ID);
}

dx1l_addparam_result = groupSyncRead.addParam(DXL3_ID);
if (dx1l_addparam_result != true)

{
ROS_ERROR(" [ID:%d]_groupSyncRead addparam failed", DXL3_ID);
+

// WRITING THE VELOCITIES TO THE AOT MOTORS

39

void Motor_Assign(double v1, double v2, double v3)

{
uint8_ t param_vel position[4];
param_vel position[0] = DXL_LOBYTE(DXL_LOWORD((int)v1));
param_vel position[1] = DXL_HIBYTE(DXL_LOWORD((int)v1));
param_vel position[2] = DXL_LOBYTE(DXL_HIWORD((int)v1));
param_vel position[3] = DXL_HIBYTE(DXL_HIWORD((int)v1));

dx1l_comm_result = groupSyncWrite.addParam(DXL1_ID, (uint8_t*)
param_vel position);

if (dx1_comm result != true)

ROS_ERROR("FAILED!!");

DXL_LOBYTE (DXL_LOWORD ((int)v2));
DXL_HIBYTE(DXL_LOWORD((int)v2));
DXL_LOBYTE(DXL_HIWORD((int)v2));
DXL_HIBYTE(DXL_HIWORD((int)v2));

param_vel position[0]
param_vel position[1]
param_vel position[2]
param_vel position[3]

dxl_comm_result = groupSyncWrite.addParam(DXL2_ID, (uint8_tx*)
param_vel position);
if (dx1_comm result != true)
ROS_ERROR("FAILED!!");

DXL_LOBYTE(DXL_LOWORD((int)v3));
DXL_HIBYTE (DXL_LOWORD((int)v3));
DXL_LOBYTE (DXL _HIWORD((int)v3));
DXL_HIBYTE(DXL_HIWORD((int)v3));

param_vel position[0]
param_vel position[1]
param_vel position[2]
param_vel_position[3]

dx1l_comm_result = groupSyncWrite.addParam(DXL3_ID, (uint8_tx*)
param_vel position);

if (dx1_comm result != true)
ROS_ERROR("FAILED!!");

dxl_comm_result = groupSyncWrite.txPacket();
if (dxl_comm_result != COMM_SUCCESS) ROS_ERROR("%s\n", packetHandler->
getTxRxResult (dxl_comm_result));

groupSyncWrite.clearParam();

b

// DEINITIALIZING THE MOTORS

40

void motor_deinit()

{

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL1_ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl _error);

if (dx1_comm_result != COMM_SUCCESS)

{

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

}

else if (dxl _error != 0)

{

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

+

else

{

printf ("Dynamixel#),d has been successfully connected \n", DXL1_ID);

b

// Enable Dynamizel#2 Torque

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl error);

if (dx1_comm_result != COMM_SUCCESS)

{

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

}

else if (dxl _error != 0)

{

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

+

else

{

printf ("Dynamixel#),d has been successfully connected \n", DXL2_ID);

b

dxl_comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,
ADDR_PRO_TORQUE_ENABLE, 0, &dxl _error);

if (dxl_comm_result != COMM_SUCCESS)

{

ROS_ERROR("%s\n", packetHandler->getTxRxResult(dxl_comm_result));

}

else if (dxl _error != 0)

{

ROS_ERROR("%s\n", packetHandler->getRxPacketError(dxl_error));

}

else

41

{
printf ("Dynamixel#),d has been successfully connected \n", DXL3_ID);

}

static const std::string OPENCV_WINDOW = "Image window";

class ImageConverter

{
ros: :NodeHandle nh_;
image_transport::ImageTransport it_;
image_transport::Subscriber image_sub_;
image_transport::Publisher image_pub_;
ros: :Publisher Fly_Pos;
ros::Subscriber seq_sub;

public:
ImageConverter ()
it_(nh_)

{
// Subscrive to input video feed and publish output video feed
ros: :NodeHandle nh;
Fly Pos = nh.advertise<geometry msgs::Twist>("/cmd_vel", 1000); //

PUBLISHING INPUT FOR THE MOBILE ROBOT

image_sub_ = it_.subscribe("/image_raw", 1,
&ImageConverter: :imageCb, this); // SUBSCRIBING TO THE RAW IMAGES
FROM CAMERA

image_pub_ = it_.advertise("/image_converter/output_video", 1);

cv: :namedWindow (OPENCV_WINDQOW) ;

}
~ImageConverter ()

{

cv::destroyWindow (OPENCV_WINDQOW) ;
}

void imageCb(const sensor_msgs::ImageConstPtr& msg)

42

int sequence_now=0;

double seq_init;

geometry_msgs::Twist MSG; //INSTANCE TO PUBLISH MESSAGE
cv_bridge: :CvImagePtr cv_ptr;

std_msgs: :Header h = msg->header; //T0 GET FRAME NUMBER

// time start

try

{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings: :MONO8)
seq_init=h.seq;
sequence_now=h.seq/(repeat_timex*3);

+

catch (cv_bridge::Exception& e)

{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;

+

auto begin = Clock: :now();

auto samplingtime_secs = std::chrono::duration_cast<std::chrono::
microseconds>(begin - prev_clock).count() ; //LOOP TIME
prev_clock = begin;

Mat im = cv_ptr->image;
Mat im_ bw;

// IMAGE PROCESSING

threshold(im, im bw, 50.0, 255.0, 0);

vector<vector<Point> > contours;

vector<Vec4i> hierarchy;

int savedContour = -1; // contour index (largest contour)

double maxArea = 0.0; // size of the largest contour

findContours(im_bw, contours, hierarchy, CV_RETR_EXTERNAL,
CV_CHAIN APPROX SIMPLE, Point(0,0));

43

for (int i = 0; i< contours.size(); i++)

{
double area = contourArea(contoursl[i]);
if (area > maxArea)
{
maxArea = area;
savedContour = i;
}
}

// COMPTUTING THE CENTROID USING THE MOMENTS

double _cx = target_location[0]; double _cy = target_location[1]; double
_theta = target_location[2];
if (maxArea > 100.0) {
Moments mu = moments(contours[savedContour], false);
// compute centroid & orientation*0.01
_cx = mu.m10/mu.m00;
_cy = mu.m01/mu.m00;
double mu20p = mu.m20/mu.m00-_cx*_cX;
double mu02p= mu.m02/mu.m00-_cy*_cy;
double mullp= mu.mill/mu.mO0-_cx*_cy;
_theta = atan2(2*mullp, (mu20p-mu02p))/2; // in radian
+

// COMPUTING THE DEL. X, DEL. Y AND DEL. THETA NEEDED TO CALCULATE THE
// MOTOR VELOCITIES

double dx = (_cx-target_location[0]);
double dy = (_cy-target_location[1]);
double dth = -(_theta - target_location[2]);

// ACCOUNTNIG FOR THE DIFFERNECE IN ALLIGNMENT OF CAMERA AND MOTOR AXES

double dxm = csth_thm[0]*dx - csth_thm[1]x*dy;
double dym = csth_thm[1]*dx + csth_thm[0]*dy;
double dthm = dth ;//+ thm;

// SETTING TOLERANCE

double limit_r = 50;
double limit th = 3%3.141592/180;

// COMPUTING AOT MOTOR VELOCITIES

44

if ((sqrt(dx*dx + dy*dy) > limit_r) || (fabs(dth) > limit_th)) {

(JIM[O]*dxm + JIM[1]*dym + J1M[2]*dthm*SF)*K;
(JIM[3]*dxm + JIM[4]*dym + JIM[5]*dthm*SF)*K;
(JIM[6]*dxm + JIM[7]*dym + J1M[8]*dthm*SF)*K;

omega_1
omega_2
omega_3

+
else {
omega_1 = 0; omega_2 =0; omega 3 = 0;

by

// CALCULATING THE LINEAR AND ANGULAR VELOCITIES FOR THE ROBOT

if ((sqrt(dx*dx + dy*dy) > limit_r)) {
lin_vel = (sqrt(dx*dx + dy*dy)*38.40983291722681%0.01)/(
samplingtime_secs*0.001);

else 1lin vel =0;

if ((fabs(dth) > limit_th))
ang vel = (dthm/(samplingtime_secs*0.001))*57;

else ang vel = 0;
// PUBLISHING THE LINEAR AND ANGULAR VELOCITIES FOR THE MOBILE ROBOT

MSG.linear.x= lin_vel;
MSG.angular.z= ang_vel;

// DRAWING THE CONTOUR CENTROID ON THE IMAGE
Mat drawing = Mat::zeros(im_bw.size(), CV_8UC3);
cv::cvtColor(im, drawing, cv::COLOR_GRAY2BGR);
//im. copyTo (drawing) ;
if (maxArea > 0.0) {
Scalar color = Scalar(rng.uniform(O, 255), rng.uniform(0,255), rng.
uniform(0,255));
drawContours(drawing, contours, savedContour, color, 2, 8, hierarchy,
0, Point());
+
circle(drawing, Point(_cx,_cy), 3, Scalar(255,0,255), 1, 8, 0);
circle(drawing, Point(target_location[0],target_location[1]), limit_r,
Scalar(0,0,255), 1, 8, 0);
imshow("a",drawing) ;
waitKey(1);

45

// WRITING VELOCITIES TO MOTORS

Motor_Assign(omega_1,omega_2,omega_3);

// READING CURRENT POSITION OF THE MOTOR AFTER COMPENSATION

dx1l_comm_result = groupSyncRead.txRxPacket();
if (dxl_comm_result != COMM_SUCCESS) ROS_ERROR("%s\n", packetHandler->
getTxRxResult (dxl comm_result));

// Check if groupsyncread data of Dynamizel#l is available
dxl_getdata_result = groupSyncRead.isAvailable(DXL1_ID,
ADDR_PRO_PRESENT POSITION, LEN_PRO_PRESENT POSITION);
if (dxl_getdata_result != true)
{
ROS_ERROR(" [ID:%d]_groupSyncRead getdata failed", DXL1_ID);
}

// Check if groupsyncread data of Dynamizel#2 is available
dx1l_getdata_result = groupSyncRead.isAvailable(DXL2_ID,
ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION);
if (dxl_getdata_result != true)
{
ROS_ERROR(" [ID:%d]_groupSyncRead getdata failed", DXL2_ID);
}

dxl_getdata_result = groupSyncRead.isAvailable(DXL3_ID,
ADDR_PRO_PRESENT POSITION, LEN PRO_PRESENT POSITION);
if (dxl_getdata_result != true)
{
ROS_ERROR("[ID:%d]_groupSyncRead getdata failed", DXL3_ID);
}

// Get Dynamizel#1 present position wvalue
dx1l1l_present_position = groupSyncRead.getData(DXL1_ID,
ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) ;

// Get Dynamizel#2 present position wvalue

dx12_present_position = groupSyncRead.getData(DXL2_ID,
ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) ;

46

dx13_present_position = groupSyncRead.getData(DXL3_ID,
ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) ;

auto end = Clock: :now();

double elapsed_secs = std::chrono::duration_cast<std::chrono::
microseconds>(end - begin).count() ;

ROS_INFO ("%0.3f,%0.3f", (double)elapsed_secs/1000, (double)
samplingtime_secs/1000) ;

// Output modified video stream
image pub_.publish(cv_ptr->toImageMsg());
Fly_Pos.publish(MSG);

//Writing Image AND data to Binary File

OutFile.write((char *)im.data, width*height*sizeof (uchar));

double secs = ros::Time: :now() .toSec();

double output_datal[] = {seq_init, elapsed_secs, (double)
samplingtime_secs, _cx, _cy, _theta, dxm, dym, dthm,

omega_1, omega_2, omega_3, maxArea, (double)dxll present_position,
double)dx12_present_position,

(double)dx13_present_position, secs}; // 17 vartables

OutFile Data.write((char *)output_data, OutFile Data_size_byte);

}
};

int main(int argc, charx* argv)

{

// INITIALIZING ROS NODE
ros::init(argc, argv, "image_converter");

save_init(); // OPENING FILES
motor_init(); // INITIALIZING MOTORS
ImageConverter ic;

ros: :spin(Q);

motor_deinit(); // DEINITIALIZING MOTORS
save_deinit(); // CLOSING FILES

47

}

return O;

48

Listing 2: Code to obtain position data from the mobile robot

/%

Description:
Program to obtain the encoder data from the right and left wheel of the
mobile
robot. The position obtained is published by the robot to the
sensor_state topic
Written by:
Suddarsun Shivakumar and Dr. Dal Hyung Kim
April 2018

*/

#include "ros/ros.h"
#include <turtlebot3_msgs/SensorState.h>
#include <fstream>

using namespace std;

ofstream Output; // Declaring the file handler
int64_t Output_size_byte = 3*sizeof (int64_t);

// Callback function called everytime a message s published to the
subsribed topic

void CallBack(const turtlebot3 _msgs::SensorState::ConstPtr& data){
int64 t usecs = (int64_t) (ros::Time: :now() .toSec()*1000000) ;
int64_t output_datal[] = {usecs, data->left_encoder,data->right_encoder};
// Variables in the file: time, left encoder data, rTight encoder data
Output.write((char *)output_data, Output_size_byte); // Writing the data
obtianed to a binary file

int main(int argc, charx*x argv)

{
Output.open("MobRob_Data_9:54PM_Mar29 2018.bin", ios::out | ios::binary);
// Opening the binary file
ros::init(argc, argv, "mobrob_data_tracker"); // initializing node
ros: :NodeHandle n;
ros: :Subscriber sub = n.subscribe("sensor state", 1000, CallBack); //

49

subscribing to "sensor_state” topic
ros: :spin(Q);
Output.close(); // Closing the binary file after writing the data

return O;

50

Listing 3: Launch file that launches all nodes on the host system

<launch>
<I-— This launch file is to launch all nodes in one command from the
terminal

of the host system. This file launches the following nodes:
The image procesing node
The mobile robot tracker node
The camera node to capture images
It parameters of the camera are also configured in this file prior to
launch
->
<machine name="local alt" address="localhost" default="true"/>

<!-- Launch Nodes -—>

<node name="image converter" pkg="image coverter" type="
image_coverter_node"/>

<node name="mobrob_data_tracker" pkg="mobrob_data_tracker" type="
mobrob_data_tracker _node"/>

<node name="pointgrey_ camera_node" pkg="pointgrey_camera_driver" type="
camera_node"/>

<!-- Configuring camera parameters —-—>

<!-- Setting the size of the tmage ——>

<param name="/pointgrey_camera_node/format7_roi_height" value= "376"/>
<param name="/pointgrey_camera_node/format7_roi_width" value= "640"/>
<param name="/pointgrey_camera_node/format7_x_offset" value= "732"/>
<param name="/pointgrey_camera_node/format7_y_offset" value= "596"/>

<l-- Adjusting the ezposure settings -—>
<param name="/pointgrey_camera_node/auto_exposure" value= "false'"/>
<param name="/pointgrey_camera_node/exposure" value= "-7.585"/>

<param name="/pointgrey_camera_node/auto_sharpness" value= "false"/>
<param name="/pointgrey_camera_node/sharpness" value= "1525"/>
<param name="/pointgrey_camera_node/auto_shutter" value= "false"/>
<param name="/pointgrey_camera_node/shutter" value= "1"/>

<param name="/pointgrey_camera_node/auto_gain" value= "false"/>
<param name="/pointgrey_camera_node/gain" value= "20"/>

<param name="/pointgrey_camera_node/frame_rate" value= "66"/>

<!-- Setting the output to enable LED pulsing ——>

<param name="/pointgrey_camera_node/enable_strobe2" value= "true'"/>
<param name="/pointgrey_camera_node/strobe2_polarity" value= "1"/>

51

<param name="/pointgrey_camera_node/strobe2_duration" value= "0.5"/>

</launch>

52

Listing 4: Program to move the mobile robot

// NOTE: ONLY RELEVANT PARTS OF THE CODE ARE LISTED HERE
// This code was written using Arduino IDE

#include "turtlebot3_core_config.h"
/A A A A A KA HE R KA F A KA HE A KA HE AR KA FE A KA A AR A F KKK

* ROS NodeHandle
KA A A A A A A A A KA A He A A A A A KA KA A KA KA KKK KKK)

ros: :NodeHandle nh;

/***

* Subscriber

Fe A A A A A A A A A I A A A A A A AAA KA A A KKK KAAK)

ros::Subscriber<geometry msgs::Twist> cmd_vel_ sub("cmd_vel",
commandVelocityCallback) ;

/A e e e e He e e e e e HHe e e e e He A He e e e HeHe e e e e He A He e e e HeHe e e e e A A He e e e H KK e K

* Publisher

A A A A A I A HE A A A A I A A A KA A AT A A A KKK KKK KKKNK)
turtlebot3_msgs::SensorState sensor_state_msg;

ros: :Publisher sensor_state_pub("sensor_state", &sensor_state_msg);
double goal_linear_velocity = 0.0;

double goal_angular_velocity = 0.0;

/***

* Setup function
K e e e e H A A A A A A e e e H A A A A A A e A A A A A A KA AAA KKK KKK KKK f

void setup()
{

// Initialize ROS node handle, advertise and subscribe the topics
nh.initNode();
nh.getHardware () ->setBaud (57600) ;
nh.subscribe(cmd_vel sub);
nh.advertise(sensor_state_pub);

pinMode (13, OUTPUT);
SerialBT2.begin(57600) ;

prev_update_time = millis();
setup_end = true;

/A A A A KA A A KA A A KA A KA FEH KA A H A A A A A KA A A KA A KA A A KK F A K

53

* SoftwareTimer of Turtlebot3
e e oo oA R A A A H KK KKK KA e e e e e e e e e e oA A A A H KKK NSNS e e ke ke ke ke ok

static uint32 t tTime[4];

/**

* Loop function
e e e e o oA A A KA KKK HHHe e e e e e e e e e e e A A A A A A A KKK KKK KIS KKK KK KKK f)

void loop()
{

receiveRemoteControlData() ;

if ((millis()-tTime[0]) >= (1000 / CONTROL_MOTOR_SPEED_PERIOD))
{
// controlMotorSpeed();
AO0TMotorControl();
tTime[0] = millis();
}

nh.spin();

/**

Callback function for cmd_vel msg
T 2 4

void commandVelocityCallback(const geometry msgs::Twist& cmd_vel msg)

{
goal_linear_velocity = cmd_vel _msg.linear.x;
goal_angular_velocity = cmd_vel _msg.angular.z;

/**

* Publish msgs (sensor_state: encoders)
FA KA A KA A KA A KA A H KA A A A A A A KA A KA A H KA A KA A A KKK KKK KKK I KKK KA KK)

void publishSensorStateMsg(void)

{
bool dxl comm result = false;
int32 t current tick;
sensor_state_msg.stamp = nh.now();

sensor_state_msg.battery = checkVoltage();

54

dxl comm_result = motor_driver.readEncoder(sensor_state_msg.left _encoder,
sensor_state_msg.right_encoder);

if (dxl_comm_result == true)
{
sensor_state_pub.publish(&sensor_state_msg);

3

else

{
return;

b

/A A A A A KA A A KA AF A KA A KA FEH KA A H KA A A A A KA A KA A A KA F A KK

* Control mobile robot welocity
e e e o oA A A A KK KKK KA He e e e e e e e e e e e A A A A A A A KKK KKK KA e e e e e AK f)

void AOTMotorControl(void)

{

bool dxl1 comm result = false;
double omega_1 = 0.0;

double omega 2
double omega_3

0.0;
0.0;

double wheel speed_cmd[2];
double lin_vell;
double lin vel2;

wheel_speed_cmd[LEFT] = goal_linear_velocity - (goal_angular_velocity *
WHEEL_SEPARATION / 2);

wheel speed_cmd [RIGHT] = goal_ linear_velocity + (goal_ angular_velocity *
WHEEL_SEPARATION / 2);

lin vell = wheel speed_cmd[LEFT] * VELOCITY_CONSTANT_VALUE;
if (lin vell > LIMIT X MAX_VELOCITY)

{
lin_vell = LIMIT_X_MAX_VELOCITY;
}
else if (lin vell < -LIMIT X_MAX_VELOCITY)
{
lin_vell = -LIMIT_X_MAX_VELOCITY;
}

lin _vel2 = wheel speed_cmd[RIGHT] * VELOCITY_CONSTANT_ VALUE;
if (lin vel2 > LIMIT X MAX VELOCITY)

55

{
lin_vel2 = LIMIT X _MAX VELOCITY;

}
else if (lin_vel2 < -LIMIT X_MAX_VELOCITY)
{
lin_vel2 = -LIMIT_X_MAX_VELOCITY;
+

dxl_comm_result = motor_driver.speedControl AOT((int64_t)omega_1, (int64_t)
omega_2, (int64_t)omega 3, (int64_t)lin vell, (int64_t)lin_vel2);

if (dx1_comm_result == false)
return;

// Ezcerpt from turtlebot3_motor_driver.cpp

#include "turtlebot3 motor driver.h"

Turtlebot3MotorDriver: :Turtlebot3MotorDriver ()
: baudrate_(BAUDRATE),
protocol_version_ (PROTOCOL_VERSION),
left wheel id_(DXL_LEFT_ID),
right_wheel id_(DXL_RIGHT ID),
{
}

Turtlebot3MotorDriver: : ~Turtlebot3MotorDriver ()
{

closeDynamixel () ;

}

bool Turtlebot3MotorDriver::init(void)

{
portHandler = dynamixel::PortHandler: :getPortHandler (DEVICENAME) ;
packetHandler = dynamixel::PacketHandler: :getPacketHandler(
PROTOCOL_VERSION) ;

// Open port
if (portHandler_->openPort())

{
#ifdef DEBUG
sprintf (log_msg, "Port,is Opened");

56

nh.loginfo(log msg);
#endif

}

else

{

return false;

3

// Set port baudrate
if (portHandler_ ->setBaudRate(baudrate_))
{
#ifdef DEBUG
sprintf (log_msg, "Baudrate_is_set");
nh.loginfo(log_msg);
#endif
}
else
{

return false;

3

// Enable Dynamizel Torque
setTorque(left_wheel id_, true);
setTorque(right_wheel_id_, true);
return true;

bool Turtlebot3MotorDriver::setTorque(uint8_t id, bool onoff)
{
uint8 t dxl error = O;
int dx1_comm_result = COMM_TX_ FAIL;
dxl comm_result = packetHandler ->writelByteTxRx(portHandler , id, 11, 1,
&dx1_error);
dxl_comm_result = packetHandler_ ->writelByteTxRx(portHandler_ , id,
ADDR_X TORQUE_ENABLE, onoff, &dxl error);

if (dx1l_comm_result != COMM_SUCCESS)

{
packetHandler ->printTxRxResult(dxl_comm_result);
}
else if(dxl error != 0)
{
packetHandler ->printRxPacketError(dxl_error);
}
}

57

void Turtlebot3MotorDriver::closeDynamixel (void)
{
// Disable Dynamizel Torque
setTorque(left_wheel_id_, false);
setTorque(right wheel id_, false);

// Close port
portHandler_->closePort();

bool Turtlebot3MotorDriver::readEncoder(int32_t &left_value, int32_t &
right_value)
{
int dx1_comm_result = COMM_TX_FAIL; // Communication result
bool dx1_addparam_result = false; // addParam result
bool dxl _getdata_result = false; // GetParam result

// Set parameter
dx1l_addparam_result = groupSyncReadEncoder_->addParam(left_wheel_id_);
if (dxl_addparam_result != true)

return false;

dx1l_addparam_result = groupSyncReadEncoder_->addParam(right_wheel_id_);
if (dx1_addparam_result != true)
return false;

// Syncread present position
dxl_comm_result = groupSyncReadEncoder_->txRxPacket();
if (dxl_comm_result != COMM_SUCCESS)

packetHandler_ ->printTxRxResult(dxl_comm_result);

// Check if groupSyncRead data of Dynamizels are available
dxl_getdata_result = groupSyncReadEncoder_->isAvailable(left_wheel_id_,
ADDR_X_PRESENT_POSITION, LEN_X PRESENT_POSITION) ;
if (dxl_getdata_result != true)
return false;

dxl_getdata_result = groupSyncReadEncoder_->isAvailable(right_wheel_id_,
ADDR_X PRESENT POSITION, LEN_X PRESENT POSITION);
if (dxl_getdata_result != true)
return false;

// Get data
left_value = groupSyncReadEncoder_ ->getData(left_wheel_id_,

58

ADDR_X_PRESENT_POSITION, LEN_X_ PRESENT_POSITION) ;
right_value = groupSyncReadEncoder_->getData(right_wheel_id_,
ADDR_X_PRESENT_POSITION, LEN_X PRESENT_POSITION);

groupSyncReadEncoder_->clearParam() ;
return true;

}

bool Turtlebot3MotorDriver::speedControl AOT(int64_t omega 1, int64_t
omega_2, int64_t omega_3,
int64_t left _wheel value, int64_t right wheel value)
{
bool dxl_addparam_result_;
uint8_t dxl1_comm_result_;

dx1l_addparam_result_ = groupSyncWriteVelocity_ ->addParam(left wheel id_, (
uint8_t*)&left_wheel value);

if (dxl addparam result_!= true)

return false;

dx1l_addparam_result_ = groupSyncWriteVelocity_->addParam(right_wheel id_,
(uint8_t*)&right wheel value);

if (dx1_addparam _result_ != true)

return false;

dxl _comm_result_ = groupSyncWriteVelocity_ ->txPacket();
if (dx1_comm_result_ != COMM_SUCCESS)
{
packetHandler ->printTxRxResult(dxl_comm_result);
return false;

b

groupSyncWriteVelocity_->clearParam();
return true;

b

59

VITA

Graduate School
Southern Illinois University

Suddarsun Shivakumar

suddarsun@gmail.com

Southern Illinois University Carbondale

Bachelor of Science, Mechanical Engineering, May 2016

Thesis Title:

Machine-Insect Interface: Spatial Navigation of a Mobile Robot by a Drosophila
Major Professor: Dr. Dal Hyung Kim

60

	Southern Illinois University Carbondale
	OpenSIUC
	5-1-2018

	Machine-Insect Interface: Spatial Navigation of a Mobile Robot by a Drosophila
	Suddarsun Shivakumar
	Recommended Citation

	MergedFile

