
Southern Illinois University Carbondale
OpenSIUC

Dissertations Theses and Dissertations

5-1-2018

DESIGN AND TEST OF DIGITAL CIRCUITS
AND SYSTEMS USING CMOS AND
EMERGING RESISTIVE DEVICES
Seyed Nima Mozaffari Mojaveri
Southern Illinois University Carbondale, nima.mozaffari@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/dissertations

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for
inclusion in Dissertations by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Mozaffari Mojaveri, Seyed Nima, "DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND
EMERGING RESISTIVE DEVICES" (2018). Dissertations. 1526.
https://opensiuc.lib.siu.edu/dissertations/1526

https://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/dissertations/1526?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND
EMERGING RESISTIVE DEVICES

by

Seyed Nima Mozaffari Mojaveri

B.S. in Electrical and Computer Engineering, University of Mazandaran, 2007
M.S. in Electrical and Computer Engineering, University of Tehran, 2010

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

Department of Electrical and Computer Engineering

in the Graduate School
Southern Illinois University Carbondale

May 2018

Copyright by Seyed Nima Mozaffari Mojaveri, 2018
All Rights Reserved

DISSERTATION APPROVAL

DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND
EMERGING RESISTIVE DEVICES

By

Seyed Nima Mozaffari Mojaveri

A Dissertation Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Electrical and Computer Engineering

Approved by:

Dr. Spyros Tragoudas, Chair

Dr. Iraklis Anagnostopoulos

Dr. Themistoklis Haniotakis

Dr. Haibo Wang

Dr. Shahram Rahimi

Graduate School
Southern Illinois University Carbondale

March 8, 2018

i

AN ABSTRACT OF THE DISSERTATION OF

Seyed Nima Mozaffari Mojaveri, for the Doctor of Philosophy degree in ELECTRICAL

AND COMPUTER ENGINEERING, presented on March 8, 2018, at Southern Illinois

University Carbondale.

TITLE: DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND

EMERGING RESISTIVE DEVICES

MAJOR PROFESSOR: Dr. Spyros Tragoudas

The memristor is an emerging nano-device. Low power operation, high density,

scalability, non-volatility, and compatibility with CMOS Technology have made it a

promising technology for memory, Boolean implementation, computing, and logic

systems. This dissertation focuses on testing and design of such applications. In

particular, we investigate on testing of memristor-based memories, design of memristive

implementation of Boolean functions, and reliability and design of neuromorphic

computing such as neural network. In addition, we show how to modify threshold logic

gates to implement more functions.

Although memristor is a promising emerging technology but is prone to defects

due to uncertainties in nanoscale fabrication. Fast March tests are proposed in Chapter

2 that benefit from fast write operations. The test application time is reduced significantly

while simultaneously reducing the average test energy per cell. Experimental evaluation

in 45 nm technology show a speed-up of approximately 70% with a decrease in energy

by approximately 40%. DfT schemes are proposed to implement the new test methods.

ii

In Chapter 3, an Integer Linear Programming based framework to identify current-

mode threshold logic functions is presented. It is shown that threshold logic functions can

be implemented in CMOS-based current mode logic with reduced transistor count when

the input weights are not restricted to be integers. Experimental results show that many

more functions can be implemented with predetermined hardware overhead, and the

hardware requirement of a large percentage of existing threshold functions is reduced

when comparing to the traditional CMOS-based threshold logic implementation.

In Chapter 4, a new method to implement threshold logic functions using

memristors is presented. This method benefits from the high range of memristor’s

resistivity which is used to define different weight values, and reduces significantly the

transistor count. The proposed approach implements many more functions as threshold

logic gates when comparing to existing implementations. Experimental results in 45 nm

technology show that the proposed memristive approach implements threshold logic

gates with less area and power consumption.

Finally, Chapter 5 focuses on current-based designs for neural networks. CMOS

aging impacts the total synaptic current and this impacts the accuracy. Chapter 5

introduces an enhanced memristive crossbar array (MCA) based analog neural network

architecture to improve reliability due to the aging effect. A built-in current-based

calibration circuit is introduced to restore the total synaptic current. The calibration circuit

is a current sensor that receives the ideal reference current for non-aged column and

restores the reduced sensed current at each column to the ideal value. Experimental

results show that the proposed approach restores the currents with less than 1%

precision, and the area overhead is negligible.

iii

DEDICATION

To my wife, Bahar Oladazimi Ghadikolaei, and my daughter Hanna Mozaffari, and

my parents Seyed Ahmad Mozaffari Mojaveri, Mehrangiz Khosravi Koochaksaraei, and

my sisters, Seyedeh Elham Mozaffari Mojaveri, Seyedeh Armaghan Mozaffari Mojaveri.

iv

ACKNOWLEDGMENTS

My most sincere thanks go to my advisor, Dr. Spyros Tragoudas for his invaluable

guidance, motivation and direction in my research.

I would like to take an opportunity to thank Dr. Themistoklis Haniotakis, Dr. Haibo

Wang, Dr. Iraklis Anagnostopoulos and Dr. Shahram Rahimi for taking time from their

busy schedule to serve on my committee and their guidance in writing my dissertation

document.

I would like to thank current and past members of Design Automation Lab (E105,

E238) with whom I had fruitful interactions. Especial thanks to Pavan Kumar Javvaji,

Krishna Prasad Gnawali, Wisam Abdulrahman Al-Jubouri, Phaninder Alladi and Puneet

Ramesh Savanur for their support.

I am also thankful to my family for their unconditional support in my career. I am

thankful to all my friends who have been part of my life.

v

PREFACE

This research has been supported in part by grants NSF IIP 1432026, and NSF

IIP 1361847 from the NSF I/UCRC for Embedded Systems at SIUC. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science Foundation.

vi

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT .. i

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

PREFACE ... v

LIST OF TABLES .. ix

LIST OF FIGURES ... xii

CHAPTERS

CHAPTER 1 – Introduction ... 1

CHAPTER 2 – Efficient Testing of Metal-oxide Memristor-based Memory 4

2.1 – Introduction .. 4

2.2 – Preliminaries .. 6

2.2.1 – The bipolar metal-oxide memristor ... 6

2.2.2 – Memristor-based crossbar memory ... 10

2.2.3 – Intrinsic and extrinsic faults .. 12

2.3 – The proposed test methods ... 18

2.3.1 – March tests .. 18

2.3.2 – Experimental evaluation ... 24

2.3.3 – More reliable March tests considering sneak paths 27

2.4 – DfT for the proposed tests ... 30

2.5 – Conclusions ... 34

vii

CHAPTER 3 – A Generalized Approach to Implement Efficient CMOS-based Threshold

Logic Functions Results .. 36

 3.1 – Introduction .. 36

 3.2 – Preliminaries on the algorithmic infrastructure ... 39

 3.3 – Efficient design of first-Order threshold functions based on rational

 weights ... 43

 3.4 – Higher-order implementation of threshold functions using integer

 weights ... 49

3.5 – Efficient design of higher-order threshold functions using rational

weights ... 55

3.6 – Experimental results .. 62

3.7 – Conclusion ... 71

CHAPTER 4 – Maximizing the Number of Threshold Logic Functions Using Resistive

Memory ... 73

 4.1 – Introduction .. 73

 4.2 – Preliminaries .. 75

 4.2.1 – Bipolar metal-oxide memristors ... 75

 4.2.2 – CMOS-based and memristive threshold logic gates 77

 4.3 – Generalized memristive threshold logic gates ... 79

 4.4 – Experimental results .. 83

 4.5 – Conclusion ... 93

CHAPTER 5 – Reliable Memristive Neural Network .. 94

 5.1 – Introduction .. 94

viii

 5.2 – Enhanced architecture for improved reliability ... 98

 5.3 – Experimental results .. 102

 5.4 – Conclusion ... 108

CHAPTER 6 – Concluding Remarks .. 109

REFERENCES .. 112

VITA ... 127

ix

LIST OF TABLES

TABLE PAGE

2.1 Notation for the March Tests .. 20

2.2 Time Duration (in 𝑛𝑠) of 𝑤1, 𝑟1, 𝑤0, 𝑟0, 𝑓𝑤0 for Different 45𝑛𝑚 Instances when

Size Increases and Doping Decreases .. 25

2.3 Average Energy Needed for 𝑤1, 𝑟1, 𝑤0, 𝑟0, and 𝑓𝑤0 in a Random Cell Using

45𝑛𝑚 CMOS Technology ... 26

2.4 Time and Average Energy of Existing and Proposed March Tests Using 45𝑛𝑚

CMOS Technology ... 26

2.5 The Average Energy of the Pulse Applied to a Row and a Column in Order to Test

One Cell Using Tile (8×8) for the Proposed Sneak-path March Tests 30

3.1 The Linear Inequalities for 𝐹1 = 𝑥2 + 𝑥1𝑥3
′ with Activation Signals 𝑥1, 𝑥2, and 𝑥3

′ .. 42

3.2 The Truth Table and the ILP Constraints for UF 𝐹3 .. 48

3.3 The Truth Table and ILP Constraints for 𝐹4 Considering All Inputs and Pairs of

Inputs Are Complemented Except 𝑥3 ... 52

3.4 The Truth Table and the ILP Constraints for BF 𝐹7 .. 55

3.5 The Truth Table and the ILP Constraints for UF 𝐹4 .. 60

3.6 The Truth Table and the ILP Constraints for BF 𝐹7 .. 61

3.7 The Number of 𝑘-CTGs with Rational 𝑘-weights of Value 𝑤/𝑙 Whose Transistor

Count is no More Than 1-CTGS with Integer Weights ... 65

x

3.8 Average Execution Time (𝑚𝑠) Per Function For 𝑛-input 𝑘-TFs (UF and BF), 6 ≤

𝑛 ≤ 15, 1 ≤ 𝑘 ≤ 4, 𝐶 = 11% considering Rational 𝑘-weights with Value 𝑤/𝑙, 𝑙 ∈

{1,4} ... 66

3.9 The Number of 1-TFs With Lower Transistor Count When Considering Rational 𝑘-

Weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11% ... 67

3.10 Simulation Results: Transistor Count, Power Dissipation, and Delay of Randomly

Selected TFs in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the Proposed 𝑘-

CTG Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11% 68

3.11 Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly

Selected TFs, in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the Proposed 𝑘-

CTG Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11% 71

4.1 The Truth Table and ILP Constraints for 𝐹3 Considering 1-weights and 2-weight

and 𝐶 = 8% .. 83

4.2 Weight Variation for Memristive 𝑘-weight components, 1 ≤ 𝑘 ≤ 4, considering 3%

Variation in Width and Length of Transistors, and 3% Variation in Memristor

Leakage and Imprecise programming .. 86

4.3 Transistor Count, Sensor Size, Power Dissipation, and Delay of Randomly

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83]

and the Proposed Memristive Approach .. 87

4.4 Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83]

and the Proposed Memristive Approach .. 89

4.5 Number of 𝑛-input 𝑘-TFs Using 4𝑛 Transistors .. 91

xi

4.6 Number of 4-TFs That Can Be Implemented With Lower Transistor Count Using

Proposed Approach ... 92

xii

LIST OF FIGURES

FIGURE PAGE

2.1 Resistivity and current behavior for writes in the normal mode of operation for a

bipolar metal-oxide memristor ... 9

2.2 Resistivity behavior for all four operations (w0, w1, r0, and r1) during test for a

bipolar metal-oxide memristor ... 10

2.3 Hybrid crossbar architecture using the combination of memristor and isolating

transistor ... 11

2.4 The effect of 5% and 10% variation on (a) doping concentration, and (b) the ratio

of length over area .. 14

2.5 (a) The transition time from 0 to 1 for the w0, w0, w1, r1 sequence and (b) the

transition time from 1 to 0 for w1, w1, w0, r0 sequence .. 16

2.6 The undefined state for a memristor cell, and the value of 𝑇𝑓𝑤0 considering 10%

doping variation. The memristor also suffers from 10% increment in size (L/A) 19

2.7 Simulation results for the fault free and faulty cell with (a) USF1 and (b) USF0 24

2.8 Sneak-path testing in a 4×4 high density crossbar memory 28

2.9 Schematic of the proposed DfT ... 31

2.10 Schematic of the proposed programmable DfT ... 33

2.11 Schematic of the proposed USF DfT ... 34

3.1 1𝑠𝑡-order components that implement rational 1-weights with value 1 𝑗⁄ , for

1 ≤ 𝑗 ≤ 𝑙 .. 45

xiii

3.2 The CTG implementation for function 𝐹2 in example 3 when using (a) integer

weights [53] (b) rational 1-weights with value 𝑤 𝑗⁄ ... 47

3.3 𝑘-weight components for 1 ≤ 𝑘 ≤ 4 ... 50

3.4 The CTG implementation for function 𝐹6 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1 with (a) 1-

CTG as 1-TF [53] (b) proposed 2-CTG as 2-TF [82] ... 53

3.5 Rational 𝑘-weights components with values 1/𝑗 for 2 ≤ 𝑘 ≤ 3 and 1 ≤ 𝑗 ≤ 5 56

3.6 (a) The layout for 1-CTG implementation of function [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [4,2,2; 3] as

in [53] (b) the layout of the same function implemented using rational weights

[𝑤1
1, 𝑤2

1, 𝑤3
1; 𝑤𝑇

1, 𝑤𝑇
2] = [2,1,1; 1,1] ... 70

4.1 Resistivity and current behavior for positive and negative writes for a bipolar metal-

oxide memristor with 𝑅𝑂𝑁=5KΩ, 𝑅𝑂𝐹𝐹=5MΩ, ±𝑉 = 1𝑉, using [15, 94] 77

4.2 The Current mode TG (CTG) implementations for function 𝐹2 in example 2 (a) CTG

as in [52] (b) memristive CTG as in [76] .. 80

4.3 Memristive 𝑚-weight components for 1 ≤ 𝑚 ≤ 𝑘 .. 81

4.4 The memristive Current mode TG (CTG) implementations for function 𝐹3 in

example 3 .. 84

4.5 Different resistivity values to implement memristive 𝑘-weights with value 𝑤, for 1 ≤

𝑤 ≤ 10 and 1 ≤ 𝑘 ≤ 4 ... 85

5.1 Memristive crossbar array for feedforward NN as in [126] and the interface

modules ... 96

5.2 Enhanced ANN architecture including control and mapping unit for isolating the

target column .. 98

5.3 The circuitry of the proposed current-based calibration circuit 100

xiv

5.4 Timing diagram for signals 𝐸𝑟, 𝑂𝑠, and 𝐹𝑗 during the restore operation for target

column 𝐶𝑗
+ ... 102

5.5 (a) The current degradation over time due to aging, and (b) the calibration

resistivity 𝑀𝑗 changes over time to compensate the current degradation 104

5.6 The weights change due to transistor aging for various input voltage 𝑥𝑖 105

5.7 (a) The accuracy over days of stress of the implemented shallow and deep neural

networks with and without using the built-in calibration circuit, and (b) calibration

memristance for each column in output layer over days of stress to compensate

the aging effect .. 106

5.8 Aging effect in correctness of pattern recognition for three different samples 107

1

CHAPTER 1

INTRODUCTION

The memristor is an emerging nano-device. Low power operation, high density,

scalability, non-volatility, and compatibility with CMOS Technology have made it a

promising technology for memory, Boolean implementation, computing, and logic

systems. This dissertation focuses on testing and design of such applications. In

particular, we investigate on testing of memristor-based memories, design of memristive

implementation of Boolean functions, and reliability and design of neuromorphic

computing such as neural network. In addition, we will show how to modify threshold logic

gates to implement more functions.

Nano scale devices are prone to defects due to design marginalities, imperfection

in fabrication process, and process variation [24]. Some defects impact the logical

behavior of resistive memory cells. Others impact the temporal behavior. Chapter 2

focuses on testing of memristor-based memory, and introduces a novel approach to

reduce the test application time using fast write operations. The proposed method

benefits from the behavior of memristor device which is nonlinear and asymmetric. The

approach is taking into consideration the random memristive behavior and sneak-paths

in crossbar memory. A new Design for Testability (DfT) mechanism is required to

implement the proposed fast write operation. The experimental results on DfT

implementation in 45nm technology will be reported in Chapter 2 to evaluate the

effectiveness of the proposed approach.

Threshold Logic Gate (TG) is a promising candidate for the future digital circuits.

2

A Boolean function that can be implemented as a single TG is called Threshold Logic

Function (TF). In a TF, there is an integer weight for each input. An input pattern evaluates

the function to logic one only when the sum of the active weights is greater than (or equal)

to a predetermined integer weight value called the threshold weight. Otherwise, it

evaluates the function to logic 0.

A small fraction of binary functions are TFs, and this limits the impact of TGs in

digital circuit synthesis. Thus, our focus shifts on identifying more functions as TFs.

Chapter 3 benefits from the higher order definition of TF and shows that a weight in a TF

can be activated by a group of active inputs.

Moreover, TF implementations consist of three components: two differential

networks (input networks) and a sensor (sense amplifier). The power dissipation of a TG

depends primarily on two factors: the transistor count of the input networks which is the

total number of unit size transistors that implements weights and the sensor size which is

proportional to the transistor count of input networks. Therefore, Chapter 3 proposes a

new method to reduce the transistor count of the input networks by introducing non-

integer weights.

The transistor count reduces further when weights are implemented by resistive

devices. This has been investigated in Chapter 4. Chapter 4 proposes a new method to

implement efficiently the higher order weight components using non-volatile resistive

memories (memristors). The resistance value of a memristor is called its memristance,

and the range of memristance is used to define different weight values. This method of

weight implementation reduces significantly the transistor count of the input networks.

Chapter 4 is an extended version of the Chapter 5.

3

Artificial neural networks (ANNs) are machine-learning systems for pattern

matching, character and speech recognition, and big data management among other

applications. They consist of an input layer, an output layer and multiple hidden layers.

Each layer consists of several neurons. Each neuron has multiple inputs that are typically

real numbers and one output that is typically a real number. Every input signal is

convolved with a predetermined weight value called the synaptic weight. A neuron

calculates the weighted sum of all the convolved signals, and it is mapped to the output

signal by a component called the activation function.

It is observed that analog-based ANNs may result in erroneous computations due

to transistor aging. In particular, Bias Temperature Instability (BTI), and to a lesser extent,

dielectric breakdown as well as Hot Carrier Injections (HCI) shift the threshold voltage of

the CMOS transistor causing the reduction in the drain current. Therefore, the synaptic

current reduces as CMOS component of the cell ages. This impacts the value of each

convolution. It is experimentally shown in Chapter 5 that the aging impacts the

computational accuracy of analog ANNs.

Chapter 5 introduces an enhanced memristive crossbar array (MCA) based ANN

architecture to improve reliability due to the aging effect. The MCA is enhanced by an

extra row (the calibration row) and an extra column (the spare column). A built-in current-

based calibration circuit is introduced to restore the total synaptic current. The calibration

circuit is a current sensor that receives the ideal reference current for non-aged column

and restores the reduced sensed current at each column to the ideal value. It will be

shown that the enhances MCA columns with a calibration circuit alleviates the aging effect

and maintain invariant sum of synaptic currents.

4

CHAPTER 2

EFFICIENT TESTING OF METAL-OXIDE MEMRISTOR-BASED MEMORY

2.1 Introduction

The memristor is an emerging nano-device [1, 2]. Low power operation, high

density, scalability, non-volatility, and compatibility with CMOS Technology have made it

a promising technology for memory, computing, and logic systems [3-10]. Resistive

memories are also appealing to 3D circuit designs.

Memristor-based memory is a hybrid memory where memory cells are

implemented using memristors and access memory circuitry is implemented using CMOS

transistors [11]. The performance of CMOS-based components, implemented in deep-

submicron, is impacted by the variation of the process parameters which has become a

serious design and test challenge [12]. Furthermore, variations in the length, area, and

doping concentration of the memristors impact the write time in memory cells [19].

Memristor-based memory is also prone to short, open and bridging faults in metal lines

[11].

This chapter focuses on testing memristor-based memory, and introduces a novel

approach to reduce the test application time using fast write operations. March tests are

presented, i. e., algorithms that consist of traversals of the whole memory array where

the same read or write operations apply to each cell [13]. The proposed March tests

benefit from the behavior of memristor device which is nonlinear and asymmetric. In

particular, switching from the ON state to the OFF state is significantly slower than the

inverse [14, 15]. Memristors exhibit a random behavior in resistivity change during read

5

and write operations [16, 17], and such variability must be taken into consideration when

testing for manufacturing defects.

The approaches in [18-22] test memristor-based memories by reading

simultaneously multiple cells. These cells are called the Region of Detection (RoD). This

is done in order to reduce the impact of unwanted current paths, also called sneak paths,

which may cause errors during test. However, these techniques use the imprecise linear

symmetric model in [23], and also are not applicable to high density crossbars. The

reduction on the number of read operations does not have a significant impact on the test

application time since read operations are much faster than writes. March tests with fast

write operations are presented where the effect of sneak paths is eliminated by applying

appropriate voltages at the cells of the RoD. Such March tests reduce test application

time and power.

This is the first time that write operations with different time duration are introduced

in March tests. The non-March testing approaches in [24-27] use variable length write

operations to detect faults which were undetectable by March tests but rely on the linear

symmetric model and do not consider the random nature of memristors. We present

March tests for such faults under the non-linear asymmetric model while taking into

consideration the random memristive behavior.

In all the above cases, experimental evidence in 45nm technology shows that

March tests with the new fast write operation reduce the test application time by at least

70% while reducing the average test energy per cell by at least 40%. This chapter

considers blocked-based crossbar memory which is known to limit the side effect due to

the sneak path [3, 28]. Such memory is implemented by a crossbar architecture which is

6

combination of CMOS transistors and memristors [3, 11]. A new Design for Testability

(DfT) mechanism is presented in order to implement the proposed fast write operation in

crossbar architecture. Its design uses ideas proposed in [19], [24] and [27], and

implementation in 45nm technology shows that the area overhead of the DfT is only 8.875

𝜇𝑚2 per column.

This chapter is organized as follows. Section 2.2 provides preliminaries on the

metal-oxide memristor device which is used without loss of generality. It outlines recent

advances on verilog-base modeling of its behavior, and existing fault models for defects

in memristors. The proposed method and related March tests are introduced in Section

2.3. Experimental evaluation in 45nm technology is also presented. The DfT mechanism

to implement the proposed method is presented in Section 2.4. Section 2.5 concludes the

chapter.

2.2 Preliminaries

This work assumes that memristors are implemented as bipolar metal-oxide two-

terminal devices [1, 3] because accurate models for its behavior have been developed

[15]. However, the presented March tests apply to all types of memristors.

2.2.1 The bipolar metal-oxide memristor

This memristor is formed by a metal-oxide-metal thin film sandwiched between two

electrodes [1, 3]. Bipolar metal-oxide memristors are variable resistors. Resistance

switching in such memristors relates to the drift and diffusion direction of the mobile

oxygen anions and oxygen vacancies created under Joule heating and electric fields [29].

One of the most common switching oxide is TiO2 [30].

7

The memristor is written and read by biasing positive and negative voltages across

the electrodes [21]. These voltages will be denoted by 𝑉𝑤𝑟𝑖𝑡𝑒 and 𝑉𝑟𝑒𝑎𝑑, respectively. By

applying a positive voltage across the device, the motion of anions and oxygen vacancies

results in a nanoscale-conducting filament, and this decreases the total resistance of the

device [30-33]. This is logic 1 and is referred to as state 1. On the other hand, in order to

write logic 0 (also referred to as state 0), a negative voltage should apply across the

memristor. In this case, oxygen vacancies and anions drift back, and this results in a

partial dissolution of the filament, which increases the total resistance [30-33]. The

magnitude of the voltage for write 0 (w0) may be different to the one for write 1 (w1).

The resistance value of a memristor is called its memristance, and the range of

memristance is used to define different logic states. Let 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 denote the

minimum and maximum possible resistance value, respectively [34]. Logic 1 occurs when

the memristance value is in the range [𝑅𝑂𝑁 .. 0.4(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁)] and logic 0 when the

memristance value is in the range [0.6(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) .. 𝑅𝑂𝐹𝐹]. The pulse time should be

long enough to change the resistance from one state into the boundary of the

complementary state.

The behavior of any bipolar metal-oxide memristor device (including TiO2-based)

is nonlinear and asymmetric on transitions from one state to another [14, 15]. The ON

switching (logic 0 to logic 1) is significantly faster than the OFF switching (logic 1 to logic

0). The ON switching is abrupt because the drift and diffusion of the oxygen vacancies

have different directions for positive and negative voltages [14].

Figure 2.1 shows the conductivity and resistivity transition behavior of a memristor

for w1 and w0 operations using the Voltage-controlled ThrEshold Adaptive Memristor

8

(VTEAM) model [15]. Manufactured bipolar metal-oxide memristors exhibit stochastic

behavior during write operations [16]. In particular, when applying a pulse w1 to the

memristor, the device does not switch immediately, and waits for a time period 𝑡𝑤𝑎𝑖𝑡1. In

[36], the difference between the application time of the write pulse in the normal mode of

operation and the time that the device starts to switch is called the wait (switching) time.

As shown in Figure 2.1 (b), the current does not change during the wait time 𝑡𝑤𝑎𝑖𝑡1 and is

considered to be zero [36]. On the other hand, when applying a w0 pulse, the current is

initially high and does not change during the wait time 𝑡𝑤𝑎𝑖𝑡0. (See also Figure 2.1 (a).)

Times 𝑡𝑤𝑎𝑖𝑡1 and 𝑡𝑤𝑎𝑖𝑡0 may differ. Experimental results in [6, 16, 17, 30, 37, 38] on

manufactured bipolar metal-oxide memristors show that the wait time varies from cycle-

to-cycle. Its behavior is stochastic, and has been modeled by a Poisson distribution. This

is due to the stochastic nature of the filament formation [16, 17]. It has been observed

that the wait time is always less than the transition time [30, 39]. This is also shown in

Figure 2.1.

The wait time strongly depends on the magnitude of the applied voltage, and

decreases to at most 10% of the transition time when the when the applied voltage

increases by 1-2 V [17, 36, 37, 40, 41]. For this reason, the proposed March tests use

3.3V for write operations instead of 1.2V that is used in the normal mode of operation.

A read in the normal mode of operation consists of two different stages: The first

stage extracts the memristance value and determines the logic state. For this task, it is

necessary to apply a stable pulse across the memristor (𝑉𝑟𝑒𝑎𝑑). The sensed current 𝐼𝑚𝑒𝑚

through the memristor depends on the memristance value.

9

The reference current in state 0 is denoted by 𝐼𝑟𝑒𝑓0, and the 𝐼𝑟𝑒𝑓1denotes the

reference current in logic sate 1. Let 𝐼𝑟𝑒𝑓 be (𝐼𝑟𝑒𝑓0 + 𝐼𝑟𝑒𝑓1)/2. The logic state is determined

using a sense amplifier (implemented in CMOS technology) that compares the sensed

current 𝐼𝑚𝑒𝑚 with the reference current 𝐼𝑟𝑒𝑓 of an ideal device. The duration of the first

stage mostly depends on the CMOS sensing circuitry, and the duration of 𝑉𝑟𝑒𝑎𝑑 must be

long enough so that the sense amplifier can sense the current through the examined cell.

The first stage may change the data stored in the memory cell. However, for the

data to remain intact, an inverse pulse must be applied as the second stage (also called

recovery scheme) of the read operation [3, 11]. This stage is a short write operation whose

duration depends mainly on the memristor. The total duration of normal read operation is

 (a) The w0 operation. (b) The w1 operation.

Figure 2.1. Resistivity and current behavior for writes in the normal

mode of operation for a bipolar metal-oxide memristor with

𝑅𝑂𝑁=100Ω, 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 1.2𝑉, 𝑉𝑟𝑒𝑎𝑑 = 0.8𝑉, using [15, 35].

10

sum of the duration of the two stages. The amplitude of 𝑉𝑟𝑒𝑎𝑑 is 0.8V in the normal as well

as the test mode. It is always lower than the write voltage to minimize the above-

mentioned destructive effect of the read operation [6]. However, March tests use writes

after reads, and therefore the second stage of read operation is not needed when testing.

Figure 2.2 shows the transition behavior of a memristor for all four operations (w0,

w1, r0, and r1) during test using the VTEAM model in [15], with the parameter values in

[35], and 𝑉𝑤𝑟𝑖𝑡𝑒=3.3V in a memristor with 𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ. The value of 0 is

stored within 255ns whereas the value of 1 is stored within 59ns. These are the minimum

required access times during w0 and w1. A single clock is used, and hence the access

time is dominated by w0. A complete read operation requires 33.5ns.

2.2.2 Memristor-based crossbar memory

The crossbar memory consists of two perpendicular sets of wires. There is one

memristor at the intersection of each vertical and horizontal lines which are called column

and row, respectively. As shown in Figure 2.3, in order to limit the number of sneak paths,

Figure 2.2. Resistivity behavior for all four operations (w0, w1, r0,

and r1) during test for a bipolar metal-oxide memristor with

𝑅𝑂𝑁=100Ω, 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 3.3𝑉, 𝑉𝑟𝑒𝑎𝑑 = 0.8𝑉, using [15, 35].

11

the larger array is divided into smaller regions, called tiles, which are isolated by

transistors.

The crossbar architecture provides inherent parallelism for read and write

operations on cells in different tiles for the normal mode of operation. Parallel reads and

writes can be implemented using the row decoder, and the row and column pulse

Figure 2.3. Hybrid crossbar architecture using the combination of

memristor and isolating transistor [3, 28].

12

generators. (See also [28].)

Read operation requires a sense amplifier which compares the output current to a

predetermined threshold. Figure 2.3 illustrates how to test a memristor using a sense

amplifier. The threshold is adjusted by the reference current 𝐼𝑟𝑒𝑓. The read voltage across

the memristor and 𝑅𝑆 results into memristor current 𝐼𝑚𝑒𝑚 during the read operation, and

𝐼𝑚𝑒𝑚 is compared to 𝐼𝑟𝑒𝑓 and is compared to the current through the threshold resistor 𝑅𝑇

[3, 25, 28]. If 𝐼𝑚𝑒𝑚 is greater than 𝐼𝑟𝑒𝑓 the output shows logic 1. Inversely, any current less

than 𝐼𝑟𝑒𝑓 changes the output to logic 0.

As mentioned earlier, this chapter focuses on the testing mode of operation. In

order to benefit from the crossbar architecture, appropriate enhancements must be made.

Such DfT enhancements are described in Section 2.4.

2.2.3 Intrinsic and extrinsic faults

Nano scale devices are prone to defects due to design marginalities, imperfection

in fabrication process, and process variation [24]. Some defects impact the logical

behavior of resistive memory cells. Others impact the temporal behavior. Fault models

have been defined to handle all types of defects. The following list existing fault models

for memristor-based memory. Defects that impact the behavior of a memristor are

modeled by faults which are called intrinsic [42]. However, there are defects that occur

either between different memristors or in CMOS components that surround the memory

cells. Such defects are modeled by faults which are called extrinsic [42]. A precise

analysis for fault models and efficient DfT is required to keep the test time and cost low.

Intrinsic faults (also called self-faults) occur due to parametric variations of the

memristor [18]. Variation in size (the ratio of length over area) and doping density may

13

impact the logic and temporal behavioral of the device. Size and doping variations have

been modeled by changing the physical parameters of the device such as 𝑅𝑜𝑛, 𝑅𝑜𝑓𝑓, and

the mobility of the charge [22]. For example, a variation in length causes a change in 𝑅𝑜𝑛,

𝑅𝑜𝑓𝑓. The change in resistivity, denoted by 𝛥𝑅, is 𝜌(𝛥𝐿/ 𝐴). A variation on the area impacts

𝛥𝑅 as 𝜌[(𝐿 ∙ 𝛥𝐴)/𝐴(𝐴 − 𝛥𝐴)]. A variation in doping affects the mobility of the charge

carriers. This changes the rate of the transitions.

Figure 2.4 (a) shows the effect of -10%, -5%, 5% and 10% variation in doping. It

can be seen that it affects the slope of the transition and therefore the transition time. The

higher the doping, the faster the rate is, and the transition accelerates. Figure 2.4 (b)

shows the impact of -10%, -5%, 5% and 10% size variation using the model in [15]. As

the size increases, 𝑅𝑂𝐹𝐹 increases, and therefore the transition time is increased.

The works in [11, 13, 18, 20, 24, 25, 43] consider different intrinsic fault models.

They include the stuck-at fault (SAF), slow write fault (SWF), and deep state fault models.

These fault models cover the range of size and doping variations as well as other types

of defects such as open and shorts that may be caused by missing metal or extra metal.

They are summarized in the following.

Single Stuck-at faults: When the memristor is undoped or fully doped, there is no

transition in the memristance value. Undoped memristors are modeled as single stuck-

at-0 (SA0) faults and fully doped memristors are modeled as single stuck-at-1 (SA1) faults

[11, 19]. A single stuck-at fault corresponds to a fixed logic (0 or 1) at a single storing

element in the memory. A SA0 is defined by <1/0>; where 0 is the unintended output

while logic 1 is the fault-free output after a w1 operation. Similarly, a SA1 is defined by

<0/1>; where 1 is the unintended output while logic 0 is the fault-free output after a w0

14

operation. The necessary condition for a test to detect all stuck-at faults requires that a 0

and a 1 must be read from each cell [11].

An open is an unintended defect due to imperfection in lithography and pattern

process, missing materials, broken nanowires, and parameter fluctuation of CMOS-based

devices [26]. Opens increase the resistivity of the affected rows or columns, and hence

prevent writing the appropriate value inside the memristor. These defects are modeled by

single stuck-at faults in memristors [19]. An open in a column may affect read and write

operations to the cells along the column. Also an open in a row causes all cells after the

(a)

 (b)

Figure 2.4. The effect of 5% and 10% variation on (a) doping concentration,

and (b) the ratio of length over area. Results were obtained using [15] with

𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = 1.2𝑉.

15

fault location to be inaccessible. These defects are also modeled by single stuck-at fault

in memristors [19]. Note that the stuck-at fault model has been also proposed for

conventional CMOS-based memory [13].

Slow write faults: A small decrease in dopant density (also called under-doping),

is modeled as a slow write fault (SWF). During the write operation, the transition from one

state to another is much slower than the expected behavior of memristor. Slow write 0

(SW0) is denoted in [24] by <1W0/X1>. X1 denotes the final state which can be either

undefined (X) or 1. If the final state is 1 then the slow write fault is equivalent to the slow

transition fault to state 0, also denoted as TF0. If the final state is X the slow write fault is

also called the undefined state fault to state 0, also denoted as USF0 [24]. Similarly, the

faults slow write 1 (SW1) denoted by <0W1/X0>, models dopant–related defects that

impact the memristor’s behavior when the final state is 1. They can be either TF1 or USF1.

A test that sensitizes and detects all slow write faults must have the following

necessary condition [11]: Each cell must undergo a rise transition and a fall transition,

and be read after each, before undergoing any further transitions. For example, SW1 is

sensitized by the w0 operation, followed by a w1 operation. A subsequent r1 operation

will detect the fault.

Deep faults: Deep faults were introduced in [18] to model transitions that were

believed to be slower than those modeled by slow write faults, occurring when many write

operations precede a read. Simulations were presented that used a linear and symmetric

I-V relation [3]. However, these faults are non-applicable to metal-oxide memristors

whose behavior is nonlinear and asymmetric. Extensive experiments on different sizes

with the accurate model in [15] were conducted. The results revealed that the transition

16

time from 0 to 1 and 1 to 0 were not impacted by the number of write operations prior to

a read. As an example, Figure 2.5 (a) shows the transition time from 0 to 1 for the w0,

w0, w1, r1 sequence, and Figure 2.5 (b) shows the transition time from 1 to 0 for w1, w1,

w0, r0. We observe strong similarity in the transitions shown in Figure 2.2 and Figure 2.5

(a). Likewise, the transition from 1 to 0 in Figure 2.2 and Figure 2.5 (b) are very similar.

Therefore, tests for metal-oxide memristor defects should not consider deep faults, and

only consider the slow write fault model.

(a)

(b)

Figure 2.5. (a) The transition time from 0 to 1 for the w0, w0, w1, r1

sequence and (b) the transition time from 1 to 0 for w1, w1, w0, r0

sequence. 𝑅𝑂𝑁=100Ω and 𝑅𝑂𝐹𝐹=100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±1.2𝑉, 𝑉𝑟𝑒𝑎𝑑 =

±0.8𝑉.

17

Extrinsic faults occur due to defects in crossbar structure [19], address decoding

error [13], imperfection in lithography, missing materials, broken nanowires [24] rather

than the parametric variation in the memristor. This chapter considers shorted

rows/columns (SRC) coupling fault as extrinsic faults.

Coupling fault: Coupling fault (CF) arises due to defects in crossbar structure rather

than the parametric variation in the memristor [19]. A coupling fault (CF) means that a

transition in memory cell 𝑗 causes an unwanted change in memory cell 𝑖. A resistive short

between adjacent rows or columns or between a row and a column is modeled as a SRC

coupling fault [19]. A transition in aggressor cell results into the same transition in the

victim cell which is horizontally or vertically adjacent to the aggressor cell.

Let 𝑥 denote either value 0 or value 1. Let �̅� denote the complement value of 𝑥. A

SRC fault is defined by < 𝑥w1;0/1/-> or < 𝑥w0;1/0/->. The necessary condition for a test

to detect all SRC faults is: The test must read 𝑥 from cell 0, write �̅� to cell 0, read 𝑥 from

cell 1, write �̅� to cell 1, for the entire memory.

Notice that the above fault models are also adopted to conventional CMOS-based

memory testing because defects also impact logical as well as temporal behavior.

2.3 The proposed test methods

2.3.1 March tests

The test operation w0 is significantly slower than the w1, r1 and r0 [28]. Thus, the

time performance of the existing March test is dominated by the w0 operation. The main

objective of the proposed March tests is to reduce the time duration of the w0 operation.

The test time is decreased by defining a new write operation 𝑓𝑤0 that substitutes the w0

18

operation. As mentioned in Section 2.1, tests are done in elevated voltage 3.3V.

In defect free memory, the size of all memristors does not vary significantly

because the amount of intra-chip variations typically does not exceed 10% [21, 22]. Let

us denote the size of a memristor (length over area) as L/A. Since the geometrical

variation induced by lithography process variations vary in the same way all over the chip,

the average amount of variation in L/A can be determined by choosing randomly some

cells and checking the upper bound in the resistance value. A March test that writes 0

and reads 0 at each cell will determine the smallest L/A among all cells.

In contrast to the normal mode of operation, during test the r0 and r1 operations

use different reference currents which we call 𝐼𝑟𝑒𝑓0 and 𝐼𝑟𝑒𝑓1, respectively. Their values

depend on the logic state boundaries. As in [18-21], it is assumed that such currents have

been determined. We note that 𝐼𝑟𝑒𝑓1 > 𝐼𝑟𝑒𝑓 and 𝐼𝑟𝑒𝑓0 < 𝐼𝑟𝑒𝑓. Let the respective resistive

values be denoted as 𝑅𝑟𝑒𝑓0 and 𝑅𝑟𝑒𝑓1. The resistive region between 𝑅𝑟𝑒𝑓0 and 𝑅𝑟𝑒𝑓1 is

called the undefined region. (See also Figure 2.6) Testing considers the undefined region,

as we mentioned earlier in the slow write fault model.

In analysis of a resistive cell, both size and doping parameters have been

considered. The worst-case scenario occurs when the length increases while the area

and doping concentration decreases. Doping variation affects only the rate of transition,

and variation in L/A changes 𝑅𝑂𝐹𝐹 whereas 𝑅𝑂𝑁 is practically invariant. (See also Figure

2.4) So the resistance of the cell in state 1 is practically invariant. A negative voltage

(operation w0) across the memristor in state 1 may increase the memristance, and forces

it to move out of state 1. Once this happens, the voltage is not further applied and a read

operation detects whether the read resistivity has exceeded 𝑅𝑟𝑒𝑓1.

19

Let T𝑓𝑤0 denote the time for 𝑓𝑤0. T𝑓𝑤0 must be long enough to move the cell out

of state 1. Therefore, it should be longer than the sum of the 𝑡𝑤𝑎𝑖𝑡0 and the time required

to change the resistivity from 𝑅𝑂𝑁 to the boundary of state 1. (See also Figure 2.6)

The following presents March tests for different fault models. We assume that 𝑇𝑤1

is as high as 𝑇𝑓𝑤0 (in practice it is less), and that 𝑇𝑟0 = 𝑇𝑟1 (which is always the case).

That way, we need only two different access times: 𝑇𝑟 for read operations and 𝑇𝑤 ≈ 2𝑇𝑟

for write operations. The access time for w0 operation is the same as in normal mode of

operation. All results are generated using the same write voltage to ensure a fair

comparison between the proposed and existing tests.

Table 2.1 lists notations that will be used throughout this section. Notation ||

indicates parallel addressing of the cells in a tile. This operation is used to initialize all

cells in a row to either 1 or 0. The driving current suffices as the number of cells per row

is limited.

Stuck-at Fault: The Existing March test for Stuck-At Fault (EMSAF) in equation

(2.1) detects all stuck-at faults [11]:

Figure 2.6. The undefined state for a memristor cell, and the value

of 𝑇𝑓𝑤0 considering 10% doping variation. The memristor also suffers

from 10% increment in size (L/A).

20

EMSAF: {⇕ (w1) ; ⇕ (r1) ; ⇕ (w0) ; ⇕ (r0)} (2.1)

The test time is 2𝑛(𝑇𝑤0 + 𝑇𝑟), where 𝑛 denotes the number of memory cells.

The proposed March test does not apply w0. To detect SA1, we apply a 𝑓𝑤0 in

order to change the current state of the cell from 1 to a predetermined intermediate

resistivity 𝑅𝑟𝑒𝑓1. Unlike the existing EMSAF, all cells are initialized to 1 by applying a

parallel write operation for all cells in an entire row. A fast write 𝑓𝑤0 from 1 to 0 followed

by a read operation results in a resistivity value greater than 𝑅𝑟𝑒𝑓1. A read operation after

𝑓𝑤0 will detect if there is slow transition from 1 to 0.

In summary, we test for SA1 with March { ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)}. The operations (𝑓𝑤0,

𝑟𝑟𝑒𝑓1) determine whether the cell is moved out of state 1. The reference current 𝐼𝑟𝑒𝑓1 is the

expected output current of the sense amplifier for resistivity value of 𝑅𝑟𝑒𝑓1. If there is a

fault in the examined cell, the output current will be more than 𝐼𝑟𝑒𝑓1 and the sense amplifier

will show logic 1.

The proposed March test for all SA0 and SA1 is called Fast March test for Stuck-

At Fault (FMSAF):

Table 2.1. Notation for the March Tests.

Symbol Operation

r A read operation

w A write operation

r0 (r1) Read a 0 (1) from the memory location

w0 (w1) Write a 0 (1) to the memory location

⇕ Addressing order can be either increasing or decreasing

|| parallel addressing of all cells in an entire row in a tile

𝑓𝑤0
Write a 0 to the memory location and quickly stop this operation
after the initial resistivity changes, and the device conducts current.

𝑟𝑟𝑒𝑓1 Read operation with reference current 𝐼𝑟𝑒𝑓1.

𝑟𝑟𝑒𝑓0 Read operation with reference current 𝐼𝑟𝑒𝑓0.

21

FMSAF: { ∥ (w1)};{ ⇕ (r1) ; ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)} (2.2)

The test time for the proposed FMSAF in an 8×8 tile is (9𝑛 ∕ 8)𝑇𝑤 + 2𝑛𝑇𝑟. Open

defects behave like SA0 and shorts to 𝑉𝑑𝑑 behave like SA1 [20]. Hence, the proposed

FMSAF can also detect open and short defects.

Transition Fault: The Existing March test for Transition Fault (EMTF) in equation

(2.3) detects all transition faults [18]:

EMTF: { ⇕ (w0, w1) ; ⇕ (r1) ; ⇕ (w0, r0)} (2.3)

EMTF uses 3𝑛 writes followed by 2𝑛 reads in a memory with 𝑛 cells. The test time

is 𝑛(3𝑇𝑤0 + 2𝑇𝑟).

The proposed March test to detect TF0 is {||(w1)};{⇕(fw0, 𝑟𝑟𝑒𝑓1)}. All cells must be

initialized to 1 by applying a parallel write operation in all rows. TF0 is sensitized by

applying a 𝑓𝑤0 in order to change the state from 1 to resistive value 𝑅𝑟𝑒𝑓1. One 𝑟𝑟𝑒𝑓1 per

cell will detect this fault since it tests whether the cell is fast enough to move from one

state to another state. For an ideal cell, the output current of sense amplifier is expected

to be less than 𝐼𝑟𝑒𝑓1. However, for a faulty cell, the memristance value is not in the

expected range, and the output current is more than 𝐼𝑟𝑒𝑓1. Hence, the sense amplifier

shows logic 1. The proposed March test for all TF0 and TF1 is called the Fast March test

for Transition Fault (FMTF):

FMTF: { ∥ (w0, w1)};{ ⇕ (r1) ; ⇕ (𝑓𝑤0, 𝑟𝑟𝑒𝑓1)} (2.4)

The test time for the proposed FMTF in an 8×8 tile is (𝑛 8⁄)(𝑇𝑤0 + 9𝑇𝑤) + 2𝑇𝑟.

Shorted Rows/Columns: The Existing March test for Shorted Rows/Columns

(EMSRC) detect all SRC faults that propagate to a higher or lower address memory [19]:

EMSRC: {⇕(w1); ⇑(r1,w0); ⇓(r0,w1); ⇕(w0); ⇑(r0,w1); ⇓(r1,w0)} (2.5)

22

EMSRC uses 6𝑛 writes followed by 4𝑛 reads in a memory with 𝑛 cells. The total

test time is 𝑛(6𝑇𝑤0 + 4𝑇𝑟). EMSRC detects SRC faults by reading the value 1 (0) from cell

𝑖, writing 0 (1) to cell 𝑖 and for the entire memory with higher (lower) address location. It

tests whether a write operation to cell 𝑖 changes the state of cell 𝑗.

The proposed March test for all SRC faults that propagate to a higher or lower

address is called Fast March test for Shorted Rows/Columns (FMSRC). It is similar to

EMSRC except that w0 is substituted by 𝑓𝑤0:

FMSRC: {∥(w1)};{⇑(r1,𝑓𝑤0);⇓(𝑟𝑟𝑒𝑓1,w1)};{∥(w0)};{⇑(r0, w1);⇓(r1,𝑓𝑤0)} (2.6)

The test time is (𝑛 8⁄)(𝑇𝑤0 + 33𝑇𝑤) + 4𝑇𝑟. Current 𝐼𝑟𝑒𝑓1 that corresponds to

resistivity 𝑟𝑟𝑒𝑓1 distinguishes state 1 from resistivity 𝑅𝑟𝑒𝑓1.

The Existing March Test (EMT) in [19, 20, 22] detects all intrinsic and extrinsic

faults:

EMT: {M0:⇕(w0); M1:⇑(r0,w1,r1); M2:⇓(r1,w0,r0)

M3:⇕(w1); M4:⇑(r1,w0); M5:⇓(r0,w1);} (2.7)

The following explains how EMT sensitizes and detects the various faults. Faults

SA1 are sensitized and detected by M2. Faults SA0 are sensitized and detected by M1.

Faults TF1 are sensitized by M0 and the write operation w1 of M1, and are detected by

the read operation r1 of M1. Faults TF0 are sensitized by the w1 of M1 and the w0 of M2,

and are detected by the r0 of M2. The SRC faults that propagate to a higher memory

address are sensitized and detected by M1 and M4, and the SRC faults that propagate

to a lower memory address are sensitized and detected by M2 and M5. Observe that the

EMT is dominated by the w0 operations.

The proposed March test to detect all SAFs, TFs, and SRCs is called the Fast

23

March Test (FMT):

FMT: { ∥ (w0)};{ ⇑ (r0, w1, r1); ⇓ (r1, 𝑓𝑤0, 𝑟𝑟𝑒𝑓1)};

 { ∥ (w1)};{ ⇓ (r1, 𝑓𝑤0); ⇑ (𝑟𝑟𝑒𝑓1, w1)} (2.8)

This test is much faster than the EMT. The total test time is (𝑛 8⁄)(𝑇𝑤0 + 33𝑇𝑤) +

6𝑇𝑟.

The March test of equation (2.8) has a 𝑤𝑥 followed by ⇑ (𝑟𝑥,… ,𝑤�̅�) and ⇓

(𝑟�̅�, … ,𝑤𝑥) conditions, and thus also detects all address decoder faults (AFs) [13]. An

address decoder fault (AF) occurs in any of the following scenarios: Multiple cells are

accessed by a certain address, no cell is accessed by a certain address, a certain cell is

not accessed by any address or a certain cell is accessed by multiple addresses [13].

Undefined State Fault: The proposed FMT can also detect USF1 which is

explained in [25, 26]. USFs have emerged due to the analog nature of the memristor

device. Traditional March tests such as the EMT in equation (2.7) cannot guarantee the

detection of such a fault [26]. A normal w1 operation will put the faulty cell into the

undefined state X instead of state 1. A weak stress 𝑓𝑤0𝑙 (such as 𝑓𝑤0 with less duration)

will change the state to 0. However, the time duration of 𝑓𝑤0𝑙 is not enough to flip the

state of a fault-free cell from 1 to 0. A read operation immediately after 𝑓𝑤0𝑙 will detect

the USF1. The reference current should be set according to the upper bound of the

undefined region. (See also Figure 2.7 (a).) Any 𝐼𝑚𝑒𝑚 less than the 𝐼𝑟𝑒𝑓0 results in

detecting a USF1 in the cell. The proposed March test to detect all USF1s is called the

Fast March test for Undefined State Fault 1 (FMUSF1):

FMUSF1: { ∥ (w0)};{ ⇕ (w1, 𝑓𝑤0𝑙, 𝑟𝑟𝑒𝑓0)} (2.9)

Changing 0 to 1 in FMUSF1 does not result to a robust test for USF0 since 𝑓𝑤1 is

24

not a robust operation. The following presents a test for USF0 that uses another fast write

operation 𝑓𝑤0ℎ with more duration when compared to 𝑓𝑤0. Its time duration should be

enough to set the cell in the upper boundary of undefined region. (See also Figure 2.7

(b).) The proposed March test to detect all USF0s is called the Fast March test for

Undefined State Fault 0 (FMUSF0):

FMUSF0: { ∥ (w0)};{ ⇕ (𝑓𝑤0ℎ, 𝑓𝑤0, 𝑟𝑟𝑒𝑓0)} (2.10)

2.3.2 Experimental evaluation

Let 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, 𝑇𝑤0 denote the times for r1, w1, r0, w0, respectively. Table 2.2

compares 𝑇𝑓𝑤0 with 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, and 𝑇𝑤0. These times were obtained with SPICE

simulation using [15] under different size and doping variations for the metal-oxide

memristor. Simulations were done using 45nm CMOS technology with 𝑅𝑂𝑁 =100Ω,

(a)

(b)

Figure 2.7. Simulation results for the fault free and faulty cell with

(a) USF1 and (b) USF0.

25

𝑅𝑂𝐹𝐹 =100KΩ, 𝑅𝑟𝑒𝑓1 =40KΩ, 𝑅𝑟𝑒𝑓0 =60KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, 𝑉𝑟𝑒𝑎𝑑 =0.8V, and the

temperature was set to 27°C. All memristor parameters were set as in [35]. SPICE

simulation revealed that 𝐼𝑟𝑒𝑓1 = 82µA and 𝐼𝑟𝑒𝑓0 = 55µA.

Table 2.2 shows the impact of doping and size (L/A) variations. The first row

represents the nominal condition without variation. The second row represents the

instance when L/A increased by 1% and doping decreased by 1%. The last row

represents the worst case instance which corresponds to a 10% increase in L/A with a

10% decrease in doping. Columns two to five show the values of 𝑇𝑟1, 𝑇𝑤1, 𝑇𝑟0, and 𝑇𝑤0

for the listed instances when the wait time is maximized and equal to 10% of the transition

time. Observe that 𝑇𝑤0 is always very high compared to 𝑇𝑓𝑤0. Also observe that 𝑇𝑓𝑤0, 𝑇𝑤1,

𝑇𝑟1, and 𝑇𝑟0 are always in the same order. Similar characteristics are observed for

different values of 𝑅𝑂𝐹𝐹 ∕ 𝑅𝑂𝑁. All read operations are reported at 0.8V. Observed that 𝑇𝑟1

and 𝑇𝑟0 are very fast because the second pulse that nullifies the read disturbance is not

needed during the test.

The following simplifies test operation times by assuming that 𝑇𝑤0 is approximately

Table 2.2. Time Duration (in 𝑛𝑠) of 𝑤1, 𝑟1, 𝑤0, 𝑟0, 𝑓𝑤0 for Different 45𝑛𝑚

Instances when Size Increases and Doping Decreases. 𝑅𝑂𝑁 =100Ω,

𝑅𝑂𝐹𝐹 =100KΩ, 𝑅𝑟𝑒𝑓1 =40KΩ, 𝑅𝑟𝑒𝑓0 =60KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, 𝑉𝑟𝑒𝑎𝑑 =0.8V.

Variation 𝑇𝑟1 𝑇𝑤1 𝑇𝑟0 𝑇𝑤0 𝑇𝑓𝑤0

0% 33.5 59.0 33.5 255 61.7

1% 34.3 61.3 34.3 262 64.1

2% 35.2 63.2 35.2 269 66.7

5% 36.5 68.0 36.5 280 73.0

10% 38.4 71.9 38.4 288 77.4

26

7.5 times slower than any read operation, and that 𝑇𝑤1 is approximately two times slower

than any read operation. See also Table 2.2.

Based on the above assumptions, in a memory with 𝑛 cells using 8×8 tiles, the test

time of EMSAF is 19𝑛𝑇𝑟 whereas the time of the proposed FMSAF is 4.25𝑛𝑇𝑟. This is

almost a 4.5X speed-up over EMSAF. The test time of EMTF is 24.5𝑛𝑇𝑟 but the test time

of the proposed FMTF is 5.18𝑛𝑇𝑟. This is almost a 5X speed-up over EMTF. Furthermore,

the EMSRC detects SRCs in 49𝑛𝑇𝑟 time while the test time for FMSRC is 13.18𝑛𝑇𝑟. This

is a 4X speed-up over EMSRC. (See also Table 2.4.)

Table 2.3 shows the average energy per operation in a random cell during test.

Observe that 𝑓𝑤0 requires significantly less energy when compared to w0.

Table 2.4 summarizes and compares the proposed FMT March test to the EMT.

Table 2.3. Average Energy Needed for 𝑤1, 𝑟1, 𝑤0, 𝑟0, and 𝑓𝑤0 in a

Random Cell Using 45 𝑛𝑚 CMOS Technology with 𝑅𝑂𝑁 =100Ω,

𝑅𝑂𝐹𝐹 =100KΩ, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V, and 𝑉𝑟𝑒𝑎𝑑 =0.8V.

Operation 𝑤0 𝑟0 𝑤1 𝑟1 𝑓𝑤0

Energy (pJ/cell) 29.07 0.23 3.74 0.23 3.98

Table 2.4. Time and Average Energy of Existing and Proposed March Tests Using

45𝑛𝑚 CMOS Technology with 𝑅𝑟𝑒𝑓1 = 0.4𝑅𝑜𝑓𝑓, 𝑅𝑟𝑒𝑓0 = 0.6𝑅𝑜𝑓𝑓, 𝑉𝑤𝑟𝑖𝑡𝑒 = ±3.3V,

𝑉𝑟𝑒𝑎𝑑 =0.8V.

Existing March Test Proposed Fast March Test
% improvement in test time

using tile (8×8)
% improvement in

average test energy per

cell Name
Test Time

(n cells)
Energy per

cell (PJ)
Name

Test Time
(n cells)

Energy per
cell (PJ)

𝑅𝑂𝑁=100Ω

𝑅𝑂𝐹𝐹=100kΩ

𝑅𝑂𝑁=100Ω

𝑅𝑂𝐹𝐹 =150kΩ

EMSAF 19𝑛𝑇𝑟 33.25 FMSAF 4.25𝑛𝑇𝑟 8.18 77.6 79.0 75

EMTF 24.5𝑛𝑇𝑟 61.7 FMTF 5.18𝑛𝑇𝑟 36.4 78.8 80.5 41

EMSRC 49𝑛𝑇𝑟 98.1 FMSRC 13.18𝑛𝑇𝑟 49.3 73.5 74.4 50

EMT 51𝑛𝑇𝑟 99.3 FMT 15.18𝑛𝑇𝑟 50.2 70.1 71.3 49

27

Column 7 shows the improvement of the test time with 𝑅𝑂𝑁 = 100Ω and 𝑅𝑂𝐹𝐹 = 100KΩ.

Similar results with 𝑅𝑂𝑁 = 100Ω and 𝑅𝑂𝐹𝐹 = 150KΩ are given in Column 8. An 70%

improvement in test application time is observed. Columns 6 and 7 list the time of the

existing March tests minus the time of the proposed fast March tests over the time of the

existing March tests. The last column also lists the average energy improvement to test

a memory cell. The average test energy per cell is reduced at least by 40%.

2.3.3 More reliable March tests considering sneak paths

This section introduces March tests for testing the crossbar architecture of Figure

2.3 in the presence of sneak paths. The sneak path error may occur during a r0 operation

from a cell at logic 0 when there is also a parallel path that has several cells at logic 1.

Let M𝑖,𝑗 be the memristor in row 𝑖 and column 𝑗. The proposed fast write operation 𝑓𝑤0 is

applied to reduce the test time of existing sneak path March tests. We use the analysis in

[44-46] to determine the number of cells in the RoD.

Figure 2.8 shows a sneak path with ordered cells M1,4, M3,4 and M3,2, it is labeled

as Path 2. Assume an r0 for cell M1,2 in logic 0, and let M1,4, M3,4 and M3,2 be in logic 1.

Instead of the current relating to Path 1 through M1,2, the output current 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 is the sum

of the current of Path 1 through M1,2 and the current of Path 2 through M1,4, M3,4 and M3,2.

Therefore, 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 erroneously determines logic 1 in cell M1,2. This section presents

reliable tests that avoid this side-effect.

To avoid sneak paths during test, [45] proposed to ground all rows expect the one

being read. However, this technique is power consuming due to lower equivalent

resistance that affects the measured current. Instead, this paper uses the symmetric and

asymmetric grounding techniques proposed in [44] which are more efficient.

28

An array A is a sneak-path-free array if and only if the “1”s in every two rows have

either full-overlap or no-overlap [44]. The proposed method uses the above-mentioned

conditions.

Let 𝑏 be an integer. The proposed method grounds all rows except: The examined

row 𝑖, 𝑏 rows above the row 𝑖, and 𝑏 rows below the row 𝑖. This operation controls the

power consumption due to reduced grounding, and sneak paths are limited to the set of

the 2𝑏 + 1 ungrounded rows which must be controlled during the test.

During the r0 operation, all the cells in the set of ungrounded rows are initialized

to logic 0 (high resistance) before applying r0 to any cells in row 𝑖. This reduces the effect

of the bounded number of sneak paths in the set and decreases significantly the currents

through the existing sneak paths. The RoD is the union of all cells in ungrounded rows.

Therefore, the RoD for an 𝑛 × 𝑛 array contains 𝑛(2𝑏 + 1) cells. The reference currents in

this algorithm are the same as the ones used for the March tests in equation (2.1) through

equation (2.10).

The following notation is used at the March tests of this section.

↕𝑖,±𝑏: All cells in rows between (𝑖 − 𝑏) and (𝑖 + 𝑏) are accessed in either increasing

Figure 2.8. Sneak-path testing in a 4×4 high density crossbar

memory.

29

or decreasing order.

↓𝑖,±𝑏 (resp. ↑𝑖,±𝑏): All cells in rows between (𝑖 − 𝑏) and (𝑖 + 𝑏) are accessed in

decreasing (resp., increasing) order.

↓𝑖,+𝑏 (resp. ↑𝑖,+𝑏): All cells in rows between 𝑖 and (𝑖 + 𝑏) are accessed in decreasing

(resp., increasing) order.

↓𝑖,−𝑏 (resp. ↑𝑖,−𝑏): All cells in rows between (𝑖 − 𝑏) and 𝑖 are accessed in decreasing

(resp., increasing) order.

↕𝑖: All cells in rows 𝑖 are accessed in either increasing or decreasing order.

Stuck-at Fault: The proposed FMSAF in equation (2.5) is modified to reduce the

effect of unwanted sneak paths during the test by grounding rows. The proposed test to

detect all SA1 and SA0 is called the Fast Sneak Path Test for SAF (FSPTSAF):

FSPTSAF: { ∥ (w1)};{⇕(r1)}; {↕𝑖,±𝑏(fw0);↕𝑖(𝑟𝑟𝑒𝑓1)} (2.11)

The test time is the same as that of FMSAF. The value of 𝑏 controls the energy

per cell. Table 2.5 shows that the energy per cell increases as 𝑏 decreases. FSPTSAF is

sneak path free when 𝑏 = 0.

Transition Fault: The proposed test to detect all TFs is called the Fast Sneak Path

Test for TF (FSPTTF):

FSPTTF:{ ∥ (w0,w1)};{⇕ (r1)}; {↕𝑖,±𝑏(fw0); ↕𝑖(𝑟𝑟𝑒𝑓1)} (2.12)

Test time is the same as in FMTF. Table 2.5 shows a reduction in energy as 𝑏

increases, and the test is sneak path free when 𝑏 = 0.

Shorted Rows/Columns: The proposed Fast Sneak Path Test for SRC is called

FSPTSRC:

FSPTSRC: {∥(w1)};{⇑(r1,fw0)};{↓𝑖,+𝑏(𝑟𝑟𝑒𝑓1,w1)};{⇓(r1, fw0)};{↑𝑖,−𝑏(𝑟𝑟𝑒𝑓1,w1)} (2.13)

30

The test time is the same as in FMSRC. Table 2.5 shows that the energy per cell

increases as 𝑏 decreases, and when 𝑏 = 0, the test is free sneak paths effects.

The proposed test for all SAF, TF, SRC is called Fast Sneak Path Test (FSPT):

FSPT: {∥(w1)};{⇑(r1, 𝑓𝑤0); ↓𝑖,±𝑏(𝑟𝑟𝑒𝑓1); ↓𝑖,+𝑏(𝑟𝑟𝑒𝑓1,w1)}

{∥(w0)};{↑𝑖,−𝑏(r0,w1); ⇓(r1, 𝑓𝑤0)} (2.14)

Table 2.5 shows the benefits in energy as 𝑏 increases and when 𝑏 = 0, the test is

free sneak paths effects. Similar observations hold when experimenting with different

combinations of 𝑅𝑂𝐹𝐹 and 𝑅𝑂𝑁.

2.4 DfT for the proposed tests

Memristor operations either in normal mode or testing mode rely mainly on the

duration of the access time on columns and rows. Every operation requires a specific

access time [11, 25]. A programmable DfT scheme is presented in order to be able to

assign different access times for the proposed test operations.

Figure 2.9 depicts the proposed DfT to implement the FMT March tests in equation

(2.8). The description assumes 45nm technology. The DfT circuit contains one timer to

control the access time duration of the write operation called the W-Timer. At any time,

one of the timers is selected. The timer is shown on the left part of Figure 2.9, and the

Table 2.5. The Average Energy of the Pulse Applied to a Row and a Column in Order

to Test One Cell Using Tile (8×8) for the Proposed Sneak-path March Tests.

𝑏 FSPTSAF FSPTTF FSPTSRC FSPT FSPTSAF FSPTTF FSPTSRC FSPT

0 12.3 43.0 54.9 55.3 12.7 44.3 57.1 58.0

1 11.4 40.7 53.1 53.6 12.0 42.1 53.9 54.5

2 8.9 39.1 52.1 52.1 9.3 40.1 53.2 53.2

31

associated selection hardware is shown above them. The timer supplies appropriate time

duration to the row and column pulse generations. The DfT also consists of a reference

current selection scheme and associated sense amplifiers. (See bottom of Figure 2.9.)

Therefore, the write and read operations are mode dependent.

The W-Timer sets two different access times for write: The normal mode write time

which is set to max{𝑇𝑤1, 𝑇𝑤0} for w0 and w1 in normal mode operation, and a time 𝑇𝑤

which is equal to 𝑇𝑤1 and 𝑇𝑓𝑤0. In the test mode, 𝑇𝑤0 is the same as in the normal mode.

Test signal T can activate the appropriate access time by using two different

transistors: M1 (PMOS) and M2 (NMOS). The timer activates the row and column pulse

generators which can supply the voltage to the rows and columns, respectively. M1 and

M2 switch between the normal mode and the test mode. When T is low, M1 is switched

Figure 2.9. Schematic of the proposed DfT.

32

on and the normal mode is activated. The output of the timer (𝑇𝑤𝑟𝑖𝑡𝑒) is activated for

nominal access time 𝑇𝑤𝑟𝑖𝑡𝑒=𝑇𝑤0=288ns. On the contrary, when the T is high, M2 is

switched on. This activates the fast write operation by supplying the pulse generator for

𝑇𝑤𝑟𝑖𝑡𝑒=𝑇𝑤=77.4 ns. Time 𝑇𝑤0 is also used for w1 in test mode.

During the read operation, the sense amplifier compares the 𝐼𝑚𝑒𝑚 with the 𝐼𝑟𝑒𝑓.

The sense amplifier has three different reference currents. During the normal mode, 𝐼𝑟𝑒𝑓

is set to (𝐼𝑟𝑒𝑓1 + 𝐼𝑟𝑒𝑓0)/2. During the test mode, 𝐼𝑟𝑒𝑓1=82µA and 𝐼𝑟𝑒𝑓0=55µA are used as

reference currents.

In order to calibrate the access times during testing, [24] and [26] proposed a

programmable DfT with different access time settings. This circuit copes with the

unexpected effect of process variations during post-silicon test. Therefore, the timer can

be tuned during the test [26].

Figure 2.10 shows the programmable version of the proposed DfT of equation

(2.8). Depending on the selection signals S[3:1], the decoder will set W-Timer to activate

one of the time durations. The timer in turn activates the row and column pulse generators

which can supply the voltage to the memristor-based array. The circuitry inside the dotted

line can be enhanced with the peripheral circuitry in [19, 47] or the BIST architecture in

[22] to accommodate in FSPT March test in equation (2.14) that considering sneak path

effects.

Figure 2.11 shows the proposed DfT for detecting USFs using FMUSF1 and

FMUSF0 of Section 2.3.1. The W-Timer sets four different time durations for write

operations: A write time which is set to max{𝑇𝑤1, 𝑇𝑤0} for w0 and w1 in the normal mode

of operation, and three different times 𝑇𝑓𝑤0, 𝑇𝑓𝑤0𝑙, 𝑇𝑓𝑤0ℎ for the fast writes 𝑓𝑤0, 𝑓𝑤0𝑙,

33

𝑓𝑤0ℎ, respectively. Depending on the selection signals S0 and S1, the decoder will set

the W-Timer to activate one of the time durations. During the test mode, the reference

current 𝐼𝑟𝑒𝑓0 is set to 55µA.

The total area overhead of the proposed DfT depends only on the number of

columns in the two dimensional memory because the timer, the decoder, the column

pulse generator (that implements parallel writes in a row), and the reference current

multiplexer must access each column. These components are shown inside a dotted line

in Figure 2.10 and Figure 2.11. The DfT overhead does not depend on the number of

rows and the number of tiles.

We implemented the proposed DfT in Cadence using 45nm CMOS technology.

The timer was implemented by a 5-bit asynchronous counter which contains five J-K Flip-

Figure 2.10. Schematic of the proposed programmable DfT.

34

flops and three NAND gates. The column pulse generator consists of two NMOS

transistors which connect the appropriate voltages to the column during test and normal

mode of operations. The area overhead of the designed DfT was found to be only

8.875µm2 per column.

2.5 Conclusions

A methodology for testing the bi-state hybrid crossbar architecture in [28] has been

presented. The proposed March test used a new fast write operation and reduced the test

application time by 70% and the test energy by 40%. The method was extended to

consider sneak paths in order to increase reliability with similar test application time. A

programmable DfT Scheme has been proposed to implement the methods, and its

Figure 2.11. Schematic of the proposed USF DfT.

 1111111

35

overhead was analyzed.

The proposed methods have been presented assuming that each memory cell is

a bipolar metal-oxide memristor which is a popular technology. The methods can be

generalized to other types of memristors as long as they have nonlinear and asymmetric

characteristics in the switching parameters.

36

CHAPTER 3

A GENERALIZED APPROACH TO IMPLEMENT EFFICIENT CMOS-

BASED THRESHOLD LOGIC FUNCTIONS

3.1 Introduction

Threshold Logic Gate (TG) is a promising candidate for the future digital circuits.

Recent synthesis approaches show that TG-based circuits exhibit less delay, power

dissipation, and silicon area [48-52]. A Boolean function that can be implemented as a

single TG is called Threshold Logic Function (TF). In a TF, there is an integer weight for

each input. When the input is set to binary value 1 then the weight is active. An input

pattern evaluates the function to logic one only when the sum of the active weights is

greater than (or equal) to a predetermined integer weight value called the threshold

weight [57-59]. Otherwise, it evaluates the function to logic 0. In this paper, such a TF

function is called a 1𝑠𝑡-order TF and will be denoted as a 1-TF. A 𝑛-input 1-TF

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is formally defined as [58]:

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =

{

1 𝑖𝑓 ∑𝑤𝑖 ∙ 𝑥𝑖 ≥ 𝑤𝑇

𝑛

𝑖=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.1)

where 𝑥𝑖, 𝑖 = 1,… , 𝑛, are binary input variables, 𝑤𝑖 is the weight corresponding to the 𝑖𝑡ℎ

input, and 𝑤𝑇 is the threshold weight (threshold value). The 1-TF 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is also

uniquely identified by the set of threshold and input integer weights [𝑤1, 𝑤2, … , 𝑤𝑛; 𝑤𝑇].

1-TF implementations consist of three components: two differential networks (input

networks) and a sensor (sense amplifier) [51-57]. One input network implements positive

37

input weights and negative threshold weight and the other one implements the negative

input weights and the positive threshold weight. The sensor evaluates the output by

comparing and amplifying the difference between the sum of active weights of the two

input networks.

In CMOS-based TGs, the power dissipation depends primarily on two factors: the

transistor count of the input networks which is the total number of unit size transistors that

implements weights and the sensor size which is proportional to the transistor count of

input networks [52]. Input networks implement the weights with NMOS (or PMOS)

transistors connected in parallel. Let 𝑋 denote the width of a minimum size transistor

which implements the unit weight. Each transistor implements a weight 𝑤 and its width is

𝑤 ∙ 𝑋, and the gate of the transistor is connected to an input. (The area of a transistor with

width 𝑤 ∙ 𝑋 is practically the same as 𝑤 minimum size transistor.) The gate of the NMOS

transistor for the threshold is connected to the power supply (it is active for all input

patterns). The length of all transistors is the same and is determined by the used

technology. The less transistor count in input networks, the lower the power dissipation

in the differential network of a TG is. Furthermore, a reduced transistor count

subsequently reduces the sensor size, which, in turn, decreases further the power

dissipation [52].

This chapter proposes a new method to reduce the transistor count of the input

networks by introducing non-integer weights. This method is applicable to all existing TG

implementations. In order to demonstrate the impact of non-integer weights on TGs in

terms of area, power dissipation, and delay, this chapter focuses on the current-mode

TGs (CTGs) implementation which is a popular PMOS- and NMOS-based

38

implementation. (See [52-53], among others.)

A small fraction of binary functions are 1-TFs [58], and this limits the impact of TGs

in digital circuit synthesis. Thus, our focus shifts on identifying TFs that are not 1-TF. A

higher order TF, also called 𝑘𝑡ℎ-order TF (𝑘-TF) in this chapter, was introduced in [60].

For each input pattern, a weight in a 𝑘-TF can be activated by a group of 𝑘 active inputs,

1 ≤ 𝑘 ≤ 𝑛. Such a weight is called a 𝑘-weight.

Let 𝑥𝑖1, 𝑖1 = 1,… , 𝑛, be binary input variables, 𝑤𝑇 denote the threshold weight, and

integer weight 𝑤𝑖1,𝑖2,…,𝑖𝑚 denote the 𝑚-weight, 1 ≤ 𝑚 ≤ 𝑘, that is activated by the group of

𝑚 inputs 𝑖1, 𝑖2, …, and 𝑖𝑚. The 𝑘-TF formulation for an 𝑛-input function is [60]:

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =

{

 1 𝑖𝑓 ∑ 𝑤𝑖1𝑥𝑖1

𝑛

𝑖1=1

+⋯+ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑚𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑚

𝑛

𝑖𝑚=𝑖𝑚−1+1

𝑛−𝑚

𝑖2=𝑖1+1

𝑛−𝑚+1

𝑖1=1

 +⋯+ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑘𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑘

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

≥ 𝑤𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.2)

Let us consider the recently proposed synthesis approach in [51] where a flip-flop

at the output of the circuit together with a portion of the predecessor combinational logic

is replaced by a single TG. Since more functions can be identified as a single 𝑘-TG by

equation (3.2), each output cone will more likely be implemented with fewer gates and

one 𝑘-TG as the final gate.

This chapter presents an Integer Linear Programming (ILP) formulation to assign

efficiently weights to a 𝑘-TF so that the CTG implementation has low transistor count,

and, subsequently, low power and delay. Weight variations due to CMOS-aging, circuit

parasitics, and process variations are also taken into consideration.

39

It will be shown that many more TFs can be implemented as CTG without

increased transistor count when compared to CTGs using traditional 1-TF definition.

Moreover, the cost of certain CTGs that are 1-TF is reduced when considering the 𝑘-TF

definition.

This chapter is organized as follows. Section 3.2 provides preliminaries on 1-TFs,

including a scalable integer linear programming (ILP) based method to identify 1-TF and

assign weights. Section 3.3 proposes an ILP capable of reducing the transistor count

using rational weight values. A new method to identify and implement higher order TFs is

presented in Section 3.4. An efficient approach to implement higher order TFs using

rational weights is presented in Section 3.5. Section 3.6 provides experimental results.

Section 3.7 concludes the paper and outlines future work that includes fast synthesis of

complex circuit specifications and beyond CMOS k-TF implementations. We will build

upon existing 1-TF based synthesis methods [51-72] and 1-TF resistive-based

implementations [50, 75-79].

3.2 Preliminaries on the algorithmic infrastructure

This section provides with definitions and properties of 1-TF implemented using

integer weights. It is also outlines some algorithmic aspects for scalable identification of

threshold logic functions.

Positive (negative) function: Assume that function 𝑓 is expressed in a disjunctive

form. Function 𝑓 is positive (negative) in variable 𝑥𝑖 if the variable �̅�𝑖 (𝑥𝑖) does not appear

in the expression of 𝑓. Function 𝑓 is a positive (negative) function if it is positive (negative)

in all variables [58].

40

Unate Function (UF): Assume function 𝑓 is expressed in a disjunctive form. 𝑓 is

unate in variable 𝑥𝑖 if 𝑓 is either positive or negative in variable 𝑥𝑖 [58]. A function is a UF

if it is unate in all variables. In other words, a function 𝑓 is a UF, if and only if, for each

variable 𝑥𝑖, 𝑓𝑥𝑖 (𝑓�̅�𝑖) ⊇ 𝑓�̅�𝑖(𝑓𝑥𝑖).

Non-unate functions are called Binate Functions (BFs). All 1-TFs are UF [58].

However, higher order TFs may be BF [60].

Modified Chow’s Parameters [58]: For an 𝑛-input function, the Modified Chow’s

parameter (𝑚𝑖) of variable 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, is defined as the difference between the number

of fully specified product terms in the onset of the function that have 𝑥𝑖 = 1, and the fully

specified product terms in the onset of that have 𝑥𝑖 = 0.

Let �⃗⃗� 𝑓 = (𝑚1, … ,𝑚𝑛) be the set of Modified Chow’s parameters of all 𝑛 variables

for an 𝑛-input UF 𝑓. Function 𝑓 is positive (negative) in variable 𝑥𝑖, if and only if, 𝑚𝑖 > 0

(𝑚𝑖 < 0). Therefore, function 𝑓 is a positive (negative) UF if all members of set �⃗⃗� 𝑓 are

non-zero and positive (negative) [58].

Negation property [58]: The negation of any variable results into a new set of

weights. Let 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛) be [𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑛; 𝑤𝑇]. The negation of variable

𝑥𝑖, (𝑥𝑖 → �̅�𝑖), changes the weight configuration to [𝑤1, 𝑤2, … , −𝑤𝑖, … , 𝑤𝑛; 𝑤𝑇 − 𝑤𝑖].

In order to determine if a function is a 1-TF, we form an ILP constraint per input

pattern using the right-hand side of equation (3.1) according to the binary evaluation of

the function for the pattern [58]. However, the ILP requires more variables in order to

implement TFs with low hardware overhead. The objective function in the ILP must

minimize the absolute value of the weights, some of which may be negative. Negative

weights can be assigned using three variables for each weight. (Details are omitted for

41

brevity.) However, such an approach introduces unnecessarily many variables and

impacts ILP scalability. The following present an improved ILP where only one variable

per weight is needed.

Let 𝑓 be the examined non-positive UF. First, we find the Modified Chow’s

parameter for every variable. Every variable 𝑥𝑖 that corresponds to negative weight 𝑤𝑖

has a negative Modified Chow’s parameter. Such variables must be complemented. This

implies that the weight 𝑤𝑖 will be activated when 𝑥𝑖 = 0. The new set of input variables

ensures that all weights are positive.

Next, we form an ILP for function 𝑓 with the new set of variables, one variable per

weight and an additional variable for the threshold weight. There is one constraint per

input pattern to satisfy the functionality, and one constraint per variable that bind the range

of that variable. The ILP objective minimizes the sum of the variables. The weight

configuration is assigned from the ILP solution and the negation property. The following

example illustrates the approach.

Example 1: Consider the three-input function 𝐹1 = 𝑥2 + 𝑥1𝑥3
′ . In 𝐹1, �⃗⃗� 𝐹1 =

(1,3, −1). Parameter 𝑚3 is negative, and hence variable 𝑥3 must be complemented before

forming the ILP. Table 3.1 lists the inequalities extracted from the truth value of 𝐹1 using

equation (3.1). The first three columns show the truth table of function 𝐹1. Column four

shows the linear inequalities. Weights 𝑤1 and 𝑤2 are activated when 𝑥1 = 1 and 𝑥2 = 1,

while weight 𝑤3 is activated when 𝑥3 = 0. The last row shows the objective function that

minimizes quantity 𝑤𝑇 + ∑ 𝑤𝑖
3
𝑖=1 . For the set of constraints in Table 3.1, [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[1,2,1; 2] is an optimum solution. Hence, 𝐹1 is a 1-TF and its weight configuration, using

the negation property, is 𝑤𝐹1 = [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [1,2, −1; 1]. □

42

The performance of the CMOS transistor which implements a weight is impacted

by circuit parasitics, process variations, and aging. Transistor aging is caused by Bias

Temperature Instability (BTI), dielectric breakdown, and hot career injections [72-74] that

shift the threshold voltage and decrease the current through the transistors [80-81]. This

is called weight aging. Process variations impact transistor width and length, and

therefore they may modify the designed weight. However, all CTG weights will be shifted

by the same factor and in the same direction, and therefore weight assignment is not that

sensitive to process variations. Finally, parasitics are evaluated accurately with post-

layout simulations.

Let value 𝐶 denote the maximum weight deviation due to the above factors. It is

obtained with SPICE simulations on the predetermined technology as explained in

Section 2.6. Let |𝑤| denote the absolute value of weight 𝑤. The pattern dependent

inequalities of the ILP are rewritten as ∑ (𝑤𝑖 − 𝐶 ∙ |𝑤𝑖|) ∙ 𝑥𝑖 > 𝑤𝑇 + 𝐶 ∙ |𝑤𝑇|𝑖 when function

Table 3.1. The Linear Inequalities for 𝐹1 = 𝑥2 + 𝑥1𝑥3
′

with Activation Signals 𝑥1, 𝑥2, and 𝑥3
′ .

Truth Table

Inequalities Input Value
(𝑥1𝑥2𝑥3)

𝐹1

𝑃0 000 0 𝑤3 < 𝑤𝑇

𝑃1 001 0 0 < 𝑤𝑇

𝑃2 010 1 𝑤2 + 𝑤3 ≥ 𝑤𝑇

𝑃3 011 1 𝑤2 ≥ 𝑤𝑇

𝑃4 100 1 𝑤1 + 𝑤3 ≥ 𝑤𝑇

𝑃5 101 0 𝑤1 < 𝑤𝑇

𝑃6 110 1 𝑤1 +𝑤2 + 𝑤3 ≥ 𝑤𝑇

𝑃7 111 1 𝑤1 + 𝑤2 ≥ 𝑤𝑇

Minimize: 𝑤𝑇 +∑𝑤𝑖

3

𝑖=1

43

evaluates to 1, and as ∑ (𝑤𝑖 + 𝐶 ∙ |𝑤𝑖|) ∙ 𝑥𝑖 < 𝑤𝑇 − 𝐶 ∙ |𝑤𝑇|𝑖 for the remaining input

patterns. The above may only change the total sum of weights. For example, the weight

configuration in Example 1 considering 𝐶 = 5% becomes 𝑤 = [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[2,4, −2; 1]. This weight assignment results in a reliable CTG implementation. □

3.3 Efficient design of first-order threshold functions based on rational

weights

The previous section described an ILP formulation that implements 1-weight by

assigning an integer value 𝑤 to each input variable and the variable for the threshold.

This section shows how to form an ILP capable of implementing weights that are fractions

𝑤
𝑙⁄ , where 𝑤 and 𝑙 are integers, and is an extension of the preliminary results presented

in [82] for the special case where 𝑙 = 2.

 In contrast to the ILP method in the previous section, each weight value assigned

by the new ILP is different from the implemented weight. The novelty is that the ILP

assigns an integer value 𝑤 to each variable so that the value of the respective weight

when evaluating the TF (as in Equation 1) is 𝑤 𝑙⁄ for some predetermined integer 𝑙. The

flexibility of implementing rational weights results into significant reduction in the transistor

count of CTGs with subsequent reduction in power and delay.

In CTGs that have been identified as 1-TF, each integer weight is implemented by

a component that is connected to the components for the other weights, including the

threshold. Each input weight component is controlled by an input variable. Such weights

and components are called 1𝑠𝑡-order weights (or 1-weight) and 1𝑠𝑡-order components,

respectively.

44

Let 𝑋 denote the width of a minimum size transistor and 𝐼 the active current through

this transistor. The CTG implementation in [53] implements an integer 1-weight with value

𝑤 using either a single NMOS (or PMOS) transistor with width 𝑤 ∙ 𝑋 or 𝑤 minimum size

transistors which are connected in parallel. The active current through this component is

𝑤 ∙ 𝐼. A transistor (weight) is active when its corresponding input is set to 1 (or 0 in case

of using PMOS).

The proposed approach implements a rational 1-weight using multiple minimum

size transistors connected in series. A 1-weight with value 𝑤 𝑙⁄ is implemented with 𝑙

NMOS (or PMOS) transistors which are connected in series. The transistor gates are

connected to each other and are controlled by the corresponding input. The width of each

transistor is 𝑤 ∙ 𝑋 and the active current through them is
𝑤

𝑙
∙ 𝐼. The transistor count of this

component is 𝑙 times the transistor count of a 1𝑠𝑡-order component that implements an

integer 1-weight with value 𝑤.

Figure 3.1 shows the 1𝑠𝑡-order components that implement rational 1-weights with

value 1 𝑗⁄ , for 1 ≤ 𝑗 ≤ 𝑙, given a predetermined integer 𝑙. The figure also shows the active

current through them. The active current decreases when 𝑗 increases. It is true that adding

a transistor increases the capacitance of that component, and this increases the power

dissipation. However, when a TF is implemented by rational components of Figure 3.1,

the total transistor count of the gate reduces, and this reduces significantly the power

dissipation of the gate.

Let 𝑥𝑖, 𝑖1 = 1,… , 𝑛, be binary input variables, 𝑗, 𝑤𝑖
𝑗
, and 𝑤𝑇

𝑗
 integer values. 𝑤𝑖

𝑗
 the

1-weight component with value 𝑤𝑖
𝑗
/𝑗 corresponding to the 𝑖𝑡ℎ input, 1 ≤ 𝑗 ≤ 𝑙, and 𝑤𝑇

𝑗
 the

45

threshold weight component with value 𝑤𝑇
𝑗
/𝑗. In the proposed method, the ILP assigns 𝑙

different integer weights 𝑤𝑖
𝑗
 for each input 𝑖, 1 ≤ 𝑗 ≤ 𝑙, but the value of each 𝑤𝑖

𝑗
 is

1

𝑗
𝑤𝑖
𝑗

when the TF is evaluated. When the TF is evaluated, the total value for input variable 𝑥𝑖

is ∑
1

𝑗
𝑤𝑖
𝑗𝑙

𝑗=1 . Likewise, the ILP assigns 𝑙 different integer weights 𝑤𝑇
𝑗
 for the threshold, 1 ≤

𝑗 ≤ 𝑙. However, the value of each 𝑤𝑇
𝑗
 is

1

𝑗
𝑤𝑇
𝑗
 when the TF is evaluated. The total value for

the threshold weight 𝑤𝑇 is ∑
1

𝑗
𝑤𝑇
𝑗𝑙

𝑗=1 when the TF is evaluated.

Based on the above, an 𝑛-input 1-TF 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is defined as

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =

{

1 𝑖𝑓 ∑((∑

1

𝑗
𝑤𝑖
𝑗

𝑙

𝑗=1

) ∙ 𝑥𝑖)

𝑛

𝑖=1

≥∑
1

𝑗
𝑤𝑇
𝑗

𝑙

𝑗=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.3)

Although a 1-weight component with value 𝑤 𝑙⁄ requires a significant number of

transistors, the flexibility of allowing rational weights allows the ILP to assign values to the

respective variables so that the sum of the values assigned is much lower than the sum

of values for the ILP that is restricted to integer weights. That way, the transistor count for

Figure 3.1. 1𝑠𝑡-order components that implement rational 1-

weights with value 1 𝑗⁄ , for 1 ≤ 𝑗 ≤ 𝑙.

46

the CTG may be reduced.

Before we elaborate on the details in forming the ILP of a function, we show that

we have identified 1-TFs whose transistor count is reduced when considering rational

weights due to the flexibility in selecting the appropriate weight values. The following

shows that a 1-TF with integer weights can be implemented with less number of

transistors when considering rational weights when 𝑙 = 2, i.e., non-integer weights that

are multiples of 0.5. It also shows that the transistor count reduces further when 𝑙 = 4,

i.e., non-integer weights that are multiples of 0.25.

Example 2: Consider the 5-variable function 𝐹2 = 𝑥2𝑥5
′ + 𝑥1

′𝑥2𝑥4
′ + 𝑥1

′𝑥3𝑥5
′ +

𝑥1
′𝑥4
′𝑥5

′ . It is a TF with optimum integer weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−7,9,2, −5,−12;−4] using the ILP in Section 3.2 and considering 𝐶 = 5%. The transistor

count for implementing input weights is 39. However, when 𝑙 = 2 (weights are multiple of

0.5), this function can be implemented as 𝑤′ = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1, 𝑤4
2, 𝑤5

1, 𝑤5
2; 𝑤𝑇

1] = [−4,5,1,

−2,−1, −6,−1;−2]. The total transistor count reduces to 24. Moreover, when 𝑙 = 4,

weight set changes to 𝑤′′ = [𝑤1
1, 𝑤1

4, 𝑤2
1, 𝑤2

4, 𝑤3
2, 𝑤4

1, 𝑤4
4, 𝑤5

1; 𝑤𝑇
1] = [−2,1,2,1,1, −1,−1,

−3;−1], and the total transistor count reduces to 23.

Figure 3.2 shows the CTG implementation of 𝐹2 with integer weights [53] and the

proposed method when 𝑙 = 4. In Figure 3.2, 𝑋 denotes the size of a minimum width

transistor to implement a unit integer 1-weight. □

The proposed ILP formulation is an extension of the one in [58] that was explained

in Section 3.2. It has 2𝑛 + 𝑙(𝑛 + 1) constraints with 𝑙(𝑛 + 1) unknown variables. There is

a constraint per input pattern to satisfy the functionality, and 𝑙(𝑛 + 1) constraints that

determine the range of each variable. The weight at input 𝑖 and the threshold weight are

47

∑
1

𝑗
𝑤𝑖
𝑗𝑙

𝑗=1 and ∑
1

𝑗
𝑤𝑇
𝑗𝑙

𝑗=1 , respectively, for some integer value 𝑗 and predetermined 𝑙.

In addition, the ILP must minimize the transistor count considering that any rational

1-weight with value 𝑤 𝑙⁄ requires 𝑙 times more transistors than any integer 1-weight with

(a)

(b)

Figure 3.2. The CTG implementation for function 𝐹2 in example

3 when using (a) integer weights [53] (b) rational 1-weights with

value 𝑤 𝑗⁄ , for when 1 ≤ 𝑗 ≤ 𝑙 and 𝑙 = 4.

48

value 𝑤. Therefore, the ILP must minimize quantity

∑𝑗𝑤𝑇
𝑗

𝑙

𝑗=1

+∑(∑𝑗𝑤𝑖
𝑗

𝑙

𝑗=1

)

𝑛

𝑖=1

 (3.4)

The example below illustrates the ILP-based approach to identify a 1-TF and

assign optimum weights that are multiples of 0.5 (𝑙 = 2).

Example 3: Consider UF 𝐹3 = 𝑥1 + 𝑥2𝑥3. Table 3.2 lists the ILP inequalities of 𝐹3

based on the proposed ILP framework and 1-TF formulation in equation (3.3) considering

𝑙 = 2. The last row shows the objective function of ILP-solver introduced in equation (3.4).

For the set of constraints listed in Table 3.2, 𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1; 𝑤𝑇
1, 𝑤𝑇

2] = [2,1,1; 1,1]

is an optimum solution for 𝐹3. □

For non-positive UF 𝑓, in order to avoid implementing the negative weights, we

Table 3.2. The Truth Table and the ILP Constraints for UF 𝐹3.

(0 < 𝑤𝑇
1 + 0.5 ∙ 𝑤𝑇

2 ⟺ 0 < 2 ∙ 𝑤𝑇
1 + 𝑤𝑇

2)

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3)

𝐹3

𝑃0 000 0 0 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃1 001 0 2𝑤3
1 + 𝑤3

2 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃2 010 0 2𝑤2
1 + 𝑤2

2 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃3 011 1 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃4 100 1 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃5 101 1 2𝑤1
1 + 𝑤1

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃6 110 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃7 111 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

∀ 𝑤𝑥
𝑦
∈ {𝑤𝑇

1 , 𝑤1
1, 𝑤2

1, 𝑤3
1}: 0 ≤ 𝑤𝑥

𝑦
≤ 10

∀ 𝑤𝑥
𝑦
∈ {𝑤𝑇

2, 𝑤1
2, 𝑤2

2, 𝑤3
2}: 𝑤𝑥

𝑦
∈ {0, 1}

minimize: 𝑤𝑇
1 + 2 ∙ 𝑤𝑇

2 +∑(𝑤𝑖
1 + 2 ∙ 𝑤𝑇

2)

3

𝑖=1

49

form the above mentioned ILP by using the method explained in Section 3.2.

3.4 Higher-order implementation of threshold functions using integer

weights

A small fraction of binary functions are 1-TFs [50] and can be implemented as a

single TG. In order to identify more threshold functions and increase the impact of TFs in

digital synthesis, we consider the generalized 𝑘-TF definition described in equation (3.2).

Preliminary results for the special case where 𝑘 = 2 were presented in [83]. This section

shows TF implementations using integer weights. The next section shows that the

transistor count can be further reduced using rational weights.

A 𝑘-weight is implemented with 𝑘 NMOS (or PMOS) transistors of the same size

(according to the respective weight) which are connected in series, and the transistor

gates are connected to 𝑘 CTG inputs. The size of each transistor in a component that

implements a 𝑘-weight with value 𝑤 is set to 𝑘 ∙ 𝑤 ∙ 𝑋 to keep the active current of a unit

𝑘-weight equal to the active current of a unit 1-weight. Thus, the total transistor count of

a 𝑘-weight component is 𝑘2 times more than the transistor count of a 1-weight that

implements the same weight value. This transistor count ratio is called the penalty factor

and is taken into consideration to force the ILP-solver to find the minimum possible

transistor count. Such gates are called 𝑘-CTGs. Figure 3.3 shows the 𝑘-weight

components, their transistor count, and active current through them for 1 ≤ 𝑘 ≤ 4.

The approach is presented in two steps. First, we consider UFs for which the ILP

does not use many variables. Then, we present an ILP for BFs. The latter requires more

variables and is less scalable.

50

An ILP formulation is presented to implement a UF as a 𝑘-CTG, as in equation

(3.2) with minimum transistor count. The proposed ILP is an improvement of [60]. The

ILP contains 2𝑛 + 𝑛′ + 1 constraints with 𝑛′ + 1 variables, where 𝑛′ = ∑ (
𝑛
𝑚
)𝑘

𝑚=1 is the

total number of 𝑚-weights, 1 ≤ 𝑚 ≤ 𝑘. There is a constraint per input pattern to satisfy

the functionality, and 𝑛′ + 1 constraints that bind the range of threshold and each input

weight. Once a UF 𝑓 is given, the Modified Chow’s parameters [58] for all inputs and

groups of inputs determine the negative weights. To form an efficient ILP, every product

of 𝑚 inputs 𝑥𝑖1 ∙ 𝑥𝑖2 ∙ … ∙ 𝑥𝑖𝑚, 1 ≤ 𝑚 ≤ 𝑘, that activates an 𝑚-weight with a negative

Modified Chow’s parameter must be complemented. A 1-weight (𝑚-weight when 𝑚 = 1)

with negative Modified Chow’s parameter is activated as in 1-TF. A 𝑚-weight, 2 ≤ 𝑚 ≤ 𝑘,

with negative Modified Chow’s parameter will be activated when at least one of its input

is set to 0. The ILP with the appropriate activation signals determines whether function 𝑓

is a 𝑘-TF. The penalty factors appear as the coefficient of weights in the objective function

of the ILP. The following objective function minimizes the 𝑘-CTG transistor count:

Figure 3.3. 𝑘-weight components for 1 ≤ 𝑘 ≤ 4.

51

𝑤𝑇 + 1 ∙ ∑ 𝑤𝑖1

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑ 𝑤𝑖1,𝑖2

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘2 ∙ ∑ ∑ … ∑ 𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 (3.5)

The weight configuration will then be assigned using the ILP solution and the

negation property. The following examples illustrate the concept of 𝑘-TF and the ILP-

based method to identify a 𝑘-TF.

Example 4: Consider a 4-input UF 𝐹4 = 𝑥1
′ + 𝑥3𝑥2

′ + 𝑥3𝑥4
′ with a set of all unknown

weights 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇]. The set of Modified Chow’s

parameters of either an input or a pair of inputs that activates a weight is �⃗⃗� 𝐹1 =

(−5,−1,+3,−1, −9,−5,−9,−5, −7,−5). To form an efficient ILP, first every product term

(activation signal) with negative 𝑚𝑖 must be complemented. In this example, all inputs

and pairs of inputs must be complemented except 𝑥3.

Table 3.3 lists the inequalities of 𝐹4 based on the 2-TF definition and by considering

positive weights. For an input pattern, weight 𝑤 (either 1-weight or 2-weight) appears in

the inequality when its activation signal evaluates to 1. The objective function for a 2-TF

is to minimize quantity 𝑤𝑇 + 1 ∙ ∑ 𝑤𝑖
4
𝑖=1 + 4 ∙ ∑ ∑ 𝑤𝑖,𝑗

4
𝑗=2

3
𝑖=1 . For the set of constraints listed

in Table 3.3, an optimum solution is 𝑤 = [3, 0, 2, 0, 0, 0, 0, 1, 0, 1; 2]. Using the negation

property, 𝐹4 = [−3,0,2,0,0,0,0,−1,0, −1;−2]. When considering 𝐶 = 5% weight variation,

the weight configuration becomes 𝑤 = [−6,0,4,0,0,0,0,−2,0, −2;−5]. □

Example 5: Function 𝐹5 = 𝑥1𝑥2
′ + 𝑥1

′𝑥2 + 𝑥1𝑥2𝑥3
′ is neither an 1-TF nor 2-TF. It is a

3-TF and the weight configuration to implement as a 3-CTG is 𝑤 = [𝑤1, 𝑤2, 𝑤1,2,3; 𝑤𝑇] =

[2 , 2 , −4 ; 1] considering 5% weight variation (𝐶 = 5%). □

The solutions for functions 𝐹4 and 𝐹5 in Examples 4 and 5 illustrate that many 1-

weight, 2-weights, and 3-weights are assigned to zero. This means that a 𝑘-TF does not

52

necessarily need all 𝑘-weight components when implementing as a 𝑘-CTG. Moreover,

the transistor count, and hence, the hardware requirement of many existing threshold

functions (1-TFs) is reduced using higher order components. The following show that a

1-TF can be implemented as proposed 2-CTG with lower cost than the respective 1-CTG.

Example 6: Consider the 4-variable function 𝐹6 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1. It is

a 1-TF with optimum weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = [4,4,6,2; 7] using the

ILP in [58]. The transistor count or the total sum of threshold and input weights of 1-CTG

is 23. Let 𝑋 denote the area of a unit 1-weight transistor. The total area of the input

Table 3.3. The Truth Table and ILP Constraints for 𝐹4 Considering All

Inputs and Pairs of Inputs Are Complemented Except 𝑥3.

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3𝑥4)

𝐹4

𝑃0 0000 1 𝑤1 + 𝑤2 +𝑤4 + 𝑤1,2 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇

𝑃1 0001 1 𝑤1 +𝑤2 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 +𝑤2,3 +𝑤2,4 +𝑤3,4 ≥ 𝑤𝑇

𝑃2 0010 1 𝑤1 + 𝑤2 + 𝑤3 +𝑤4 + 𝑤1,2 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇

𝑃3 0011 1 𝑤1 +𝑤2 + 𝑤3 + 𝑤1,2 + 𝑤1,3 +𝑤1,4 +𝑤2,3 +𝑤2,4 ≥ 𝑤𝑇

𝑃4 0100 1 𝑤1 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇

𝑃5 0101 1 𝑤1 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤3,4 ≥ 𝑤𝑇

𝑃6 0110 1 𝑤1 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇

𝑃7 0111 1 𝑤1 + 𝑤3 +𝑤1,2 +𝑤1,3 + 𝑤1,4 ≥ 𝑤𝑇

𝑃8 1000 0 𝑤2 + 𝑤4 +𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇

𝑃9 1001 0 𝑤2 + 𝑤1,2 + 𝑤1,3 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇

𝑃10 1010 1 𝑤2 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 ≥ 𝑤𝑇

𝑃11 1011 1 𝑤2 + 𝑤3 +𝑤1,2 + 𝑤2,3 + 𝑤2,4 ≥ 𝑤𝑇

𝑃12 1100 0 𝑤4 +𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4 < 𝑤𝑇

𝑃13 1101 0 𝑤1,3 + 𝑤2,3 + 𝑤3,4 < 𝑤𝑇

𝑃14 1110 1 𝑤3 +𝑤4 + 𝑤1,4 +𝑤2,4 +𝑤3,4 ≥ 𝑤𝑇

𝑃15 1111 0 𝑤3 < 𝑤𝑇

minimize: 𝑤𝑇 + 1 ∙∑𝑤𝑖

4

𝑖=1

+ 4 ∙∑ ∑ 𝑤𝑖,𝑗

4

𝑗=i+1

3

𝑖=1

53

networks is 23 ∙ 𝑋.

However, this function can be implemented as a 2-CTG with weight configuration

𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇] = [2, 2, 2, 0, 0, 0, 0, 0, 0, 2; 3]. Each 2-

weight requires 4 more times the transistor count of a 1-weight that implements the same

weight. The transistor count reduces to (2 + 2 + 2) + 4 ∙ (2) + (3) = 17, and thus, the

total area of the input networks of the 2-CTG reduces to 17 ∙ 𝑋.

Figure 3.4 shows the 1-CTG [53] and proposed 2-CTG implementations of 𝐹6 and

the size of transistors that implements 1-weights and 2-weights considering 𝑋 as the size

of a minimum width transistor to implement a unit 1-weight. The length of all the PMOS

and NMOS transistors is the same and determined by the used technology. □

The remaining of the section considers BFs. The correlation between the sign of

the Modified Chow’s parameters and the sign of weights only holds for UFs. The ILP for

(a) (b)

Figure 3.4. The CTG implementation for function 𝐹6 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1

with (a) 1-CTG as 1-TF [53] (b) proposed 2-CTG as 2-TF [82].

54

a BF works as in [60] and contains 2𝑛 + 3(𝑛 + 𝑛′ + 1) constraints with 3(𝑛 + 𝑛′ + 1)

variables, where 𝑛′ = (
𝑛
2
) is the total number of 2-weights. Each weight can be either

positive or negative. The objective function is to minimize quantity

|𝑤𝑇| + 1 ∙ ∑|𝑤𝑖1|

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑|𝑤𝑖1,𝑖2|

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘2 ∙ ∑ ∑ … ∑ |𝑤𝑖1,𝑖2,…,𝑖𝑘|

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

 (3.6)

where |𝑤𝑥|, denotes the absolute value for each weight 𝑤𝑥, and 𝑤𝑥 ∈ {𝑤𝑇 , 𝑤𝑖, 𝑤𝑖,𝑗}. Let

y𝑥 be a binary variable, and 𝑈 denote a predetermined upper bound of |𝑤𝑥| for each

weight 𝑤𝑥. For each 𝑤𝑥, two variables 𝑤𝑥
+ and 𝑤𝑥

− are used, and the bound on the

absolute value 𝑤𝑥 is enforced using the following constraints:

{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}

 (3.7)

Then 𝑤𝑥 = 𝑤𝑥
+ − 𝑤𝑥

−. In addition, for CTG the ILP should minimize quantity

𝑤𝑇
+ + 𝑤𝑇

− + ∑(𝑤𝑖1
+ + 𝑤𝑖1

−)

𝑛

𝑖1=1

+ 4 ∙ ∑ ∑(𝑤𝑖1,𝑖2
+ +𝑤𝑖1,𝑖2

−)

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+

(3.8)

𝑘2 ∙ ∑ ∑ … ∑ (𝑤𝑖1,𝑖2,…,𝑖𝑘
+ + 𝑤𝑖1,𝑖2,…,𝑖𝑘

−)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

The example below illustrates the ILP-based approach to identify a BF as a 2-TF

and assign optimum weights to implement 2-CTG with minimum possible transistor count.

Example 7: Consider BF 𝐹7 = 𝑥1𝑥3
′ + 𝑥2𝑥3. Table 3.4 lists the ILP inequalities of

𝐹7 based on the 𝑘-TF formulation in equation (3.2) when 𝑘 = 2. The last two rows show

the constraints and the objective function of ILP-solver introduced in equations (3.7) and

(3.8) to assign negative weights and minimize the sum of weights. For the set of

constraints listed in Table 3.4, 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤1,2, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = [2,0,0,0, −2, 2; 1] is an

55

optimum solution for 𝐹7 when considering 5% weight variation. □

3.5 Efficient design of higher-order threshold functions using rational

weights

This section applies the method of Section 3.3 on high order TFs so that their

implementation has less transistor count because of rational weight assignment.

In 𝑘-TFs, each weight component may be controlled by more than one input. When

𝑙 ≤ 𝑘, a 𝑘-weight with value 𝑤/𝑙 is implemented with 𝑘 transistors connected in series

each with size
𝑤∙𝑘

𝑙
∙ 𝑋. In this case, the transistor count is

𝑤

𝑙
∙ 𝑘2 times the transistor count

of a unit integer 1-weight component.

Table 3.4. The Truth Table and the ILP Constraints for BF 𝐹7.

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3)

𝐹7

𝑃0 000 0 0 < 𝑤𝑇
+ − 𝑤𝑇

−

𝑃1 001 0 𝑤3
+ − 𝑤3

− < 𝑤𝑇
+ −𝑤𝑇

−

𝑃2 010 0 𝑤2
+ − 𝑤2

− < 𝑤𝑇
+ −𝑤𝑇

−

𝑃3 011 1 𝑤3
+ − 𝑤3

− + 𝑤2
+ − 𝑤2

− +𝑤2,3
+ −𝑤2,3

− ≥ 𝑤𝑇
+ − 𝑤𝑇

−

𝑃4 100 1 𝑤1
+ − 𝑤1

− ≥ 𝑤𝑇
+ − 𝑤𝑇

−

𝑃5 101 0 𝑤3
+ − 𝑤3

− + 𝑤1
+ − 𝑤1

− +𝑤1,3
+ −𝑤1,3

− < 𝑤𝑇
+ − 𝑤𝑇

−

𝑃6 110 1 𝑤2
+ − 𝑤2

− + 𝑤1
+ − 𝑤1

− +𝑤1,2
+ −𝑤1,2

− ≥ 𝑤𝑇
+ − 𝑤𝑇

−

𝑃7 111 1
𝑤3

+ − 𝑤3
− + 𝑤2

+ −𝑤2
− + 𝑤1

+ − 𝑤1
− +𝑤2,3

+ − 𝑤2,3
− + 𝑤1,3

+ − 𝑤1,3
−

+ 𝑤1,2
+ − 𝑤1,2

− ≥ 𝑤𝑇
+ − 𝑤𝑇

−

∀ 𝑤𝑥
+, 𝑤𝑥

− ∈ {𝑤𝑇
+, 𝑤𝑇

−, 𝑤1
+, 𝑤1

−, 𝑤2
+, 𝑤2

−, 𝑤3
+, 𝑤3

−,

𝑤1,2
+, 𝑤1,2

−, 𝑤1,3
+, 𝑤1,3

−, 𝑤2,3
+, 𝑤2,3

−}:
{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}

minimize: 𝑤𝑇
+ + 𝑤𝑇

− + ∑ (𝑤𝑖
+ + 𝑤𝑖

−)3
𝑖=1 + 4 × ∑ ∑ (𝑤𝑖,𝑗

+ +𝑤𝑖,𝑗
−)3

𝑗=𝑖+1
2
𝑖=1

56

For the case when 𝑙 > 𝑘, a 𝑘-weight can be implemented with 𝑙 transistors

connected in series each with size 𝑤 ∙ 𝑋. In this case, the transistor count of this

component is 𝑙 ∙ 𝑤 times the transistor count of a unit integer 1-weight component.

The ILP will select the implementation with the smallest penalty factor in order to

find the minimum possible transistor count. Figure 3.5 considers 𝑙 = 5, and shows the 𝑘-

weights for 𝑘 = 2 and 𝑘 = 3. In particular, it shows all minimum penalty factor components

for 𝑘 = 2 and 1 < 𝑗 ≤ 5 as well as for 𝑘 = 3 and 1 < 𝑗 ≤ 5.

Let 𝐼 denote the active current through a minimum size transistor that implements

a unit integer 1-weight. The active current through a rational 𝑘-weight component with

value 𝑤/𝑙 is
𝑤

𝑙
∙ 𝐼.

Figure 3.5. Rational 𝑘-weights components with values 1/𝑗 for 2 ≤ 𝑘 ≤

3 and 1 ≤ 𝑗 ≤ 5.

57

Let 𝑤𝑖1,𝑖2,…,𝑖𝑚
1 be an integer value for a weight component that is activated by 𝑚

inputs 𝑖1, 𝑖2, …, and 𝑖𝑚. Let also 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

∈ {0,1, … , 𝑗 − 1}, 2 < 𝑗 ≤ 𝑙, denote a rational 𝑚-

weight with value 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

/𝑗 corresponding to the group of 𝑚 inputs 𝑖1, 𝑖2, …, and 𝑖𝑚, and

1 ≤ 𝑚 ≤ 𝑘. The 𝑚-weight 𝑤𝑖1,𝑖2,…,𝑖𝑚 is represented by ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗𝑙

𝑗=1 in the definition of

the TF. Based on the above,

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =

{

1 𝑖𝑓 ∑ ((∑

1

𝑗
𝑤𝑖1
𝑗

𝑙

𝑗=1

) ∙ 𝑥𝑖1)

𝑛

𝑖1=1

+⋯+

 ∑ ∑ … ∑ ((∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑘
𝑗

) ∙ 𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑘

𝑙

𝑗=1

)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

≥∑
1

𝑗
𝑤𝑇
𝑗

𝑙

𝑗=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.9)

where 𝑥𝑖1, 𝑖1 = 1,… , 𝑛, are binary input variables, 𝑗, 𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗

, and 𝑤𝑇
𝑗
 are integer

values, and 𝑤𝑇
𝑗
 is the threshold weight with value 𝑤𝑇

𝑗
/𝑗.

Before we elaborate on the details in forming the ILP of a function, we show that

we have identified 𝑘-TFs whose transistor count is reduced when considering rational

weights due to the flexibility in selecting the appropriate weight values.

Example 8: Consider again function 𝐹5 in Example 5. The weight configuration

changes to 𝑤 = [𝑤1
1, 𝑤1

2, 𝑤2
1, 𝑤2

2, 𝑤3,4,5
1 ; 𝑤𝑇

1] = [1, 1, 1, 1, 1; 2] with transistor count 17 and

𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3,4,5
3 ; 𝑤𝑇

1, 𝑤𝑇
3] = [1, 1, 2; 1,1] with transistor count 12 when 𝑙 is 2 and 3,

respectively. The transistor count may decrease when 𝑙 increases. □

When comparing to a minimum size transistor as a unit integer 1-weight, the

component that implements any rational 𝑘-weight with value 𝑤/𝑙, for 𝑘 > 1 or 𝑙 > 1,

58

imposes more transistor count. Therefore, an effective ILP-based framework is needed

to identify a TF and assign appropriate weights using minimum possible number of non-

integer higher order weights.

The ILP formulations to identify and implement either a UF or a BF as a 𝑘-CTG

with minimum transistor count is an extension of the formulations presented in Section

3.4. In particular, we start with UF, and then we present the ILP for BF.

The ILP formulation to identify and implement a UF as a 𝑘-CTG using non-integer

weights has 2𝑛 + 𝑙(𝑛′ + 1) constraints with 𝑙(𝑛′ + 1) variables, where 𝑛′ = ∑ (
𝑛
𝑖
)𝑘

𝑖=1 is the

total number of 𝑚-weights, 1 ≤ 𝑚 ≤ 𝑘. The Modified Chow’s parameters of all groups of

𝑚 inputs determine the negative weights (including all 𝑚-weights). To form an efficient

ILP, every product of 𝑚 inputs (𝑥𝑖1 ∙ 𝑥𝑖2 ∙∙∙ 𝑥𝑖𝑚), that activates a 𝑚-weight, with a negative

Modified Chow’s parameter must be complemented. An 𝑚-weight with negative Modified

Chow’s parameter will be activated when at least one of 𝑥𝑖1, 𝑥𝑖2, and 𝑥𝑖𝑚 is set to 0. The

ILP with the appropriate activation signals determines whether function 𝑓 is a 𝑘-TF.

For each input pattern, any 𝑚-weight 𝑤𝑖1,𝑖2,…,𝑖𝑚, 1 ≤ 𝑚 ≤ 𝑘, in Section 3.4 is

substituted with 𝑙 unknown variables so that 𝑤𝑖1,𝑖2,…,𝑖𝑚 = ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗𝑙

𝑗=1 . Likewise, the

threshold weight is replaced by equation (3.5). In addition, the ILP must minimize the

transistor count considering that any 𝑚-weight with value 𝑤/𝑗 requires 𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑚2

𝑗
∙

𝑓(𝑘 − 𝑗) multiplied by the minimum size transistor that implements a unit integer 1-weight,

where 𝑓(𝑡) is the unit step function that evaluates to 1 when 𝑡 ≥ 0, and evaluates to 0

when 𝑡 < 0. Therefore, the ILP must minimize quantity

59

∑𝑗 ∙ 𝑤𝑇
𝑗

𝑙

𝑗=1

+ ∑ (∑𝑗 ∙ 𝑤𝑖1
𝑗

𝑙

𝑗=1

) +⋯+

𝑛

𝑖1=1

(3.10)

+ ∑ ∑ … ∑ (∑(𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑘2

𝑗
∙ 𝑓(𝑘 − 𝑗)) ∙ 𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗

𝑙

𝑗=1

)

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

The weight configuration will then be assigned using the solution from ILP and the

negation property. The example below illustrates the ILP-based approach to identify a 2-

TF and assign optimum half integer weights (𝑙 = 2).

Example 9: Consider again the UF 𝐹4 in Example 4 with a set of non-zero integer

weights 𝑤 = [𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] = [−6,4, −2,−2;−5]. Let each input weight variable in

weight set 𝑤 is replaced by ∑
1

𝑗
𝑤𝑖1,𝑖2,…,𝑖𝑚
𝑗2

𝑗=1 . Likewise, the threshold variable 𝑤𝑇 is

replaced by ∑
1

𝑗
𝑤𝑇
𝑗2

𝑗=1 . Table 3.5 lists the inequalities of 𝐹4. The last row shows the

objective function of ILP-solver introduced in equation (3.10). For the set of constraints

listed in Table 3.5, 𝑤 = [𝑤1
1, 𝑤2

1, 𝑤3
1, 𝑤4

1; 𝑤𝑇
1, 𝑤𝑇

2] = [2,1,1; 1,1] is an optimum solution

for 𝐹4. □

Many of the constraints in the ILP are redundant. We use the simplification method

which is the extension of the one in [70] to eliminate redundant constraints which makes

the ILP formulation smaller and possibly faster to solve. As an example consider the UF

in Example 9. If 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 +𝑤𝑇

2, any constraint containing 2𝑤1
1 + 𝑤1

2 must be

greater than 2𝑤𝑇
1 + 𝑤𝑇

2. Therefore, the last 3 constraints are redundant and can be

removed from ILP.

The correlation between the sign of the Modified Chow’s parameters and the sign

60

of weights only holds for UFs. The ILP formulation to identify and implement a BF as a 𝑘-

CTG using non-integer weights contains 3 times more unknown variables that the one for

a UF. Each weight can be either positive or negative. The objective function is to minimize

the sum of absolute value of variables that are implemented using equation (3.7). In

addition, for 𝑘-CTG the ILP should minimize quantity

∑𝑗(𝑤𝑇
𝑗+
+ 𝑤𝑇

𝑗−
)

𝑙

𝑗=1

+ ∑ (∑𝑗 (𝑤𝑖1
𝑗 +
+ 𝑤𝑖1

𝑗 −
)

𝑙

𝑗=1

) +⋯

𝑛

𝑖1=1

(3.11)

+ ∑ ∑ … ∑ (∑(𝑗 ∙ 𝑓(𝑗 − 𝑘) +
𝑘2

𝑗
∙ 𝑓(𝑘 − 𝑗))(𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗 +
+𝑤𝑖1,𝑖2,…,𝑖𝑘

𝑗 −
𝑙

𝑗=1

))

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

The simplification method in [70] is not extendable to BFs. Therefore, the ILP for a

BF slower than the one for a UF. The example below illustrates the ILP-based approach

to identify a BF as a 2-TF and assign optimum integer and non-integer weights to

Table 3.5. The Truth Table and the ILP Constraints for UF 𝐹4.

(0 < 𝑤𝑇
1 + 0.5 ∙ 𝑤𝑇

2 ⟺ 0 < 2 ∙ 𝑤𝑇
1 + 𝑤𝑇

2)

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3)

𝐹4

𝑃0 000 0 0 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃1 001 0 2𝑤3
1 + 𝑤3

2 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃2 010 0 2𝑤2
1 + 𝑤2

2 < 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃3 011 1 2𝑤2
1 + 𝑤2

2 + 2𝑤3
1 + 𝑤3

2 + 2𝑤2,3
1 + 𝑤2,3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃4 100 1 2𝑤1
1 + 𝑤1

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃5 101 1 2𝑤1
1 + 𝑤1

2 + 2𝑤3
1 + 𝑤3

2 + 2𝑤1,3
1 + 𝑤1,3

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃6 110 1 2𝑤1
1 + 𝑤1

2 + 2𝑤2
1 + 𝑤2

2 + 2𝑤1,2
1 + 𝑤1,2

2 > 2𝑤𝑇
1 + 𝑤𝑇

2

𝑃7 111 1
2𝑤1

1 + 𝑤1
2 + 2𝑤2

1 + 𝑤2
2 + 2𝑤3

1 +𝑤3
2 + 2𝑤1,2

1 + 𝑤1,2
2

+2𝑤1,3
1 +𝑤1,3

2 + 2𝑤2,3
1 + 𝑤2,3

2 > 2𝑤𝑇
1 +𝑤𝑇

2

minimize: 𝑤𝑇
1 + 2 ∙ 𝑤𝑇

2 +∑(𝑤𝑖
1 + 2 ∙ 𝑤𝑖

2) +

𝑛

𝑖=1

∑ ∑ (4 ∙ 𝑤𝑖,𝑗
1 + 2 ∙ 𝑤𝑖,𝑗

2)

𝑛

𝑗=i+1

𝑛−1

𝑖=1

61

implement efficient 2-CTG.

Example 10: Consider again the BF 𝐹7 in Example 7 with set of integer weight

values 𝑤 = [𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] = [2, −2, 2; 1] and transistor count 19. Table 3.6 lists the

ILP inequalities of 𝐹7 based on the 𝑘-TF formulation described in equation (3.9). For

simplicity, we consider 𝑘 = 2 and 𝑙 = 2. The last two rows show the ILP constraints and

the ILP objective function of introduced in equations (3.7) and (3.11) to assign negative

weights and minimize the sum of weights. For the set of constraints listed in Table 3.6,

Table 3.6. The Truth Table and the ILP Constraints for BF 𝐹7.

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3)

𝐹7

𝑃0 000 0 0 < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ −𝑤𝑇

2−

𝑃1 001 0 2𝑤3
1+ − 2𝑤3

1− +𝑤3
2+ − 𝑤3

2− < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃2 010 0 2𝑤2
1+ − 2𝑤2

1− +𝑤2
2+ − 𝑤2

2− < 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃3 011 1
+2𝑤3

1+ − 2𝑤3
1− + 𝑤3

2+ − 𝑤3
2− + 2𝑤2

1+ − 2𝑤2
1− +𝑤2

2+ −𝑤2
2−

+2𝑤2,3
1 +

− 2𝑤2,3
1 −

+ 𝑤2,3
2 +

− 𝑤2,3
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃4 100 1 2𝑤1
1+ − 2𝑤1

1− +𝑤1
2+ − 𝑤1

2− ≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃5 101 0
2𝑤1

1+ − 2𝑤1
1− + 𝑤1

2+ − 𝑤1
2− + 2𝑤3

1+ − 2𝑤3
1− + 𝑤3

2+ − 𝑤3
2−

+2𝑤1,3
1 +

− 2𝑤1,3
1 −

+𝑤1,3
2 +

−𝑤1,3
2 −

< 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃6 110 1
2𝑤1

1+ − 2𝑤1
1− +𝑤1

2+ −𝑤1
2− + 2𝑤2

1+ − 2𝑤2
1− +𝑤2

2+ − 𝑤2
2−

+2𝑤1,2
1 +

− 2𝑤1,2
1 −

+𝑤1,2
2 +

−𝑤1,2
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

𝑃7 111 1

2𝑤1
1+ − 2𝑤1

1− +𝑤1
2+ −𝑤1

2− + 2𝑤2
1+ − 2𝑤2

1− +𝑤2
2+ − 𝑤2

2− + 2𝑤3
1+

−2𝑤3
1− + 𝑤3

2+ − 𝑤3
2− + 2𝑤1,2

1 +
− 2𝑤1,2

1 −
+ 𝑤1,2

2 +
− 𝑤1,2

2 −
+ 2𝑤1,3

1 +

−2𝑤1,3
1 −

+ 𝑤1,3
2 +

− 𝑤1,3
2 −

+ 2𝑤2,3
1 +

− 2𝑤2,3
1 −

+ 𝑤2,3
2 +

− 𝑤2,3
2 −

≥ 2𝑤𝑇
1+ − 2𝑤𝑇

1− + 𝑤𝑇
2+ − 𝑤𝑇

2−

∀ 𝑤𝑥
∓ ∈ {𝑤𝑇

1∓, 𝑤𝑇
2∓, 𝑤1

1∓, 𝑤1
2∓, 𝑤2

1∓, 𝑤2
2∓, 𝑤3

1∓,

𝑤3
2∓𝑤1,2

1 ∓
, 𝑤1,2

2 ∓
, 𝑤1,3

1 ∓
, 𝑤1,3

2 ∓
, 𝑤2,3

1 ∓
, 𝑤2,3

2 ∓
}:

{

0 ≤ 𝑤𝑥
+ ≤ 𝑈 ∙ 𝑦𝑥

0 ≤ 𝑤𝑥
− ≤ 𝑈 ∙ (1 − 𝑦𝑥)

𝑦𝑥 ∈ {0,1}

minimize:

𝑤𝑇
1+ +𝑤𝑇

1− + 2𝑤𝑇
2+ + 2𝑤𝑇

2− +∑∑𝑗 ∙ (𝑤𝑖
𝑗+
+𝑤𝑖

𝑗−
)

2

𝑗=1

3

𝑖=1

+

∑ ∑ ∑(𝑗 ∙ 𝑓(𝑗 − 2) +
4

𝑗
∙ 𝑓(2 − 𝑗)) ∙ (𝑤𝑎,𝑏

𝑗 +
+𝑤𝑎,𝑏

𝑗 −
)

2

𝑗=1

3

𝑏=a+1

2

𝑎=1

62

𝑤 = [𝑤1
1, 𝑤1

2, 𝑤1,3
1 , 𝑤1,3

2 , 𝑤2,3
1 , 𝑤2,3

2 ; 𝑤𝑇
1, 𝑤𝑇

2] = [1, 0, −1, 0, 1, 0; 0, 1] is an optimum solution

for 𝐹7. The transistor count reduces to 11. □

3.6 Experimental results

The proposed ILP-based approach has been implemented in the C++ language

on an Intel Xenon 2.4GHz with 8GB memory. To evaluate its impact, we examined non-

scalable functions with up to fifteen inputs. An 𝑛-input non-scalable function is a function

that requires non-empty levels of variables in the Binary Decision Diagram (BDD)

representation for some ordering of the variables [83]. In another word, in a non-scalable

function, no input variable is don’t care, and, therefore, all variables (and/or their

complements) appear in the minimum sum-of-product expression of the function.

Table 3.7 presents non-scalable 𝑛-input 𝑘-TFs using rational 𝑘-weights with value

𝑤/𝑙 for different 𝑛, 𝑘, and 𝑙 that were derived using the ILP of Section 3.5. For each value

of 𝑛 we found the 1-TFs with maximum transistor count. This was set as a bound to the

objective function for any ILP formulation for 𝑙 ≥ 4 and 𝑘 ≥ 4. The first column in Table

3.7 shows the number of inputs (value of 𝑛). The goal in this paper is to provide an

indication of the percentage of all 𝑛-input functions that benefit from the proposed method.

When 𝑛 is large it is impossible to examine all functions and, therefore, functions are

selected randomly. For functions with 𝑛 ≥ 4, the entries in Table 3.7 were obtained by

sampling randomly 100 thousand functions. For 𝑛 ≥ 4, the 2𝑛 bit output vector of an 𝑛-

input function was filled with either 0 or 1 at randomly selected positions (determined by

randomly selecting an integer mod 2𝑛), and so that the number of ones in the function

obeyed the distribution of functions based on this property. (For example, the number of

63

5-input functions with 16 ones in the output bit vector is approximately 10 times more than

the number of 5-input functions with 10 ones.) In order for the experiment to have more

statistical significance, we only considered non-scalable functions, and when a function

is generated we applied the procedure described earlier in this section to determine that

it is non-scalable. (It is asserted that the distribution of non-scalable 𝑛-input functions

based on the number of ones in their output bit vector is the same as the one described

earlier for 𝑛-input functions.)

The second column in Table 3.7 lists the number of 1-TFs identified by using the

existing ILP-based method in [58] considering integer weights. These functions are

implementable with existing CTGs. The third column shows the examined values of 𝑙, 𝑙 ∈

{1, 2, 3, 4}. The fourth column shows the number of 2-TFs that do not have transistor count

higher than any of the 1-TF in column two. The fifth column shows the percentage

increase over the number of 1-TFs in column two. Columns six to nine show similar results

for 𝑘 ∈ {3, 4}. For all examined functions, the value of 𝐶 was set to 11% to take into

consideration that weights may vary primarily due to aging. This value for 𝐶 was obtained

by performing SPICE simulations on a single transistor that implements a unit integer 1-

weight in corner cases using 45nm technology [76] while the transistor was continuously

under stress (worst-case aging scenario). We used the static aging model in [84] and we

found that the transistor threshold voltage shifted by 50𝑚𝑉 under continuous stress. This

increase in threshold voltage amounted to 11% decrease in the current.

The results in Table 3.7 show that for higher value of 𝑘 and 𝑙, the ILP has more

flexibility to assign weights so that the total transistor count decreases. Therefore, when

𝑘 and 𝑙 increase more functions can be implemented as current mode gates using a

64

transistor count similar to that for the significantly less 1-TFs that were implemented as

1-CTG. In particular, when 𝑘 = 4 and 𝑙 = 4, about 24.9 times more functions can be

implemented as CTGs with similar or less transistor count.

Table 3.8 lists the average execution time by the proposed ILP method to

determine whether an examined 𝑛-input function (BF and UF) was implementable as

proposed 𝑘-TF described in equation (3.9) for different values of 𝑘 and 𝑙, and 𝐶 set to

11%. In our experimental evaluation, we set up an execution time upper bound of 60

second per TF, at which point the function was aborted. Character “-” indicates that no

results were obtained due to violation of the execution time upper bound. Observe,

however, that the approach can handle all the UFs with at most 12 inputs. They can be

implemented to up to the 4𝑡ℎ order when considering rational weight with value up to 4.

These results show that the average execution time increases as the values of 𝑛, 𝑘 and

𝑙 increases. This is due to the increase in the number of unknown variables in the ILP.

For higher input functions (functions with more fan-ins), heuristic approaches as in [61-

63] can be used to implement UFs. However, they will not ensure that all TFs can be

identified, and the weight configuration of the identified TFs is not necessarily optimum.

Furthermore, they do not apply to BFs.

Table 3.9 lists the number of 1-TFs identified by using the existing ILP-based

method in [58] considering integer weights. Let Δ denote the percentage reduction in CTG

transistor count. Columns three to eight show the number of TFs listed in second column

that were implemented with less transistor count when considering the proposed 𝑘-CTG

described in equation (3.9) for 𝑘, 𝑙 ≤ 4 non-integer weights. These columns were

generated based on different ranges of Δ, and 𝐶 set to 11%.

65

Table 3.7. The Number of 𝑘-CTGs with Rational 𝑘-weights of Value 𝑤/𝑙 Whose

Transistor Count is no More Than 1-CTGS with Integer Weights.

𝑛 1-TF 𝑙 𝑘 = 2
INCREASE

RATIO
𝑘 = 3

INCREASE
RATIO

𝑘 = 4
INCREASE

RATIO

1 2

1 2 1 2 1 2 1
2 2 1 2 1 2 1
3 2 1 2 1 2 1
4 2 1 2 1 2 1

2 8

1 8 1 10 1.25 10 1.25
2 10 1.25 10 1.25 10 1.25
3 10 1.25 10 1.25 10 1.25
4 10 1.25 10 1.25 10 1.25

3 72

1 72 1 72 1 72 1
2 188 2.61 192 2.66 192 2.66
3 214 2.97 214 2.97 214 2.97
4 216 3 218 3.02 218 3.02

4 1536

1 2566 1.7 4454 2.9 4761 3.1
2 9012 5.87` 11059 7.2 11366 7.4
3 9872 6.43 11063 7.2 12748 8.3
4 11464 7.46 21043 13.7 21196 13.8

5∗ 367

1 4514 12.3 8110 22.1 9395 25.6
2 7743 21.1 10202 27.8 10716 29.2
3 7964 21.7 10312 28.1 11046 30.1
4 8514 23.2 11450 31.2 12698 34.6

6∗ 105

1 1176 11.2 1827 17.4 1848 17.6
2 1659 15.8 2467 23.5 2740 26.1
3 1690 16.1 2478 23.6 2772 26.4
4 1827 17.4 2887 27.5 3318 31.6

7∗ 89

1 1593 17.9 1877 21.1 1993 22.4
2 2607 29.3 2919 32.8 3262 36.7
3 2776 31.2 3017 33.9 3271 36.7
4 2860 36.2 3506 39.4 3871 43.5

8∗ 66

1 1498 22.7 3438 52.1 3517 53.3
2 3095 46.9 4468 67.7 4659 70.6
3 3590 54.4 4481 67.9 4699 71.2
4 3973 60.2 4765 72.2 4870 73.8

9∗ 306

1 2234 7.3 3610 11.8 3855 12.6

2 5385 17.6 5905 19.3 6671 21.8

3 5393 17.6 6089 19.9 6762 22.1

4 7160 23.4 9057 29.6 9394 30.7

10∗ 119

1 1499 12.6 1880 15.8 1892 15.9

2 2034 17.1 2983 25.1 3058 25.7

3 2094 17.6 2991 25.1 3082 25.9

4 2094 17.6 3177 26.7 3344 28.1

11∗ 65

1 886 14.3 1241 19.1 1521 23.4

2 1670 25.7 2054 31.6 2132 32.8

3 1813 27.9 2073 31.9 2190 33.7

4 2067 31.8 2216 34.1 2314 35.6

12∗ 45

1 513 11.4 1053 23.4 1206 26.8

2 801 17.8 1624 36.1 1773 39.4

3 869 19.3 1643 36.5 1778 39.5

4 886 19.7 1818 40.4 1939 43.1

13∗ 92

1 1343 14.6 2658 28.9 - -

2 2907 31.6 5042 54.8 - -

3 2925 31.8 5048 54.8 - -

4 2930 31.8 5981 65.0 - -

14∗ 45

1 810 18.0 1404 31.2 - -

2 1219 27.1 2448 54.4 - -

3 1242 27.6 2583 57.4 - -

4 1480 32.9 3289 73.1 - -

15∗ 97

1 1571 16.2 - - - -

2 2473 25.5 - - - -

3 2475 25.5 - - - -

4 2774 28.6 - - - -

TOTAL 3014 48257 16.01 72193 23.7 75218 24.9

* Out of 100 thousand randomly selected non-scalable functions.

66

The results in Table 3.9 show that by increasing either 𝑘 or 𝑙, many 1-TFs were

implemented as CTG with lower transistor count, and hence with lower area and power

dissipation. In particular, in particular, 93% of selected 1-TFs were implemented with

approximately 45% lower transistor count.

The following compares the transistor count of input networks, power dissipation,

and delay of the CTG implementation of randomly selected 1-TFs and 2-TFs described

by the weight configuration set. All functions were implemented using the CTG in [53, 83]

considering only integer weights and using the proposed 𝑘-CTG described in Equation 9

considering 𝑘 ≤ 4 and 𝑙 ≤ 4, and 𝐶 set to 11%. SPICE simulation took place for each

function using the Berkeley Predictive Technology Models (PTM) for 45nm CMOS

Table 3.8. Average Execution Time (𝑚𝑠) Per Function For 𝑛-input 𝑘-TFs (UF and

BF), 6 ≤ 𝑛 ≤ 15, 1 ≤ 𝑘 ≤ 4, 𝐶 = 11% considering Rational 𝑘-weights with Value

𝑤/𝑙, 𝑙 ∈ {1,4}.

𝑛
TF Type

6 7 8 9 10 11 12 13 14 15

1-TF, 𝑙=1 50 54 72 115 250 490 1108 2e3 3e3 7e3

1-TF, 𝑙=4 56 60 78 122 258 505 1617 22e2 36e2 8e3

UF 2-TF, 𝑙 =1 54 60 80 125 275 508 1200 23e2 4e3 8e3

UF 2-TF, 𝑙 =4 60 67 113 178 320 670 1420 28e2 5e3 1e4

BF 2-TF, 𝑙=1 63 96 150 290 540 1e3 2e3 5e3 9e3 2e4

BF 2-TF, 𝑙=4 88 103 189 502 596 18e2 39e2 1e4 2e4 -

UF 3-TF, 𝑙=1 225 270 324 561 1e3 22e2 5e3 85e2 2e4 -

UF 3-TF, 𝑙=4 289 450 511 887 15e2 35e2 67e2 13e3 35e3 -

BF 3-TF, 𝑙=1 460 605 617 11e2 21e2 5e3 8e3 - - -

BF 3-TF, 𝑙=4 481 619 705 16e2 29e2 9e3 13e3 - - -

UF 4-TF, 𝑙 =1 13e2 14e2 2e3 3e3 65e2 14e3 3e4 - - -

UF 4-TF, 𝑙 =4 17e2 17e2 25e3 7e3 91e2 17e3 4e4 - - -

BF 4-TF, 𝑙 =1 2e3 2e3 4e3 8e3 13e3 - - - - -

BF 4-TF, 𝑙 =4 23e3 3e3 51e2 15e3 - - - - - -

67

transistors [85]. The 𝑉𝐷𝐷 was set to 1.1V. The applied voltages for 𝑐𝑙𝑘 were 1.1V and 0V

for high voltage and low voltage, respectively. The applied load was a minimum size

CMOS inverter which had a PMOS transistor with width 240nm, and a NMOS transistor

with width 120nm. The length of all the PMOS and NMOS transistors were set to 45nm.

The optimum sensor size was obtained using the approach in [52].

The first Column in Table 3.10 lists some randomly selected functions. They are

denoted by the integer weight assignment that reflects minimum transistor count.

Columns two to four list the transistor count of the input networks using the traditional

approach, the power dissipation, and the delay of the CTG implementation for each

function, respectively, using the approaches in [53, 83]. These values were obtained with

SPICE simulations while considering corner cases by simultaneously varying the width

and length of all transistors in input networks as well as the sensor part. Let 𝑑𝑉 denote

the voltage difference between two output nodes. Due to the clock enable in CTGs the

Table 3.9. The Number of 1-TFs With Lower Transistor Count When

Considering Rational 𝑘-Weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11%.

𝑛 1-TF
Δ (percentage reduction in CTG transistor count)

Δ<40% 40%≤Δ<50% 50%≤Δ<60% Δ≥60%

1 2 2 0 0 0

2 8 8 0 0 0

3 72 72 0 0 0

4 1536 112 1242 176 6

5∗ 367 3 263 101 0

6∗ 105 0 67 31 7

7∗ 89 0 50 37 2

8∗ 66 0 57 9 0

9∗ 306 0 233 73 0

10∗ 119 0 102 14 3

11∗ 65 0 53 10 2

12∗ 45 0 41 4 0

TOTAL 2780 197 2108 455 20

* Out of 100 thousand randomly selected non-scalable functions.

68

delay is calculated as the time difference between the time that clock is at 50% of its final

value and the time that 𝑑𝑉 is at 50% of its final value [52]. The power value reported in

column three is an average value that includes leakage and dynamic power dissipation

[12, 86].

Columns five to eight show similar results when each function is implemented by

the proposed 𝑘-CTG of Section 3.4 based on the formulation described in equation (3.9).

Table 3.10. Simulation Results: Transistor Count, Power Dissipation, and Delay of

Randomly Selected TFs in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the

Proposed 𝑘-CTG Based on equation (3.9) Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4,

𝐶 = 11%.

CTG Implementation [53] and [83] Proposed 𝑘-CTG with rational weights % Reduction

Function with Integer Weights TC
Power
(µW)

Delay
(ps)

Optimized Function for 𝑘 ≤ 4

and 𝑙 ≤ 4
TC

Power
(µW)

Delay
(ps)

TC Power Delay

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[4,2,2; 3]
11 1.98 98

[𝑤1
1 , 𝑤2

1, 𝑤3
1; 𝑤𝑇

1 , 𝑤𝑇
2] =

[2,1,1; 1,1]
7 1.40 66 36% 30% 32%

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] =

[−6,4,2,−2;−3]
29 3.73 113

[𝑤1
1, 𝑤3

1 , 𝑤2,3
1 , 𝑤3,4

2 ; 𝑤𝑇
1 ,WT

2] =
[−3,2,1, −1;−1,−1]

14 1.98 87 51% 47% 23%

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] =

[−4,4, −2,2; 3]
15 2.80 142

[𝑤1
1, 𝑤2

1, 𝑤3
1 , 𝑤4

1; 𝑤𝑇
1 , 𝑤𝑇

2] =
[−2,2,−1,1; 1,1]

10 1.74 105 33% 38% 26%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−7,9,2,−5,−12;−4]
39 4.25 158

𝑤1
1 , 𝑤1

4, 𝑤2
1 , 𝑤2

4, 𝑤3
2 , 𝑤4

1, 𝑤4
4 ,

𝑤5
1; 𝑤𝑇

1 = [−2,1,2,1,1,−1,
−1,−3;−1]

22 2.12 122 43% 50% 23%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇]
= [4,4,7,−4,−11,−11; 5]

43 4.08 129
[𝑤1

1, 𝑤2
1 , 𝑤3

1, 𝑤4
1, 𝑤5

1 , 𝑤6
1; 𝑤𝑇

1 , 𝑤𝑇
4]

= [1,1,2,−1,−3,−3; 1,1]
16 1.92 103 62% 53% 20%

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] =

[2,2,4,2; 3]
19 3.21 118

[𝑤1
1, 𝑤2

1, 𝑤3
1 , 𝑤1,4

1 ; 𝑤𝑇
1 ,WT

2] =
[1,1,2,1; 1,1]

11 1.93 87 42% 40% 26%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7,
𝑤8, 𝑤9; 𝑤𝑇] = [−5,−5,−5,

−5,−5,−2,2,3,3; 4]
39 3.30 183

[𝑤1
1, 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1 , 𝑤6
3, 𝑤7

1 ,
𝑤7
3 , 𝑤8

1, 𝑤9
1; 𝑤𝑇

1 , 𝑤𝑇
3] = [−2,−2,

−2,−2,−2,−1,1,1,−1,1,1; 1,1]
24 2.15 143 38% 35% 22%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[5,5,3,3,−3; 4]
23 3.76 114

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1; 𝑤𝑇

1 , 𝑤𝑇
3] =

[2,2,1,1,−1; 1,1]
11 1.88 80 52% 50% 30%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−2,−2,4,6,6; 1]
21 3.67 173

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1; 𝑤𝑇

2] =
[−1,−1,2,3,3; 1]

12 1.83 130 42% 50% 25%

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] =

[2,−2,2; 1]
19 3.21 151

[𝑤1
1, 𝑤1,3

1 , 𝑤2,3
1 ; 𝑤𝑇

2] =
[1, −1,1; 1]

11 1.80 96 42% 44% 36%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7,
𝑤8, 𝑤9, 𝑤10; 𝑤𝑇] = [2,2,2,

2,2,2,2,2,2,2; 1]
21 4.37 163

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1, 𝑤7
1, 𝑤8

1 ,
𝑤9
1, 𝑤10

1 ; 𝑤𝑇
2] = [1,1,1,1,1,1,

1,1,1,1; 1]
12 1.53 112 43% 65% 31%

69

In particular, column five lists the obtained weights, column six lists the transistor count,

column seven the power, and column eight the delay. The values in columns seven and

eight were obtained by SPICE simulations.

The last three columns in Table 3.10 list the percentage reduction in transistor

count, power dissipation, and delay, respectively, when compared to the traditional 1-TF

current-mode implementation as in [53] or the 2-TF current-mode implementation as in

[83]. The results show a significant decrease in power dissipation as well as a significant

decrease in the delay due to the rational higher-order weights.

After the functions in Table 3.10 were synthesized by both the proposed method

and the traditional in [53, 83], we proceeded to obtaining their layouts in 45nm using the

Berkeley PTM model, and we derived the silicon area. Furthermore, we conducted post-

layout simulation to determine the power and delay (leakage and dynamic). This

experiment was conducted in order to confirm that optimizing the transistor count at the

input networks (as obtained by proposed ILP method) results into area reduction when

compared to the traditional CTG methods in [53, 83], and that delay and power are also

reduced proportion to the saving shown by simulation at the synthesis level. Note that

post-layout simulation taken to consideration the circuit parasitics which were extracted

from the layout of the CTG.

As an example, Figure 3.6 (a) shows the layout of the first function listed in Table

3.10 with integer weights [𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [4,2,2; 3] as in [53], and Figure 3.6 (b) shows

the layout using rational weights [𝑤1
1, 𝑤2

1, 𝑤3
1; 𝑤𝑇

1, 𝑤𝑇
2] = [2,1, 1; 1,1] by the proposed

method. In this case, the reduction in the area of the layout is 40%. For the remaining

functions in Table 3.10, we observed that the reduction in area is even more significant.

70

Table 3.11 provides with details on the layout area savings for all functions in Table

3.10. Please see the listed results in columns two, six, and nine. It is important to observe

that the reduction in layout area is similar to the transistor count reduction in the input

networks of those functions, as obtained by the proposed ILP-based synthesis method.

These results show the impact of using rational weights in synthesis.

Table 3.11 also lists detailed results on power dissipation and delay obtained from

post-layout simulations using the traditional approaches in [53, 83] and the proposed

method. For power-related results please see columns three, seven, and ten. For delay-

related results please see columns four, eight, and eleven. Again, observe that the

reduction in power and delay by the proposed method, reflect the savings that were

shown earlier in Table 3.10. In fact, the post-layout simulation showed that the saving in

power is even higher than what was shown at the synthesis level.

The results in Tables 3.10 and 3.11 clearly demonstrate the significance of using

rational weights. Furthermore, the value of the 𝐶 that was set to 11% accommodates

circuit parasitics due to interconnections, and all functions operate correctly.

 (a) (b)

Figure 3.6. (a) The layout for 1-CTG implementation of function

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] = [4,2,2; 3] as in [53] (b) the layout of the same function

implemented using rational weights [𝑤1
1, 𝑤2

1, 𝑤3
1; 𝑤𝑇

1, 𝑤𝑇
2] = [2,1,1; 1,1].

71

3.7 Conclusion

It has been demonstrated that the presented approach can implement many more

functions as current mode threshold logic gates with similar or less transistor count when

compared to existing method. Also a significant percentage of existing threshold functions

can be implemented as current mode threshold gates with approximately 60% less power

dissipation, and 20% less delay when considering higher order non-integer weights in the

Table 3.11. Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly

Selected TFs, in 45𝑛𝑚 Technology Using the CTG in [53, 83] and the Proposed 𝑘-CTG

Based on equation (3.9) Using 𝑘-weights with Value 𝑤/𝑙, 𝑘 ≤ 4, 𝑙 ≤ 4, 𝐶 = 11%.

CTG Implementation [53] and [83] Proposed 𝑘-CTG with rational weights % Reduction

Function with Integer
Weights

Area
(µm2)

Power
(µW)

Delay
(ps)

Optimized Function for 𝑘 ≤ 4

and 𝑙 ≤ 4
Area
(µm2)

Power
(µW)

Delay
(ps)

Area Power Delay

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[4,2,2; 3]
10.50 4.40 167

[𝑤1
1 , 𝑤2

1, 𝑤3
1; 𝑤𝑇

1 , 𝑤𝑇
2] =

[2,1,1; 1,1]
6.25 1.98 129 40% 55% 23%

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] =

[−6,4,2,−2;−3]
16.80 5.90 196

[𝑤1
1 , 𝑤3

1 , 𝑤2,3
1 , 𝑤3,4

2 ; 𝑤𝑇
1 ,WT

2] =
[−3,2,1, −1;−1,−1]

8.25 1.94 160 51% 67% 18%

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] =

[−4,4, −2,2; 3]
13.10 9.32 169

[𝑤1
1, 𝑤2

1 , 𝑤3
1 , 𝑤4

1; 𝑤𝑇
1 , 𝑤𝑇

2] =
[−2,2,−1,1; 1,1]

6.80 3.63 133 48% 61% 21%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−7,9,2,−5,−12;−4]
20.00 8.44 326

𝑤1
1 , 𝑤1

4, 𝑤2
1 , 𝑤2

4, 𝑤3
2, 𝑤4

1, 𝑤4
4,

𝑤5
1; 𝑤𝑇

1 = [−2,1,2,1,1,−1,
−1,−3;−1]

11.40 2.95 270 43% 65% 17%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇]
= [4,4,7,−4,−11,−11; 5]

23.80 11.81 470
[𝑤1

1 , 𝑤2
1 , 𝑤3

1, 𝑤4
1, 𝑤5

1 , 𝑤6
1; 𝑤𝑇

1 , 𝑤𝑇
4]

= [1,1,2,−1,−3,−3; 1,1]
9.10 5.07 399 62% 57% 15%

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] =

[2,2,4,2; 3]
13.00 9.21 283

[𝑤1
1, 𝑤2

1 , 𝑤3
1 , 𝑤1,4

1 ; 𝑤𝑇
1 ,WT

2] =
[1,1,2,1; 1,1]

6.90 4.32 223 47% 53% 21%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7,
 𝑤8, 𝑤9; 𝑤𝑇] = [−5,−5,−5,

−5,−5,−2,2,3,3; 4]
18.40 9.16 351

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1 , 𝑤6

1 , 𝑤6
3 , 𝑤7

1 ,
𝑤7
3, 𝑤8

1, 𝑤9
1; 𝑤𝑇

1 , 𝑤𝑇
3] = [−2,−2,

−2,−2,−2,−1,1,1,−1,1,1; 1,1]
11.40 4.67 284 38% 49% 19%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[5,5,3,3,−3; 4]
13.80 8.25 490

[𝑤1
1 , 𝑤2

1 , 𝑤3
1, 𝑤4

1, 𝑤5
1; 𝑤𝑇

1 , 𝑤𝑇
3] =

[2,2,1,1,−1; 1,1]
6.90 3.05 357 50% 63% 27%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇] =

[−2,−2,4,6,6; 1]
12.90 9.79 275

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1; 𝑤𝑇

2] =
[−1,−1,2,3,3; 1]

7.10 3.91 223 45% 60% 19%

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] =

[2,−2,2; 1]
12.50 8.80 415

[𝑤1
1, 𝑤1,3

1 , 𝑤2,3
1 ; 𝑤𝑇

2] =
[1, −1,1; 1]

6.90 4.05 298 45% 54% 28%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7,
𝑤8, 𝑤9, 𝑤10; 𝑤𝑇] = [2,2,2,

2,2,2,2,2,2,2; 1]
12.90 8.45 317

[𝑤1
1 , 𝑤2

1, 𝑤3
1, 𝑤4

1 , 𝑤5
1 , 𝑤6

1, 𝑤7
1, 𝑤8

1 ,
𝑤9
1, 𝑤10

1 ; 𝑤𝑇
2] = [1,1,1,1,1,1,

1,1,1,1; 1]
7.10 2.45 253 45% 71% 20%

72

presence of aging and circuit parasitics.

In future work, heuristic approaches will be investigated to implement higher input

𝑘-TFs with rational weights. In addition, we will investigate the impact of emerging

technology on resistive devices such as memristors and spin torque transfer devices.

Synthesis of complex circuit specifications will also be built upon existing 1-TF based

synthesis methods.

73

CHAPTER 4

MAXIMIZING THE NUMBER OF THRESHOLD LOGIC FUNCTIONS

USING RESISTIVE MEMORY

4.1 Introduction

The generalized definition of TF in equation (3.2) is called 𝑘𝑡ℎ-order TF (𝑘-TF). A

TG that implements a 𝑘-TF is also called 𝑘-TG. Observe that when 𝑘 = 1, equation (3.2)

simplifies to equation (3.1). The latter is also called 1-TF, and its implementations have

been studied extensively in the literature [50-55] and [57-59], among others. As

mentioned in Chapter 3, a TG generally contains two input networks and a sensor [104].

Each input network consists of several components connected in parallel. Every

component implements a weight value.

For each input pattern, some input components are active while the threshold

component is always active. The binary output of the TG is determined by the sensor,

which compares the currents (current mode TG) or voltages (differential mode TG) of the

sum of the active components of the two input networks, and amplifies the difference.

In TG, the power dissipation depends primarily on two factors: the number of

parallel components of the input networks, i.e., the transistor count of the input networks

which is the total number of unit size transistors that implements weights, and the sensor

size which is proportional to the transistor count of input networks [52]. The less the

transistor count in input networks, the lower the power dissipation in a TG is. A reduced

transistor count subsequently reduces the sensor size which, in turn, decreases further

the power dissipation [52].

74

Several interesting CMOS-based circuit concepts have been proposed in [50-55],

[57-59], among others, for TG implementations for the special case of 1-TF. In these

designs, each weight component is a single NMOS (or PMOS) transistor which is

controlled by one input. This limits the number of functions that can be implemented as

TGs. Authors in [83] showed recently that more functions can be implemented as TGs if

a component contains multiple transistors (connected in series) where each is controlled

by either one or two inputs (2-TFs). In fact, they showed in [83] that the transistor count

of several 1-TGs can be reduced when implemented as 2-TGs.

This chapter is the extention of Chapter 3, and proposes a new method to

implement efficiently the 𝑘-weight components in 𝑘-TGs using non-volatile resistive

memories (memristors). The approach has been implemented for 1 ≤ 𝑘 ≤ 4. Memristors

are used as the weight components instead of using transistors as weights. The

resistance value of a memristor is called its memristance, and the range of memristance

is used to define different weight values. We call such gates 𝑘𝑡ℎ-order memristive TG (𝑘-

mTG). This method of weight implementation reduces significantly the transistor count of

the input networks. The presented work is an extended version of the abstract in [87].

Many memristive architectures have been proposed in the literature to implement

1-mTGs [77]. The approaches in [48], [76], [88-91], among others, use different

memristance values to implement weights. An advantage of these approaches as well as

the proposed design in this paper is that the memristor can be programmed to implement

alternative functions and, can be used for rapid prototyping [79, 92, 93]. When considering

an upper bound on transistor count, the proposed approach, which benefits from higher

order weight components, implements more functions as 𝑘-mTG than the existing 1-mTG

75

approaches in [48], [76], [88-91]. The difference in the transistor count is due to

architectural considerations that are orthogonal to the goal of this chapter. For example,

the approaches in [50], [79] use memristors in order to increase 1-TG robustness but the

weights were implemented in CMOS technology. The proposed method attempts to

reduce the transistor count on the input networks using mTG to implement weights, and

this is an orthogonal design object. The proposed method is applicable to any 1-mTG

method with a specific sensor component.

In order to demonstrate the impact of memristive 𝑘-weights in terms of area, power

dissipation, and delay, this chapter considers without loss of generality on the current-

mode TG (CTG) implementation in [52].

This chapter is organized as follows. Section 4.2 provides preliminaries and

describes briefly the existing TG implementations. The memristive implementation of 𝑘-

TFs is proposed in Section 4.3. Section 4.4 provides experimental results, and Section

4.5 concludes the paper.

4.2 Preliminaries

This section provides with preliminaries on bipolar metal-oxide memristors and

overviews on TFs and their traditional CMOS-based and memristive TG implementations.

4.2.1 Bipolar metal-oxide memristors

This chapter assumes bipolar metal-oxide memristors. Accurate models for this

memristor behavior have been developed in [15, 94-96]. This memristor is a two-terminal

device that is formed by a metal-oxide-metal thin film sandwiched between two electrodes

[1, 3]. Bipolar metal-oxide memristors are variable resistors. Resistance switching in such

76

memristors relates to the formation or partial dissolution of the nanoscale conducting

filament. This filament changes due to the drift and diffusion direction of the mobile oxygen

anions and oxygen vacancies created under Joule heating and electric fields [29].

The memristor is written (or programmed) by biasing positive and negative

voltages across the electrodes. By applying a positive (negative) voltage across the

device, the total resistance of the device decreases (increases) [21, 30]. Let 𝑅𝑂𝑁 and 𝐼𝑚𝑎𝑥

denote the minimum possible resistance value and its corresponding current,

respectively. Similarly, let 𝑅𝑂𝐹𝐹 and 𝐼𝑚𝑖𝑛 denote the maximum possible resistance value

and its corresponding current, respectively. Figure 4.1 shows the conductivity and

resistivity transition behavior of a memristor during writes (write operations) with positive

and negative pulses, ±𝑉(𝑡). This behavior is accurately reflected by several models such

as [15, 94], among others.

As shown in Figure 4.1, when applying a pulse (either positive or negative) to the

memristor, the device does not switch immediately, and waits for a random time. This is

due to the stochastic nature of the filament formation. The difference between the

application time of the write pulse and the time that the device starts to switch is called

the wait (switching) time [16, 35, 97]. During the wait time, which varies from cycle-to-

cycle, the current and resistivity do not practically change and is considered to be fixed

[35].

When applying a read voltage, the current and resistivity change after the wait

time. The resistivity change is called memristor leakage and may affect the functionality

of current-based mTGs. Based on the stochastic behavior of the filament, it may occur

(worst-case scenario) that there is leakage each time the gate operates. However, the

77

resistivity switching time is in milliseconds whereas the gate delay is in picoseconds.

Therefore, reprogramming (weight tuning) to combat the memristor leakage is only

required after millions of mTG operation cycles [98-101]. In fact, programming is done

periodically in order to ensure that there is no discrepancy in the memristive value due to

leakage from frequent read operations.

Filament variability may result into imprecise memristance value. This chapter

assumes robust programming methods, such as in [95] and [101], that program the

memristor precisely to the targeted resistance with negligible error (less than 1%), and

thus cope with filament variability.

4.2.2 CMOS-based and memristive threshold logic gates

The concept of 𝑘-TF and its operation is explained with an example.

 (a) With negative pulse. (b) With positive pulse.

Figure 4.1. Resistivity and current behavior for positive and negative writes

for a bipolar metal-oxide memristor with 𝑅𝑂𝑁=5KΩ, 𝑅𝑂𝐹𝐹=5MΩ, ±𝑉 = 1𝑉,

using [15, 94].

78

Example 1: Consider a five input 3-TF 𝐹1 with non-zero weight configuration

{𝑤1, 𝑤2, 𝑤3, 𝑤3,4,5; 𝑤𝑇} = {2, 2, 4, −2; 3}. 1-weight 𝑤𝑖, 1 ≤ 𝑖 ≤ 3, is active when 𝑥𝑖 = 1, and

the 3-weight 𝑤3,4,5 is active when 𝑥3 ∙ 𝑥4 ∙ 𝑥5 = 1. For a given input pattern {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}

= {0, 1, 1, 0, 0}, we get (2 ∙ 0) + (2 ∙ 1) + (4 ∙ 1) + (−2 ∙ 1 ∙ 0 ∙ 0) = 6 > 3. Hence, for the

above input pattern, 𝐹1 evaluates to logic one. Similarly, for input pattern {0, 0, 1, 1, 1}, we

get (2 ∙ 0) + (2 ∙ 0) + (4 ∙ 1) + (−2 ∙ 1 ∙ 1 ∙ 1) = 2 < 3, and 𝐹1 is logic zero. □

In CMOS-based TG designs, parallel weight components are implemented with

NMOS (or PMOS) transistors [50-55] and [57-59]. The area of a transistor with width 𝑤 ∙

𝑋 is practically the same as 𝑤 minimum size transistor. Let 𝑋 denote the width of a

minimum size transistor, and 𝐼 be the active current through it. Each transistor implements

a 1-weight with value 𝑤 when its width and current are 𝑤 ∙ 𝑋 and 𝑤 ∙ 𝐼, respectively. The

gate of the transistor is connected to an input. The gate of the NMOS transistor for the

threshold is connected to the power supply (it is active for all input patterns). All transistors

have the same length which is determined by the used technology. Therefore the

transistor count for such gates is 𝑤𝑇 + ∑ 𝑤𝑖
𝑛
𝑖=1 , which is the total sum of threshold and

input weights.

For higher order components, a CMOS-based 𝑘-weight with value 𝑤 is

implemented with 𝑘 transistors of the same size which are connected in series [83]. The

size of each transistor is 𝑘 ∙ 𝑤 ∙ 𝑋, and the current through it is 𝑤 ∙ 𝐼. The transistor gates

are connected to 𝑘 TG inputs [83], and the transistor count of such component is 𝑘2.

The transistor count reduces to 𝑛 + 1, independent of weight values, when weights

are implemented with memristors [48, 76]. Each weight component consists of a

memristor and a minimum size NMOS (or PMOS) transistor connected in series. Let 𝐼′

79

be the active current through a memristive weight component when memristor is assigned

to a memristance value 𝑅𝑚𝑎𝑥. Any weight with value 𝑤 can be implemented by

programming the memristor to memristance
𝑅𝑚𝑎𝑥

𝑤⁄ so that the current through this

component becomes 𝑤 ∙ 𝐼′. The transistor count is always one and does not relate to the

weight values.

The significant transistor count reduction in mTGs results into lower power

dissipation [48]. Moreover, the sensor size can be decreased because of the less effective

capacitance of the input networks on the output nodes [82]. This reduces further the

power dissipation without losing performance. Consider the following example.

Example 2: Consider the 4-variable function 𝐹2 = 𝑥4𝑥3 + 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥2𝑥1. This

function is a 1-TF with weight configuration 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] = [4,4,6,2; 7]. Note

that for implementation purposes, weights are considered to be integers, and the equality

is removed from equation (3.2). Figure 4.2 shows the CMOS-based CTG [52] and

memristive CTG [76] implementations of 𝐹2. Let 𝑋 denote the size of a minimum width

transistor to implement a unit integer weight. The total transistor count reduces from 23

to 5 when implementing 𝐹2 as a memristive CTG. □

A small fraction of TFs are 1-TFs [58]. This limits the impact of TGs in digital circuit

synthesis. In order to identify more threshold functions, we consider the generalized

higher order TF definition described in equation (3.1), and we modify the input network of

the existing mTGs to implement efficiently such TFs.

4.3 Generalized memristive threshold logic gates

In the proposed mTG implementation, any 𝑘-weight is implemented by 𝑘 minimum

80

size transistors and a memristor, all connected in series. Therefore, the transistor count

of any 𝑘-weight with value 𝑤 is 𝑘, and the active current through it is 𝑤 ∙ 𝐼. This current

value is enforced with appropriate resistivity. This way, the transistor count of the gate

reduces significantly which, in turn, reduces the power of the gate. A reduced transistor

count subsequently reduces the sensor size which, in turn, decreases further the power

dissipation [52]. Figure 4.3 shows the 𝑚-weight components, and their transistor count

for 1 ≤ 𝑚 ≤ 𝑘.

In order to determine if a function is a 𝑘-TF we form an Integer Linear Programming

(ILP) constraint per input pattern using the right-hand side of equation (3.2) according to

the binary evaluation of the function for the pattern [52, 83]. The transistor count ratio of

a memristive 𝑘-weight with value 𝑤 over a memristive 1-weight with the same value is

called the penalty factor. In order to obtain minimum possible transistor count, the ILP

must minimize quantity

(a) (b)

Figure 4.2. The Current mode TG (CTG) implementations for function 𝐹2 in

example 2 (a) CTG as in [52] (b) memristive CTG as in [76].

81

1 ∙ ⌈
|𝑤𝑇|

𝑈
⌉ + 1 ∙ ∑ ⌈

|𝑤𝑖1|

𝑈
⌉

𝑛

𝑖1=1

+ 2 ∙ ∑ ∑ ⌈
|𝑤𝑖1,𝑖2|

𝑈
⌉

𝑛

𝑖2=2

𝑛−1

𝑖1=1

+⋯+ 𝑘

∙ ∑ ∑ … ∑ ⌈
|𝑤𝑖1,𝑖2,…,𝑖𝑘|

𝑈
⌉

𝑛

𝑖𝑘=𝑖𝑘−1+1

𝑛−𝑘

𝑖2=𝑖1+1

𝑛−𝑘+1

𝑖1=1

(4.1)

where 𝑈 is the upper bound on each weight component, ⌈𝑥⌉ denotes the ceiling function

which results into the least integer that is greater than or equal to 𝑥, and |𝑤𝑥| denotes the

absolute value for each weight 𝑤𝑥, and 𝑤𝑥 ∈ {𝑤𝑇 , 𝑤𝑖1 , 𝑤𝑖1,𝑖2 , … , 𝑤𝑖1,𝑖2,…,𝑖𝑘}.

The performance of each CMOS transistor is impacted by process variations. Also

the memristance changes over time due to memristor leakage. These factors may modify

the designed weight and change the functionality of the mTG. Furthermore, weight values

should be assigned to appropriate memristance values so that the leakage current of any

inactive weight is negligible when compared to the active current of a unit weight. The

following show how to assign resistive weights that tolerate weight variations.

Figure 4.3. Memristive 𝑚-weight components for 1 ≤ 𝑚 ≤ 𝑘.

82

Let constant value 𝐶 denote the maximum weight deviation and let |𝑤| denote the

absolute value of weight 𝑤. Let 𝑤𝑖1,𝑖2,…,𝑖𝑚 denote a 𝑚-weight, 1 ≤ 𝑚 ≤ 𝑘. The pattern

dependent inequalities of the ILP are rewritten as

∑(𝑤𝑖1,𝑖2,…,𝑖𝑚 − 𝐶 ∙ |𝑤𝑖1,𝑖2,…,𝑖𝑚|) 𝑥𝑖1 ∙ 𝑥𝑖2 … ∙ 𝑥𝑖𝑚
∀𝑚

> 𝑤𝑇 + 𝐶 ∙ |𝑤𝑇| (4.2)

when function evaluates to 1, and for the remaining input patterns as

∑ (𝑤𝑖1,𝑖2,…,𝑖𝑚 + 𝐶 ∙ |𝑤𝑖1,𝑖2,…,𝑖𝑚|)𝑥𝑖1 ∙ 𝑥𝑖2 … ∙ 𝑥𝑖𝑚 < 𝑤𝑇 − 𝐶 ∙ |𝑤𝑇|

∀𝑚

 (4.3)

The above may only change the total sum of weights. For example, the weight

configuration of 𝐹1 in Example 1 considering 𝐶 = 5% becomes 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5; 𝑤𝑇]

= [2, 3, 5, 5, 5; 6]. Extensive experimental evaluation (see Section 4.4) shows that the

value of 𝐶 does not exceed 5%. The following two examples illustrate the concept of 𝑘-

TF and the ILP-based method to identify a 𝑘-TF considering 𝐶 = 8%.

Example 3: Consider a 4-input function 𝐹3 = 𝑥1𝑥2 + 𝑥3𝑥4 with a set of all unknown

weights 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,4, 𝑤2,3, 𝑤2,4, 𝑤3,4; 𝑤𝑇]. Table 4.1 lists the

inequalities of 𝐹3 based on the 𝑘-TF definition when 𝑘 = 2. For an input pattern, weight 𝑤

(either 1-weight or 2-weight) appears in the inequality when all its input signals evaluate

to 1. The objective function for a 2-TF is to minimize quantity ⌈
|𝑤𝑇|

10
⌉ + 1 ∙ ∑ ⌈

|𝑤𝑖|

10
⌉4

𝑖=1 + 2 ∙

∑ ∑ ⌈
|𝑤𝑖,𝑗|

10
⌉4

𝑗=i+1
3
𝑖=1 considering weights are in the range [-10, +10]. For the set of constraints

listed in Table 4.1, an optimum solution is 𝑤 = [0,0,0,0,2,0,0,0,0,2; 1]. □

Example 4: Function 𝐹4 = 𝑥1𝑥2 + (𝑥1 + 𝑥2)𝑥3𝑥4𝑥5 is neither an 1-TF nor 2-TF. It is

a 3-TF and the weight configuration to implement as a memristive current mode 3-TG is

𝑤 = [𝑤1, 𝑤2, 𝑤3,4,5; 𝑤𝑇] = [3, 3, 2; 4].

83

Figure 4.4 shows the CTG implementation of 𝐹4 using memristors when 𝑘 = 3. In

Figure 4.4, all transistors of input networks are minimum size transistors. □

4.4 Experimental results

In order to evaluate the proposed memristive approach in terms of area, power

dissipation, and delay, we implemented 𝑘-weights with value 𝑤, 1 ≤ 𝑘 ≤ 4 and 1 ≤ 𝑤 ≤

10, using the Berkeley Predictive Technology Models (PTM) for 45nm CMOS transistors

[85]. For each weight value, the memristor was assigned to a memristance value so that

Table 4.1. The Truth Table and ILP Constraints for 𝐹3 Considering 1-weights and 2-

weight and 𝐶 = 8%.

Truth Table

Inequalities Input Pattern
(𝑥1𝑥2𝑥3𝑥4)

𝐹3

𝑃0 0000 0 0 < 0.92 ∙ 𝑤𝑇

𝑃1 0001 0 1.08 ∙ 𝑤4 < 0.92 ∙ 𝑤𝑇

𝑃2 0010 0 1.08 ∙ 𝑤3 < 0.92 ∙ 𝑤𝑇

𝑃3 0011 1 0.92 ∙ (𝑤3 +𝑤4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇

𝑃4 0100 0 1.08 ∙ 𝑤2 < 0.92 ∙ 𝑤𝑇

𝑃5 0101 0 1.08 ∙ (𝑤2 +𝑤4 + 𝑤2,4) < 0.92 ∙ 𝑤𝑇

𝑃6 0110 0 1.08 ∙ (𝑤2 + 𝑤3 +𝑤2,3) < 0.92 ∙ 𝑤𝑇

𝑃7 0111 1 0.92 ∙ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇

𝑃8 1000 0 1.08 ∙ 𝑤1 < 0.92 ∙ 𝑤𝑇

𝑃9 1001 0 1.08 ∙ (𝑤1 +𝑤4 + 𝑤1,4) < 0.92 ∙ 𝑤𝑇

𝑃10 1010 0 1.08 ∙ (𝑤1 + 𝑤3 +𝑤1,3) < 0.92 ∙ 𝑤𝑇

𝑃11 1011 1 0.92 ∙ (𝑤1 + 𝑤3 + 𝑤4 + 𝑤1,3 + 𝑤1,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇

𝑃12 1100 1 0.92 ∙ (𝑤1 + 𝑤2 +𝑤1,2) ≥ 1.08 ∙ 𝑤𝑇

𝑃13 1101 1 0.92 ∙ (𝑤1 + 𝑤2 + 𝑤4 + 𝑤1,2 + 𝑤1,4 + 𝑤2,4) ≥ 1.08 ∙ 𝑤𝑇

𝑃14 1110 1 0.92 ∙ (𝑤1 + 𝑤2 + 𝑤3 + 𝑤1,2 + 𝑤1,3 + 𝑤2,3) ≥ 1.08 ∙ 𝑤𝑇

𝑃15 1111 1 0.92 ∙ (𝑤1 +𝑤2 + 𝑤3 + 𝑤4 + 𝑤1,2 + 𝑤1,3 + 𝑤1,4 + 𝑤2,3 + 𝑤2,4 + 𝑤3,4) ≥ 1.08 ∙ 𝑤𝑇

minimize: ⌈
|𝑤𝑇|

10
⌉ + 1 ∙∑⌈

|𝑤𝑖|

10
⌉

4

𝑖=1

+ 2 ∙∑ ∑ ⌈
|𝑤𝑖,𝑗|

10
⌉

4

𝑗=i+1

3

𝑖=1

84

the current through that component was proportional to its weight value. We experienced

with the popular TiO2 bipolar metal-oxide memristors for which the VTEAM model in [15]

allows for accurate simulations. The length of a memristor and its memristance

boundaries 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 were set to 5nm, 5KΩ, and 5MΩ, respectively. The remaining

memristor parameters were set as in [35]. VDD was set to 1𝑉.

Figure 4.5 provides details on resistivity values to implement 𝑘-weights. For

example, a resistivity of 450KΩ implements weight 4 whereas 300KΩ implements weight

6.

All function implementations listed in this section can tolerate the maximum weight

deviation 𝐶 due to process variations in transistor parameters and any memristor leakage.

Table 4.2 shows the current (weight) variation for memristive 𝑘-weight components

considering 3% variation in width and length of transistors in 45nm technology. We also

considered that there might be an additional 3% weight variation due to memristor

Figure 4.4. The memristive Current mode TG (CTG) implementations for

function 𝐹3 in example 3.

85

leakage over time as well as any imprecise weight programming using [95, 101]. SPICE

simulations were conducted for each 𝑘-weight component using the Berkeley Predictive

Technology Models (PTM) for 45nm CMOS transistors [76] and VTEAM model in [15] for

memristors with 𝑅𝑂𝑁=5KΩ, 𝑅𝑂𝐹𝐹=5MΩ. The voltage difference over components was set

to 1V. The simulations showed that the current (weight) variation of memristive 𝑘-

weights, 1 ≤ 𝑘 ≤ 4, was lower that 8% when considering 3% variation in all transistor

parameters combined with an additional 3% variation in weight due to leakage or

imprecise programming. Therefore, 𝐶 was set to 8% in all following experiments. Note

that the length and area of the memristors do not affect the functionality of the mTGs

because 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 are not used as weights.

The following compare the transistor count, sensor size, power dissipation, and

delay of the proposed mTG implementation of randomly selected 𝑘-TFs with the CMOS-

based implementation in [83]. All functions were described by the weight configuration

set and implemented using the current mode TG in [52] considering 𝑘 ≤ 4. The 𝑉𝐷𝐷 was

set to 1V. The applied voltages for the clock 𝑐𝑙𝑘 were 1V and 0V for high voltage and low

voltage, respectively. The applied load was a minimum size CMOS inverter which had a

Figure 4.5. Different resistivity values to implement memristive 𝑘-

weights with value 𝑤, for 1 ≤ 𝑤 ≤ 10 and 1 ≤ 𝑘 ≤ 4.

86

PMOS transistor with width 240nm, and a NMOS transistor with width 120nm. The length

of all the PMOS and NMOS transistors were set to 45nm. The optimum sensor size was

obtained using the approach in [52].

The first Column in Table 4.3 lists the functions that are represented by the

optimum (minimum transistor count) integer weight assignment. Columns two to five list

the transistor count, sensor size, power dissipation, and the delay of the TG

implementation in [83] for each function. Note that the gate delay corresponds to the

critical input configurations where the difference between the sum of active weights

between two input networks is minimal, and at the same time the total number of active

components is minimum. Also, power dissipation corresponds to the average power

(including leakage and dynamic) for all possible input patterns [12,102,103]. These values

were obtained with SPICE simulations while considering corner cases by simultaneously

varying the width and length of all transistors in input networks as well as the sensor part.

Note that 𝑋 in column three denotes the size (area) of a minimum size transistor. Columns

six to nine show similar results when considering each function is implemented by the

proposed current mode higher order mTG implementation. The weights were

Table 4.2. Weight Variation for Memristive 𝑘-weight components, 1 ≤

𝑘 ≤ 4, considering 3% Variation in Width and Length of Transistors, and

3% Variation in Memristor Leakage and Imprecise programming.

Variation Source
Current variation for 𝑘-weights

1-weight 2-weight 3-weight 4-weight

Transistor Width 2.40% 2.40% 2.28% 2.16%

Transistor Length 2.16% 2.10% 2.04% 2.04%

Memristor Leakage or
Imprecise Programming

3.0% 3.0% 3.0% 3.0%

Total 7.56% 7.50% 7.32% 7.20%

87

implemented using the memristance values listed in Figure 4.5.

SPICE simulations were conducted to observe the effect of current leakage

through inactive parallel components. The sum of those currents could theoretically

approach current from active parallel components and thus invalidate the functionality of

the TG. It was observed that the current of an active unit weight was 40 times greater

than the maximum leakage current of any inactive component. Simulations also showed

that the sensor component operates correctly when higher order mTGs have up to 20

parallel components. However, the maximum number of parallel components observed

on any designed mTG never exceed 20, and rarely exceeded 15. Therefore all designed

Table 4.3. Transistor Count, Sensor Size, Power Dissipation, and Delay of Randomly

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83] and

the Proposed Memristive Approach. (𝑋 Denotes the Minimum Transistor Size.)

Function

[83] Proposed % Reduction

TC
Sensor

size
Power
(µW)

Delay
(ps)

TC
Sensor

size
Power
(µW)

Delay
(ps)

TC
Sensor

size
Power Delay

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[4,2,2; 5]
13 50 ∙ 𝑋 0.76 170 4 6 ∙ 𝑋 0.27 195 70% 88% 64% -14%

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] =

[4,4,2,2; 9]
21 50 ∙ 𝑋 0.76 178 5 6 ∙ 𝑋 0.27 208 76% 88% 64% -16%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇] =

[4,4,10,−4,−8,−8; 5]
43 72 ∙ 𝑋 0.97 205 7 6 ∙ 𝑋 0.27 215 83% 90% 72% -5%

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] =

[−6,4,−2,−2;−5]
31 66 ∙ 𝑋 0.79 182 7 6 ∙ 𝑋 0.28 193 77% 90% 65% -6%

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] =

[2, −2,2; 1]
19 50 ∙ 𝑋 0.81 187 6 8 ∙ 𝑋 0.28 220 68% 84% 65% -17%

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] =

[2,2,4,2; 3]
19 50 ∙ 𝑋 0.82 187 6 8 ∙ 𝑋 0.28 202 68% 84% 66% -8%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤4,5, 𝑤1,2,3; 𝑤𝑇]

= [2,2, −2,−2,4, −2,2; 1]
39 152 ∙ 𝑋 1.03 236 11 8 ∙ 𝑋 0.29 233 71% 94% 72% 1%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,2,3; 𝑤𝑇]

= [4,2,2,−2, −2,−2,−2; 3]
47 166 ∙ 𝑋 1.48 259 12 11 ∙ 𝑋 0.30 245 75% 93% 79% 5%

[𝑤3, 𝑤1,2, 𝑤2,4, 𝑤1,2,4,5; 𝑤𝑇] =

[−2,2,−4,2;−1]
59 470 ∙ 𝑋 3.96 312 10 11 ∙ 𝑋 0.32 278 83% 97% 92% 11%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2,3,4; 𝑤𝑇] =

[2,2,2,2, −4; 5]
77 450 ∙ 𝑋 4.55 320 9 10 ∙ 𝑋 0.32 290 88% 97% 93% 9%

88

mTGs operated correctly. In fact, it was observed that the higher order CMOS-based

implementation of every designed function (as in [83]) also operated correctly.

The last four columns in Table 4.3 list the percentage reduction in transistor count,

sensor size, power dissipation, and delay, respectively, when compared to the CMOS-

based current-mode implementation in [83]. The listed results show a significant decrease

in area and power dissipation and approximately same delay due to the memristive

weights.

Table 4.4 also lists detailed results on area, power dissipation (leakage and

dynamic) and delay obtained from post-layout simulations for all functions in Table 4.3.

We considered 45nm technology. Post-layout simulation has taken in to consideration

circuit parasitics which were extracted from the layout of the TG.

Columns two, five, and eight in Table 4.4 provides with details on the layout area

savings for all functions in Table 4.3. Observe that the reduction in layout area is similar

to the transistor count reduction in the input networks of those functions, as obtained by

the proposed ILP-based synthesis method.

Columns three, six, and nine show the power-related results, and columns four,

seven, and ten list the delay-related results. Again, observe that the reduction in power

and delay by the proposed method, reflect the savings that were shown earlier in Table

4.3. In fact, post-layout simulation showed that the saving in power is even higher than

what was shown at the synthesis level. Any difference in reported average power

dissipation among Tables 4.3 and 4.4 is due to parasitics.

Furthermore, the value of the constant 𝐶 that was set to 8% accommodates circuit

parasitics due to interconnections, and all functions operated correctly. Observe that the

89

reported post-layout simulations in Table 4.4 show that the savings in power and delay

are similar to those reported for pre-layout simulations in Table 4.3. The results in Tables

4.3 and 4.4 clearly demonstrate the significance of using memristive 𝑘-weights.

The following evaluates the flexibility of the proposed order mTG design in terms

of the number of implementable functions, and compare with existing CMOS-based

approach in [83] and memristive approaches in [48, 76, 89, 90]. The ILP-based approach

in [83] has been modified as explained in previous section and implemented in the C++

language on an Intel Xenon 2.4GHz with 8GB memory. To evaluate the impact, we

examined non-scalable functions with up to fifteen inputs. (An 𝑛-input non-scalable

Table 4.4. Post-Layout Results: Chip Area, Power Dissipation, and Delay of Randomly

Selected 𝑘-TFs, 1 ≤ 𝑘 ≤ 4, in 45𝑛𝑚 Technology Using the CMOS Approach in [83]

and the Proposed Memristive Approach.

Function

[83] Proposed % Reduction

Area
(µm2)

Power
(µW)

Delay
(ps)

Area
(µm2)

Power
(µW)

Delay
(ps)

Area Power Delay

[𝑤1, 𝑤2, 𝑤3; 𝑤𝑇] =

[4,2,2; 5]
11.00 1.68 280 1.96 0.67 285 82% 60% 0%

[𝑤1, 𝑤2, 𝑤3, 𝑤4; 𝑤𝑇] =

[4,4,2,2; 9]
11.56 1.96 310 1.96 0.76 360 83% 61% -16%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6; 𝑤𝑇] =

[4,4,10,−4,−8,−8; 5]
14.60 1.90 415 2.16 0.70 456 85% 63% -10%

[𝑤1, 𝑤3, 𝑤2,3, 𝑤3,4; 𝑤𝑇] =

[−6,4,−2,−2;−5]
13.30 1.75 405 2.16 0.71 446 84% 59% -10%

[𝑤1, 𝑤1,3, 𝑤2,3; 𝑤𝑇] =

[2,−2,2; 1]
11.56 1.96 250 2.40 0.68 260 79% 65% -4%

[𝑤1, 𝑤2, 𝑤3, 𝑤1,4; 𝑤𝑇] =

[2,2,4,2; 3]
11.56 1.98 296 2.40 0.76 308 79% 62% -4%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤4,5, 𝑤1,2,3; 𝑤𝑇]

= [2,2,−2,−2,4,−2,2; 1]
20.10 2.27 370 2.55 0.82 381 87% 64% -3%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2, 𝑤1,3, 𝑤1,2,3; 𝑤𝑇]

= [4,2,2,−2,−2,−2,−2; 3]
20.26 3.40 476 3.36 0.90 478 83% 73% 0%

[𝑤3, 𝑤1,2, 𝑤2,4, 𝑤1,2,4,5; 𝑤𝑇] =

[−2,2, −4,2;−1]
62.88 11.84 503 3.36 1.15 468 94% 90% 7%

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤1,2,3,4; 𝑤𝑇] =

[2,2,2,2,−4; 5]
62.50 12.01 542 3.36 1.22 525 94% 90% 3%

90

function requires no less than 𝑛 non-empty levels of variables in the Binary Decision

Diagram (BDD) representation for some ordering of the variables [58].) Weight values

were in the range [-10, +10].

Table 4.5 presents non-scalable 𝑛-input TFs can be implemented different TG

approaches considering that the transistor count for each gate is bounded to 4𝑛. This was

set as a bound to the objective function for any ILP formulation. The first column in Table

4.5 shows the number of inputs (value of 𝑛). For 1 ≤ 𝑛 ≤ 4, we considered all possible

functions. For functions with 𝑛 > 4, the entries in Table 4.5 were obtained by sampling

randomly 10 thousand functions. In particular, for 𝑛 > 4, the 2𝑛 bit output vector of an 𝑛-

input function was filled with either 0 or 1 at randomly selected positions (determined by

randomly selecting an integer mod 2𝑛), and so that the number of ones in the function

obeyed the distribution of functions based on this property. (For example, the number of

5-input functions with 16 ones in the output bit vector is approximately 10 times more than

the number of 5-input functions with 10 ones.) In order for the experiment to have more

statistical significance, we only considered non-scalable functions, and when a function

is generated, we applied the procedure described earlier in this section to determine that

it is non-scalable. (It is asserted that the distribution of non-scalable 𝑛-input functions

based on the number of ones in their output bit vector is the same as the one described

earlier for 𝑛-input functions.)

The second column in Table 4.5 lists the number of 𝑘-TFs implemented by using

CMOS-based method in [83] for 𝑘 = 4. The third column shows the number of 1-mTGs

by the approaches in [48, 76]. Column four lists the number of 1-mTGs with the fixed

resistivity approaches in [50, 79]. Column five lists the number of 𝑘-TFs implemented by

91

using the proposed mTG approach for 𝑘 = 4. The transistor count of any function in Table

4.5 was limited to 4𝑛. For all examined functions, the value of 𝐶 was set to 8% to take

into consideration that memristor and transistor sizes may vary due to process variations.

The results in Table 4.5 show that more functions can be implemented as single gates

when weights are implemented by higher order memristive components.

The remainder of the chapter provides experimental results on 4-TFs without

explicitly limiting the transistor count. Each function was implemented with [83] and the

proposed memristive approach. We considered functions as in Table 4.5. For each TF

we counted the number of transistors required. Table 4.6 shows that the proposed

method requires significantly less transistors when compared to [83]. Each row lists

results for different number of inputs.

Table 4.5. Number of 𝑛-input 𝑘-TFs Using 4𝑛 Transistors.

𝑛 [83] [48], [76] [50], [79] Proposed

1 2 2 2 2

2 8 8 8 10

3 72 72 72 218

4 37 1536 30 11514

5∗ 18 505 12 10970

6∗ 0 19 0 8031

7∗ 31 78 2 18961

8∗ 5 7 0 19922

9∗ 3449 368 210 19320

10∗ 1653 19 7 18998

11∗ 2452 35 11 19936

12∗ 1204 307 307 18725

TOTAL 8931 2956 661 146607

* Out of 20 thousand randomly selected non-scalable functions.

92

Column two in Table 4.6 lists the total number of functions examined for a given

value of 𝑛. Let Δ denote the percentage reduction in TG transistor count of the proposed

method over [83]. Columns three shows the number of TFs that were implemented with

transistor count savings in the range 50%-60% over [83]. Column four lists the number of

functions where the savings are in the range 60%-75%, column five list function with

savings in the range 75%-90%, and, finally, last column gives the number of functions

when the savings are no less than 90%. These columns were generated based on

different ranges of Δ.

The results in Table 4.6 show that many 𝑘-TFs were implemented as proposed

mTG with lower transistor count, and hence with lower area and power dissipation.

Table 4.6. Number of 4-TFs That Can Be Implemented With Lower

Transistor Count Using Proposed Approach.

𝑛
𝑘-TF as in

[83]

Δ (percentage reduction in CTG transistor count)

50%<Δ<60% 60%≤Δ<75% 75%≤Δ<90% Δ≥90%

1 2 2 0 0 0

2 10 8 2 0 0

3 218 58 84 76 0

4 65160 558 16551 47085 966

5∗ 19820 87 6244 13470 19

6∗ 20037 33 4372 15586 46

7∗ 19979 72 5941 13951 15

8∗ 19960 51 5557 14319 33

9∗ 19364 256 7348 11697 63

10∗ 20967 1008 6079 13761 119

11∗ 19942 50 7392 12494 6

12∗ 19894 70 5278 13720 826

TOTAL 225353 2253 64848 156159 2093

* Out of 20 thousand randomly selected non-scalable functions.

93

Approximately 98% of selected 𝑘-TFs were implemented with approximately 75% lower

transistor count.

4.5 Conclusion

A memristive-based approach has been presented to implement many more

functions as threshold logic gates with less transistor count when compared to CMOS-

based implementations. Experimental results show that more than 95% of threshold

functions can be implemented with approximately 75% lower transistor count, 90% lower

sensor size, and 70% less power consumption.

94

CHAPTER 5

RELIABLE MEMRISTIVE NEURAL NETWORK

5.1 Introduction

Artificial neural networks are used in machine learning applications and intelligent

systems where human intelligence is required for pattern matching, character and speech

recognition, and big data management [106-110]. They consist of an input layer, an output

layer and multiple hidden layers [111]. Each layer is made up of single neurons (called

perceptrons) which usually perform two operations: convolution and activation.

Convolution calculates the sum of inner products (multiplications) of inputs by their

corresponding weights, and activation assigns the neuron output by comparing the sum

of products with a predetermined threshold value [112, 113]. If the sum of the convolution

is greater than the threshold weight, then the output of the neuron is logic one otherwise

it is logic zero. The output of neuron 𝑗 is denoted by 𝑦𝑗 [107, 112-114]

𝑦𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =

{

1 𝑖𝑓 ∑𝑤𝑖,𝑗 ∙ 𝑥𝑖

𝑛

𝑖=1

> 𝜃𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (5.1)

Where each 𝑥𝑖, 𝑖 = 1,… , 𝑛, is an analog external input, 𝑤𝑖,𝑗 is the synaptic weight

corresponding to the 𝑖𝑡ℎ input of 𝑗𝑡ℎ neuron, and 𝜃𝑗 is the threshold weight (threshold

value) of neuron 𝑗. A training process achieves the synapse weight set of each neuron

[107, 114].

Neuron operations are inherently parallel and are typically performed on graphic

processing units (GPUs) [115-118]. However, all neural network GPU-based

95

implementations methods on GPUs are very power hungry. Many neuromorphic

architectures have been proposed recently to reduce the power dissipation, and increase

performance.

Approaches in [110-111, 118], among others, present efficient architectures using

stochastic computing. The stochastic binary hybrid design in [119] splits the computation

between different domains which can be used efficiently in near-sensor neural network

applications. An energy/performance efficient technique on general purpose GPU

architectures was proposed in [120]. It utilizes content addressable memory blocks in

order to store highly frequent patterns and precomputed results.

Memristors have been used recently to implement the synaptic weights [109, 112,

121-122]. The programmable resistance value of a memristor is called its memristance,

and the range of memristance is used to define different logic values and intermediate

states. Memristors are typically placed very densely and are accessed using a crossbar

array architecture. The crossbar architecture consists of two perpendicular sets of wires.

There is one memristor at the intersection of each vertical and horizontal lines which are

called the column and row, respectively. Each memristor is isolated from the others by a

transistor connects in series to it. This prevents parallel formation of unwanted paths

(called sneak-paths) in the crossbar architecture which may cause errors during read and

write operations [97]. A memristor with its isolating transistor is called a cell. Each cell is

accessed individually using row and column decoders.

Figure 5.1 shows the MCA for feedforward NN as proposed in [126]. It consists of

𝑛 rows and 2𝑚 columns. Each column pair in MCA consists of a low power interface

module that generates the total synaptic current. This eliminates the additional voltage

96

converter required at each input of each layer as in [109, 124], therefore, it reduces power

and hardware overhead.

In Figure 5.1, the input is an array of 𝑛 real numbers 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛. All the numbers

are in the range [0, 1]. The output of the 𝑗𝑡ℎ neuron 𝑦𝑖, 1 ≤ 𝑗 ≤ 𝑚 is a real value, and it is

input to the next layer. Each synaptic weight 𝑊𝑖,𝑗 linking the 𝑖𝑡ℎ input and the 𝑗𝑡ℎ neuron

consists of two adjacent memristors 𝑀𝑖,𝑗
+ and 𝑀𝑖,𝑗

− in cells 𝐶𝑖,𝑗
+ and 𝐶𝑖,𝑗

− , respectively. Only

one of these two memristors is in the off-state (highest possible resistivity). For instance,

considering the 𝑗𝑡ℎ column pair, if the weight is positive, 𝑀𝑖,𝑗
+ is programmed to the specific

weight value, and 𝑀𝑖,𝑗
− is in the off-state. However, if the weight is negative, 𝑀𝑖,𝑗

− is

programmed to the weight value, and 𝑀𝑖,𝑗
+ is in the off-state. Each column in the crossbar

array of Figure 5.1 calculates the partial weighted sum of either positive or negative

convolutions and in part of a neuron. Let 𝐼𝑗
+ and 𝐼𝑗

− denote the synaptic current for the

positive and negative convolutions, respectively, in the 𝑗𝑡ℎ column pair that is part of the

Figure 5.1. Memristive crossbar array for feedforward NN as in [126] and the

interface modules.

97

𝑗𝑡ℎ neuron. The difference between two 𝐼𝑗
+ and 𝐼𝑗

− is calculated by the interface module

(IM). This is the 𝑗𝑡ℎ total synaptic current.

It is observed that analog-based ANNs may result in erroneous computations due

to transistor aging. In fact, the performance of the CMOS transistor in a cell 𝐶 is impacted

by aging. In particular, Bias Temperature Instability (BTI), and to a lesser extent, dielectric

breakdown as well as Hot Carrier Injections (HCI) shift the threshold voltage of the CMOS

transistor causing the reduction in the drain current [97, 109, 119-122]. Therefore, the

synaptic current reduces as CMOS component of the cell ages. This impacts the value of

each convolution. We call this side effect as the cell aging effect. It is experimentally

shown that cell aging impacts the computational accuracy of analog ANNs.

This chapter presents a solution to this problem. This chapter enhances MCA

columns with a calibration circuit to alleviate the cell-aging effect and maintain invariant

sum of synaptic currents. The proposed approach uses a built-in current-based calibration

circuit (CC) to restore the total synaptic (column) current.

It should be mentioned that memristive leakage may also impact the value of

convolutions. Techniques as in [98, 99], as well as the modifications of learning methods

in [123, 125] can handle the memristor leakage by periodically updating the weight values,

and, therefore memristive leakage is not the focus of this chapter.

This chapter is organized as follows. Section 5.2 describes the current tuning

mechanism that mitigate the cell aging effect. Section 5.3 provides with experimental

results that show that cell aging may impact the reliability of crossbar-based

neuromorphic applications. It also presents the experimental evaluation of the proposed

architecture. Section 5.4 concludes the paper.

98

5.2 Enhanced architecture for improved reliability

This section introduces an enhanced MCA based ANN architecture to improve

reliability due to the cell aging effect. The MCA is enhanced by an extra row (the

calibration row) and an extra column (the spare column). A built-in current-based

calibration circuit (CC) is introduced to restore the total synaptic current. The CC is a

current sensor that receives the ideal reference current for non-aged column and restores

the reduced sensed current at each column to the ideal value. Figure 5.2 shows the

enhanced MCA.

We describe how the current is restored one column at a time. The column has

𝑛 + 1 cells: 𝑛 cells that implement weights and one spare cell (calibration cell) for

calibrating the current that is set initially in a high resistive state. Current calibration is

done in three cycles. During the first cycle, all cells in the spare column are programmed

sequentially to the same weight values as in target column. This is done by using any

programming approach as in [98, 99]. During the second cycle, the target column is

Figure 5.2. Enhanced ANN architecture including control and mapping

unit for isolating the target column.

99

disconnected from the MCA, and the spare column is mapped to its address to ensure

correct ANN functionality. The replacement and mapping process uses a built-in

hardware, which implements the repair algorithm during the memory testing [127]. The

target column is now disconnected from its neuron. During the last cycle, the restore

operation applies to calibration cell in the target column. The memristance of this cell

automatically assigns to a value so that the total current of the target column reflects the

reference current. The restore operation in target column is online, and therefore, it does

not interrupt the normal operation of the circuit.

The built-in current-based CC is shown in Figure 5.3. It contains a current sensor

and a feedback loop. When restoring the current, the target column 𝐶𝑗
+ is connected to

the current sensor, a low read voltage 𝑉𝑟 is applied to the 𝑛 cells that implement weights,

and a high write voltage 𝑉𝑤 is applied to the calibration cell. The current sensor compares

the resulting current 𝐼𝑗
+ with a predetermined reference current 𝐼𝑗_𝑟𝑒𝑓

+ . If 𝐼𝑗
+ is less than

𝐼𝑗_𝑟𝑒𝑓
+ , the output of the sensor is set to logic 0. During this time, 𝐼𝑗

+ increases as the

calibration memristance decreases over time. The memristance continues to decrease

until 𝐼𝑗
+ equals 𝐼𝑗_𝑟𝑒𝑓

+ . At that time, the output of the sensor changes to logic 1, and the

feedback loop deactivates the restore operation. The latch in the feedback loop ensures

stable operation.

The current sensor contains a minimum size buffer, a sensor resistivity 𝑅𝑆, and an

external sensor voltage 𝑉𝑆. Voltage 𝑉𝑆 in current sensor is controlled externally, and the

resistor 𝑅𝑆 can be implemented either by a parallel network of resistors or by an additional

memristor which can be programmed to any resistive value. During the normal mode of

operation and the first two calibration cycles, enable signal 𝐸𝑟 is low; subsequently, the

100

current sensor is deactivated, and the output of the sensor (𝑂𝑠) has low voltage because

of the pull-down resistivity 𝑅𝑝𝑑. During the restore operation (the third cycle), the control

signal unit connects the target column to the current sensor through a multiplexor. In

addition, the enable signal 𝐸𝑟 is high, and therefore, the sensor is active. When the restore

operation starts, the voltage at node 𝑁 (𝑉𝑁) is expressed as 𝑉𝑁 = 𝑉𝑆 + 𝑅𝑆 ∙ 𝐼𝑗
+, and

increases because 𝐼𝑗
+ increases. The calibration memristance decreases continuously

until 𝐼𝑗
+ equals 𝐼𝑗_𝑟𝑒𝑓

+ . At this point, 𝑉𝑁 will be larger than half of bias voltage of the buffer,

and therefore the output of the buffer changes to high voltage.

When designing the sensor, the sensor resistivity 𝑅𝑆 and the voltages 𝑉𝑆 and 𝑉𝑟

are determined so that 𝑉𝑁 =
𝑉𝐷𝐷

2
 when 𝐼𝑗(𝑡) = 𝐼𝑗_𝑟𝑒𝑓

+ , and by considering 𝑉𝐷𝐷 and ground

as bias voltages for the buffer. The value of 𝐼𝑗_𝑟𝑒𝑓
+ is determined by SPICE simulation.

Different 𝑅𝑆 and 𝑉𝑆 values can be used to sense various currents. (Note that 𝑉𝑆 < 0.5 <

𝑉𝑟 < 𝑉𝑤.) The precision in restoring the total current is directly proportional to the value

of 𝑅𝑠. Delay and the noise sensor margins are determined by the delay and noise margins

Figure 5.3. The circuitry of the proposed current-based calibration circuit.

101

of the buffer. Its noise margin also specifies the maximum number of cycles between

every restore operation.

The feedback loop in Figure 5.3 contains a two input AND gate, an inverter, and

an edge-triggered latch. During the normal mode of operation, 𝐸𝑟 = 0, and the feedback

signal 𝐹𝑗 as well as the output of the sensor block 𝑂𝑆 are initialized to 0. This operation is

kept to be active until the output of sensor block changes to 1 (which means that the

current 𝐼𝑗
+ of the cell 𝐶𝑗

+ is tuned). Then after, the signal 𝐹𝑗 changes to 1 immediately to

deactivate the restore operation through the control unit. The current 𝐼𝑗
+ subsequently

reduces to zero and forces 𝑂𝑆 to return immediately to 0. However, the Signal 𝐹𝑗 will be 1

until 𝐸𝑟 being disable.

Figure 5.4 shows the resistivity 𝑀𝑛+1,𝑗, current 𝐼𝑗
+ transitions, the pulse generated

in the output of the current sensor block 𝑂𝑆, and the output of the feedback loop 𝐹𝑗 during

restore operation applied to column 𝐶𝑗
+. As shown in Fig 5.4, 𝑂𝑆 changes to ‘1’, when the

current 𝐼𝑗
+ is restored to the predetermined reference current. It changes again to ‘0’ when

the feedback loop disconnects 𝑉𝑟 and 𝑉𝑤 from the target calibration cell. The time

difference between the time that 𝑉𝑁 = 0.5 and the time that 𝐹𝑗 changes to ‘1’ is denoted

by 𝑑𝑆. The time 𝑑𝑆 depends on the total delay of the sensor block and its feedback loop.

During 𝑑𝑆, the current increases over its reference value. This increment determines the

precision of the proposed current-based calibration circuit. The time 𝑑𝑆 depends strongly

on the size of the implemented approach, which is fixed after post-silicon fabrication.

However, the precision can be justified by 𝐼𝑗
+ transition rate during the restore operation,

which in turn, relates to voltages 𝑉𝑤, and 𝑉𝑆. The accuracy increases with decrease in

𝑉𝑤 − 𝑉𝑆.

102

The presented MCA enhancement may also reduce the time required to train the

aged MCA for a new application by slightly modifying existing hardware-based training

methods [123, 125]. Essentially, it maps any assigned memristor to appropriate value for

aged product. Experimental evidence for the training speedup will be provided in future

work. Finally, it is noted that aged transistors in the neurons N, the control unit, the

decoder, and the column isolating circuit only impact the temporal characteristic of the

components, and therefore, do not result in misclassification. In particular, it impacts 𝑑𝑠

and hence, reduces tuning precision. However, this can be handled by assigning

appropriate values to 𝑅𝑠 and 𝑉𝑠.

5.3 Experimental results

This section shows how CMOS aging effects the reliability of a memrisive-based

ANN, and therefore, the proposed approach helps to mitigate the aging effect. We

estimated the cell aging effect by assuming that the transistors were continuously under

stress. We used the static aging model in [84] to implement aged transistors by assigning

Figure 5.4. Timing diagram for signals 𝐸𝑟, 𝑂𝑠, and 𝐹𝑗 during the

restore operation for target column 𝐶𝑗
+.

103

different threshold voltages. The VTEAM model [15] for TiO2 bipolar metal-oxide

memristors was used during simulation. The length and memristance boundaries (𝑅𝑂𝑁

and 𝑅𝑂𝐹𝐹) were set to 5nm, 5KΩ, and 5MΩ, respectively. Other memristor parameters

were set as in [35]. Switching time for such memristor is approximately 10µs using applied

voltage ±1𝑉.

Memristance 𝑀𝑖,𝑗 at cell 𝐶𝑖,𝑗 was implemented with a 5-bit memristive multi-level

cell [99, 128-130], where more than one bit of information can be implemented in a single

cell with various levels of memristance. Since the current-voltage relation of a memristor

is nonlinear, each level corresponding to a weight value was assigned using the approach

in [129]. Any level or weight value can be realized by changing the memristance of the

memristor gradually with a precise write control [99]. We used five different levels to

implement 32 weight values.

Figure 5.5 (a) shows current change over time for a single cell with different weight

values, while considering only the threshold voltage increase over time. Figure 5.5 (b)

shows how the proposed built-in current-based calibration circuit (CC) restore the current

by using the calibration cell. This experiment assumes that a column has only two rows

(one is for weight implementation, and the other is for calibration). The calibration

resistivity 𝑀𝑖,𝑗 decreases systematically over time to compensate the current reduction of

the aged cell and alleviate the aging effect. The values in Figure 5.5 were obtained

considering 3% width and length variations for transistors [12, 105, 131-132]. The delay

of the approach, 𝑑𝑆, is less than 130ps, and each current listed was restored at most

within 98.8% of its initial value when 𝑉𝑤 and 𝑉𝑆 were set to 1𝑉 and 0𝑉, respectively.

However, the precision increases as 𝑉𝑤 − 𝑉𝑆 decreases. Additional experiments showed

104

that the currents (weights) of Figure 5.5 were restored within 99.2% of their initial values

when 𝑉𝑤 = 0.8𝑉 and 𝑉𝑆 = 0.2𝑉.

Figure 5.6 shows how weights change due to transistor aging for various input

voltage 𝑥𝑖 without considering memristive leakage. Only four levels of weights were

considered during this analysis. Aging factor depends on the total time that transistors of

the cells are active which in turn, depends on the total number of testing samples.

However, in neural network applications, the impact of aging on current variation for each

cell increases exponentially when the input voltage decreases. This is shown in Figure

5.6. As an example, for a high weight value 𝑊𝑖,𝑗 with 25𝑚𝑉 threshold voltage increment,

the current variation was more than 40% when input 𝑥𝑖 = 0.5𝑉 while it reduced to less

than 2% when 𝑥𝑖 = 1𝑉.

The following presents experimental evidence on the impact of the proposed

(a) (b)

Figure 5.5. (a) The current degradation over time due to aging, and

(b) the calibration resistivity 𝑀𝑗 changes over time to compensate the

current degradation. Ten different weight values are considered.

105

approach in pattern recognition. We evaluated the impact of CMOS-component aging on

synaptic weight precisions. The accuracy and the hardware overhead of the proposed

current-based CC were investigated on a handwritten digit recognition task using the

neural network based MNIST database [111, 120].

We implemented two ANN; one was a shallow network with a single hidden layer,

and the other one was a deep network with four hidden layers. We considered MNIST

with 784 input neurons, 10 output neurons, 6000 training samples, and 1000 testing

samples. We used 300 epochs (maximum number of iterations) for training. Learning rate,

epsilon, and momentum were set to 0.001, 0.001, and 0.9, respectively. We used sigmoid

function 𝑓(𝑥) = 1/(1 + exp(−𝑥)) as an activation function, and we introduced a threshold

value so that if the output of the winner neuron in output layer is within the 10% of the

expected value, the output is correct and input sample is classified. Otherwise, the sample

cannot be classified. Furthermore, the size of testing samples were 28×28, and each pixel

was presented by either 0 or 1. We made the analog input for each pixel by getting the

average of the pixel binary value and its eight neighbors. Therefore, the input voltages

Figure 5.6. The weights change due to transistor aging for various

input voltage 𝑥𝑖.

106

were set in 11 levels in the range from 0V to 1V.

The accuracy over days of stress on fully connected ANN networks with and

without using the calibration circuit is shown in Figure 5.7 (a). The accuracy was

determined by dividing the number of correct pattern recognized by the total number of

testing samples. Results show a significant loss of accuracy due to aging, while it has no

effect when using the proposed current calibration circuit (CC) along with crossbar array.

This is due to the periodic adjustment of the memristance in the target column over days

of stress. Figure 5.7 (b) shows that the calibration memristance of the output layer (10

columns) reduces over time in order to compensate cell-aging effect.

Figure 5.8 shows three testing samples from MNIST data set that were predicted

correctly with less than 0.01% mean square error (MSE) at time 𝑡 = 0. However,

considering continuous stress on transistors, the neural network predicts an incorrect

value for each sample after 28 minutes. Therefore, the samples were misclassified and

the MSE was more than 30%.

 (a) (b)

Figure 5.7 (a) The accuracy over days of stress of the implemented shallow

and deep neural networks with and without using the built-in calibration

circuit, and (b) calibration memristance for each column in output layer over

days of stress to compensate the aging effect.

107

Using the proposed current tuning mechanism of Section 5.2, the current can be

tuned with a high precision, which relates to restore voltage 𝑉𝑤 and external voltage 𝑉𝑆.

SPICE simulation of an input neuron in presence of 3% variation in transistor, shows that

any synaptic current in both implemented ANNs can be tuned with less than 1% precision

(within 99% of the initial value) when 𝑉𝑤 = 1𝑉 and 𝑉𝑠 = 0𝑉. This precision should be

considered during the weight training to assign weights so that the functionality of the

implemented network holds.

The proposed current-based calibration circuit was implemented in 45nm

technology with 19 transistors and 2 resistors. The area of the designed sensor was found

to be only 4.36 µm2. To find the winner neuron at the output layer, we implemented the

5-bit winner-take-all (WTA) circuit with 10 inputs proposed in [109] within 0.17 mm2. The

area overhead of the designed approach was around 0.043%. In addition, the total power

dissipation during the calibration operation (3 cycles) to tune the current of the target

column 97µW. The Overall increase in total power is 0.088%.

Sample: 3217 Sample: 625 Sample: 8508

MSE: 0.487411 MSE: 0.454202 MSE: 0.301882

Label: 8 Label: 2 Label: 5

Predict: 3 Predict: 1 Predict: 8

Figure 5.8. Aging effect in correctness of pattern recognition for

three different samples.

108

5.4 Conclusion

A reliable and low power built-in current-based calibration circuit is proposed to

periodically restore each neuron’s current when it reduces due to aging. Experimental

results show a significant saving in both shallow and deep neural networks while the area

overhead to ensure reliable operation is negligible.

109

CHAPTER 6

CONCLUDING REMARKS

Nano scale devices such as memristors are prone to defects. Some defects impact

the logical behavior of the device. Others impact the temporal behavior. A methodology

for testing the hybrid crossbar architecture has been presented in Chapter 2. The new

approach used a new fast write operation in order to reduce the test application time. The

proposed fast write operation benefits from the behavior of memristor device which is

nonlinear and asymmetric. The random memristive behavior and sneak-paths in crossbar

memory were also taken into consideration.

A new Design for Testability (DfT) mechanism was proposed in Chapter 2 to

implement the proposed fast write operation. The programmable DfT was able to assign

different access times for the proposed fast operations. The total area overhead of the

proposed DfT depends only on the number of columns and does not depend on the

number of rows and the number of tiles. The experimental results in 45nm technology on

DfT implementation showed that the area overhead of the designed DfT was found to be

only 8.875µm2 per column. Moreover, experimental results showed that the approach

reduced the test application time by 70% and the test energy by 40%. Also, the method

had similar test application time when sneak paths were considered during test in order

to increase reliability.

The proposed methods have been presented assuming that each memory cell is

a bipolar metal-oxide memristor which is a popular technology. The methods can be

generalized to other types of memristors as long as they have nonlinear and asymmetric

110

characteristics in the switching parameters. Future work of Chapter 1 will investigate on

online testing of memristor-based memories.

Threshold logic functions (TFs) and their implementations have been investigated

in Chapter 3. A small fraction of Boolean functions are TFs and can be implemented as

a single gate. This limits the impact of threshold logic gates (TGs) in digital circuit

synthesis. Chapter 3 proposed a new method to implement efficiently more functions as

single TG. This has been done by introducing higher order non-integer weights. The

method benefits from the higher order definition of TF and tries to control the number of

non-zero weight components in order to reduce the TG transistor count.

It has been demonstrated that the presented approach can implement many more

functions as current mode TGs (CTGs) with similar or less transistor count when

compared to existing method. In particular, for 100 thousand randomly selected functions,

when considering up to 4th-order weights, about 24.9 times more functions can be

implemented as CTGs with similar or less transistor count. Also around 90% of existing

TFs can be implemented as CTGs with approximately 60% less power dissipation, and

20% less delay when considering higher order non-integer weights in the presence of

circuit parasitics. Future work of Chapter 3 will investigate heuristic approaches to

implement higher order TFs with rational weights.

In addition, Chapter 4 investigated the impact of emerging technology on resistive

devices such as memristors. A memristive-based approach has been presented to

implement many more functions as threshold logic gates with less transistor count when

compared to CMOS-based implementations in Chapter 3. The resistivity range of

memristor was used to define different weight values.

111

Experimental results showed that the transistor count was reduced further when

implementing the weights (including 1st–order and higher order weights) with resistive

devices. This method of weight implementation reduced significantly the transistor count

of the TG. Experimental results showed that more than 95% of threshold functions can

be implemented with approximately 75% lower transistor count, 90% lower sensor size,

and 70% less power consumption.

Chapter 5 focused on reliability of analog artificial neural network (ANN) where

synaptic weights were implemented by memristor. It was observed that analog ANNs may

result in erroneous computations due to transistor aging. In particular, it was shown that

aging impacts the value of each multiplication. A new method to improve reliability was

proposed in Chapter 5. The approach benefits from the enhanced memristive crossbar

array (MCA) which contains an extra row (the calibration row) and an extra column (the

spare column). A built-in current-based calibration circuit was designed to restore the total

synaptic weight.

Experimental results on the proposed calibration circuit in 45nm technology

showed that the currents of aged synapses (weights) were restored within approximately

90% of their initial values. Furthermore, the results showed that the area overhead of the

designed circuit was around 0.043% and the total increase in power dissipation due to

the calibration operation was 0.088%. Additional experiments on MNIST dataset showed

a significant saving in both shallow and deep neural networks. Future work of Chapter 5

will investigate on tuning of activation functions rather than multiplications.

112

REFERENCES

[1] L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE Transactions on Circuit

Theory, vol.18, no. 5, pp. 507-519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing Memristor found,”

Nature, 453, pp. 80-83, 2008.

[3] Y. Ho, G. M. Huang, P. Li, “Nonvolatile memristor memory: device characteristics and

design implications,” IEEE/ACM International Conference on Computer-Aided Design, pp.

485-490, 2009.

[4] M. Imani, A. Rahimi, T. Rosing, “Resistive Configurable Associative Memory for

Approximate Computing,” Proceeding of IEEE Design, Automation and Test in Europe

(DATE), pp. 1327-1332, 2016.

[5] S. Balatti, S. Ambrogio, Z. Wang, D. Ielmini, “True Random Number Generation by

Variability of Resistive Switching in Oxide-Based Devices,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 5, no. 2, pp. 214-221, 2015.

[6] P. Knag, Wei Lu; Zhengya Zhang, “A Native Stochastic Computing Architecture Enabled by

Memristors,” IEEE Transactions on Nanotechnology, vol. 13, no. 2, pp. 283-293, 2014.

[7] J. Hutchby, M. Garner, “Assessment of the potential and maturity of selected emerging

research memory technologies”, Workshop and ERD/ERM Working Group Meeting, Japan,

2010.

[8] M. Imani, P. Mercati, T. Rosing, “ReMAM: Low energy Resistive Multi-stage Associative

Memory for energy efficient computing,” International Symposium on Quality Electronic

Design (ISQED), pp. 101-106, 2016.

[9] M. Imani, Shruti Patil, T. Rosing, “Approximate Computing using Multiple-Access Single-

Charge Associative Memory,” IEEE Transaction on Emerging Topics in Computing (TETC),

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Abbas%20Rahimi.QT.&newsearch=true

113

2016.

[10] M. Imani, Y. Kim, A. Rahimi, T. Rosing, “ACAM: Approximate Computing Based on Adaptive

Associative Memory with Online Learning.” International Symposium on Low Power

Electronics and Design (ISLPED), pp. 162-167, 2016.

[11] N. Z. Haron, S. Hamdioui, “On Defect Oriented Testing for Hybrid CMOS/Memristor

Memory,” IEEE Asian Test Symposium, pp. 353-358, 2011.

[12] S. N. Mozaffari, A. Afzali-Kusha, “Statistical Model for Subthreshold Current Considering

Process Variations,” 2nd Asia Symposium on Quality Electronic Design (ASQED), pp. 356-

360, 2010.

[13] M. Bushnell, V. Agrawal, “Essentials of Electronic Testing for Digital, Memory, and Mixed-

Signal VLSI Circuits,” Springer 2000.

[14] S. Kvatinsky, E. G. Friedman, A. Kolodny, U. C. Weiser, “TEAM: ThrEshold Adaptive

Memristor Model,” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 60,

no. 1, pp. 211-221, 2013.

[15] S. Kvatinsky, M. Ramadan, E. G. Friedman, A. Kolodny, “VTEAM-A General Model for

Voltage Controlled Memristors,” IEEE Transactions on Circuits and Systems—II: Express

Briefs, vol. 62, no. 8, pp. 786-790, 2015.

[16] S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, “Stochastic memristive devices for computing

and neuromorphic applications,” Nanoscale, vol. 5, no. 13, pp. 5872-5878, 2013.

[17] Gaba, S., Knag, P., Zhang, Z., Wei Lu, “Memristive devices for stochastic computing,” IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 2592-2595, 2014.

[18] S. Kannan, J. Rajendran, R. Karri, O. Sinanoglu, “Sneak-path Testing of Memristor-based

Memories,” International Conference on VLSI Design, pp. 386-391, 2013.

[19] S. Kannan, J. Rajendran, R.Karri, O. Sinanoglu, “Sneak-Path Testing of Crossbar-Based

Nonvolatile Random Access Memories,” IEEE Transactions on Nanotechnology, vol. 12, no.

3, pp. 413-426, 2013.

http://www.ieee-cas.org/

114

[20] S. Kannan, N. Karimi, R. Karri, O. Sinanoglu, “Detection, Diagnosis, and Repair of Faults in

Memristor-based Memories,” IEEE VLSI Test Symposium (VTS), pp. 1-6, 2014.

[21] S. Kannan, R. Karri, O. Sinanoglu, “Sneak path testing and Fault Modeling for Multi-level

Memristor-based Memories,” IEEE International Conference on Computer Design (ICCD),

pp. 215-220, 2013.

[22] S. Kannan, N. Karimi, R. Karri, O. Sinanoglu, “Modeling, Detection, and Diagnosis of Faults

in Multi-Level Memristor Memories,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 34, no. 5, pp. 822-824, 2015.

[23] L. Dillilo, P. Girard, S. Pravossoudovitch, A. Virazel, “Resistive-Open Defects in Embedded-

SRAM core cell: Analysis and March Test Solution,” IEEE Test Symposium, pp. 266-271,

2004.

[24] S. Hamdioui, M. Taouil, N. Z. Haron, “Testing Open Defects in Memristor-Based Memories,”

IEEE Transactions on Computers, vol. 64, no. 1, pp. 247-259, 2015.

[25] N. Z. Haron and S. Hamdioui, “DfT Schemes for Resistive Open Defects in RRAMs,” IEEE

Design, Automation and Test in Europe (DATE), pp. 799-804, 2012.

[26] S. Hamdioui, H. Aziza, G. Sirakoulis, “Memristor Based Memories: Technology, Design and

Test,” IEEE Design & Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1-7,

2014.

[27] S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “Fast march tests for defects in resistive

memory,” Proceedings of the IEEE/ACM International Symposium on Nanoscale

Architectures (NANOARCH), pp. 88-93, 2015.

[28] C. Yakopcic, R. Hasan, T. M. Taha, “Hybrid crossbar architecture for a memristor based

cache,” Microelectronics Journal, vol. 46, no. 11, pp. 1020-1032, 2015.

[29] J. J. Yang et al., “The mechanism of electroforming of metal oxide memristive switches,”

Nanotechnology, vol. 20, no. 21, 2009.

[30] A. H. Edwards, H. J. Barnaby, K. A. Campbell, M. N. Kozicki, W. Liu, M. J. Marinella,

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6644329
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9468
http://arxiv.org/find/cs/1/au:+Yakopcic_C/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Taha_T/0/1/0/all/0/1

115

“Reconfigurable Memristive Device Technologies,” Proceedings of the IEEE, vol. 103, no.

7, pp. 1004-1033, 2015.

[31] M. Saremi, “A physical-based simulation for the dynamic behavior of photodoping

mechanism in the chalcogenide materials used in the lateral programmable metallization

cells” Solid State Ionics, vol. 290, p. 1, 2016.

[32] M. Saremi, H. J. Barnaby, A. Edwards, and M. N. Kozicki, “Analytical relationship between

anion formation and carrier-trap statistics in chalcogenide glass films,” Electrochemistry

Letters, vol. 4, no. 7, pp. H29-H31, 2015.

[33] S. Rajabi, M. Saremi et al., “Static impedance behavior of programmable metallization

cells” Solid State Electronics, vol. 106, p. 27, 2015.

[34] M. Hu, Y. Wang, Q. Qiu, Y. Chen, H. Li, “The stochastic modeling of TiO2 memristor and its

usage in neuromorphic system design,” IEEE Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 831-836, 2014.

[35] S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U. C. Weiser and E. G. Friedman,

“Models of memristors for SPICE simulations,” IEEE Convention of Electrical & Electronics

Engineers in Israel (IEEEI), pp. 1-5, 2012.

[36] P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen, W. Lu, “Device and SPICE modeling

of RRAM devices,” Nanoscale, vol. 3, no. 9, pp. 3833-3840, 2011.

[37] S. H. Jo, K. H. Kim, W. Lu, “Programmable resistance switching in nanoscale two-terminal

devices,” Nano Letters, vol. 9, no. 1, pp. 496-500, 2009.

[38] A. Ghofrani et al., “A Low-Power Variation-Aware Adaptive Write Scheme for Access-

Transistor-Free Memristive Memory.” ACM Journal on Emerging Technologies in

Computing Systems (JETC), vol. 12, no. 1, Article 3., 18 pages, 2015.

[39] J. J. Yang et al., “High switching endurance in TaOx memristive devices,” Applied Physics

Letters, vol. 97, no. 23, 3 pages, 2010.

[40] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, R. S. Williams,

116

“Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution,”

Nanotechnology, vol. 22, no. 9, 2011.

[41] C. Yang, B. Liu, Y. Wang, Y. Chen, H. Li, X. Zhang, G. Sun, “The Applications of NVM

Technology in Hardware Security,” Proceedings of Great Lakes Symposium on VLSI

(GLVLSI), pp. 311-316, 2016.

[42] H. Aziza, M. Bocquet, J-M. Portal, C. Muller, “Bipolar OxRRAM Memory Array Reliability

Evaluation based on Fault Injection,” Proceedings of Design and Test Workshop (IDT), pp.

78-81, 2011.

[43] J. Wu, M. Choi, “Memristor lookup table (MLUT)-based asynchronous nanowire crossbar

architecture,” IEEE Conference on Nanotechnology, pp. 1100-1103, 2010.

[44] Y. Cassuto, S. Kvatinsky, E. Yaakobi, “Sneak-path constraints in memristor crossbar

arrays.” IEEE International Symposium on Information Theory (ISIT), pp. 156-160, 2013.

[45] P. P. Sotiriadis, “Information capacity of nanowire crossbar switching networks,” IEEE

Transactions on Information Theory, vol. 52, no. 7, pp. 3019-3032, 2006.

[46] S. Shin, K. Kim, S.-M. Kang, “Analysis of passive memristive devices array: Data-dependent

statistical model and self-adaptable sense resistance for RRAMs,” Proceedings of the IEEE,

vol. 100, no. 6, pp. 2021-2032, 2012.

[47] S. Gupta, A. Crouch, J. Dworak and D. Engels, “Increasing IJTAG bandwidth and managing

security through parallel locking-SIBs,” IEEE International Test Conference (ITC), pp. 1-10,

2017.

[48] C. B. Dara, T. Haniotakis and S. Tragoudas, “Low power and high speed current-mode

memristor-based TLGs,” IEEE International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT), pp.89-94, 2013.

[49] M. J. Avedillo, J. M. Quintana, A. Rueda and E. Jimenez, “Low-power CMOS threshold-logic

gate,” Electronics Letters, vol. 31, no. 25, pp. 2157-2159, 1995.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6111737

117

[50] J. Yang, N. Kulkarni, S. Yu and S. Vrudhula, “Integration of threshold logic gates with RRAM

devices for energy efficient and robust operation,” IEEE/ACM International Symposium

on Nanoscale Architectures (NANOARCH), pp. 39-44, 2014.

[51] N. Kulkarni, J. Yang, J. S. Seo and S. Vrudhula, “Reducing Power, Leakage, and Area of

Standard-Cell ASICs Using Threshold Logic Flip-Flops,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 24, no. 9, pp. 2873-2886, 2016.

[52] C. B. Dara, T. Haniotakis and S. Tragoudas, “Delay Analysis for Current Mode Threshold

Logic Gate Designs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 25, no. 3, pp. 1063-1071, 2017.

[53] S. Bobba and I. N. Hajj, “Current-mode threshold logic gates,” Proceedings of the

International Conference on Computer Design, pp. 235-240, 2000.

[54] T. Gowda, S. Vrudhula, N. Kulkarni and K. Berezowski, “Identification of Threshold

Functions and Synthesis of Threshold Networks,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 5, pp. 665-677, 2011.

[55] V. Beiu, J. M. Quintana, M. J. Avedilo and R. Andonie, “Differential implementations of

threshold logic gates,” Proceedings of the International Symposium on Signals, Circuits and

Systems 2 (SCS), vol. 2, pp. 489-492, 2003.

[56] M. Nikodem, M. A. Bawiec and J. Biernat, “Synthesis of generalised threshold gates and

multi threshold threshold gates,” INTL Journal of Electrinics and Telecommunications, vol.

58, no. 1, pp. 49-54, 2012.

[57] R. O. Winder, “Threshold logic,” Ph.D. Dissertation, Princeton University, Princeton, NJ,

1962.

[58] S. Muroga, “Threshold Logic and its Applications,” John Wiley, New York, 1971.

[59] M. L. Dertouzos, “Threshold Logic: A Synthesis Approach,” MIT Press, Cambridge, MA,

1965.

118

[60] C. Wang and A.C. Williams, “The threshold order of a Boolean function,” Discrete Applied

Mathematics, vol. 31, no. 1, pp. 51-69, 1991.

[61] A. K. Palaniswamy, M. K. Goparaju and S. Tragoudas, “An Efficient Heuristic to Identify

Threshold Logic Functions,” ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 8, no. 3, pp. 19:1–19:17, 2012.

[62] A. Neutzling, M. G. A. Martins, R. P. Ribas and A. I. Reis, “Synthesis of threshold logic gates

to nanoelectronics,” proceedings of the 26th Symposium on Integrated Circuits and Systems

Design (SBCCI), pp. 1-6, 2013.

[63] A. Neutzling, J. Maick Matos, A. I. Reis, R. P. Ribas and A. Mishchenko, “Threshold logic

synthesis based on cut pruning,” IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 494-499, 2015.

[64] A. K. Palaniswamy and S. Tragoudas, “Improved Threshold Logic Synthesis Using

Implicant-Implicit Algorithms,” ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 10, no. 3, 2014.

[65] T. Gowda and S. Vrudhula, “Decomposition based approach for synthesis of multi-level

threshold logic circuits,” proceedings of the Asia and South Pacific Design Automation

Conference, pp. 125-130, 2008.

[66] A. Neutzling, M. G. A. Martins, R. P. Ribas and A. I. Reis, “A constructive approach for

threshold logic circuit synthesis,” IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 385-388, 2014.

[67] R. Zhang, P. Gupta, L. Zhong and N. K. Jha, “Threshold network synthesis and optimization

and its application to nanotechnologies,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 24, no. 1, pp. 107-118, 2005.

http://www.sciencedirect.com/science/article/pii/0166218X9190032R
http://www.sciencedirect.com/science/article/pii/0166218X9190032R
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X/31/1

119

[68] T. Ogawa, T. Hirose, T. Asai and Y. Amemiya “Threshold Logic Devices Consisting of

Subthreshold CMOS Circuits,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E92.A, no. 2, pp. 436-442, 2009.

[69] T. Gowda, S. Vrudhula, N. Kulkarni and K. Berezowski, “Identification of Threshold

Functions and Synthesis of Threshold Networks,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 5, pp. 665-677, 2011.

[70] R. Zhang, P. Gupta, L. Zhong and N. K. Jha, “Synthesis and Optimization of Threshold Logic

Networks with Application to Nanotechnologies,” Proceedings of the conference on Design,

Automation & Test in Europe (DATE), pp. 904-909, 2004.

[71] A. Mishchenko, “Enumeration of irredundant circuit structures,” Proceedings of International

Workshop on Logic and Synthesis, 2014.

[72] J. Keane, X. Wang, D. Persaud, and C. H. Kim, “An All-In-One Silicon Odometer for

Separately Monitoring HCI, BTI, and TDDB,” IEEE Journal of Solid-State Circuits, vol. 45,

no. 4, pp. 817-829, 2010.

[73] B. Eghbalkhah, M. Kamal, A. Afzali-Kusha, M. B. Ghaznavi-Goushchi, and M. Pedram,

“CSAM: A Clock Skew-aware Aging Mitigation Technique,” Microelectronics Reliability,

vol. 55, no. 1, pp. 282-290, 2015.

[74] S. Mahapatra et al., “Characterization and modeling of NBTI stress, recovery, material

dependence and AC degradation using R-D framework,” IEEE International Symposium on

the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-7, 2011.

[75] L. Gao, F. Alibart and D. B. Strukov, “Programmable CMOS/ Memristor Threshold Logic,”

IEEE Transactions on Nanotechnology, vol. 12, no. 2, pp. 115-119, 2013.

[76] J. Rajendran, H. Manem, R. Karri and G. S. Rose, “An Energy-Efficient Memristive

Threshold Logic Circuit,” IEEE Transactions on Computers, vol. 61, no. 4, pp. 474-487,

2012.

https://www.researchgate.net/journal/0026-2714_Microelectronics_Reliability

120

[77] K. Maan, D. A. Jayadevi and A. P. James, “A Survey of Memristive Threshold Logic Circuits,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 8, pp. 1734-

1746, 2017.

[78] J. M. Quintana, J. M. Avedillo, J. Nunez and H. P. Roldan, “Operation Limits for RTD-Based

MOBILE Circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56,

no. 2, pp. 350-363, 2009.

[79] S. Vrudhula, N. Kulkami and J. Yang, “Design of threshold logic gates using emerging

devices,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 373-376,

2015.

[80] N. Kimizuka et al., “The impact of bias temperature instability for direct-tunneling ultra-thin

gate oxide on MOSFET scaling,” Symposium on VLSI Technology. Digest of Technical

Papers (IEEE Cat. No.99CH36325), pp. 73-74, 1999.

[81] S. Khan et al., “BTI impact on logical gates in nano-scale CMOS technology,” IEEE

International Symposium on Design and Diagnostics of Electronic Circuits & Systems

(DDECS), pp. 348-353, 2012.

[82] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “Reducing power, area, and delay of

threshold logic gates considering non-integer weights” IEEE International Symposium on

Circuits & Systems (ISCAS), pp. 1-4, 2017.

[83] S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “A new method to identify threshold logic

functions,” Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 934-

937, 2017.

[84] W. Wang et al., “The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation,

and Analysis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18,

no. 2, pp. 173-183, 2010.

121

[85] Berkeley Predictive Technology Models (PTM), http://ptm.asu.edu/modelcard/LP/

45nm_LP.pm, 2013.

[86] S. Gupta, J. Dworak, D. Engels and A. Crouch, “Mitigating simple power analysis attacks on

LSIB key logic,” IEEE North Atlantic Test Workshop (NATW), pp. 1-6, 2017.

[87] S. N. Mozaffari, and S. Tragoudas, “Memristive Current Mode Threshold Logic Gates,”

International Conference on Memristive Materials, Devices & Systems (MEMRISYS 2017),

April 2017.

[88] J. Rajendran, H. Manem, and G. S. Rose, “NDR based threshold logic fabric with memristive

synapses,” IEEE Conference on Nanotechnology (IEEE-NANO), pp. 725–728, 2009.

[89] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “Memristor based programmable

threshold logic array,” IEEE/ACM International Symposym Nanoscale Architecture

(NANOARCH), pp. 5-10, 2010.

[90] M. Sharad, D. Fan, and K. Roy, “Ultra-low energy, high-performance dynamic resistive

threshold logic,” 2013, arXiv:1308.4672v1

[91] A. P. James, D. S. Kumar, and A. Ajayan, “Threshold logic computing: Memristive-CMOS

circuits for fast fourier transform and vedic multiplication,” IEEE Transactions on Very Large

Scale Integration Sestems (TVLSI), vol. 23, no. 11, pp. 2690-2694, 2015.

[92] A. Rothenbuhler, T. Tran, E. H. B. Smith, V. Saxena, and K. A. Campbell, “Reconfigurable

Threshold Logic Gates using Memristive Devices” Journal of Low Power Electronics and

Applications, vol. 3, no. 2, pp. 174-193, 2013.

[93] L. Gao, F. Alibart, D. B. Strukov, “Programmable CMOS/Memristor Threshold Logic,” IEEE

Transactions on Nanotechnology, vol. 12, no. 2, pp. 115-119, 2013.

[94] I. Messaris, A. Serb, A. Khiat, S. Nikolaidis, and T. Prodromakis, “A compact Verilog-A

ReRAM switching model,” arXiv:1703.01167.

http://ptm.asu.edu/modelcard/LP/%2045nm_LP.pm
http://ptm.asu.edu/modelcard/LP/%2045nm_LP.pm
https://arxiv.org/abs/1308.4672v1
http://www.mdpi.com/search?authors=Adrian%20Rothenbuhler
http://www.mdpi.com/search?authors=Thanh%20Tran
http://www.mdpi.com/search?authors=Elisa%20H.%20Barney%20Smith
http://www.mdpi.com/search?authors=Vishal%20Saxena
http://www.mdpi.com/search?authors=Kristy%20A.%20Campbell
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ligang%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Strukov,%20D.B..QT.&newsearch=true

122

[95] I. Messaris et al., “A TiO2 ReRAM parameter extraction method,” IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.

[96] I. Messaris et al., “Live demonstration: A TiO2 ReRAM parameter extraction method,” IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 1-1, 2017.

[97] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “More Efficient Testing of Metal-oxide

Memristor-based Memory”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 36, no. 6, pp. 1018-1029, 2017.

[98] H. Manem, J. Rajendran, and G. S. Rose, “Design considerations for multi-level

CMOS/nano memristive memory,” ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 8, no. 1, p.1-22, 2012.

[99] F. Alibart, L. Gao1, B. D. Hoskins, and D. B. Strukov, “High precision tuning of state for

memristive devicesby adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23, no.

7, pp. 1-7, 2012.

[100] H. Manem et al., “Stochastic Gradient Descent Inspired Training Technique for a

CMOS/Nano Memristive Trainable Threshold Gate Array,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 59, no. 5, pp. 1051-1060, 2012.

[101] R. Berdan, T. Prodromakis, and C. Toumazou, “High precision analogue memristor state

tuning,” Electronics Letters, vol. 48, no. 18, pp. 1105-1107, 2012.

[102] S. D. Gupta and M. A. Thornton, “A Fixed-Point Squaring Algorithm Using an Implicit

Arbitrary Radix Number System,” IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, vol. 6, no. 1, pp. 34-43, March 2016.

[103] Q. Xie, A. Yekkehkhany, and Y. Lu, “Scheduling with multi-level data locality: Throughput

and heavy-traffic optimality,” IEEE INFOCOM 2016 - The 35th Annual IEEE International

Conference on Computer Communications, pp. 1-9, 2016.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6917053
http://iopscience.iop.org/journal/0957-4484
http://iopscience.iop.org/volume/0957-4484/23
http://iopscience.iop.org/issue/0957-4484/23/7
http://iopscience.iop.org/issue/0957-4484/23/7

123

[104] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “A Generalized Approach to Implement

Efficient CMOS-Based Threshold Logic Functions,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 65, no. 3, pp. 946-959, 2017.

[105] M. Hosseini, Y. Jiang, A. Yekkehkhany, R. R. Berlin, L. Sha, “A Mobile Geo-Communication

Dataset for Physiology-Aware DASH in Rural Ambulance Transport,” Proceedings of the 8th

ACM on Multimedia Systems Conference, pp. 158-163, 2017.

[106] J. Grollier, D. Querlioz, and M. D. Stiles, “Spintronic Nanodevices for Bioinspired

Computing,” Proceedings of the IEEE, vol. 104, no. 10, pp. 2024-2039, 2016.

[107] A. Sengupata et al., “Proposal for an All-Spin Artificial Neural Network: Emulating Neural

and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 10, no. 6, pp. 1152-1160, 2016.

[108] Y. V. Pershin, and M. D. Ventra, “Experimental Demonstration of Associative Memory With

memristive Neural Network,” Journal of Neural Networks, vol. 23, no. 7, pp. 881-886, 2010.

[109] M. Sharad, D. Fan, K. Aitken, and K. Roy, “Energy-Efficient Non-Boolean Computing With

Spin Neurons and Resistive Memory,” IEEE Transactions on Nanotechnology, vol. 13, no.

1, pp. 23-34, 2014.

[110] K. Kyounghoon, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic Energy- Accuracy

Trade-off Using Stochastic Computing in Deep Neural Networks,” IEEE Design Automation

Conference (DAC), pp. 1-6, 2016.

[111] Z. Li, A. Ren, J. LI, Q. Qiu, B. Yuan, J. Draper, and Y. Wang, “Structural design optimization

for deep convolutional Neural Network using stochastic computing,” Design, Automation

and Test in Europe (DATE), to appear in March 2017.

[112] K. Yogendra, D. Fan, and K. Roy, “Coupled Spin Torque Nano Oscillators for Low Power

Neural Computation,” IEEE Transactions on Magnets, vol. 51, no. 10, pp. 1-9, 2015.

http://dl.acm.org/citation.cfm?id=1837611&CFID=918401184&CFTOKEN=88791871

124

[113] W. Qinruo, Y. Bo, X. Yun, and L. Bingru, “The Hardware Structure of Perceptron with FPGA

Implementation,” IEEE International Conference on Systems, Man and Cybernetics, pp.

762-767, 2003.

[114] M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, “Spin-Based Neuron Model With

Domain-Wall Magnets as Synapse,” IEEE Transactions on Nanotechnology, vol. 11, no. 4,

pp. 843-853, 2012.

[115] T. Harada, “Real-time rigid body simulation on GPU (chapter 29) in GPU Gems 3”, Addison

Wesley, 2008.

[116] A. Lefohn, J. Kniss and J. Owens, “Implementing efficient parallel data structures on GPUs

(chapter 32) in GPU Gems 2”, Addison Wesley, 2006.

[117] X. Sierra-Canto, F. Madera-Ramirez and V. Uc-Cetina, “Parallel Training of a Back-

Propagation Neural Network Using CUDA,” International Conference on Machine Learning

and Applications, pp. 307-312, 2010.

[118] R. Uetz, and S. Behnke, “Large-scale object recognition with CUDA-accelerated hierarchical

neural networks,” IEEE International Conference on Intelligent Computing and Intelligent

Systems (ICIS), pp. 536-541, 2009.

[119] V. Lee, A. Alaghi, J. Hayes, V. Sathe, and L. Ceze, “Energy-Efficient Hybrid Stochastic-

Binary Neural Networks for Near-Sensor Computing,” Design, Automation and Test in

Europe (DATE), pp. 13-18, 2017.

[120] M. Imani, D. Peroni, Y. Kim, A. Rahimi, and T. Rosing, “Efficient Neural Network

Acceleration on GPGPU using Content Addressable Memory” Design, Automation and Test

in Europe (DATE), pp. 1026-1031, 2017.

[121] L. Gao, F. Alibart, and D. B. Strukov, “Analog-input analog-weight dot-product operation with

Ag/a-Si/Pt memristive devices,” IEEE/IFIP International Conference on VLSI and System-

on-Chip (VLSI-SoC), pp. 88-93, 2012.

125

[122] A. Sengupta, M. Parsa, B. Han, and K. Roy, “Probabilistic Deep Spiking Neural Systems

Enabled by Magnetic Tunnel Junction,” IEEE Transactions on Electron Devices, vol. 63, no.

7, pp. 2963-2970, 2016.

[123] S. P. Adhikari, H. Kim, R. K. Budhathoki, C. Yang and L. O. Chua, “A Circuit-Based Learning

Architecture for Multilayer Neural Networks With Memristor Bridge Synapses,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 215-223, 2015.

[124] A. Sengupta and K. Roy, “A Vision for All-Spin Neural Networks: A Device to System

Perspective,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12,

pp. 2267-2277, 2016.

[125] M. V. Nair and P. Dudek, “Gradient-descent-based learning in memristive crossbar arrays,”

International Joint Conference on Neural Networks (IJCNN), pp. 1-7, 2015.

[126] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo and C. Gamrat, “Visual Pattern

Extraction Using Energy-Efficient 2-PCM Synapse Neuromorphic Architecture,” IEEE

Transactions on Electron Devices, vol. 59, no. 8, pp. 2206-2214, 2012.

[127] M. T. Rab, A. A. Bawa, N. A. Touba, “Improving Memory Repair by Selective Row

Partitioning” IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,

pp. 211-219, 2009.

[128] S. Yu et al., “Investigating the switching dynamics and multilevel capability of bipolar metal

oxide resistive switching memory,” Applied Physics Letters, vol. 98, no. 10, p. 103514, 2011.

[129] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang and D. Franklin, “SpongeDirectory:

Flexible sparse directories utilizing multi-level memristors,” International Conference on

Parallel Architecture and Compilation Techniques (PACT), pp. 61-73, 2014.

[130] M.-C. Wu et al., “A study on low-power, nanosecond operation and multilevel bipolar

resistance switching in ti/zro2/pt nonvolatile memory with 1T1R architecture,” Semiconductor

Science and Technology, vol. 27, p. 065010, 2012.

126

[131] A. Yekkehkhany, A. Hojjati, and M. H. Hajiesmaili “GB-PANDAS:: Throughput and heavy-

traffic optimality analysis for affinity scheduling,” ACM SIGMETRICS Performance

Evaluation Review, vol. 45, no. 2, pp. 2-14, 2018.

[132] A. Daghighi and M. Kavousi, “Scheduling for data centers with multi-level data locality,” 2017

Iranian Conference on Electrical Engineering (ICEE), pp. 927-936, 2017.

https://www.researchgate.net/profile/Ali_Yekkehkhany?_sg=nJaYsrV71buvP-RBPqj13laL6suu6ETTc1Klq5OH96gVtBB_MdxoGT0K1LJpqTDRQBc10q0.rN1Isk2XXWJYPMKvUCO_OV3sJSBtgPBjBfoBUNsMDoI5v7DFrrkhaWu5sDKatc_5jxJ50P2nFxgGksYzRZil9A
https://www.researchgate.net/scientific-contributions/2133172228_Avesta_Hojjati?_sg=nJaYsrV71buvP-RBPqj13laL6suu6ETTc1Klq5OH96gVtBB_MdxoGT0K1LJpqTDRQBc10q0.rN1Isk2XXWJYPMKvUCO_OV3sJSBtgPBjBfoBUNsMDoI5v7DFrrkhaWu5sDKatc_5jxJ50P2nFxgGksYzRZil9A
https://www.researchgate.net/profile/Mohammad_Hajiesmaili?_sg=nJaYsrV71buvP-RBPqj13laL6suu6ETTc1Klq5OH96gVtBB_MdxoGT0K1LJpqTDRQBc10q0.rN1Isk2XXWJYPMKvUCO_OV3sJSBtgPBjBfoBUNsMDoI5v7DFrrkhaWu5sDKatc_5jxJ50P2nFxgGksYzRZil9A

127

VITA

Graduate School
Southern Illinois University

Seyed Nima Mozaffari Mojaveri

nima.mozaffari@siu.edu

University of Mazandaran, Mazandaran, Iran

Bachelor of Science in Electrical and Computer Engineering, September 2007

University of Tehran, Tehran, Iran

Master of Science in Electrical and Computer Engineering, September 2010

Special Honors and Awards:

Dissertation Research Award (DRA), 2017

Dissertation Title:

DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND
EMERGING RESISTIVE DEVICES

Major Professor: Dr. Spyros Tragoudas

Publications:

1. S. N. Mozaffari and S. Tragoudas, “Maximizing the Number of Threshold Logic
Functions Using Resistive Memory,” IEEE Transactions on Nanotechnology, vol.
PP, no. 99, pp. 1-1, 2018.

2. S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “A Generalized Approach to
Implement Efficient CMOS-Based Threshold Logic Functions,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 946-959, 2018.

3. S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “More Efficient Testing of Metal-
Oxide Memristor–Based Memory,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 36, no. 6, pp. 1018-1029, 2017.

128

4. S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “Reducing power, area, and delay
of threshold logic gates considering non-integer weights,” IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.

5. S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “Fast march tests for defects in

resistive memory,” IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH15), pp. 88-93, 2015.

6. S. N. Mozaffari, S. Tragoudas and T. Haniotakis, “A new method to identify

threshold logic functions,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 934-937, 2017.

7. S. N. Mozaffari, and Spyros Tragoudas, “Memristive Current Mode Threshold

Logic Gates,” International Workshop on Memristive Materials, Devices & Systems
(MEMRISYS), 2017.

	Southern Illinois University Carbondale
	OpenSIUC
	5-1-2018

	DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND EMERGING RESISTIVE DEVICES
	Seyed Nima Mozaffari Mojaveri
	Recommended Citation

	Chapter Template

