
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Civil and Environmental
Engineering

9-2018

CAMBER IN PRETENSIONED BRIDGE I-
GIRDER IMMEDIATELY AFTER PRESTRESS
TRANSFER
Jen-kan Kent Hsiao
hsiao@engr.siu.edu

Alexander Y. Jiang
alexjiang@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/cee_pubs

This Article is brought to you for free and open access by the Department of Civil and Environmental Engineering at OpenSIUC. It has been accepted
for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Hsiao, Jen-kan K. and Jiang, Alexander Y. "CAMBER IN PRETENSIONED BRIDGE I-GIRDER IMMEDIATELY AFTER
PRESTRESS TRANSFER." International Journal of Bridge Engineering Volume 6, No. 2 (Sep 2018): 61-84.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/213552727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcee_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/cee_pubs?utm_source=opensiuc.lib.siu.edu%2Fcee_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/cee?utm_source=opensiuc.lib.siu.edu%2Fcee_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/cee?utm_source=opensiuc.lib.siu.edu%2Fcee_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/cee_pubs?utm_source=opensiuc.lib.siu.edu%2Fcee_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


 1 

 

 

 

CAMBER IN PRETENSIONED BRIDGE I-GIRDER 

IMMEDIATELY AFTER PRESTRESS TRANSFER  
 

J. Kent Hsiao
1*

 and Alexander Y. Jiang
2
 

 
1,2 Southern Illinois University Carbondale, Dept. of Civil and Environmental Engineering, USA 

e-mail: hsiao@engr.siu.edu, alexjiang@siu.edu 

 
 

ABSTRACT: Deflection control is an important design criterion for the 

serviceability of pretensioned concrete bridges. Upward cambers due to 

prestressing forces can be utilized to offset downward deflections due to gravity 

loads in order to control cracks and/or to produce desired cambers. The 

traditional hand-calculated approach simplifies the computation of pretensioned 

concrete girders by: (1) assuming that the prestressing force acting at the midspan 

of a girder remains constant along the entire span of the girder, (2) neglecting the 

p-δ effect on the girder due to the axial compression force in the girder, and (3) 

using the gross concrete section of the girder to compute the moment of inertia of 

the girder. The purpose of this work is to investigate the accuracy of the hand-

calculated approach for the computation of cambers due to prestressing forces. 

The type of prestressed concrete girder investigated in this work is a pretensioned 

I-girder with a combination of straight strands and harped strands. The major 

findings derived from this work are: (1) the variation (non-uniformity) among 

prestressing forces acting along the tendons has no significant effect on the 

deflection of the girder, (2) the traditional hand-calculated approach neglecting 

the P-δ effect may result in considerably smaller girder deflections, and (3) the 

traditional hand-calculated approach using the moment of inertia of the gross 

concrete section (neglecting the additional stiffness contributed by tendons) may 

result in considerably larger girder deflections. 

 
KEYWORDS: Bridges; Deflection; Finite element method; Girders; 

Prestressed concrete. 
 

1 INTRODUCTION 
Serviceability of a bridge refers to the performance of the bridge in service. Some 

of the most frequently considered serviceability issues with regard to prestressed 

concrete bridge girders relate to short- and long-term cambers or deflections. 

This paper focuses on the behavior of short-term cambers. 
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A camber is defined as an upward deflection induced at a point of a member 

from its position before application of a prestressing force to its position after 

application of the prestressing force. In a simply supported prestressed girder, a 

prestressing force typically produces an upward camber (since the prestressing 

force is usually applied below the centroid of the section), while the self-weight 

produces a downward deflection. The final deflection, therefore, depends on the 

combined effects of the prestressing force and the self-weight. Upward cambers 

due to prestressing forces can be utilized to offset downward deflections due to 

gravity loads in order to control cracks and/or to produce desired cambers. 

Typically, the downward deflection due to the self-weight of a prestressed bridge 

girder cannot be controlled, while the camber of the girder due to a prestressing 

force can easily be adjusted by changing the profile of the tendon or the 

magnitude of the prestressing force.  

 

2 CAMBER COMPUTATION USING THE HAND-

CALCULATED EQUIVALENT LOAD METHOD 
A pretensioned element is a prestressed element in which the tendons are 

tensioned prior to casting the concrete. As shown in Fig. 1, the combination of 

two typical tendon profiles, straight strands and harped strands, are commonly 

used for the construction of precast, pretensioned bridge I-girders [1,2,3].  

 

 

 

 

 

 

 

 

 

 

 

 

The equivalent load method treats the concrete girder as an elastic member 

loaded by the prestressed tendon reactions.  According to this method, the tendon 

can be removed and the forces it exerts on the girder are treated as loads. The 

equivalent loads for straight tendons and harped tendons are shown in Figs. 2(b) 

and 3(b), respectively [4, 5], while Fig. 4 shows the deflections at the midspan of 

a simply supported beam due to various loading conditions [6]. Camber 

computation can be performed using the equivalent loads induced by the strand 

profiles shown in Figs. 2 & 3 and the deflection computation formulas shown in 

Fig. 4.  

Midspan 

Straight strands 

Figure 1. Longitudinal strand profile of a precast, pretensioned bridge I-girder 

Harped strands 

Half of girder length  
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Referring to Figs. 2(b) and 4(a), the midspan camber due to the prestressing 

force for the simply supported beams shown in Fig. 2(a) can be computed using 

Eq. (1): 
 

 eP
8EI

L
Δ s

2

       (1) 

 

where: Δ is the midspan camber, 

  L is the span length, 

  Ps  is the prestressing force, 

e is the eccentricity between the center of gravity of the tendon area 

and the center of gravity of the concrete section, 

E is the modulus of elasticity of concrete, and 

I is the moment of inertia of the section resisting externally applied 

loads. 
 

Also, referring to Figs. 3(b), 4(a), and 4(b), the midspan camber due to the 

prestressing force for the simply supported beams shown in Fig. 3(a) can be 

computed using Eq. (2): 
 

)e(P
8EI

L
)4a(3L

24EI

)(eP
Δ 2s

2
221s            (2) 

                                                                   
where: e1 is the sag at the mid-span of the depressed tendon, and 

e2 is the vertical distance between c.g.s. (center of gravity of            

prestressed steel) and c.g.c. (center of gravity of concrete section) 

at the end section. 
 

Note that the following assumptions have been made for the development of the 

Eqs. (1) & (2):  

a) The prestressed concrete is a homogeneous elastic body which closely obeys 

the ordinary laws of flexure and shear. 

b) Deflections due to shear deformation are small and therefore may be 

disregarded. 

c) The uncracked concrete cross-sectional area is used to compute the moment 

of inertia.  Therefore, if the computed tensile stress in concrete immediately 

after prestress transfer exceeds 6 cif  (where cif  is the compressive strength 

of concrete at time of initial prestress) at the ends of simply supported 

members, or 3 cif  at other locations, additional bonded reinforcement shall 

be provided in the tensile zone to resist the total tensile force in concrete 

computed with the assumption of an uncracked section [7]. 
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d) The magnitude of the prestressing force acting on the girder remains 

unchanged throughout the entire span of the girder.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ps cos θ  

≈ Ps 

 

Ps cos θ (e2)  

≈ Ps∙ e2 

  

Ps sin θ ≈ Ps (e1/a)  

Ps cos θ  

≈ Ps 

 

Ps cos θ (e2)  

≈ Ps∙ e2 

  

Ps sin θ ≈ Ps (e1/a)  

Ps cos θ 

e1 

Ps 

 

Ps sin θ 

θ 

Ps sin θ 
c.g.c. 

c.g.s. 

e2 

L 

a a 

Ps cos θ 

Ps 

 

Ps sin θ Ps sin θ 

Ps sin θ ≈ Ps (e1/a)  

(a)  

Figure 3. Equivalent loads for harped tendons 
 

(b)  

L 

a a 

Ps sin θ ≈ Ps(e1/a)  

Ps∙e Ps∙e 

Ps Ps 

 

c.g.s. 

e 

L 

c.g.c. 

(a)  

Ps 

 

Ps 

 

L 

(b)  

Figure 2. Equivalent loads for straight tendons 
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3 LOSS OF PRESTRESS DUE TO THE ELASTIC 

SHORTENING IN PRETENSIONED GIRDERS 
Immediately after the prestressing force is transferred to a pretensioned concrete 

girder, the girder shortens and the prestressed tendons shorten with it, resulting in 

the loss of prestress in the tendons.  

Prestress loss due to the elastic shortening in pretensioned girders can be 

computed using Eq. (3): 

         cgp

ci

p

pES f
E

E
f         (3) 

where: Ep  is the modulus of elasticity of prestressed steel,   

Eci is the modulus of elasticity of concrete at time of initial prestress, 

and 

fcgp  is the stress in concrete at the center of gravity of prestressed steel 

immediately after the prestressing force has been applied to the 

concrete, that is: 
 

Figure 4. Beam deflections at midspan due to various loading conditions 

(a) 

 22 b4L3
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g

mg

g

mmi

g

i
cgp

I

eM

I

)ee(P

A

P
f                                                              (4) 

         

where:    Ag  is the gross area of the girder section, 

em is the average prestressed steel eccentricity at the midspan of the 

girder, 

Ig  is the moment of inertia of the gross concrete section, 

Mg  is the moment at the midspan due to the self-weight of the girder, 

and 

Pi  is the prestressing force in tendons immediately after prestress loss 

due to the elastic shortening of concrete, that is: 
 

 pESpbtpsi ΔffAP                                                   (5) 

 

where:    Aps  is the area of prestressed steel, and 

fpbt  is the stress in prestressed steel immediately prior to prestress 

transfer.   

 

The prestressing force in tendons immediately after prestress loss due to the 

elastic shortening of concrete may be assumed to be 90 percent of the initial 

prestressing force before prestress transfer and the analysis iterated until an 

acceptable accuracy is achieved. Alternatively, to avoid iteration, ΔfpES can be 

computed using Eq. (6) [8]:  

                      

p

cigg

g
2
mgps

ggmg
2
mgpbtps

pES

E

EIA
)Ae(IA

AMe)Ae(IfA
Δf




                                   (6) 

 

4 PRESTRESSING FORCE SIMULATION  
The theory of “thermal effects on steel” is utilized in this paper to simulate 

prestressing forces in tendons. The change in unit stress in prestressed steel due 

to the change in temperature of the steel can be computed using Eq. (7)[9]: 
 

     Change in unit stress = Epε(Δt)             (7) 
 

where:  Ep is the modulus of elasticity of prestressed steel,  

ε  is the thermal expansion coefficient of prestressed steel, and 

Δt  is the change in temperature of prestressed steel.  

 

The computed stresses in Eq. (7) in turn can be utilized to simulate the 

prestressing force in prestressed steel using Eq. (8): 
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Simulated prestressing force =ApsEpε(Δt)                    (8) 
 

where:  Aps is the area of prestressed steel. 

 

Since the change in unit stress in prestressed steel is the product of “ ε ” and 

“Δt ,” any expected prestressing force can be simulated by using a random value 

of “ ε ” multiplied by a corresponding “Δt ” value.  

  

5 CAMBER COMPUTATION EXAMPLE  
The example demonstrated below is for the computation of the camber for a 

pretensioned concrete girder due to prestressing forces immediately after 

prestress transfer.  

 

A concrete girder with a 96-ft simple span, as shown in Fig. 5, is pretensioned 

using 40-0.5 in. diameter low-relaxation strands (Aps = 40 × 0.153 in.
2
 = 6.12 in.

2
) 

with a modulus of elasticity (Ep) of 28,500 ksi. Compute the camber at midspan 

due to a prestressing force immediately after prestress transfer assuming that: (1) 

fpu (specified tensile strength of prestressed steel) = 270 ksi, (2) fpbt (the stress in 

prestressed steel immediately prior to prestress transfer) = 0.75fpu, and (3) Eci (the 

modulus of elasticity of concrete at time of initial prestress) = 4458 ksi.  

 
5.1 Compute the moment of inertia of the gross concrete section 

Computation of the moment of inertia about the centroidal axis of the uncracked 

gross concrete section of the girder shown in Fig. 6 is shown in Table 1. 

 

Table 1. Computation of the moment of inertia of the gross concrete section 
segment area (in.2) Y (in.)a Ay (in.3) Ay2 (in.4) Io (in.4)b 

(1) 112 1.75        196            343         114 

(2) 55 2.75        151.25            416         139 

(3) 32 4.167        133.33            556             7 

(4) 4 6.167          24.67            152             1 

(5) 291 29.75     8,657.25     257,553    57,042 

(6) 45 46.5     2,092.5       97,301           51 

(7) 120 51     6,120     312,120         360 

Σ 659    17,375     668,441    57,714 
a
y =  the distance from the centroid of a segment to the top fiber of the gross 

concrete section. 
b
Io =  the moment of inertia of a segment about its centroidal axis. 
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Harped strands 

Elevation  

c.g. of 12 harped strands 

 
c.g. of 28 straight strands 
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4.5" 
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3.5" 

54" 

96’ 
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32’ 

 

Cross section at harp points and midspan 

Cross section at ends 

32’ 

 
32’ 

 

Harped strands 

No. of 

Strands 

12 

12 
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2 

Distance from conc. 

bottom fiber 

2" 

4" 

6" 

8" 
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Strands 
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10 

6 

2 
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bottom fiber 
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48" 
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Figure 5. The elevation and cross sections of the Pretensioned concrete girder example 
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From Table 1, the distance from the centroidal axis of the gross section to the 

extreme top fiber of the section can be computed to be: 

 

3657.26
659

375,17

ΣA

ΣAy
y   in. 

 

The location of the centroidal axis of the gross section of the girder is shown in 

Fig. 6. Furthermore, the moment of inertia of the gross section about the 

centroidal axis of the section can be computed to be: 

 


22

o )yA(AyII  

                 2)3657.26(659441,668714,57   

                                              =268,051 in.
4
 

 
5.2 Locate the center of gravity of the prestresssing steel in the girder  

Referring to Fig. 5, the distance between the centroid of the 28 straight strands 

and the extreme bottom fiber of the girder at all locations is: 
 

4
261010

)8(2)6(6)4(10)2(10





in. 

 

Centroidal axis 

(7) (7) 

(6) (6) 

2" 

(5) 

(4) (4) (3) 

(2) (1) (1) 

6" 

6" 

4.5" 

2" 

3.5" 

26" 

54" 

42" 

(3) 

2"  

Figure 6. Gross section of the I-girder for the camber computation example 

y =26.366" 
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The distance between the centroid of the 12 harped strands and the extreme 

bottom fiber of the girder at the girder ends is: 
 

47
)6(2

)250584644424(2



in. 

 

The distance between the centroid of the 12 harped strands and the extreme 

bottom fiber of the girder at the harp points and the midspan is: 
 

7
)6(2

)21018642(2



in. 

 

The longitudinal strand profile and the locations of the centroids of the harped 

and straight strands at the ends, the harp points, and the midspan of the girder are 

shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47" 

7" 

4" 

12 harped 

strands 

4" 

7" 

12 harped 

strands 

Longitudinal strand profile  
  

c.g. of 12 harped strands 

c.g. of 28 straight strands 

96’ 

32’ 

 
32’ 

 
32’ 

 

Strand location at harp points and midspan Strand location at ends 

28 straight 

strands 4" 

47" 

28 straight 

strands 

Figure 7. Longitudinal strand profile and locations of centroids of straight and harped strands 
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Also, referring to Fig. 5, the distance between the centroid of the 40 combined 

straight and harped strands and the extreme bottom fiber of the girder at the harp 

points and the midspan is: 
 

9.4
22481212

)21(2)01(2)8(4)6(8)4(12)2(12





in. 

 

The distance between the centroid of the 40 combined straight and harped strands 

and the extreme bottom fiber of the girder at the girder end is: 
 

9.16
40

)2505846444248(2)6(6)4(10)2(10



in. 

 

The longitudinal strand profile and the locations of the centroid of the combined 

straight and harped strands at the ends, the harp points, and the midspan are 

shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 combined 

straight and 

harped strands 

40 combined 

straight and 

harped strands 

16.9" 

4.9" 

4.9" 

Longitudinal strand profile  
  

c.g. of 40 combined Straight and Harped strands 

96’ 

32’ 

 
32’ 

 
32’ 

 

 Strand location at harp points and midspan Strand location at ends 

Figure 8. Longitudinal strand profile and locations of the centroid of combined straight and 

harped strands 

16.9" 
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5.3 Compute prestress loss due to the elastic shortening of the girder  

For the first iteration, assuming that the prestressing force in tendons 

immediately after prestress loss due to the elastic shortening of concrete is 90 

percent of the initial prestressing force before prestress transfer, that is: 
 

 270ksi)0.9(0.75)(0.9(0.75)f0.9fΔff pupbtpESpbt 182.25 ksi 

 

From Eq. (5), one has: 
 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)(182.25 ksi) = 1115.37 kips 

 

Since Ag = 659 ft
2
 (referring to Table 1) and L = 96 ft, the moment at the 

midspan due to the weight of the girder (the weight of the girder is estimated to 

be 0.15 kips/ft
3
) at the time of prestressing can be computed to be: 

 

8

(12in./ft)(96ft)ft)(659/144)ft(0.15kips/

8

wL
M

2232

g  = 9489.6 kip-in. 

 

Note that, in the above equation, “w” is the self-weight per unit length of 

the girder. Also, referring to Fig. 6, the distance between the centroid of the 

gross concrete section and the bottom fiber of the girder can be computed to be:   
 

Yb= 54 in. y = 54 in. – 26.366 in. = 27.634 in. 
 

Furthermore, referring to Fig. 8, the average prestressed steel eccentricity at the 

midspan thus can be computed to be: 
 

me 27.634 in. – 4.9 in. = 22.734 in. 
 

From Eq. (4), one has: 
 

g

mg

g

mmi

g

i
cgp

I

eM

I

)ee(P

A

P
f   

                                   
051,268

)734.22(6.9489

051,268

)734.22)(37.1115(

659

37.1115 2

  

                                   038.3)( ksi 
 

From Eq. (3), one has: 
 

cgp

ci

p

pES f
E

E
f  42.19)038.3(

4458

500,28
 ksi 
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For the second iteration, one has: 

  

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.42 ksi] = 1120.45 kips 

 

From Eq. (4), one has: 
 

           cgpf
051,268

)734.22(6.9489

051,268

)734.22)(45.1120(

659

45.1120 2

 056.3)( ksi 

 

From Eq. (3), one has: 
 

cgp

ci

p

pES f
E

E
f  54.19)056.3(

4458

500,28
 ksi 

For the third iteration, one has: 

  

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.54 ksi] = 1119.72 kips 

 

From Eq. (4), one has: 
 

           cgpf
051,268

)734.22(6.9489

051,268

)734.22)(72.1119(

659

45.1120 2

 054.3)( ksi 

 

From Eq. (3), one has: 
 

cgp

ci

p

pES f
E

E
f  52.19)054.3(

4458

500,28
  ksi 

For the fourth iteration, one has: 

  

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.52 ksi] = 1119.84 kips 

 

From Eq. (4), one has: 
 

           cgpf
051,268

)734.22(6.9489

051,268

)734.22)(84.1119(

659

45.1120 2

 054.3)( ksi 

 

From Eq. (3), one has: 
 

cgp

ci

p

pES f
E

E
f  52.19)054.3(

4458

500,28
  ksi 
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Since the prestress loss at the midspan due to the elastic shortening of the girder 

determined from the fourth iteration is the same as that determined from the third 

iteration, the accuracy of the result (  pESf 19.52 ksi) is acceptable. 

Alternatively, to avoid multiple iterations, ΔfpES can be directly determined using 

Eq. (6): 
 

                  

p

cigg

g
2
mgps

ggmg
2
mgpbtps

pES

E

EIA
)Ae(IA

AMe)Ae(IfA
Δf




   

                            

28500

)4458)(268051(659
)]659()734.22(268051[12.6

)659)(6.9489(734.22)]659()734.22(268051)[5.202(12.6

2

2




                                   

                    
      = 19.52 ksi 

 

The prestressing force in the prestressed steel at the midspan immediately after 

prestress loss due to the elastic shortening of concrete thus can be computed to be: 

 

 )Δf(fAP pESpbtpsi (6.12 in.
2
)[0.75(270 ksi) – 19.52 ksi] = 1119.84 kips 

 

Follow the calculation procedure demonstrated above, the initial prestressing 

forces, Pi, along the pretensioned girder shown in Fig. 8 are computed and are 

shown in Table 2 and Fig. 9.  

 

Table 2. The initial prestressing forces acting along the pretensioned girder 
x (the distance of the 

section measured 

from the left support 

shown in Fig. 9) 

(ft) 

e (the vertical 

distance 

between c.g.s. 

and c.g.c.) 

(in.) 

Mg (the moment  

due to the weight 

of the girder) 

(kip-in.) 

ΔfpES (prestress 

loss due to the 

elastic shortening 

of the girder) 

(ksi) 

Pi (the initial 

prestressing 

forces) 

(kips) 

0 10.734 0 14.34 1151.57 

4 12.234 1515.7 14.80 1148.71 

8 13.734 2899.6 15.32 1145.56 

12 15.234 4151.7 15.89 1142.04 

16 16.734 5272.0 16.54 1138.09 

20 18.234 6260.5 17.26 1133.64 

24 19.734 7117.2 18.08 1128.64 

28 21.234 7842.1 19.00 1123.02 

32 22.734 8435.2 20.03 1116.74 

36 22.734 8896.5 19.81 1118.09 

40 22.734 9226.0 19.65 1119.06 

44 22.734 9423.7 19.55 1119.63 

48 22.734 9489.6 19.52 1119.84 
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As shown in Fig. 9, since the magnitude of the variation of the initial prestressing 

forces acting along the tendons is not significant (about 3% in this example), the 

inconstant prestressing forces acting along the girder have no significant effect 

on the deflection of the girder. 

 

5.4 Compute the camber of the girder immediately after prestress loss due 

to the elastic shortening of the girder 

Five different approaches for the computation of the camber of the girder 

immediately after prestress loss due to the elastic shortening of the girder are 

presented in this paper: (I) the equivalent load method using the traditional hand-

calculated approach and gross section properties neglecting prestressed steel, (II) 

the equivalent load method using the finite element analysis approach and gross 

section properties neglecting prestressed steel, (III) the combined equivalent load 

and P-δ effect method using gross section properties neglecting prestressed steel 

and the finite element analysis approach accounting for geometric nonlinearity,  

(IV) the equivalent load method using the finite element analysis approach and 

section properties accounting for prestressed steel, and (V) the thermal effects 

method using the finite element analysis approach and section properties 

accounting for prestressed steel.  

 

(I) The equivalent load method using the traditional hand-calculated approach 

and gross section properties neglecting prestressed steel: 

Referring to Figs. 2, 6, & 7, one has e = 54 – 26.366 – 4 = 23.634 in. and Ps = Pi 

= 1119.84(28/40) = 783.89 kips. The midspan camber due to prestressing of the 

straight strands thus can be computed using Eq. (1): 
 

 
572.2)634.2389.783(

)268051)(4458(8

1296
2




  in. ↑ (upward) 

 

Figure 9. Various prestressing forces acting along the girder immediately after prestress loss 

due to the elastic shortening of concrete  
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Furthermore, referring to Figs. 3, 6, & 7, one has e1 = 47 – 7 = 40 in., e2 = (54 – 

26.366) – 47 = (–)19.366 in., a = 384 in. and Ps = Pi = 1119.84(12/40) = 335.95 

kips. The midspan camber due to prestressing of the harped strands thus can be 

computed using Eq. (2): 
 

19.366)(335.95)(-
8051)8(4458)(26

(1152)
]4(384)[3(1152)

68051)24(4458)(2

335.95(40)
Δ

2
22 

 

    = 1.589 – 0.903 = 0.686 in. ↑ (upward) 
 

The total midspan camber due to prestressing of the straight and the harped 

strands thus is: 
 

686.0572.2Δ  = 3.258 in. ↑ (upward) 
 

The above computation procedure can be abbreviated using the combined 

straight and harped strands profile, as shown in Fig. 8. Referring to Figs. 3, 6, & 

8, one has e1 = 16.9 – 4.9 = 12 in., e2 = (54 – 26.366) – 16.9 = 10.734 in., a = 384 

in., and Ps = Pi = 1119.84 kips. The midspan camber due to prestressing of the 

combined straight and harped strands thus can be computed using Eq. (2): 
 

10.734)(1119.84)(
8051)8(4458)(26

(1152)
]4(384)[3(1152)

68051)24(4458)(2

12)(1119.84)(
Δ

2
22 

 

    = 1.589 + 1.669 = 3.258 in. ↑ (upward) 
 

The midspan deflection due to the self-weight of the girder can be computed 

using Eq. (9) [6]:  
 

                                           














EI

wL

384

5 4

                                                 (9) 

 

where: w is the self-weight per unit length of the girder.  
 

The self-weight per unit length of the girder can be computed to be w = (0.15 

kips/ft
3
) [(659/144) ft

3
] = 0.6864 kips/ft. From Eq. (9), one has: 

 

098.1
)268051)(4458(

)12()96)(6864.0(

384

5 34









 in. ↓ (downward) 

 

Therefore, the net midspan camber (upward deflection) can be computed to be: 
 

 098.1258.3 2.160 in. ↑ (upward) 
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(II) The equivalent load method using the finite element analysis approach and 

gross section properties neglecting prestressed steel: 

Referring to Figs. 3(a) & 8, one has tan θ = (16.9-4.9)/(32×12); from which, θ = 

1.7899º. Therefore, Pi cos θ  = 1119.84 kips × cos 1.7899º = 1119.29 kips and Pi 

sin θ  = 1119.84 kips × sin 1.7899º = 34.98 kips.  The equivalent loads (produced 

by the pretensioned steel) and the loaded locations are shown in Fig. 10(a). The 

self-weight of the girder is shown in Fig. 10(b). Note that the c.g.c line is the 

assumed location at which the self-weight of the girder is applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on Fig. 10, a computer model composed of numerous 3-D solid elements 

for the girder cross section was constructed (shown in Fig. 11) for the finite 

element analysis using the NISA/DISPLAY software [10]. Note that the cross 

section of the girder shown in Fig. 11 incorporates the elevations of 16.9 in. (the 

elevation to be loaded by the equivalent load produced by the prestressed steel at 

the end of the girder), 4.9 in. (the elevation to be loaded by the equivalent load 

produced by the prestressed steel at the harp point of the c.g.s. line), and 27.6 in. 

(the elevation of the c.g.c. line of the girder to be loaded by the self-weight of the 

girder).  

27.6" 

Midspan 

0.6864 k/ft 

Figure 10. Equivalent loads (produced by pretensioned steel) and the self-weight of the girder 

Midspan 

4.9" 

 

34.98 k 34.98 k 

1119.29 k 

16.9" 

384” 192” 

576” 

(a) Equivalent loads produced by the pretensioned steel 

384” 192” 

576” 

(b) Self-weight of the girder 
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From the finite element analysis using the equivalent loads produced by the 

pretensioned steel shown in Fig. 10(a), the camber at the midspan of the girder 

due to the prestressing force immediately after prestress transfer was found to be 

3.272 in., as shown in Fig. 12. Also, from the finite element analysis using the 

load shown in Fig. 10(b), the downward deflection at the midspan of the girder 

due to the self-weight of the girder was found to be 1.116 in., as shown in Fig. 13. 

     

            
 

Figure 12. Camber due to the prestressing force immediately after prestress transfer, 

computed using first-order elastic finite element analysis 
 

 
 

Figure 11. Computer model of the cross section of the girder neglecting prestressed steel 
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From Figs. 12 & 13, the net midspan camber can be computed to be: 
 

 116.1272.3 2.156 in. ↑ (upward) 

 

Alternatively, the camber at the midspan of the girder due to the combined 

equivalent loads (produced by the pretensioned steel) and the self-weight of the 

girder shown in Fig. 14 was found to be 2.155 in. (≈ 2.156 in. as computed 

above), as shown in Fig. 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Downward deflection due to the self-weight of the girder, computed using 

first-order elastic finite element analysis 
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Figure 14. Equivalent loads (produced by pretensioned steel) in combination with the self-

weight of the girder 
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(III) The combined equivalent load and P-δ effect method using gross section 

properties neglecting prestressed steel and the finite element analysis approach 

accounting for geometric nonlinearity: 

Referring to Fig. 16, the deflection δ at the midspan of the structural element 

causes additional deflection δpy   due to the axial force (P) acting at the position 

that has been displaced by an amount δ. This is the so-called P-δ effect, that is, 

the additional deflection δpy   at the midspan of the element is the portion of the 

deflection caused by the secondary bending moment due to the P-δ effect.  

 

 

 

 

 

 

 

 

 

 

From the Camber Computation Approach (II), the camber δ (shown in Fig. 16) 

was found be to be 2.155 in. for this girder (shown in Fig. 15) using the first-

order elastic finite element analysis. Since the additional deflection δpy   at the 

midspan of the girder can only be determined using the second-order elastic 

analysis, a nonlinear static finite element analysis accounting for geometric 

nonlinearity was conducted in order to carry out the second-order elastic analysis. 

A pseudo time of 100 has been used for the time span, which is equivalent to 

load increments or steps (from zero to that shown in Fig. 14) for the geometric 

δ P P 

yp-δ 

Figure 16. P-δ effect on the deflection of a structural element subject to an axial force 

 

Figure 15. Camber due to equivalent loads (produced by pretensioned steel) in combination 

with the self-weight of the girder, computed using first-order elastic finite element analysis 
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nonlinear static finite element analysis. The final camber (at the time step = 100) 

of the girder due to the self-weight of the girder and the prestressing force 

immediately after prestress transfer using the finite element analysis accounting 

for geometric nonlinearity (P-δ effect) was found to be 2.462 in., as shown in Fig. 

17. Therefore, the additional deflection δpy   at the midspan of the girder, as 

shown in Fig. 16, due to P-δ effect can be computed to be: 

 

δpy  = 2.462 – 2.155 = 0.307 in. ↑ (upward) 

 

 
 

 

 

 

(IV) The equivalent load method using the finite element analysis approach and 

section properties accounting for prestressed steel: 

Based on the longitudinal strand profile, a computer model composed of 

numerous 3-D solid elements for the girder cross section was constructed, as 

shown in Fig. 18, for the finite element analysis. Note that the cross section of 

the girder shown in Fig. 18 incorporates the elevations of 16.9 in. (the elevation 

to be loaded by the equivalent load produced by the prestressed steel at the end of 

the girder), 4.9 in. (the elevation to be loaded by the equivalent load produced by 

Figure 17. Camber due to equivalent loads (produced by pretensioned steel) in combination 

with the self-weight of the girder, computed using the finite element analysis accounting for 

geometric nonlinearity (P-δ effect) 
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the prestressed steel at the harp point of the c.g.s. line), and 27.6 in. (the elevation 

of the c.g.c. line of the girder to be loaded by the self-weight of the girder).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross section at ends 

3.06"×2" 

4.9" 

Partial cross section at L/3 and midspan 

Partial cross section at ends 

16.9" 

27.6" 

16.9" 

27.6" 

Partial cross section between end 

and L/3  

Figure 18. Computer model of the girder cross section accounting for prestressed steel 
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From the finite element analysis using equivalent loads produced by the 

pretensioned steel shown in Fig. 10(a), the camber at the midspan of the girder 

due to the prestressing force immediately after transfer was found to be 2.945 in., 

as shown in Fig. 19. Also, from the finite element analysis using the load shown 

in Fig. 10(b), the downward deflection at the midspan of the girder due to the 

self-weight of the girder was found to be 1.051 in., as shown in Fig. 20. From 

Figs. 19 & 20, the net midspan camber can be computed to be: 
 

 051.1945.2 1.894 in. ↑ (upward) 

 

 

 
 

 

 

 

 
 

 

 

 

Figure 19. Camber of the girder (with its cross section property accounting for prestressed 

steel) due to the prestressing force immediately after prestress transfer 
 

Figure 20. Downward deflection of the girder (with its cross section property accounting for 

prestressed steel) due to the self-weight of the girder 
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(V) The thermal effects method using the finite element analysis approach and 

section properties accounting for prestressed steel:  

The theory of “thermal effects on steel” is utilized in this approach to simulate 

prestressing forces in tendons. Since the change in unit stress in prestressed steel 

is the product of “ ε ” and “Δt ” (where ε is the thermal expansion coefficient of 

prestressed steel and Δt is the change in temperature of prestressed steel), the 

expected prestressing force (Pi = 1119.84 kips) can be simulated using a random 

thermal expansion coefficient of prestressed steel ( ε = 6.5×10
-6 

1/°F) multiplied 

by a corresponding temperature change of prestressed steel (Δt = 987.75 °F). 

Therefore, from Eq. (8), one has: iP 1119.84 kips = ApsEpε(Δt) = (6.12 

in
2
)(28500 ksi)(6.5×10

-6 
1/°F)(987.75 °F). A finite element analysis was carried 

out using the thermal effects method and the camber of the girder due to the 

thermal effect on the simulated prestressing force is shown in Fig. 21.    

 

 
 

 

 

5.5 Summary of the results 

The deflections at the midspan of the girder due to the prestressing force 

immediately after prestress transfer and the self-weight of the girder computed 

using various approaches (Approaches I through V) are summarized in Table 3. 

 

Table 3. The deflection at the midspan of the girder due to the prestressing force 

immediately after transfer and the self-weight of the girder 
approach deflection due to prestressing force deflection due to self-weight final deflection 

I 3.258 in. ↑ 1.098 in. ↓ 2.160 in. ↑ 

II 3.272 in. ↑ 1.116 in. ↓ 2.156 in. ↑ 

III not applicable not applicable 2.462 in. ↑ 

IV 2.945 in. ↑ 1.051 in. ↓ 1.894 in. ↑ 

V 2.938 in. ↑ 1.051 in. ↓ 1.887 in. ↑ 

Figure 21. Camber of the girder (with its cross section property accounting for prestressed steel) 

computed using the thermal effects method 
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As shown in Table 3, Approach II can be used to validate the results obtained 

from Approach I; also, Approach V can be used to validate the results obtained 

from Approach IV.   

 

6 CONCLUSIONS 

Five different approaches for the computation of the camber in a pretensioned 

girder immediately after prestress loss due to the elastic shortening of the girder 

are presented in this paper. Approaches (I) and (II) used the equivalent load 

method and gross section properties neglecting prestressed steel. Approach (III) 

used the combined equivalent load and P-δ effect method and gross section 

properties neglecting prestressed steel. Approaches (IV) and (V) used the 

equivalent load method and the thermal effects method, respectively, while 

section properties of both approaches accounted for the use of prestressed steel. 

Approach (I), which uses the gross section properties and neglects prestressed 

steel as well as the P-δ effect due to axial prestressing forces, is a conventionally 

used approach for the computation of deflections in simply supported 

pretentioned concrete girders. This study concludes that (1) the deflections 

considerably increased (by about 14 % in the example demonstrated in this study) 

if the P-δ effect is considered, and (2) the deflections considerably decreased (by 

about 13 % in the example demonstrated in this study) if the section properties 

accounting for prestressed steel is considered. In addition, this study also 

concludes that since the magnitude of the variation of the prestressing forces 

acting along the tendons is not significant, the inconstant prestressing forces 

acting along the girder have limited effects on the deflection of the girder. 

Therefore, for the computation of cambers of a simply supported girder, the 

magnitude of the prestressing force acting at locations other than the midspan of 

the girder can be treated as the same as that at the midspan.   
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