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The world is urbanizing at an unprecedented rate, and cities are dominantly and

increasingly becoming hubs for agglomerations of human population and economic

activities, as well as major sources of environmental problems. Accordingly, humanity′s

pursuit of global sustainability is becoming increasingly reliant on urban sustainability.

Unfortunately, the traditional approaches of urbanization and urban stormwater

management are inappropriate from the sustainability standpoint. By removing

vegetation and topsoil and creating impervious structures, urbanization destroys natural

biodiversity and hydrological processes. As a result, urban societies are disconnected from

nature and deprived of ecosystem services including flood control, fresh air, clean water,

and natural beauty. Due to disrupted hydrology, an urban landscape transforms most

rainwater into stormwater runoff which is conveyed off the site through a system of

curb-gutter-pipe, called gray infrastructure. While gray infrastructure efficiently mitigates

the problem of flash floods in urban areas, it results in multiple other adverse

environmental consequences such as loss of freshwater from urban landscapes, transfer of

pollutants to receiving waters, and an increased potential of downstream flooding.

Green infrastructure (GI) is regarded as a sound alternative that manages

stormwater by revitalizing the natural processes of soil, water, and vegetation, and

restoring ecosystem structures and functions. Thus, the approach re–establishes the lost
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socio–ecological connectivity and regenerates ecosystem services. However, despite being

inevitably important for urban sustainability, and despite being the object of unrelenting

expert advocacy for more than two decades, the approach is yet to become a mainstream

practice.

To widely implement GI, cities need to address two critical challenges. First, urban

stormwater managers and decision makers should be ensured that the approach can

adequately and reliably manage stormwater. In the time when flooding problems are

rising due to climate change, this concern has become more prominent. Second, if there

exist any other barriers, they should be replaced with strategies that help expedite the

use of GI. This multidisciplinary research dealt with these two challenges.

The study consisted of two major parts. In the first part, a computer model was

developed for a combined sewer system of St. Louis, a city in the U.S. state of Missouri,

using U.S. EPA SWMM. Simulations for historical (1971-2000) and future (2041-2070)

50-yr 3-hr rainfall scenarios were then run on the model with and without GI. The

simulation results showed a significant impact of increased precipitation on the system,

which was considerably reduced after adding select GI measures to the modeled system.

The following 4 types of GI were used: bio–retention cell, permeable pavement, green

roof, and rain barrel.

In the second part, a survey of relevant policies and governance mechanisms of eleven

U.S. cities was conducted to identify potential barriers to GI and determine strategies to

address them. The study also included the assessment of relevant city, state, and federal

policies and governance structures. A total of 29 barriers were identified, which were

grouped into 5 categories. Most of the identified barriers stem from cognitive barriers and

socio–institutional arrangements. A total of 33 policies, also grouped into 5 groups, were

determined to address the barriers. The investigation on governance revealed that current

governance is highly technocratic and centralized, and hence has less opportunity for

public involvement. Therefore, it is inherently inappropriate for GI, which requires
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extensive public involvement. This dissertation proposes a two–tier governance model

suitable for implementing GI.
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PREFACE

This dissertation presents the outcome of a multidisciplinary research conducted

towards identifying a holistic solution to the urban stormwater management problem in

the face of climate change. Specifically, the research was on the following issues: the

impact of climate change on urban stormwater system, efficacy of green infrastructure to

address the impact, barriers to green infrastructure implementation, and policies and

governance suitable for implementing green infrastructure.

The dissertation consists of seven chapters. The first and second chapters provide

background information and research framework; whereas the seventh chapter gives the

overall conclusion. Specific details on the specific research issues are presented in chapters

3 through 6.

The third chapter, “Climate Change Impact on Urban Drainage System,” discusses

how I developed a model for a combined sewer system of St. Louis, Missouri, using U.S.

EPA′s SWMM hydrologi-hydraulic model and GIS. The chapter presents the comparison

of simulations results conducted for current and future 50-yr 3-hr rainfall scenarios and

presents the quantitative measure of the impact of the increased rainfall on the system.

The fourth chapter, “Efficacy of Green Infrastructure for Climate Adaptation,”

utilizes the same model developed in the third chapter. I added various green

infrastructure measures across the study area catchment of the model, conducted the

simulation for same future 50-yr 3-hr rainfall scenario, compared the simulation results

for the future rainfall scenario before and after the application of green measures, and

quantified the efficacy of the green measures to address the impact.

For the fifth chapter, “Policies for Green Infrastructure Implementation: Barriers and

Policy Solutions,” I conducted an exploratory research of 11 U.S. cities and relevant state

and federal policies, explored barriers to implementation of green infrastructure

technology, and identified policies that can both address the barriers as well as expedite
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the implementation. I wrote a journal article entitled ”Managing Urban Stormwater for

Urban Sustainability: Barriers and Policy Solutions for Green Infrastructure Application”

with the help of Dr. Lizette Chevalier. The paper has been published in The Journal of

Environmental Management. The content of the fifth chapter, other than introduction, is

taken from the published paper.

The sixth chapter, “Governance of Green Infrastructure: Barriers and Solutions”

presents the investigation and analysis of urban stormwater governance from the

perspective of implementation of green infrastructure. For this, I surveyed the existing

governance in 5 U.S. cities, explored the barriers, and proposed a new two-tier urban

stormwater governance model suitable for green infrastructure. An article entitled “Urban

Stormwater Governance: The Need for a Paradigm Shift” that I wrote with the help of

Dr. Lizette Chevalier has been published in Environmental Management. Other than the

introduction section, content of the sixth chapter is taken from the published paper.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

Background

The human society is becoming increasingly urban all over the world. According to a

recent report of the United Nations Department of Economic and Social Affairs

(UNDESA), the urban population makes up over 54.5% of the global population

(UNDESA 2016). It was only 2% in 1800, 14% in 1900, and 30% in 1950 (Wu, 2010). The

report projects that the urban population will increase to 60% of the global population by

2030, adding about 1 billion new urban residents. Fragkias and Seto (2012) approximate

that during this period planet earth will add a new city of about one million people every

5 days. In the U.S., the urban population increased from 64% to 81.4% during 1950 to

2014 (UNDESA, 2014), and it is projected to increase to 88.9% by 2050 (Leonard and

Egan 2014).

In parallel to the population, the global economy is also increasingly concentrated in

urban areas. According to the World Bank (2015), cities contribute more than 80% of the

global gross domestic product (GDP). In the U.S., large cities, defined as cities with

150,000 or more people, contributed 85% of the country′s GDP in 2010; whereas in China

and Western Europe, the large cities generated 78% and 65% of their respective GDPs

(Manyika et al. 2012).

The increase in the population and economic growth coupled with the changing

pattern of development has caused an unprecedented expansion of urbanized land (Angel

et al. 2011; Liu et al. 2005; Seto and Kaufmann 2003). The trend of lower density growth

in recent years in the form of urban sprawl (Barrington-Leigh and Millard-Ball 2015;

Lopez 2014) has made the rate of expansion two to four times higher than the rate of

increase of population (Angel et al. 2011; Seto et al. 2011). According to Seto et al.

(2011), the global urban area increased by 6 million hectares during the last three decades
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of the 20th century. If the current trend continues, it will increase by 120 million hectares

in the first three decades of this century, nearly tripling the total global urban surface

that existed at the beginning of the century (Seto et al. 2012). In the U.S., urban area

increased from 2.5% to 3.1% during 1990-2000, and it is projected to be 8.1% by the year

2050 (Nowak and Walton, 2005). The U.S. Census Bureau (2005) defines urban area as a

block with a minimum population density of 500 people per square mile.

While serving as the economic and population centers, urban areas pose a significant

adverse impact on the environment, within and beyond the urban boundary. In fact,

though their physical geographical footprint is not that much, they are a primary source

of global environmental problems (Wu 2008). Typically, the problems result from two

major causes: structural perturbation of land surface during urbanization and

socio-economic activities of the urban communities. Structural perturbation results in the

most irreversible form of land use change (Seto et al. 2011) primarily due to four

activities: removal of vegetation and top soil, drainage and burial of ponds and wetlands,

gradation and compaction of land surface, and construction of impervious surfaces

including roads, parking lots and buildings (Chow 1964; Leopold 1968; National Research

Council 2009; Savini and Kammerer 1961). These activities result in two major impacts:

destruction of biodiversity and disruption of natural hydrology. The destruction of

biodiversity results from the removal of vegetation and topsoil that damages plant species

and soil organisms as well as micro- and macro-habitat provided by the plants and the

topsoil. Habitat fragmentation—which is caused by the loss of ecological connectivity due

to the destruction of natural waterways, vegetative belts, and wetlands—also leads to the

loss of biodiversity.

The disruption of hydrology results from the removal of vegetation, destruction of

water-retaining surface features, and construction of impervious structures. These

activities destroy the natural hydrologic functions of the landscape including interception,

evapotranspiration, retention, and infiltration of rainwater. As a result, the urbanized

2



landscape diverts a majority of rainwater into surface runoff, resulting in increased

frequency and severity of flooding (Chow 1964; Leopold 1968; National Research Council

2009; Savini and Kammerer 1961). To mitigate this, the conventional approach employs a

centrally managed network of curbs, gutters, and underground pipes, called gray

infrastructure, whose objective is to collect and remove the surface runoff as fast as

possible. First conceptualized and used in ancient cities (Burian et al. 2000), and later

adopted by modern engineering, gray infrastructure is ubiquitous across cities all over the

world. The civilians, engineers, societies, and politicians, are all accustomed to it. It is

regarded as a basic requirement in developed countries, and a common step toward

infrastructure development in developing countries.

However, the studies show that the gray approach is environmentally inappropriate

for a number of reasons (Chow 1964). First, the system does not mitigate flooding

problem but transfers the problem downstream of the point of discharge. In fact, since it

expedites the removal of stormwater runoff, the flooding in the downstream becomes more

intense. Second, the approach removes freshwater from the urban landscape. Third, it

does not restore the hydrological functions of the landscape; as a result, the problem of

water stress in the subsurface, groundwater depletion, and decreased base flow in the

downstream water bodies remains unaddressed. Fourth, it carries numerous pollutants

from urban areas and discharges into receiving water bodies. Examples of the pollutants

include sediments, viruses, bacteria, nutrients, pesticides, oil, grease, and heavy metals

(U.S. Environmental Protection Agency (U.S. EPA) 2003).

Socio-economic activities in the urbanized areas also have profound impacts on the

environment. As global centers of production and consumption, cities draw in energy and

matter from all over the ecosphere and return wastes back to the ecosphere (Rees and

Wackernagel 1996). Currently, cities account for about 60% of all residential water use,

75% of energy use, and 80% of human greenhouse gas emissions (Wu 2014). They

generate about 1.3 billion tonnes of solid waste per year, which is expected to increase to
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2.2 billion tonnes by 2025 (Hoornweg and Bhada-Tata 2012). If not managed well, the

solid wastes also pose significant adverse impact on the public health and the

environment.

Thus, since cities are increasingly becoming socio-economic hubs, as well as primary

sources of environmental impacts, the humanity′s pursuit of global sustainability is

increasingly hinged up on urban areas (Beatley 2000; UNDESA 2014; Wu 2014; Young

2011). Sustainability refers to the goal of sustainable development (Diesendorf 2000), and

has varying definitions depending on disciplines and contexts. In general, its fundamental

universal theme is to guide human activities within the framework of carrying capacity of

the earth to ensure the endurance of livability on the earth, while maintaining the social

harmony. This theme is well reflected in the highly cited definition of sustainable

development presented in the Brundtland Report of the United Nations (World

Commission on Environment and Development (WCED) 1987). The report defines

sustainable development as “development that meets the needs of the present without

compromising the ability of future generations to meet their own needs,” and argues that

the cities should be central to the pursuit of sustainable development. Since the

publication of this report, the concepts of sustainable cities and urban sustainability have

received significant attention internationally (Bulkeley and Betsill 2005). While

embracing the concept, scholars conventionally define economic, environmental, and social

aspects as its three essential components (Harris 2003). To this, Dhakal and Oh (2011,

2010) have recently argued to add two additional components: material use and financial

sustainability. Given the size of the socio–economic activities, the extent of the

environmental disturbance, the exploitation of natural materials, gigantic financial

investments, and a huge stock of unsustainable built up infrastructures, pursuing urban

sustainability is one of the most compelling and challenging task.

To this already difficult undertaking, anthropogenic climate change has added

enormous unprecedented complications. Scientific findings have proved that the
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human–induced increase in atmospheric concentrations of greenhouse gases has caused

global warming, which has increased the global average temperature by 0.65◦C–1.06◦C

over the period 1880–2012 (Intergovernmental Panel on Climate Change (IPCC) 2013;

U.S. Global Change Research Program (USGCRP) 2014). The U.S. national average

temperature increased by 0.72◦C–1.05◦C during 1895–2012 (USGCRP 2014). Evidences

show that the rate of warming is increasing in recent decades. Globally, according to the

IPCC, each of the three last decades have become successively hotter than any preceding

decade since 1850. In the U.S. as well, as reported by the USGCRP, the most recent

decade was the hottest decade on record. The year 2015 was the hottest year on the

planet, in the historical record which started in 1880, with the average global temperature

0.90◦C above the 20th century average (NOAA National Center for Environmental

Information 2015). The global average temperature for January-August interval of 2016

was the highest in the 1820–2016 record and surpassed that of 2015 by 0.16◦C (NOAA

National Center for Environmental Information 2016).

According to the UN-Habitat, a United Nations program dedicated for urban future,

the impacts of urbanization and climate change are converging in dangerous ways

(UN-Habitat 2012). On the one hand, cities are major contributors to climate change,

because they emit more than the three–fourth of the anthropogenic greenhouse gases, as

cited earlier, primarily through energy production, transportation, industry, land use

changes, and buildings (IPCC 2014). On the other hand, they are significantly vulnerable

to climate change due to sea level rises, increased precipitation events (e.g. storms, floods,

hurricanes, and cyclones), and more extreme heat and cold (UN-Habitat 2012; Younger et

al. 2008). These effects have significant adverse impacts primarily on the public health

and manufactured infrastructures. Examples of potential public health effects include

cardiovascular and respiratory illness, altered transmission of infectious disease, and

malnutrition from crop failures (Patz et al. 2005; Younger et al. 2008). Potential effects

on infrastructures include failure of drainage system due to increased extreme rain events
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(Thakali et al. 2016; Willems 2012) and structural failure of built structures due to

corrosion of steel (Stewart et al. 2011).

Basic theory, most of the climate models, and empirical evidence show that warmer

climate increases the atmospheric water vapor that leads to more intense and more

frequent precipitation events (IPCC 2013). Niemczynowicz (1989) showed that 1 to 3◦C

increase in temperature results in 10 to 30% increase in precipitation. Researchers have

expected that, due to global warming, rainfall will become more intense in almost all

regions of the world in the 21st century (IPCC 2013; Olsson et al. 2009; Waters et al.

2003). In the U.S. also, studies have shown an increasing trend (Groisman et al. 2005;

Karl and Knight 1998; Pathak et al. 2016, 2017; Thakur et al. 2017a). For example, Karl

and Knight (1998) showed a 10% increase in total annual precipitation across contiguous

U.S. since 1910. Groisman et al. (2005) reported an increase of 3.3% per decade in

extreme precipitation events over the contiguous U.S. during 1910–1999. The U.S. Soil

and Water Conservation Society (2003) defines extreme precipitation as the precipitation

above the 99.9th percentile, very heavy precipitation as the precipitation above the 99th

percentile and heavy precipitation as the precipitation above the 95th percentiles. In the

most recent report, the USGCRP has reported that every region of the U.S. experienced

an increase in very heavy precipitation, defined as the heaviest 1%, during 1958–2012

(USGCRP 2014). It increased by 71% in the northeast, 37% in the Midwest, and 9

percent in the Southeast. The arid Southwest had 5% increase in the very heavy

precipitation; whereas Northwest and Great Plains had 12% and 16% increase

respectively.

The increase in frequency and intensity of heavy precipitation is also predicted to

increase in the 21st century (USGCRP 2014; Wuebbles et al. 2014). Cubasch and Cess

(1990) predicted an increase in the amount of heavy rainfall events, even though the

mean annual rainfall would decrease. Zwiers and Kharin (1998) showed that the

frequency of intense rainfall events would increase, whereas the frequency of moderate
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intensity will decrease. Hengeveld (2000) projected that today′s 50-yr event would change

to a 10-yr event by 2090. In its 2009 report, USGCRP (2009) reported that present 20-yr

heavy rainfall event would be a 4–15-yr event by 2100, and will become 10–25% heavier

than current event. The Canadian Climate Center Model (GCM2) predicted that, over

North America, the depth of rainfall now associated with 20-yr return period will occur

nearly every 10 years when the global carbon dioxide (CO2) concentration in the

atmosphere is doubled (Waters et al. 2003).

The size of the conventional drainage system is calculated based on the historical

precipitation data assuming that the precipitation frequency and intensity will remain

unchanged over the design life of the system. Since climate change results in increased

precipitation intensity and frequency, the assumption becomes invalid, and the design

capacity based on the faulty assumption becomes too small to accommodate the increased

precipitation. As result, the stormwater system is very likely to fail during the heavy rain

fall events. When the system fails, it leads to urban flooding which can damage other

infrastructures such as buildings, roads, and underground utilities. Such failures often

result in the huge loss of property and life.

The failure of urban drainage system due to extreme precipitation and the

subsequent massive damage in the socio-economic systems have been increasingly

evidenced in many cities. For example, when excessive runoff resulting from the intense

rainfall exceeded drainage capacities in New York in August 2007, the subway system was

disrupted causing an unprecedented impact on the city′s transportation system

(Metropolitan Transportation Authority (MTA) 2008). Toronto faced its most expensive

storm in August 2005, with more than 4,200 basement flooding, and loss of public

property equivalent to 400-500 million dollars (Foster et al. 2011). The record breaking

storm of September 2008 in Chicago, Illinois, with 6.7 inches of rain in a 24-hour period

leading to massive flooding, resulted in evacuation of 10,000 homes and property damage

of 155 million dollars (Dorfman et al. 2011). In July 2016, the city of Houston, Texas,
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suffered an estimated property damage of $45 million from the massive flood that

occurred over the Memorial Day weekend (The Guardian 2015). According to the

Guardian, more than 27 people lost their life in Texas. On 18th of April 2016, the city

had even more precipitation, with 17 inches of rain in less than 24 hours, which killed 7

people, flooded 1,000 homes, and caused more than $5 billion in damage (CNN 2016).

The day was described as the wettest April day on record in the city (KTIC Radio 2016;

The Guardian 2016). In the fourth weak of August 2017, Houston faced even higher

rainfall and subsequent devastating flood when the record high tropical storm ”Hurricane

Harvey.” poured up to 51.88 inch of rainfall in and around Houston, breaking the

previous record of any tropical storm in the contiguous U.S. (ABC News 2017). In some

nearby cities—such as Port Arthur and Beaumont, the rainfall reached up to 26 inches in

24 hours (CNN 2017). According to a report by Greater Houston Partnership (2017), in

Metro Houston, the storm destroyed 538 businesses, 97,212 single family houses, 15,662

apartment units, and 300,000 vehicles. The report revealed that the deadly storm took 82

lives—37 in Harris County which includes Houston—and resulted in an estimated

economic loss of 97 billion dollars.

Thus, restoration and maintenance of biodiversity and landscape hydrology as well

as climate change mitigation and adaptation are crucial for urban sustainability. Since

our conventional infrastructures such as roads, buildings, parking lots, and drainage

systems contribute to the creation of the problems discussed earlier, there is a critical

need to adopt innovative approaches that can substitute them or help reduce their

adverse effects. Green infrastructure is regarded as one such approach that utilizes soil

and vegetation and replicates the natural hydrological processes of infiltration and

evapotranspiration. The approach is called Sustainable Urban Drainage System (SUDS)

in Europe and Water Sensitive Urban Design (WSUD) in Australia.

By employing the natural process of infiltration, retention, and evapotranspiration,

green infrastructure captures rainwater on site and reduces and slows down stormwater
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flow. In addition, it provides a number of other environmental, economic, and social

benefits including biodiversity restoration (McKinney 2002), water quality improvement

(Novotny et al. 2010), carbon sequestration (U.S. EPA 2010), climate change adaptation

(Kramer 2014), and groundwater recharge (U.S. EPA 2010, 2014b). Ecological economists

define such services provided by the ecosystem to humans as ecosystem services

(Costanza et al., 1997; MEA, 2005; Ruhl et al. 2008). Thus, through these services, green

infrastructure re–establishes the socio-ecological connectivity destructed by urbanization

(Gmez-Baggethun et al. 2013; Tzoulas et al. 2007). The technology helps improve the

quality of life (Breuste et al. 2015a), increases property value (Wachter and Wong 2008;

Ward et al. 2008), and is climate resilient (U.S. EPA 2015). Other benefits include

cost-effectiveness (Baerenklau et al. 2008; Foster et al. 2011; Shaver et al. 2009; U.S.

EPA 2015) and material efficiency, the two additional sustainability attributes according

to Dhakal and Oh (2011, 2010). Therefore, pursuing urban sustainability critically

requires to implement green infrastructure (Tzoulas et al. 2007; Young 2009).

In recent decades, urban sustainability is receiving increasing attention (Lorr 2012;

Wu 2014), with green infrastructure as its underpinning element (Benedict and McMahon

2002; Dhakal and Chevalier 2017; Eisen 1995; Foster et al. 2011; Mazmanian and Blanco

2014; Mell 2009). Sustainable urban design concepts, including water-centric eco–cities

(Joss 2010; Novotny 2008; Novotny et al. 2010; Novotny and Novotny 2012; Roseland

1997), green cities, and smart growth (Heaney and Sansalone 2012), have evolved as a

new paradigm of urban development, which considers water and green infrastructure as

core elements. It is argued that future cities will be based on green landscape systems

(Novotny et al. 2010). Appreciating this, some cities have been successfully using green

infrastructure for years in the US (Chen et al. 2013; Foster et al. 2011; U.S. EPA 2010),

Europe, and Australia (Nickel et al. 2013).
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Problem Statement

Despite being regarded as a sustainable, environment-friendly, and cost-effective

approach that offers numerous ancillary benefits, green infrastructure has not yet been a

widespread practice for urban stormwater management. While urban sustainability

agenda has come to the forefront of academic and professional discourses for years, and

green infrastructure is acknowledged as an inevitable aspect of urban sustainability, the

technology has been adopted only by very few cities of some developed countries. On the

other hand, despite the knowledge that gray infrastructure is environmentally destructive

and financially demanding, the conventional approach is being constructed massively all

over the world as a basic requirement for urban development. It is critically important for

urban sustainability professionals and policy makers to address this gap between

knowledge and practice.

To accommodate increasing heavy precipitation, many cities need to increase the

capacity of existing systems. Aging systems in many other cities need complete

replacement. In addition, emerging new cities will need to build a vast amount of new

stormwater systems. Therefore, within next few decades, there will be a huge investment

on repair, replacement, and construction of urban stormwater infrastructure globally. If

green approach is not embraced, a massive amount of environmentally destructive gray

infrastructures will be added on the planet earth as a big burden to future generations

and a threat to sustainability.

To expedite the adoption of green infrastructure, four tasks are critically important.

First, the stormwater managers need to be ensured that the green technology can

significantly meet the desired level of stormwater control, when it is used to retrofit or

replace gray infrastructure. Second, if there exist any other barriers that prevent the

implementation of green infrastructures, they must be removed. Third, adequate policies

that support green infrastructure implementation should be in place. And fourth, an

appropriate governance mechanism should be established to effectively govern the green
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infrastructure application. This research dealt with these four tasks.

Research Objectives and Approach

Two primary objectives of this research were: (i) to assess the efficacy of green

infrastructure to accommodate the increased precipitation due to climate change, and (ii)

to identify appropriate socio–institutional frameworks to expedite the implementation of

the technology. To pursue these objectives, the research was guided by the following four

primary questions.

1. What will be the performance of an existing stormwater system when subjected to

increased precipitation due to climate change?

2. What will be the performance of the current drainage system under increased

precipitation if various measures of green infrastructure are applied?

3. What is the status of urban stormwater management law and policy? Are they

supportive or preventive to implementation of green infrastructure? If there exist

barriers, what innovative policy measures will be needed to remove the barriers and

expedite the adoption of the technology?

4. Is the current stormwater governance supportive to green infrastructure? If not,

what innovative governance will be appropriate for green infrastructure

implementation?

For the first two questions, a case study of a combined sewer system (CSS), defined

as a sewer system that carries both stormwater and wastewater, of the City of St. Louis,

Missouri, the U.S., was conducted. First, the existing system was modeled by using U.S.

EPAs Stormwater Management Model (SWMM). The modeled system was then

subjected to future precipitation scenarios predicted by various climate models to

quantify the impact of the increased precipitation on the existing drainage system.
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Finally, some context sensitive green infrastructure measures were added to the model,

and the model was run for the same future precipitation scenarios to determine the effect.

The third and fourth questions were addressed by conducting a critical review of

existing stormwater policy and governance status primarily in the U.S. Research

approaches are described in further detail in the respective chapters.

Research Significance

As opposed to the common practice in industry or academia where there exists a

tendency of solving a real–world problem through a uni-disciplinary approach, this

dissertation adopts an interdisciplinary and relatively holistic approach for pursuing

urban sustainability. As a result, not only the research findings but also the research

approaches are useful for a wide range of stakeholders. The quantification of the climate

change impact on the drainage system helps managers and politicians to prospect for the

oncoming problems. For design engineers, the findings help design efficient measures to

retrofit existing drainage systems in advance to make them withstand the future

precipitation and provide the desired level of service. The assessment of the efficacy of the

select green infrastructure provides an idea about how much of the problem can be

addressed by using green infrastructure. This also serves as a material for the public to

understand the importance of adopting green infrastructure for stormwater management.

The research on policy and governance have explored numerous issues in the current

institutional arrangements. This will help sensitize the policy makers at federal through

local levels. For example, at federal levels, this will encourage federal legislators to revisit

the Clean Water Act and other relevant federal policies to take steps for necessary

amendments in favor of green infrastructure. The findings will be equally useful for the

state and local policy makers for the similar reasons. The proposed models of stormwater

policies and governance will help the policy makers to understand the context as well as

specific solutions to be adopted. From an academic perspective, the research findings will
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add knowledge to urban sustainability, urban planning, and stormwater policy literature.

The dissertation will also provide students with the knowledge of how technology, policy,

and governance all have crucial roles to play interdependently. Specially, the research

findings will be helpful for students working on urban hydrology to understand the

importance of policy and governance to implement the technical solutions they design.

In this research, only the impacts deriving from changes in intensity of precipitation

have been considered. The increase in runoff due to potential changes in the sites

population and economic activities have not been considered. The research is primarily

intended for non–coastal U.S. cities, which are located above the influence of sea-level

rise. The nature of the problems associated with flooding from sea-level rise is different

from the nature of the problem created from stormwater flooding in non-coastal cities.

Flooding in coastal cities due to sea–level rise cannot be prevented without construction

of levees and stormwater pumping stations. The use of green infrastructure cannot

provide the desired level of protection in such cases. Therefore, addressing the problem of

sea–level rise is beyond the scope of this research.

Dissertation Structure

This dissertation is organized into seven chapters. The first (current) chapter

establishes the context, defines the objectives, and determines the approach and scope of

the research. The second chapter sheds light on urban drainage concept and outlines the

evolution of stormwater management techniques. It discusses concept of green

infrastructure and gives a brief description about benefits of adopting it. The impact of

climate change on urban drainage system is analyzed in the third chapter. For this, the

study was conducted by using GIS and U.S. EPA′s SWMM model. The fourth chapter

evaluates the performance of the same drainage system after the incorporation of some

site–specific GI measures, which include bioretention cells, green roofs, permeable

pavements, and rain barrels. The fifth and sixth chapters are dedicated for institutional
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arrangements. The fifth chapter deals with law and policy. First, it explores the barriers

existing in the U.S. law and policy that prevent or discourage the implementation of

green infrastructure. Then, it recommends a policy framework that addresses the barriers

and facilitates the mainstreaming of the technology. The sixth chapter first explores the

barriers in the conventional governance and then presents a new governance model

appropriate for green infrastructure implementation for achieving long-term sustainability

goals. Finally, the seventh chapter summarizes the overall work and concludes the

dissertation.
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CHAPTER 2

URBAN STORMWATER MANAGEMENT: EVOLUTION AND ISSUES

Urban Drainage System

Drainage Systems, Runoff, and Stormwater

When rain falls on the earths surface, it circulates through various natural and

constructed elements of the surface and subsurface. The natural elements include soil,

vegetation, stream channels, surface depressions, and subsurface geological materials,

whereas, constructed features include pipes, culverts, detention ponds, pavements, roofs,

and other artificial materials. All of these elements of the landscape, through which or

over which water travels, constitute a drainage system (Booth 1991; Chocat et al. 2004).

The National Research Council (2009) defines stormwater drainage systems as the

constructed and natural features which function together as a system to collect, convey,

channel, hold, inhibit, retain, detain, infiltrate, divert, treat, or filter stormwater.

Since the drainage system functions between the public and the environment, their

management is crucial, both for the public and the environment. Given its complex

nature and its symbiotic relationship with other systems, such as soil and plants,

management of urban drainage is a complex undertaking. As such, it requires a

comprehensive understanding of how water moves through the different elements of

landscape after a rain event.

Of the total precipitation, a part of it is abstracted through processes including

interception, evaporation, transpiration, depression storage, infiltration, and consumptive

human uses. The portion of the precipitation remaining after abstraction is called runoff,

which appears at the outlet of the watershed (Chow 1964; Novotny & Olem; NRC 2009).

The runoff can be measured in downstream rivers, streams, gutters, or pipes shortly after

the rain falls on the ground (National Research Council 2009). The volume of runoff is
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primarily governed by landscape characteristics, which are land slope, soil type, and type

of vegetation cover (Leopold 1968). In literature, runoff is categorized into three types:

surface runoff, subsurface runoff and groundwater runoff (Chow 1964; Novotny and Olem

1994).

The surface runoff (or surface stormwater runoff) is the part of precipitation excess

that travels over the ground and through channels to reach the basin outlet. The portion

of the precipitation that infiltration into the ground and travels laterally through the

upper zone of the subsurface towards the stream is called subsurface runoff. This portion

is also called interflow or storm seepage (Chow 1964). Groundwater runoff is the part of

infiltrated water which percolates deep, moves into the ground water, becomes a part of

it, and finally discharges into the stream. Of the subsurface runoff, a part of it enters the

stream promptly after the storm as prompt subsurface runoff and the remaining part may

enter the stream over a longer time in the form of delayed subsurface runoff (Chow 1964).

The surface runoff and prompt subsurface runoff together constitute stormwater runoff.

From regulatory perspectives, stormwater is that portion of the precipitation which passes

through some type of engineered conveyance such as a gutter, a pipe, or a concrete canal

(National Research Council 2009). The delayed subsurface runoff and groundwater runoff

constitute base stream flow or base runoff (Chow 1964).

Impact of Urbanization on Drainage System

The native land, in general, has vegetation, porous soil, ponds, wetlands, ditches,

and surface depressions (figure 2.1). When precipitation occurs, a significant portion of

the precipitation is intercepted by vegetation and absorbed by top spongy soil; a large

portion is retained by features such as ponds, wetlands, ditches, and surface depressions;

and a large portion is infiltrated into the soil and flows into streams or groundwater.

Only the remaining small portion flows over the surface as overland flow or surface runoff.

As a result, there is a significantly less potential for flooding. In addition, there is an
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ample amount of water in the subsurface for biotic activities, plant uptake, and

groundwater recharge. Due to prompt subsurface runoff, delayed surface runoff, and

groundwater runoff, there is a relatively well-maintained temporal distribution of flow in

the streams, which is crucial to support ecosystem structures and functions.
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Figure 2.1. Landscape Before Urbanization

Urbanization involves the transformation of a native or an agricultural land to

suburban or urban land. In the process, a sequence of changes occurs in the natural

systems that significantly disturbs the natural hydrological processes discussed earlier.

Example includes removal of vegetation and topsoil; burial of ditches, ponds, and

wetlands; gradation and compaction of land; and construction of buildings, roads, and

parking lots along with wells, septic tanks and drainage networks (figure 2.2).
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Figure 2.2. Landscape After Urbanization

Urbanization also involves straightening, deepening, widening, and in some cases,

relocating of existing natural channels (Chow 1964). These activities have extensive

effects on soil structures resulting in significant reduction in water retaining and

infiltration capacity of the soil (Pitt et al. 2005). The loss of vegetation results in the

reduced absorption of rainfall and decreased evapotranspiration. Thus, a significant

alteration in the hydrologic regimes of the land occurs (Chow 1964; National Research

Council 2009; WEF and ASCE/EWRI 2012). This causes an increase in time of

concentration, peak runoff rates and total runoff volumes (Leopold 1968; National

Research Council 2009; Novotny and Olem 1994). As a result, stormwater flows rapidly

across the land surface and produces more frequent and higher peak flows in the streams
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resulting in radically different flow regimes in the downstream (National Research Council

2009).

On the other hand, the reduced infiltration results in the loss of subsurface flow and

groundwater recharge. Thus, ground water table is reduced (figure 2), which eventually

results in reduced base flow in the downstream water bodies. The altered flow—increased

wet weather flow and decreased dry weather baseflow—in the downstream alters sediment

transport pattern and geomorphology of the downstream water bodies, adversely affecting

their ecosystem structures and functions (Leopold 1968; Niemczynowicz 1999; Paul and

Meyer 2001; National Research Council 2009; Walsh et al. 2012). The decreased soil

water retention in the subsurface—due to increased impervious surface, decreased soil

porosity, and reduced groundwater table—leads to insufficient supply of water for plant

uptake causing further loss of surface vegetation in the urban landscape.

The diminished water/air content in the soil also affects the presence of soil

organism, because different organisms prefer different proportion of air and water content

in the soil. For example, fungi, some nematodes, and arthropods live in air–filled pores,

whereas bacteria, protozoa, and other nematodes live in water–filled pores (National

Research Council 2012). When the soil water/air content is diminished, it can lead to the

loss of these organisms. Since soil organismse.g. bacteria, fungi, plant roots, and

burrowing wormsalter soil structure thereby changing hydraulic conductivity and

infiltration rate (National Research Council 2012), the loss of these organisms can make

the soil non–resilient to changes and make it permanently unsuitable for the biophysical

processes. Urbanization is therefore considered as the most forceful driver of hydrological

changes in a watershed (Leopold 1968).

Hynes
′

(1975) argument that watershed regulates the stream conditions is clearly

manifested in an urbanized watershed. It does not only reduce the base flow, as discussed

earlier, but also causes significant changes in downstream channel form. When peak runoff

increases due to increased imperviousness associated with urbanization, the capacity of
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the downstream channels can be insufficient to accommodate the increased runoff, which

leads to flooding, channel bank erosion and land sliding (Booth 1991). While doing so, it

disrupts the balance between sediment transport capacity and sediment supply. Removal

of vegetation, realignment of channels, and increase of runoff can increase sediment

supply, whereas the constructed dams and other impoundments can trap sediments and

decrease the supply. When the supply is more, channel aggradation can occur. When the

supply is less than the carrying capacity, channel degradation can occur in the form of

incision, lateral adjustment or the combination of the two (WEF and ASCE/EWRI 2012).

Urbanization also impacts receiving water quality and freshwater ecosystems

significantly by transporting numerous pollutants from urban landscape to the receiving

water bodies (Allan 2004; Eisen 1995; Konard and Booth 2005; Leopold 1968; National

Research Council 2009). The pollutants include viruses and bacteria (U.S. Environmental

Protection Agency (USEPA) 2003; Gaffield et al. 2003); phosphorus and nitrogen

nutrients (Paul and Meyer 2001; Barbosa et al. 2012); heavy metals such as copper, zinc,

and lead (Paul and Meyer 2001; Barbosa et al. 2012; Petrucci et al. 2014); polycyclic

aromatic hydrocarbons (Paul and Meyer 2001; Hwang and Foster 2006; Petrucci et al.

2014); polychlorinated biphenyl (Rossi et al. 2004; Barbosa et al. 2012); pesticides

including insecticides, herbicides, and fungicides from lawns and gardens (Daniels et al.

2000; USEPA 2003; and thermal pollution (Somers et al. 2013). Stormwater also conveys

other metals such as chromium, manganese, nickel, mercury, and cadmium (Paul and

Meyer 2001).

Thus, urban stormwater alters the physical, chemical, thermal, and light regimes as

well as sediment conditions of receiving waters which also degrade aquatic life (WEF and

ASCE/EWRI 2012). In addition, the loss of vegetation and change in land use in the

urban landscape alter the energy inputs into downstream water bodies (Vannote et al.

1980). This also leads to loss of freshwater ecosystems (Eisen 1995; Roy et al. 2008). In

addition, the chemicals and pathogens present in the runoff pose pervasive and severe
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public health problems (National Research Council 2009).

Wastewater and Stormwater

Urban drainage systems need to deal with two types of water: stormwater and

wastewater (Butler and Davies 2004). Stormwater is rainwater that originates from

precipitation and appears after storm events. The amount of stormwater depends on the

precipitation as well as the nature of the surface upon which the precipitation falls. It

appears only during storm events and contains some pollutants originating from rain and

the land surface. In the absence of proper management, it could cause flooding, leading to

inconvenience, property damage, and public health risks (Butler and Davies 2004). Unlike

stormwater that comes from precipitation, wastewater comes after use from humans for

domestic, commercial or industrial activities. Its flow is continuous throughout the year.

It is heavily contaminated with human waste and other pollutants and, if not treated

properly, it can cause pollution and public health problems.

Different practices have evolved for the management of these two types of water

along with the evolution of cities. A historical review (see the following section) indicates

that the evolution of these practices has been driven by the level of understanding about

the effects of the two waters on human wellbeing and the available technology to manage

them. Conventionally, since the ancient times, both of these types of water have been

considered a nuisance, and the goal of the drainage system has been to convey them out

of the urban area in the fastest way possible. This has resulted in ubiquitous presence of

pipe networks in the urban areas globally.

History of Urban Drainage Systems: An Overview

Drainage System in Ancient Time

The management practices of stormwater and wastewater trace back to ancient

human civilization (Adams and Papa 2000; Butler and Davies 2004; Delleur 2003).
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Historical evidences show that the earliest civilizations of the Middle East, the

Mediterranean, and the Orient had constructed drainage systems (Delleur 2003). The

expeditious water conveyance was preferred due to the convenience of removal of

household waste and prevention of flood damage (Adams and Papa 2000). Examples of

historical cities serviced with drainage systems are available in the literature (Adams and

Papa 2000; Butler and Davies 2004; Delleur 2003; Novotny and Brown 2007).

The oldest known traces of domestic wastewater drainage elements, which date back

to 6500 B.C., were found in El–Kown, Syria (Delleur 2003). These drainage systems

consisted of plaster–covered gutters dug in the floor of houses crossing sills between

rooms, holes in walls and pipes under the floor plaster. The first urban drainage layout

with historical evidence is that of Habuba Kabira in 4000-3000 B.C., where the streets

were equipped with a gutter forming a network of drainage channels that discharged their

flows to the country sides. The channels were of three types: open channel with clay

bottom and lime stone sides, U-shaped clay sections, and fitted clay pipes. In the

pre-historic Indus Valley, where civilization flourished between 3000 B.C. and 1500 B.C,

urban and sanitary drainage existed at the city scale. Wastewater was conveyed in baked

clay conduits to covered gutters, then through canals dug under the streets and covered

with bricks, and finally to large collectors. Settling tanks existed in this network to

prevent clogging.

Around 1000 B.C., the underground conveyance system was emerged to

accommodate increased urban runoff due to increased urban population. The best known

drainage structure of antiquity is the Roman sewer Cloaka Maxima built around 600 B.C.

(Delleur 2003). It has been functioning for more than two thousand years (Novotny and

Brown 2007). In other European cities and North American cities, however, sewer

construction started during the industrial revolution in the 18th and 19th centuries, and in

Japan, only after World War II. Initially all of these sewers were intended for stormwater.

It was after the introduction of flushing toilets in Europe and the U.S. that waste water

22



was introduced into the sewer systems, creating the so–called combined sewer (Novotny

and Brown 2007).

Centralized Combined Sewer System

Historical evidences show London as the pioneer in starting combined sewer systems.

In London, before the first decade of the 19th century, bodily waste was generally

discharged into cesspits (Butler and Davies 2004). The population of London was

increasing so rapidly that it exceeded one million by 1817. As a result, the cesspits

became overloaded, resulting in overflows. As an ad hoc solution, cesspit overflows were

connected to the sewers, which became a wide spread practice of combined sewer systems

afterwards. All liquid wastes went straight from the flushing toilets and sinks to the

nearest rivers or streams (Debo and Reese 2003). This moved the problem to the River

Thames. By the middle of the 19th century, the river was filthy and stinking, which was

directly implicated in the spread of deadly cholera epidemics during 1848–1849, and in

1867, killing tens of thousands of Londoners (Butler and Davies 2004). As an alternative

to the large brick–lined tunnels of the day, the Victorian sanitary reformer, Edwin

Chadwik, argued for a dual system of drainage, and small–bore, inexpensive,

self–cleansing sewer pipes (Burian et al. 2000). But his ideas were not put into practice

at that time. Combined sewer systems were constructed in almost all of the old cities.

Burian et al. (2000) have reported an overview of development of drainage systems

in the U.S. The repeated outbreaks of diseases, such as cholera and typhoid, between 1832

and 1873, and the growing public demand to replace decentralized privy vault-cesspool

during the second half of the 19th century, motivated municipalities to improve sanitation

practices. Due to the lack of engineering expertise to tackle the changing wastewater

procedures in the U.S., wastewater management efforts in the U.S. followed practices

established in Europe. Since, the European cities were constructing and operating large

centralized sewer systems, the European engineers promoted the use of the same
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technology in the U.S. The centralized management option thus became the favored

management option over the failing decentralized privy vault-cesspool system. The first

comprehensively planned combined sewer systems in the U.S. were constructed in

Chicago and Brooklyn in the late 1850s. By the end of 18th century, most major U.S.

cities had constructed some form of sewer system, mostly combined. In 1909, the cities

with a population of more than 30,000, had 42,040 miles of total sewers in which 77.5%

were combined (Burian et al. 2000). This shows that combined sewer systems (CSS) were

clearly the predominant choice over separate sewer systems (SSS). With the beginning of

the 20th century, there was growing realization that combined sewers were transferring the

nuisances and public health risks to downstream riparian residents. This resulted in the

development and adoption of treatment technologies.

The implementation of sewage treatment had to include a large number of sewer

outfalls spread over many locations in the city. To avoid construction of a treatment plant

for every outfall, effluents from the many outfalls were centralized to a single treatment

plant by building huge interceptor pipes. During wet weather flow, the size of these

interceptor pipes and the loading capacity of the treatment plants generally become too

small to accommodate all of the discharge from the combined sewers. The excess flow is

allowed to overflow without treatment. This overflow of raw flow is called combined sewer

overflow (CSO), which releases untreated flow containing raw sewage directly into

receiving waters. Since they release sediments, nutrients, gasoline, and other chemicals

from urban surfaces into local waterways, as well as pathogens, and organic matter from

human waste (Carson et al. 2013), CSOs are a significant source of water pollution.

Many old cities in the developed countries including the U.S. still have CSS and CSO

problems. In the U.S., for example, about 860 communities have combined sewer systems

serving a total of approximately 40 million people (U.S. EPA 2016b).
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Shift to Separate Sewer Centralized System

Treatment of the entire amount of combined flow consisting of both types of water

(wastewater and stormwater) was a heavy financial burden, and only a few municipalities

could afford to construct the treatment facilities to treat both. As a result, cities were

motivated to separate stormwater and wastewater, resulting in separate sewer systems

(SSS) referred to as municipal separate storm sewer system (MS4). In this system,

wastewater and stormwater are transported by different sewer pipes, called sanitary sewer

and storm sewer respectively. SSS provided the much more constant and treatable flow

for wastewater and hence was favored by newly emerging urban areas. By the end of the

1930s, municipalities were augmenting CSSs to function as separate or partially separate

systems or were completely replacing CSSs with new separate systems (Burian et al.

2000). Many already built CSSs in many cities still continue functioning because

replacing them with SSSs would be technically difficult and financially prohibitive.

Some cities have a mixture of CSS and SSS, which is called a compound system. The

compound system could result from construction of SSS during the expansion of a city

whose old system is CSS. Old cities such as Chicago, St. Louis, New York, Boston, and

many others have the compound systems. Centralized SSS and treatment facilities

became the most dominant system of choice after the late 1930s, and before the passage

of the Water Pollution Control Act, also called Clean Water Act, of 1972.

Challenges and Opportunities

Though the conventional approach has accomplished the primary goal of controlling

runoff and improving public health in the urban area, it does not restore urban

biodiversity and landscape hydrology destructed by urbanization. The system does not

even mitigate flooding; it simply transfers the problem to downstream locations (Heaney

et al. 1999). In fact, by further increasing the rate and quantity of flow and further

decreasing the time of concentration, the gray system increases the potential of flooding
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and aggravates the problems in the downstream. The National Research Council (2009)

concludes that the current gray infrastructure (CSS and SSS) are inefficient because of

their focus on symptoms (large stormwater volumes) rather than on the cause of the

problem, which is the imperviousness associated with urban development. With the

current urban development practices, stormwater impacts are virtually unavoidable in

urbanized areas, and it is difficult to return to or maintain the hydrologic regime of

pristine environment (WEF and ASCE/EWRI 2012).

Climate change has brought an unprecedented challenge for drainage managers

(Willems 2012). As discussed in the first chapter, our conventional infrastructures were

designed based on the historical precipitation data assuming that the precipitation

pattern will not change over the design life of the facility (Bedient et al. 2008; Chow

1964). Since the frequency and intensity of heavy rainfall events are projected to increase

significantly (IPCC 2013), the capacity of the existing system will not be able to

accommodate the excess rainfall. Managing the additional flow associated with climate

change has been a concern for the drainage engineers. In the case of combined sewer

system, if the hydraulic capacity of the combined sewer is exceeded due to excessive

rainfall, there will be more combined sewer overflows posing increased regulatory

challenges. When the sewer becomes surcharged, the flow can reverse and back up to the

basement floor drains resulting in basement flooding, which leads to property damage and

health threats (Adams and Papa 2000). The combined effect of climate and land use

change also pose increased challenge to floodplain management in the downstream

(Thakur et al. 2017b).

On the other hand, the growing realization of the need to restore urban hydrology

for maintaining ecological health of the urban areas, enhancing ecosystem services,

replenishing groundwater, mitigating flood, and restoring stream conditions are changing

the human perspectives of urban drainage management. This implicates the necessity of a

new paradigm in stormwater management, which can restore the hydrological and
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ecological functionality of the urban landscape while accommodating the increased

precipitation due to climate change.

Along with the challenges, many innovative ideas and technologies have evolved.

Green infrastructure is one such technology, which utilizes soil and vegetation to treat

stormwater and restores urban biodiversity and landscape hydrology. Urban design

concepts that utilize green infrastructure have also evolved. Examples include

water-centric eco-cities (Joss 2010; Novotny 2008; Novotny et al. 2010; Novotny and

Novotny 2012; Roseland 1997), green cities, and smart growth (Heaney and Sansalone

2012). Effective and timely implementation of these concepts and technologies can be

instrumental to address the problems challenging cities and critical to pursuing urban

sustainability.

Green Infrastructure: Concept and Benefits

What is Green Infrastructure?

The term green infrastructure is relatively new; however, the concept per se has a

long history. It was conceived for the first time in planning and conservation efforts

around mid-19th century to link natural spaces to counter fragmentation and benefit

people as well as biodiversity (Benedict and McMahon 2002). Unfortunately, over more

than hundred years, grey infrastructure became ubiquitous globally, overshadowing the

green concept. It was only during the last decade of the 20th century that the concept

received attention from the professionals, and the term green infrastructure was coined.

Since then, the approach is getting increasing support in the U.S. and abroad. Currently,

its innovation is rapidly unfolding (Elkind and Cady 2012).

The term, however, has no universal definition. The definition varies depending upon

context (Benedict and McMahon, 2002; GIAS, 2008). In the context of stormwater

management, it can be defined as a set of techniques, technologies and practices that uses

soil and natural process to infiltrate, evapotranspire or reuse stormwater (Green
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Infrastructure Action Strategy (GIAS) 2008). Thus, green infrastructure is a landscape

based water–centric approach (WEF and ASCE/EWRI 2012). According to Benedict and

McMahon (2002), green infrastructure is an interconnected network of green spaces that

conserves natural ecosystem values and functions and provides associated benefits to

human populations. They argue that green infrastructure provides an ecological

framework needed for environmental, social, and economic sustainability. In a recent

article by Norton et al. (2015), the term urban green infrastructure has been defined as

the network of planned and unplanned green spaces, spanning both the public and private

realms, and managed as an integrated system to provide a range of benefits.

Green infrastructure can be natural, such as open space, or restored or built. Several

built green infrastructures are currently available. Examples include green roofs,

permeable pavements, rain barrels, rain gardens, bio-swale, bio-retention cells, and tree

planters.

Benefits of Green Infrastructure

In addition to restoring hydrology and helping to control runoff, green infrastructure

offers multiple benefits to the public and the urban environment. It restores biodiversity

(McKinney 2002), revives naturally functioning ecosystem structures (Andersson et al.

2014; Breuste et al. 2015b), and regenerates a host of ecosystem services (Breuste et al.

2015b; Jansson and Nohrstedt 2001). The ecosystem services include carbon

sequestration (U.S. EPA 2010), water quality improvement (Novotny et al. 2010), climate

change adaptation (Kramer 2014), and groundwater recharge (U.S. EPA 2010, 2014b).

Through these ecosystem services, green infrastructure re–establishes the socio–ecological

connectivity destroyed by urbanization (Gmez-Baggethun et al. 2013; Tzoulas et al.

2007) and improves the quality of life (Breuste et al. 2015a). It increases property value

(Anderson and Cordell 1988; Benedict and McMahon 2002; Wachter and Wong 2008;

Ward et al. 2008) and decreases the cost of public infrastructure and services such as flood
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control, water treatment systems, and stormwater management (Benedict and McMahon

2002). Green infrastructure also fosters community cohesiveness by engaging residents in

planting and maintaining the green infrastructure in the neighborhoods (Wise 2008).

Additionally, green infrastructure is climate resilient (U.S. EPA 2015). Other

benefits include cost-effectiveness (Baerenklau et al. 2008; Foster et al. 2011; Shaver et al.

2009; U.S. EPA 2015) and material efficiency, the two additional sustainability attributes

as argued by (Dhakal and Oh 2011). The approach is also energy and water efficient

(Heaney 2007). To summarize, green infrastructure is an essential tool to pursue urban

sustainability (Tzoulas et al. 2007; Young 2009). The installation cost of green

infrastructure is also less than the cost of conventional gray infrastructure (Benedict and

McMahon 2002; Wise 2008). Portland, for example, saved $250 million by investing $8

million in green infrastructures instead of constructing hard infrastructure (Wise 2008). A

case study of nine projects in the U.S. and New Zealand by Shaver et al. (2009) showed

the cost of green infrastructure 14 to 64% less than that of conventional development.

Thus, green infrastructure contributes to every dimension of sustainability.
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CHAPTER 3

CLIMATE CHANGE IMPACT ON URBAN STORMWATER SYSTEM

Introduction

In addition to the land surface characteristics, rainfall intensity and frequency are

two critical factors that significantly affect the design capacity of an urban drainage

system. Current engineering practices assume these factors to remain stationary, and a

system′s capacity is designed based on the frequency analysis of time series of historical

precipitation data (Bedient et al. 2008; Chow 1964). Since climate change increases both

intensity and frequency of heavy precipitations (IPCC 2013; USGCRP 2014), the

assumption of stationarity is an incorrect assumption. When both the intensity and

frequency of heavy rainfall events increase, it is very likely that the design capacity of

sewer system determined from the analysis of past data will be insufficient to

accommodate the increased precipitation. The insufficient capacity results in the failure

of the system during heavy rainfall events leading to urban flooding which threats public

health and safety and risks built infrastructure including the stormwater system itself.

The evidences of flooding problems have become increasingly widely in the recent years as

exemplified in the first chapter. In the case of a combined sewer system, increased

precipitation may increase combined sewer overflow (CSO), adding more pollutants to the

receiving water bodies and increasing regulatory challenges to cities.

As a legacy of the past, urban drainage infrastructure with the faulty design

assumption is prevalent all over the world. To prevent the failure of the existing systems

and avoid the potential damage, the existing systems need to be adequately retrofitted

with reliable adaptation measures so that the existing system can accomodate the

increased rainfall intensity. Prior to designing, such as adaption measures, it is crucial to

evaluate the system′s performance under projected climate scenarios so that appropriate

solutions can be determined accordingly. This chapter conducts a case study of a
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combined sewer system and evaluates the impacts on its performance under future rainfall

scenarios.

The assessment of climate change impact in urban drainage systems is a relatively

new task for urban hydrologists, and it lacks both tools and guidelines in the technical

literature for the assessment (Semadeni-Davies et al. 2008). However, though limited in

number, some researchers have investigated the impacts by applying different approaches.

Some of those investigations are discussed here.

As a pioneer, Niemczynowicz (1989) conducted a case study of a 1770 ha Lund

catchment in Sweden with combined sewers in the city center using U.S. EPA′s Storm

Water Management Model (SWMM). The study showed that an increase in rainfall

intensity by 20 to 30% caused significant problems in Lund′s drainage system, resulting in

basement as well as street flooding and causing property damage. The research showed

that when a 3-yr rainfall was increased by 30%, 6820 m of conduits were surcharged and

more than half of the city center area was flooded. Combined sewer over flow volume also

increased significantly. For example, for a 1-yr rainfall, the overflow volume was double

the increase in rainfall.

Denault et al. (2002) used design storm rainfall scenarios projected from

intensity–duration–frequency (IDF) curves for years 2020 and 2050 to evaluate the

climate change impact on drainage pipe capacity of a 440 ha Mission/Wagg Creek

Watershed in North Vancouver, Canada. The research showed that though the impact

was not that significant for a 10-yr precipitation, about 1355m (out of 6200m) of major

system was inadequate to convey projected 100-yr event.

Waters et al. (2003) also used SWMM for a case study in 23.3 ha Malvern

Catchment in Ontario, Canada. The research showed that a 15% increase in design storm

resulted in 19% increase in runoff volume and 13% increase in peak discharge, causing

24% of the drainage pipes to surcharge. Watt et al. (2003) also presented Malvern case

study along with a case study of Central Park urban catchment in Ottawa, Canada, using
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the SWMM model for assessing impact and suggesting adaptation measures. In the

Central Park case study, the research showed that the percent of pipes with capacity

shortage was always greater than the percent of increase in storm intensity. For example,

20% increase in storm intensity resulted in surcharge of 30% of pipes.

Olofsson (2007) conducted urban drainage simulation using Model for Urban Sewers

(MOUSE) to model urban drainage system of a 54ha suburban catchment in Sweden,

containing 410 nodes. The system was designed with current design standard to

accommodate minimum rainfall of 10-yr return period. The researchers selected 120

nodes and applied emission Scenarios A2 and B2 defined by the IPCC Special Report on

Emission Scenarios (SRES). The SRES defines A2 as the scenario with heterogeneous

world, increasing population, slow economic and technologic development; and B2 as the

scenario with the world where emphasis is on local solution to the economic, social and

environmental sustainability, increasing population, moderate economic development, and

less diverse and more rapid technological development (IPCC 2007). Considering the two

emission scenarios, Olofsson determined various parameters to assess the impact including

maximum level in nodes, exceeded levels (number, frequency and duration of nodes in

which flow exceeds the ground or critical level), and pipe flow ratio (flow-rate/full

flow–rate). The result showed that the maximum water levels at the nodes were about

0.3m higher for the period 2011–2040, 0.4m higher for the period 2041–2070, and 0.8m

higher for the period 2071–2100, as compared to the water level for the base period

1971–2000. Similarly, flow ratio was significantly higher in the period 2071–2100. Number

of flooded nodes and the frequency of floods both increased in all of the future periods.

The duration of the flood doubled for most of the nodes.

Kleidorfer et al. (2009) analyzed results from 250 virtual case studies and one real

world case study and found that an increase of 20% in rainfall intensity has the same

effect as an increase of impervious area of 40%. This finding showed that increase of

rainfall intensity could be compensated by having increased infiltration measures in the
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catchment. The researchers finally concluded that the increase of rainfall intensities has

the highest impact on the system performance followed by the impact of a variation in

impervious area.

Nie et al. (2009) simulated the potential impact of climate change on a sewer system

in a 364.3 ha Veumdalen catchment of Fredrikstad, Norway. The simulation showed that

the increase in precipitation by 20%, 30%, and 50% above the 2004 base precipitation

would increase the volume of water spilling from the flooding manhole by 43%, 121%, and

181% respectively, and the corresponding increase of total CSOs would be 36%, 54%, and

89%.

Forsee and Ahmad (2011) used the US Army Corps of Engineers′ Hydrologic

Modeling System (HEC–HMS) for evaluating performance of stormwater infrastructure of

the 40,000–ha Pitmann watershed, Las Vegas, under climate change. They assessed four

different variables (inflow, discharge, elevation, and storage) and showed that if the 6-hr

100-yr rainfall depth is increased by a factor of 1.2, the maximum values for the four

variables would increase by a factor from 1.1 to 1.7.

Relatively recently, Berggren et al. (2012) studied the separate sewer system in a

54-ha small suburban area near Kalmar, Sweden, using Model of Urban Sewers

(MOUSE), a numerical model developed by Danish Hydrological Institute. The observed

rainfall series for the period 1993–2002 was used as a baseline scenario, which was

assumed to represent current climate and rainfall, and delta change method was used for

the future rainfall events for global emission scenario A2. To measure the hydraulic

impacts on the urban drainage system, they used two parameters: the water level in

nodes and the pipe flow ratio in links. They measured water level in nodes as maximum

from both ground level and so–called critical level, which was set 0.5 m below ground

level. They found that the maximum increase in water level at nodes for the period

2071–2100 was 1.9 m (385%) above the baseline scenario of 1993–2002. About 18% nodes

had the difference of more than 0.5 m and about 3% nodes had the difference of more
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than 1 m. During 2071–2100, the total frequency of flood increased to 75 as compared to

base period flood frequency of 25. Overall, their research result showed that future

precipitation would increase both the number of nodes flooded and the flooding frequency.

In this research, I conducted a case study on a combined sewer system in St. Louis,

Missouri, United States, using ESRI′s ArcGIS and the U.S. EPA′s SWMM. GIS was used

for watershed characterization, and the existing drainage system was modeled in SWMM

under current and future rainfall scenarios. For the current climate scenario, the observed

hourly rainfall data of 1971–2000 at Lambert Airport Station provided by NOAA was

used. For future scenarios, a delta factor was calculated from modeled rainfall data for

current (1971–2000) and future (2041–2070) scenarios, obtained from North American

Regional Climate Change Assessment Program (NARCCAP), and the factor was applied

to the current observed data to produce the future precipitation (2041–2070) scenario.

Since the highest temporal resolution of the NARCCP data is 3-hr, the current hourly

data obtained from NOAA was also aggregated to 3-hr rainfall data. Frequency analysis

was conducted for the 3-hr annual maximums, and the drainage system was evaluated for

50-yr return rainfall for both the current and future scenarios. Due to the climate change,

the systems performance at both the conduits and nodes considerably decreased with a

significant increasee in node flooding, pipe surcharge, and CSO volume. Thus, the result

suggested that the system requires retrofitting for it to perform at the desired level in the

future.

Research Methodology

Study Area

Since this research evaluated the impact of precipitation, not sea level rise, any

drainage system that is not affected by sea level rise could be appropriate for the case

study. Many urban systems of this type exist in the US. To select the most suitable one

for this study, following criteria were established: presence of adequately large sewer
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system, potential occurrence of flash floods, and data availability including drainage

network, georeferenced land characteristics, rainfall data, and flow data. Based on these

criteria, a site in the City of St Louis, in the state of Missouri (MO), the United States,

was selected.

The city is located at 38◦ 37′ 38′′ N and 90◦ 11′ 52′′ W, and is along the bank of

River Mississippi. The drainage system, both stormwater and wastewater, of the city is

provided by the Metropolitan St. Louis Sewer District (MSD), which covers most of St.

Louis County in addition to the City. The system provides services to approximately 1.4

million residents and 535 square-mile (sq mi) area (MSD 2011). As reported by the MSD,

the collection system comprises of 9,600 mi of pipe, and is the fourth largest system in the

US. Of the total area served by the MSD, 75 sq mi of St. Louis City and the adjoining St.

Louis County are served by a combined sewer system. The selected catchment is in the

combined sewer system area and is bounded by Adelaide Avenue in the north, Mississippi

River in the east, Grand Avenue in the South, Carter Avenue in the west, and O'Fallon

Park in the northwest (figure 3.1).

Figure 3.1. Location of Study Area
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The catchment is in the domain of Bissel Point treatment plant, which is located

close to the south-east corner of the catchment, by the side of River Mississippi, to which

the whole area (169.23 hectare or 0.65 sq mi) of the selected catchment drains. No

distinct surface channels exist within the basin, and hence the flow is either through

constructed sewer system or overland. During dry days and light rainfall events the flow

is conveyed to the Bissel Point waste water treatment plant through underground sewer

networks, and, after treatment, is discharged into Mississippi River. However, during

heavy rainfall events, when the combined flow exceeds the treatment plant capacity, the

surplus flow is discharged directly into Mississippi River through two outfalls.

The selected site is divided into almost two halves by interstate 70 (I-70), the east of

which has almost flat terrain with average slope of 0.33% and is occupied by industrial

and unrestricted districts. The portion of the study catchment west of the interstate has

relatively greater slope of 11.25% and is mostly occupied by two-family residential

buildings. The site has mean annual precipitation of 36 to 47 inch and mean temperature

of 52 to 59◦F (NRCS 2016). The drainage system is maintained by Metropolitan St.

Louis Sewer District (MSD). The hydrologic soil group of most of the site is C, though a

fraction of the land has mixed soil group C/D (NRCS 2016).

Data Source and Processing

Data used in this study were: (a) georeferenced data including contour map, parcels,

and sewer networks (b) observed rainfall and sewer flow data (c) 2012 georeferenced aerial

image of the study area (d) soil data. These data were obtained from different sources

including Metropolitan St. Louis Sewer District (MSD), North American Regional

Climate Change Assessment Program (NARCCAP), Natural Resource Conservation

Service (NRCS), National Oceanic and Atmospheric Administration (NOAA), and some

published literature. Formats and sources of these data are summarized in table 3.1.

These data were processed to obtain SWMM input data.

36



Table 3.1. Data Source and Format.

Data Format Source
2-ft contour, sewer networks, parcel data GIS MSD St. Louis
5-min rainfall and 5-min sewer flow data Excel MSD St. Louis
Aerial imagery, 6-in resolution, leaf off TIFF MSD St. Louis
Soil classification Web NRCS Website
Soil characteristics Text USDA/James et al. (2010)
Historical 1-hr rainfall Excel NOAA
Modeled 3-hr historical/future rainfall NetC NARCCAP

Model Selection

Numerous computer models are available to simulate rainfall-runoff phenomenon.

Selection of an appropriate model depends upon the purpose and scope of the work as

well as landscape characteristics and available information. For this study, U.S. EPA′s

Stormwater Management Model (SWMM), version 5.1.012 released in March 2017, was

used. SWMM is a dynamic rainfall-runoff computer model used for a single event or

continuous long-term simulation of rainfall-runoff process, and is mainly used for urban

areas (Rossman 2015). It is in the public domain and can be downloaded from the U.S.

EPA′s website1. The model has been used by thousands of cities worldwide, and has

arguably the most successful track record of application to urban water quantity and

quality problems (Huber and Roesner 2013).

Since its inception in 1971, SWMM has undergone continuous development, and it

resumes to be widely used globally for planning, analysis, design, management, and

litigation related to stormwater runoff, combined sewers, sanitary sewers, and other

drainage systems in urban areas (James et al. 2010). The version 5.1 is the most current

version and simulates hydrology, hydraulics, and water quality of urbanized watersheds.

As discussed by James et al., the model provides an integrated environment for editing

study area input data, running hydrologic, hydraulic and water quality simulations, and

1https://www.epa.gov/water-research/storm-water-management-model-swmm#downloads
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viewing the results in a variety of formats including color-coded drainage area and

drainage system maps, time series graphs and tables, profile plots, and statistical

frequency analysis. It incorporates various hydrologic processes including rain-fall,

evaporation, interception in depression storage, infiltration, percolation into groundwater,

and capture and retention by LID practices. SWMM is also capable of routing runoff and

external inflows through the drainage system consisting of surfaces, pipes, channels,

storage/treatment units and diversion structures. In addition to the runoff, SWMM also

estimates pollutants present in runoff and/or wastewater. Further detail about its

applicability is available in SWMM documents (e.g., James et al. 2010; Rossman 2015).

Conceptually, as discussed in James et al. (2010), SWMM represents a drainage

system as a series of water and material flows between several environmental

compartments including atmospheric, land surface, groundwater, and transport

compartments. Precipitation, represented by rain gage, falls from the atmospheric

compartment to the land surface compartment represented by a catchment where

pollutants are deposited. The land surface compartment conveys flow in two forms: one,

infiltration to the groundwater compartment; and the other, surface runoff and pollutant

loading to the transport compartment. After receiving infiltration from the land surface

compartment, the groundwater compartment transports a portion to the transport

compartment which is modeled using aquifer objects. The transport compartment

consisting of nodes and link transports the flow to outfalls or treatment facilities.

Model Development

Watershed Delineation

Watershed is a spatial unit, all of which drains through a common outlet. The

process of drawing watersheds boundary is called watershed delineation. It is done by

joining the highest elevations, using contour maps or by automatically processing digital

elevation model (DEM) using GIS tools. In this research, GIS (various tools under
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ArcToolbox) was used to convert contour map to DEM and delineate the study area

watershed. The procedure is briefly outlined as follows.

First, the 2-ft contour data provided by the MSD was converted into Triangular

Elevation Network (TIN) using ‘Create TIN’ tool (3D Analyst Tools → Data

Management→TIN→Create TIN). The resulted TIN model was then converted to DEM

using ‘TIN to Raster’ tool (3D Analyst Tools→Conversion→From TIN→TIN to Raster).

Due to the presence of errors in the data, the DEM is likely to have cells whose flow

direction cannot be assigned. Such cells are called sinks, which need to be filled before

creating a flow direction map. The task was done by using ‘Fill’ tool (Spatial Analyst

Tools→Hydrology→Fill). The DEM with filled sink was then converted to flow direction

map, which shows the detail of the direction of the surface flow, by using ‘Flow Direction’

tool (Spatial Analyst Tools→ Hydrology→Flow Direction). To show the accumulation of

the flow of surface water, the flow direction map was converted into flow accumulation

raster using ’Flow Accumulation’ tool (Spatial Analyst Tools→Hydrology→Flow

Direction).

Now, it is required to identify location of the outlet or ‘pour points’ for watersheds

to be delineated. A pour point should be located within an area of high flow

accumulation because it is used to calculate the total contributing water–flow to that

point. For this, a shape file was created and points were added to the grids with high flow

concentration, displayed by the flow accumulation raster. One such point was added for

each accumulated flow. To ensure that the created pour points were exactly located on

the high flow accumulation, ‘Snap Pour Points’ tool under ‘Hydrology’ tool of ‘Spatial

Analysis’ was used. The tool moves any incorrectly located pour points to its correct grid

that has highest flow accumulation value. The ‘Watershed’ tool was then used to

delineate a watershed for each snapped pour point. Finally, the watersheds thus created

were converted into watershed polygons using ‘Raster to Polygon’ tool under ‘Conversion’

Tools. The steps and their results are depicted in figure 3.2.
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 Selected
Watershed

Figure 3.2. Watershed Delineation: Process and Result

Based on the availability of data and presence of sufficiently large drainage system,

one appropriate watershed was selected for case study. The selected watershed is shown

in figure 3.3. The blue colored arrows in the figure represent flow directions.

Subcatchment, Sewershed, and Sewer System

To appropriately incorporate the land′s spatial variability, SWMM requires

partitioning the catchment into a group of subcatchments. A subcatchment is a smaller

hydrologic unit whose surface runoff flows to a single discharge point called outlet. The

division of the catchment into subcatchments depends on the extent of the spatial

variability, direction of surface flow, and direction of wastewater flow. For these features

contour map, aerial image, and sewer networks were used. Within the watershed

boundary, several pour points were established on the flow accumulation raster, and

subcatchments were delineated using the ‘Watershed’ tool. The subwatersheds thus
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Figure 3.3. Extracted Watershed With Arrows Showing Flow Direction

created were then converted to subwatershed polygons (figure 3.4). The subwatersheds

were overlaid on the sewer networks and the final sewershed was determined (figure 3.4).

The finalized sewershed, which is named hereafter as study area watershed, or simply

watershed, is the area included by the pink line in the figure 3.4.

The study area watershed with the delineated subwatersheds were then overlaid on

the sewer networks, aerial imagery, parcel layers, and surface flow direction map created

by GIS. Subcatchments were then finalized in the GIS platform. The result was then

overlaid with the watersheds sewer system again and a scaled image was created in JPEG

format to use as backdrop in SWMM. The JPEG image was uploaded into the SWMM

platform on which the subcatchments and sewer networks were traced. The Auto–length

tool of the SWMM was set ‘ON’ while drawing these objects so that the subcatchment

areas and conduit lengths were calculated automatically. The invert and top levels of

some nodes were available in the GIS data received from MSD. These data for other

nodes were calculated based on assumed slope of conduit and available contour of the

41



Sewershed
Watershed

0.2    0.1     0 0.2 0.4 0.6 0.8
Miles

Figure 3.4. Sewershed/Watershed Overlay and GIS Generated Subcatchments

land surface. A rain gage object was added to supply precipitation to all of the

subcatchments to incorporate rainfall. Before discharging sewer flow into Mississippi, the

dry weather flow and a portion of wet weather flow were routed to interceptor tunnel

through a control mechanism. This mechanism, which functions as a combined sewer

overflow structure was represented in the model through a combination of weir and orifice

structure as shown in the figure (detail A, figure 3.5). The dimensions of the control

structures were determined to deviate total dry weather flow as well as wet weather flow

generated by 0.75 inch of rainfall toward the interceptor tunnel. Any additional flow was

discharged directly to Mississippi through outflow nodes outfall1 and outfall2, without

treatment. The detail procedure for this process is available in SWMM User′s Manual

(Rossman 2015). Figure 3.5 depicts the output of this process and figure 3.6 depicts the

output with the background aerial image.
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Figure 3.5. Subcatchments and Sewer System Network Modeled in SWMM5

Selection of Routing and Infiltration Processes

SWMM provides multiple options for computation of infiltration and routing of flow.

For calculation of infiltration, the options available are Horton, Green-Ampt, and Soil

Conservation Service′s SCS Curve number; whereas for flow routing in channels and

pipes, the options include Steady Flow, Kinematic Flow, and Dynamic Flow routing.

Depending on the modeling requirements and data availability, the user is required to

select one option for each of these processes.

Infiltration rate depends on soil properties including hydraulic conductivity,

diffusivity, and water holding capacity. These properties are determined by soil structure

and extent of compaction which affect soil metric forces and porosity. While computing

infiltration, these factors need to be considered. Horton′s and SCS Curve Number
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Figure 3.6. Catchment and Sewer Network With Backdrop Image

methods are based on empirical observations and require field data to determine their

parameters. Green–Ampt method is physically based. It assumes a sharp wetting front

moving downward from the surface at the interface of saturated soil above and drier soil

below and computes infiltration based on Darcy′s law (Rossman 2015). The method

requires following parameters: soil suction head, saturated hydraulic conductivity, and

initial moisture deficit (Chow et al. 1988). These parameters can be estimated even

without field data, though field data is preferable (James et al. 2010). Since Green–Ampt

method represents the catchment infiltration more realistically than the other two

methods (Turner 2006), this method was used in this study.

Flow routing refers to a mathematical procedure for simulating speed and shape of

flow through drainage system elements as a function of time. It is an important and
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complex component in hydrologic analysis, and requires a huge computational task. A

wide range of flow routing models are available in literature, of which SWMM provides

three options including Steady State, Kinematic Wave, and Dynamic Wave routing.

As discussed in SWMM manual (Rossman 2015), steady wave flow routing is the

simplest method. It assumes that flow is uniform and steady in each computational time

step. The method simply transforms inflow hydrographs at the upstream node of a

conduit to the outflow hydrograph at the downstream node, with no delay or change in

shape. Kinematic routing method solves the continuity and simplified momentum

equations in each conduit. However, both methods cannot be applied to systems where

backwater effects, surcharge, pressurized flow, and reverse flow exists. These scenarios can

be represented by dynamic wave routing method, which solves the complete

one-dimensional gradually–varied unsteady flow (Saint Venant) equations and arguably

produces the most theoretically accurate results (Rossman 2015). Since the system

modeled in this research involves the phenomena including backwater effects, surcharges,

and pressurized flow, dynamic wave flow routing method was used.

As discussed in James et al. (2010), the dynamic wave flow routing receives

hydrograph input at a node, performs dynamic routing of flow through the storm

drainage system to the outfalls, and ultimately releases the flow to the receiving system.

The program simulates branches and loops in the sewer system, backwater, free surface

flow, pressurized flow, flow surcharge, and flow reversal. It also simulates flow transfer by

facilities including weirs, orifices, pumps, and storage units.

Input Parameters

i. Subcatchment geometry and drainage elements

After having subcatchments and drainage systems, numerous input parameters need

to be determined to feed into SWMM for a sufficient representation of topography, land
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surface heterogeneities, and hydrologic characteristics. As mentioned earlier,

subcatchment areas and conduit lengths were calculated by using SWMMs auto-length

tool while drawing the subcatchments and conduits on SWMMs study area map. The

node inverts and top levels were either taken from the available GIS dada or estimated

based on the available data. As discussed in James et al. (2010), the length of overland

flow, defined as the distance the flow travels before it begins to consolidate into rivulet

flow, of each subcatchment was determined by measuring the distance from the back of a

representative lot to the center of street. In case of the three undeveloped subcatchments,

the overland flow length of 152 m (500 ft) was adopted, as suggested by SWMM manual

(James et al. 2010; Rossman 2015). The width of the subcatchments were determined by

dividing subcatchment′s area by the length of overland flow.

ii. Surface and subsurface characteristics

The surface and subsurface characteristics that determine the hydrologic response of

subwatersheds include slope, imperviousness, roughness coefficient, depression storage,

and percent of impervious area without depression storage (James et al. 2010). The slope

of the overland flow path, was calculated from GIS data. In case of varying slopes,

area–weighted–average was taken.

Imperviousness is the percentage of the impervious surface present in the

subcatchment. It is one of the most sensitive parameters in hydrologic characterization

whose value ranges from 5 to 95% depending upon the extent of development (James et

al. 2010). In this study, imperviousness was calculated for each subcatchment by directly

measuring the area of impervious features on aerial photography (ortho imagery) of 2012,

available from MSD. The measured total impervious area in a subcatchment was divided

by the total area of the subcatchment to determine the imperviousness.

Roughness coefficient represents the amount of resistance of the land surface to

overland flow. Since SWMM computes overland flow using Manning′s equation, this
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coefficient is the same as Manning′s roughness coefficient ‘n‘ (James et al. 2010). Separate

values of ‘n’ are required for the impervious and pervious portions of subcatchments.

Depression storage indicates the volume to be filled prior to the occurrence of any runoff

and represents initial abstractions such as surface ponding, interception by land features,

and surface wetting (James et al. 2010). Typical values range between 0.05 inch for

impervious surfaces to 0.3 inch for forested areas (James et al. 2010; Rossman 2015).

Values provided in the SWMM′s user manual were used while developing the model. The

percent of impervious area without depression storage is another parameter which

accounts for the impervious areas that produce immediate runoff before depression storage

is satisfied (James et al. 2010). This study adopted the SWMM′s default value of 25%.

The parameters required for Green-Ampt method were determined using two

sources. First, the NRCS hydrologic soil group of the subcatchments were determined

from USDA Natural Resource Conservation Service′s (NRCS) Web Soil Survey (WSS),

produced by the National Cooperative Soil Survey and operated by the NRCS. According

to the WSS data, the hydrological soil group of the most of study area soil is C (except

22.7% of the area whose soil is C/D mix), and the top soil layer is silt loam. According to

James et al. (2010), the soil type selected should correspond to the surface layer of a

catchment. Second, the values of the parameters for soil type C was taken from James et

al. (2010), which are tabulated in table 3.2.

Table 3.2. Soil Characteristics

Parameter Value
Initial moisture deficit at wilting point (silt loam) 0.32
Soil capillary suction head (silt loam) 12 in
Soil saturated hydraulic conductivity, (Ksat) 0.26 (in/hr)
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Calibration and Validation

Since drainage efficiency is challenged during high precipitation events, event–based

evaluation is arguably the most appropriate method for evaluating the system

performance. Therefore, high intensity short duration events were selected from the

available 2013 rainfall data for calibration and validation. The model was first calibrated

using one storm event, then it was validated with three isolated events shown in table 3.3.

Table 3.3. Selected Storms for Calibration and Validation

Process Date Rainfall(mm) Rainfall(in) duration (hr:min)
Calibration 5/31/2013 54.86 2.16 5:45
Validation 5/27/2013 21.84 0.86 3:00
Validation 5/20/2013 26.05 1.03 1:50
Validation 4/10/2013 38.78 1.53 3:3

Observed flow data provided by MSD contained discharge, velocity, and water-level

in manhole recorded by four flowmeters installed at different locations across the study

area. The water–level data recorded by the flowmeter located at E Prairie Ave 32 m

downstream of N 20th street (represented by node J23 in figure 3.7) was used for

calibration and validation. Other records were not used because either the performance of

the flowmeter was poor, as suggested by MSD, or the contributing area was significantly

less.

As two dominating parameters (James et al. 2013), percent imperviousness (directly

connected impervious area, DCIA) and subcatchment width were considered for

calibration. The parameters were adjusted until the modeled and observed water–level at

J23 were reasonably matched. SWMM′s ‘Calibration Data’ included under ‘Project’ menu

was used to register the observed data for both calibration and validation, and ‘Create

Time Series Plot’ was used to visualize the results. The tool produces a graph for both

simulated and observed data, which can be visualized to see whether the simulated data
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Figure 3.7. Location of Flowmeter Whose Data was Used for Calibration and Validation

match the observed data (figure 3.8). When the model parameters produced results that

reasonably match the observed flow in shape, peak and timing for the May-31 event, the

model was considered to be calibrated (figure 3.8: a). The model thus calibrated was run

with three different storms of April 10, May 20, and May 27, as mentioned in table 3.3.

Since the simulated depth approximately match the observed depth for all the three

events (figure 3.8: b, c, and d), the model was validated.

In addition to the SWMM′s graphical technique, the model was also evaluated using

Nash-Sutcliffe model efficiency coefficient (NSE). As discussed in Moriasi et el. (2007),
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(c) Validation: May20, 2013 Event
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(d) Validation: May 27, 2013 Event
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Figure 3.8. Model Calibration and Validation: Plot of Simulated and
Observed Depths at Node J23

NSE is a normalized statistic which determines the ratio of residual variance (called

“noise”) to the measured data variance (called “information”), and is defined by equation

(1).

NSE = 1−

n∑
i=1

(Oi − Pi)2

n∑
i=1

(Oi −O)2
---------------- (3.1)

where n is the total number of observations, Oi is the ith observation of the depth, Pi

is the ith predicted depth, and O is the mean of the observed depths. The coefficient

values calculated from the observed and model predicted depths for the four rainfall

events used for calibration and validation are presented in table 3.4. An NSE coefficient
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above zero indicates that the mean simulated value is a better predictor than the

simulated value; and hence, values between 0 and 1 are generally viewed as acceptable

levels of performance (Moriasi et al. 2007). Since all four NSE coefficients (table 3.4) are

well above zero, the developed model can be considered reliable for predicting the

performance of the modeled system.

Table 3.4. Nash-Sutcliffe Model Efficiency Coefficients

Rainfall event NSE coefficient
5/31/2013 0.65
5/27/2013 0.56
5/20/2013 0.34
4/10/2013 0.51

Projection of future rainfall scenarios

Study of the climate change impact requires the projection of future climate

variables. For this study, the future rainfall scenario for the study area was estimated

from three datasets available from two sources: (i) observed historical 30-yr (1971–2000)

data available from NOAA, (ii) modeled historical 30-yr (1971–2000) data available from

NARCCAP, and (iii) modeled future 30-yr (2041–2070) data available from NARCCAP.

A delta change factor (DCF), the ratio of the model generated historical and future

rainfall data, was calculated and the factor was applied to the observed historical point

rainfall data to project the future point rainfall data. The overall procedure is described

in the subsequent paragraphs.

For the observed historical data, 1-hr precipitation data from Lambert airport

station (ID: 237455), which is at 16 km from the study site, was used. Though stations at

St. Louis Science center (ID: 237452) and Eads Bridge (ID: 237460) are at 7 km and 6

km respectively, they did not have enough data for the 1971–2000 period. The station at

the science center lacked all data from 1979 to 1983 and some data for numerous other
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years, whereas the Eads Bridge station had rainfall data only for years prior to 1968.

The NARCCAP provides various sets of future rainfall data for the U.S., Canada,

and Mexico, generated by different regional climate models (RCMs) from the outputs of

multiple atmosphere-ocean general circulation models (AOGCMs), also called global

climate models (GCMs), under A2 emission scenario (Mearns et al. 2007). The A2

scenario is one of the many future scenarios of greenhouse gas emission determined by

IPCCS′s Special Report on Emission Scenarios (SRES) and it refers to “a very

heterogeneous world with continuously increasing global population and regionally

oriented economic growth that is more fragmented and slower than in any other

storylines” (Nakicenovic et al. 2000). As of Jan 2017, the NARCCAP produced 12 sets of

current (historical) and future data, all of which are of 50-km spatial and 3-hr temporal

resolution. From each dataset, the data associated with the grid centroid closest to the

study area were extracted and evaluated. Of the datasets produced by 12 RCM/GCM

combinations, only the data extracted from the following 6 RCM/GCM combinations

were used (table 3.5), because datasets extracted from other combinations had insufficient

data for the 30-yr historical (1971–2000) and/or future (2041–2070) periods.

From each of these datasets, 3-yr annual maximum rainfall was determined for

current and future periods and each of the annual maximum series was fitted to six

distribution models including generalized extreme value, log pearson3, lognormal, gamma,

exponential, and normal. These distribution models are normally used in hydrologic

analysis (Chow et al. 1988).

A software application named ‘EasyFit’ was used for fitting the data to different

distribution models. The software analyzes the given data, determines the goodness of fit

of various probabilistic distribution models to the sample, calculates the fitting

parameters for each of the models, and determines the rank of the distribution models

based on the extent of fitting. The software conducts goodness of fit test by three

methods: Kolmogorov Smirnov, Anderson Darling, and Chi-square.
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Table 3.5. RCM/GCM Combinations Used for Future Climate Data

RCM/GCM RCM GCM
ECP2/HadCM3 Regional Spectral Hadley Center Coupled Model, version 3
ECP2/GFDL Regional Spectral Geophysical Fluid Dynamics Laboratory
HRM3/HadCM3 Hadley Regional Model 3 Hadley Center Coupled Model, version 3
HRM3/GFDL Hadley Regional Model 3 Geophysical Fluid Dynamics Laboratory
MM5I/HadCM3 MM5-PSU/NCAR Mesoscale Hadley Center Coupled Model, version 3
CRCM/CGCM3 Canadian Regional Climate Third Generation Coupled GCM

Of the six distribution models, the software identified Generalized Extreme Value

(GEV) as the best fitted distribution model for all 12 sets (two sets, historical and future,

produced by each of the six RCM/GCM combinations). Overall, Log Pearson 3 was

ranked as the second–best and the Gamma distribution was ranked as the third-best. The

ranking from each of the test methods are summarized in table 3.6. The numbers inside

the braces show the numbers of datasets with the second-best fit determined by the given

test method. For example, out of the 12 data sets, Andersen test method ranked GEV as

the best for 11 datasets and second best for 1 dataset.

Table 3.6. Ranking of GEV Distribution Fitted to Observed
3-hr Annual Maximum Rainfall

Distribution Models
Test Methods

Kolmogorov Smirnov Anderson Chi-squared
Generalized Extreme Value 8, [3] 11, [1] 6, [2]
Log Pearson 3 2, [6] 0, [9] 1, [6]
Log normal 2, [1] 1, [0] 0, [1]
Gamma 1, [1] 0, [2] 5, [1]
Exponential 0, [0] 0, [0] 0, [0]
Normal 0, [1] 0, [0] 0, [2]

For the observed historical data, GEV distribution was ranked as the best fit by

Anderson test and third best fit by Kolmogorov and Chi-squared tests. Since all datasets

fit to GEV, most of them best fit, I have used GEV for the return period analysis for all
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the datasets. The EasyFit generated GEV cumulative distribution function fitted to the

observed data is depicted in fig 3.9.

Cummulative Distribution Function

x

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

F(
x)

Gen. Exteme Value (-0.12781; 12.841; 41.845)

Figure 3.9. Cumulative Distribution Function of GEV Distribution
Fitted to the 3-hr Annual Maximum Rainfall Observed at Lambert
Station

Since the datasets were fitted to GEV distribution, the following GEV expression

(equation 3.1) available from the literature (Coles 2001; Fawcett 2015) was used, and an

extreme quantile, called return level (XT ), was determined corresponding to the return

period T for each dataset.

XT = µ+ σ
κ
[(−log(1− T−1))−κ − 1] ---------------- (3.2)

where the letters µ, σ, and κ, are location, scale and shape parameters of the fitted

GEV distribution.

Values of the three fitting parameters produced by the EasyFit software for each of

the data set are given in table 3.7.

Substituting the values of the three parameters in equation 3.1, return level for 50-yr

return period were calculated from each of the historical and future simulated datasets

produced by the six RCM/GCM combinations. 50-yr return level was also calculated for
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Table 3.7. GEV Fitting Parameters of Projected Current & Future 3-hr
Annual Maximum Rainfall

Data Source
Current (1971-2000) Future (2041–2070)
κ σ µ κ σ µ

ECP2/HadCM3 -0.03634 2.585 10.248 0.19986 2.397 11.179
ECP2/GFDL 0.03189 2.0377 11.363 -0.1541 3.4734 10.859
HRM3/HadCM3 -0.00157 3.0877 7.532 0.11546 2.6183 7.6234
MM5I/HadCM3 0.19826 1.6262 7.170 0.05101111 2.6821 8.5949
HRM3/GFDL -0.0636 2.501 7.4801 0.38994 2.9926 7.894
CRCM/CGCM3 0.0136 1.1633 6.7133 -0.10411 1.4926 8.1492
Observed -0.12781 12.841 41.845 - - -

the observed historical dataset at Lambert Station. From the 50-yr return depths thus

calculated, a ‘delta change factor’ (DCF), the ratio of future to historical depth, was

determined for each of the six modeled datasets, and the 50-yr rainfall depth calculated

from the observed historical data at lambert airport station was multiplied by the DCF to

project the 50-yr future rainfall for the study area. Finally, the projected 50-yr 3-hr

rainfall depths were tested in the calibrated SWMM to determine the impact of the

changed precipitation due to climate change. For this, the 3-hr total rainfall depth was

disaggregated into 6min depths using NRCS SCS type–II distribution method 2. Since

3-hr distribution is not available from NRCS, the available 24-hr 6-min distribution was

transformed to 3-hr 6-min distribution, as presented in table 3.8 and depicted by figure

3.10.

Result and Discussion

Projected increase in rainfall due to Climate change

A summarized result of the analysis of historical (1971–2000) and future (2041–2070)

50-yr 3-hr rainfall data modeled by the six RCM/GCM combinations is presented in table

3.9. Though a wide difference exists between model results, each model shows a

2https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=stelprdb1044959
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Table 3.8. SCS Type II 3-hr Rainfall Distribution Fraction Derived
from SCS Type II 24-hr Distribution

Interval Fraction Interval Fraction Interval Fraction Interval Fraction
0 0.0000 48 0.0161 96 0.0319 144 0.0116
6 0.0091 54 0.0177 102 0.0280 150 0.0107
12 0.0097 60 0.0194 1087 0.0242 156 0.0100
18 0.0104 66 0.0401 114 0.0204 162 0.0095
24 0.0111 72 0.0799 120 0.0165 168 0.0091
30 0.0118 78 0.1285 126 0.0142 174 0.0086
36 0.0129 84 0.2304 132 0.0133 180 0.0081
42 0.0145 90 0.1599 138 0.0124

significant increase in future precipitation depth. As shown by the delta change factor,

the increase ranges from 9 to 74%.

Table 3.9. Model Projected Historical (1971-2000) and Future (2041-
2070) 3-hr Rainfall Depth (mm) and Delta Change Factors (DCFs)

Data Produced By Historic 50-yr 3-hr Future 50 -yr 3-hr DCF
ECP2/HadCM3 21.5 30.90 1.43
ECP2/GFDL 21.78 35.08 1.61
HRM3/HadCM3 22.10 24.13 1.09
MM5I/HadCM3 19.94 22.96 1.15
HRM3/GFDL 17.71 30.87 1.74
CRCM/CGCM3 12.4 13.73 1.11

From the six DCFs, the lowest (1.09) and highest (1.74) factors were adopted for the

sewer system performance analysis. As a base case, 50-yr 3-hr rainfall depth was first

calculated from observed historical data of 1968–2000. The calculated depth of 3.444 in

was termed as scenario NCCS3.444, where the letters stand for

no–climate–change–scenario and the number is the rainfall depth. This depth was then

multiplied independently by the highest and lowest DCFs to calculate the corresponding

50-yr 3-hr rainfall depths, which were respectively 3.760 inch and 6.004 inch. These two

depths were termed climate change scenarios CCS3.760 and CCS6.004 (table 3.10), where
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Figure 3.10. Plot of 3-hr Rainfall Distribution Over 6min Interval De-
rived from SCS Type II 24-hr Distribution

the letters stand for climate–change–scenario and the numbers represent rainfall depth.

Table 3.10. 50-yr 3-hr No Climate Change and Climate Change Scenarios

Climate Change Scenario Description
Rainfall Depth

mm in
NCCS3.444 Base case, no climate change 87.46 3.444
CCS3.760 Climate change scenario, DCF 1.09 95.48 3.760
CCS6.004 Climate change scenario, DCF 1.74 152.50 6.004

Impact of Climate change on the CSS

Each of the 50-yr 3-hr rainfall depths in three scenarios were temporally distributed

into 6-min intervals to produce corresponding time series, each of which was input into

the calibrated SWMM model using three different time series. The calibrated system was
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then run for each of the three climate scenarios. Table 3.11 presents a summary of the

performance of the system. As presented in the table, six parameters were analyzed to

evaluate the impact of climate change.

Table 3.11. Performance of Existing CSS Under Climate Change

Evaluated Parameters
Climate Scenarios

NCCS3.444 CCS3.760 CCS6.004
Flooded nodes (no.)

Total nodes flooded 49 50 56
Nodes flooded (≥ 30 min) 8 9 21
Nodes flooded (≥ 1 hr) 1 1 5

Exhausted conduits (%)
Conduites exhausted (≥ 30 min) 12.5 13.97 18.55
Conduites exhausted (≥ 1 hr) 1.6 2.43 10.82

Volume of CSO (million gallons) 4.74 5.25 8.45

Node (or manhole) flooding occurs when the water surface elevation (hydraulic grade

line) reaches the manhole rim elevation and excess water overflows from the manhole top

which, in real world scenario, results in flooding in the downstream. Therefore, “Node

Flooding” in SWMM is a measure that can be utilized for urban flood forecasting.

SWMM produces quantity and duration of flooding for each node. To assess the flooding

scenario in this research, I used three parameters—total flooded nodes, number of nodes

flooded for more than 30 min and number of nodes flooded for more than 1 hour.

The result shows that the modeled system will not be able to accommodate 50-yr

3-hr rainfall event even without climate change. Out of the 98 nodes of the modeled

sewer, half of the nodes will overflow even for a 50-yr 3-hr historical rainfall. Of the

flooded nodes, 8 nodes will overflow for more than half an hour and 1 node will overflow

for more than an hour. The extent and duration of flooding both will increase when the

sewer system is subject to climate change. As presented in table 3.11, climate change will

cause additional 1–7 nodes to overflow.The number of nodes flooded for more than half an

hour will increase by up to 13 and the number of nodes flooded for 1 hour will increase by
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up to 4.

Pressured pipe flow is another index to assess the performace of sewer system or

urban flooding which can be assessed through ”Hours Capacity Limited” under “Conduit

Surcharge Summary” of the SWMM summary report. In SWMM, when the slope of the

hydraulic grade line exceeds the conduit slope and the upstream link is full, the conduit

becomes “capacity limited3.” Practically, it results due to inadequate size or slop of the

conduit which results in upstream manhole overflow leading to urban flooding. In this

dissertation, I have termed the conduits with such limited capacity as exhausted conduits.

The result shows that, in all of the scenarios, a significant portion of conduits will exhaust

due to exceedance of their capacity. In no-climate-change scenario NCCS3.444, 12.5% of

the total length (31184 ft) of the conduit was exhausted in capacity for 30 min or more,

and 1.6% was exhausted for 1 hr or more. In climate change scenarios CCS3.460 and

CCS6.004, 13.97% and 18.55% of the conduit length was exhausted for 30 min or more,

and 2.43% and 10.82% of the total conduit was exhausted for 1 hr or more. Thus, the

failure of system system was significantly increased due to climate change.

Another parameter to assess the performance of the modeled system is the total

outflow produced by the model which is given as “Outfall Loading” in SWMM “Summary

results.” The parameter gives the total flow that leaves the system through outfall nodes.

In the model I developed, there are four outfall nodes. The flows from two of the outfalls

is routed to underground collection tunnel for treatment purpose, whereas the flow from

out1 and out2 discharge into River Mississippi as combined sewer overflow (CSO). As

CSOs have significant adverse impacts on the downstream water bodies, regulations

generally require cities to control CSOs. Per the Consent Decree agreement with the U.S.

EPA and according to the federal CSO Control Policy, the City of St Louis has regulatory

obligations to reduce its CSOs for which the city has been implementing numerous

strategies (MSD 2011). CSO volume as such is a critically important while analyzing the

3http://swmm5.posthaven.com/capacity-limited-links-in-swmm-5
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performance of a combined sewer system in St. Louis. Therefore, for the purpose of this

dissertation, the outfalls from out1 and out2 were added and CSO was calculated. As

presented in table 3.11 above, the CSO volume produced by 3-hr 50-yr rainfall will

increase from 4.74 million gallons to 5.25–8.45 million gallons due to climate change.

While MSD is struggling for reducing the CSOs even under historical climate scenarios,

the result of this study reveals that climate change will significantly increase the CSO

volume adding further regulatory compliance burden on the MSD.

Conclusion

One of the projected consequences of climate change is the increase in frequency and

intensity of heavy rainfall events. Since the existing urban drainage systems were

designed to accommodate the historical storms, assuming that their pattern would remain

stationary, it is very likely that the increased frequency and intensity will exhaust the

systems capacity, leading to their failure and causing urban flooding. The recent

evidences of increasing damage by floods in cities have substantiated this anticipation.

Failure of urban drainage may have substantial socio, economic, and environmental

impacts. It does not only cause social inconvenience and property damage, but also poses

threats to public health and safety in urban area as well as downstream. In the cities

serviced with combined sewer system, the increased precipitation may increase CSOs and

discharge additional pollutants to the receiving waters. To mitigate this problem, cities

need to design and adopt optimal measures in advance, for which it is critically necessary

to evaluate the potential performance of the existing system and calculate excess quantity

to be accommodated. This study undertook such an evaluation of a combined sewer

system of a 169.23-acre catchment in the City of St Louis, the U.S.

The system was modeled in the U.S. EPA′s SWMM5 hydraulic hydrologic modeling

software, and was simulated for 50-yr 3-hr precipitation for historical (1971–2000) and

future (2041–2070) scenarios. The rainfall scenarios were determined from observed 1-hr
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historical rainfall data provided by NOAA and modeled historical and future 3-hr rainfall

data available from NARCCAP. In the simulation, the existing system underperformed

when subjected to a 50-yr 3-hr storm event even without considering climate change.

With climate change, the systems performance, at both the conduits and nodes,

considerably decreased, resulting in significantly increased node flooding and CSO

volume. Thus, the result suggested that the system requires retrofitting for it to perform

at the desired level in the future.
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CHAPTER 4

EFFICACY OF GREEN INFRASTRUCTURE FOR CLIMATE

ADAPTATION

Introduction

Chapter 3 revealed that the portion of combined sewer system of St. Louis evaluated

in this research will be significantly overwhelmed by the 50-yr 3-hr future precipitation.

The failure of the system to accommodate the increased precipitation can lead to several

adverse consequences including flooding, sewer breaks, social inconvenience, property

damage, increased CSOs, and threats to public safety. To mitigate the adverse impacts

and enhance the system′s resilience, it is essential to install appropriate adaptation

measures. Adaptation is the adjustment in a system to reduce the estimated damage

caused by the increased precipitation (Short et al. 2012; USGCRP 2009). The U.S. EPA

determines that it is crucial to incorporate adaptation to the long-term planning of the

nation′s drainage infrastructures and make them climate ready (U.S. EPA 2012b). In this

dissertation, adaptation refers to the adjustment of the evaluated combined sewer system

to the projected increase in rainfall.

One approach to accommodate the increased precipitation would be to increase the

size of the gray approach. However, increasing the size of the existing system is

physically, financially and socially very complicated and costly. The components of

existing structures, such as gutters and underground pipes, are integrated with several

other built infrastructure networks that are very likely to be damaged while replacing the

stormwater systems. In addition, replacement causes service interruption for long

duration resulting in social inconvenience and challenging socio economic activities. The

cost becomes prohibitively expensive (Arisz & Burrel 2006; Waters et al. 2003; Watt et

al. 2003) due to the resources required for removal of existing systems, installation of new

systems, and repair of other damaged infrastructures, as well as due to the cost associated
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with social, environmental and economic effects caused by service interruption. From a

cost-benefit perspective, the high cost could be justified if the present value of avoided

cost of future property damage due to flooding would be higher than the cost of installing

new infrastructure. However, estimating property damage from future climate change is

difficult due to uncertainties in climate change projection, uncertainties in discounting of

future economic cost, possibilities of discovery of better technological solutions, and

external (e.g., political and social) influences on decision-making (Arisz & Burrel 2006).

In addition, since the nature of climate change is highly uncertain, adaptation will

need to be revisited periodically (Mailhot & Duchesne 2010). This means that we cannot

assign any certain optimum value to the design capacity of a drainage system such that

the system will efficiently accommodate the increased precipitation. Construction of

remedial measures, such as water management ponds, will also be difficult due to

prohibitively high cost and lack of availability of land. More importantly, the capacity

improvement of traditional infrastructures, such as detention ponds and intercepting

tunnels, persists the hydrological disturbances in the watershed, continues shifting the

problems downstream, and do not solve the ecological issues created by the conventional

approach.

The problems associated with construction of new drainage systems or capacity

improvement of existing drainage system indicate that it is necessary to have an

innovative approach for climate change adaptation of stormwater systems. However, very

limited studies have been conducted on adaptation approaches (Rosenberg et al. 2010).

Over recent decades, green infrastructures (GI), or low impact development (LID), has

been developed as an innovative stormwater control approach, which aims to mimic the

landscape′s pre-development hydrology using decentralized micro-scale control measures

(Coffman 2002). Though many such practices have been proven to be successful in

managing stormwater runoff (Ahiableme & Engel 2012), there is a lack of sufficient

research to know whether these practices can be efficient to adapt the existing drainage
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systems to prospected increase in rainfall intensity due to climate change (Foster et al.

2011).

Among the limited research, Waters et al. (2003) tested the efficacy of three

adaptation alternatives for the Malvern Catchment: roof disconnection, surface storage

enhancement and input rate reduction. The research showed significant amount of runoff

reduction in all the three cases. The disconnection of 50% and 100% of roof areas from

the drainage system, thereby allowing roof runoffs to spill onto landscaped areas, reduced

peak discharge by 18% and 39%, respectively. The increase in surface storage (e.g., dry

ponds, parks, open space) by 45m3 per impervious hectare reduced peak discharge by

14%. When the rate of stormwater inputs was reduced to 40m3 of surface storage per

impervious hectare on the streets, the peak discharge was reduced by 13%. Since surface

storage requires sufficient area of public land, it is practically not suitable for urban areas,

where public land is scarce.

Watt, Waters and McLean (2003) studied Malvern Catchment and Central Park

Urban Catchment in Canada, and compared the functional and financial efficacy of pipe

replacement, impervious area disconnection, surface storage addition, input rate

reduction, pond volume enhancement and increase in infiltration (by allowing runoff to

infiltrate). The authors reported various conclusions for each alternative. The pipe

replacement is prohibitively expensive, unless the pipes are replaced because of a normal

maintenance program. The impervious area disconnection, such as disconnecting roofs

from storm sewers, is cost-effective but it needs sufficient permeable areas to infiltrate the

water from disconnected roofs. The reduction in input water (by preventing stormwater

to enter into drainage systems through inlet control) may be effective, technically and

financially, but the resulting ponding of water on the street causes nuisance and may

appear as a drainage failure to the public. Routing overland flow to public land can be

cost effective, if such land is available. However, the flooded area may remain wet for an

extended period which can cause an environmental nuisance to public due to mosquito
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and midge breeding. The suitability of an infiltration basin depends on availability of

feasible land, soil infiltration capacity and costs.

In a case study in Greater Manchester UK, Gill et al. (2007) evaluated the runoff for

the baseline 1961–1990 precipitation with the runoff for the precipitation expected by

2080, and assessed the efficiency of tree cover and green roofs to accommodate the

increased runoff. The study showed that an increase of 10% of tree cover would reduce

the runoff for 28 mm projected precipitation in 2080 by 5.7%. Adding green roofs to all

the buildings in town centers, retail, and high density residential areas (where more than

two-thirds of the total area is impervious) reduced the increase in runoff from 65.5% to

43.6%, 67% to 47.2%, and 67.6% to 44% respectively. The study showed that though

green roof alone cannot accommodate all the increase in precipitation, the technology can

address a significant portion of it.

Karamouz, Hosseinpour and Nazif (2011) employed different best management

practices (BMPs) for the Tehran case study including the improvement of green space,

the construction of detention ponds, capacity enhancement of the channel system, and

the development of appropriate diversion systems. The researchers evaluated BMPs to

test their effectiveness in reducing the runoff volume and peak flow with the least cost.

They found that the combination of improvement of green space and construction of

detention ponds as well as diversion systems would decrease the cost of flooding by 75%.

For this study, it was hypothesized that installation of an appropriate combination of

GI measures on the study area helps accommodate the future increase in precipitation

due to climate change. To test the hypothesis, bio-retention cells, permeable pavement,

rain barrels, and green roofs were added to various subcatchments of the SWMM model

developed in chapter 3; and the stormwater system was simulated to evaluate the

performance of the system under the future (2041–2070) 50-yr 3-hr rainfall. The result

was compared with the corresponding results, discussed in chapter 3, produced by the

simulation of existing combined sewer system under the same future 50-yr 3-hr
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precipitation. The results revealed that the addition of the GI measures significantly

lowered the impact of increased precipitation on the combined sewer system.

Research Methodology

Modeling Tool and GI Measures

The SWMM model developed in chapter 3 was used also to assess the hydrologic

performance of GI. Multiple GI measures were added to the calibrated model using

SWMMs low impact development (LID) module and percentage imperviousness of each

subcatchment was adjusted accordingly. The LID module of the recent version of SWMM

can model the hydrologic performance of eight types of GI measures that include

bio-retention cells, rain gardens, green roofs, infiltration trenches, permeable pavement,

rain barrels, rooftop disconnection, and vegetative swales. A summarized definition of

each of these measures given in SWMM5 (Rossman and Huber 2016) is presented in table

4.1.

SWMM uses one of the following two approaches to incorporate GI controls. The

first approach requires a user to create a new subcatchment dedicated entirely to a single

GI control. In this approach, only one GI control can be used for a subcatchment and the

subcatchments area, imperviousness, and width parameters of the existing model must be

adjusted to compensated for the area occupied by the newly created GI subcatchment.

The second approach allows to employ multiple GI control measures within a

subcatchment, replacing an equal amount of non-GI area from the subcatchment. When

multiple controls are employed to a single subcatchment, each control receives runoff from

a different portion of the subcatchment and functions in parallel with all other controls.

Given the existing surface features present in the study area, employing more than one GI

measures is more appropriate for most subcatchments. Therefore, the second approach

was used.

A study conducted by MSD in 2008 identified that bio-retention, green roofs,
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Table 4.1. Definition of GI Measures Used in SWMMs LID Module

SN GI Measures Definition

1 Bio-retention Cells Depressions with vegetation grown in an engineered soil
placed above a gravel bed. Provide storage, infiltration,
and evaporation of direct rainfall and runoff from
surrounding areas.

2 Rain Gardens A type of bio-retention cells that consists of just the
engineered soil with no gravel bed underneath.

3 Green Roofs Another type of bio-retention cell constructed as roof that
consists of a soil layer above a thin synthetic drainage mat
or a coarse aggregate to drain excess water off the roof.

4 Infitration Trenches Narrow ditches filled with gravel that intercept runoff
from upslope impervious areas, provide storage volume
and additional time for the captured runoff, and infiltrate
into the native soil below.

5 Permeable Pavement Continuous permeable pavement systems : Street or
parking areas paved with a porous concrete mix or asphalt
mix that sits above a gravel storage layer. Rainfall passes
through the pavement into the storage layer and infiltrates
into the native soil.
Block paver systems : Consist of paver blocks placed on a
sand or pea gravel bed with a gravel storage layer below.
Rainfall is captured in the open spaces between the blocks
and conveyed to the storage zone where it can infiltrate
to the native soil.

6 Rain Barrels Containers that collect roof runoff during storm events
and can either release or reuse the rainwater during
dry periods.

7 Rooftop Disconnection In this approach, runoff from roof is routed to pervious
areas instead of storm drains.

8 Vegetative Swale Channels or depressed areas with slopping sides covered
with grass and other vegetation. By slowing down
the conveyance of runoff the vegetative swales allow
more time to infiltrate into the native soil.

permeable pavements, and rain barrels are among the appropriate measures for

volumetric control in the CSS areas (Norton and Moore 2017). In this research, four

types of GI measures including bio-retention cells, permeable pavement, rain barrels, and

green roofs were used. Since the areas soil has relatively low infiltration capacity

(hydrologic soil group C and D), GI measures requiring high infiltration capacity, such as
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infiltration trenches, were not used in this research.

For convenience, streets in the residential area were categorized into two types: front

side streets (TYPE1) and rear side streets (TYPE2). The 9.14-meter (30-foot) wide (or

wider) TYPE1 streets are wide enough for carrying two-way vehicular movement in

addition to having a 2.23-meter (7-foot) wide parking lane on each side. A study of

numerous neighborhoods conducted by a multidisciplinary team of professionals reveals

that a width of 7.93 m (26 ft) is the most desirable neighborhood level roadway width

which can have parking on both sides and allow delivery, sanitation and fire trucks to

pass through freely (Burden 1999). In the parking lane, a 5.49-meter (18-foot) long and

2.23-meter (7-foot) wide parking space was allocated for each household and the

remaining portion was used for bio-retention cells. For aesthetic purpose and to distribute

evenly, the bio-retention cells were sized as 5.49-meter long and 2.23-meter wide

rectangles and placed at regular intervals between parking spaces. Since the width of the

TYPE2 roads was not enough to have bio-retention cells and the traffic load on the street

was also significantly less, TYPE2 roads were modeled as permeable pavement.

Replacing roofs of the existing aging buildings with green roofs in residential area

can be technically, financially, and politically unfeasible. Therefore, green roofs were not

employed in residential subcatchments. However, they were adopted in the industrial

subcatchments where deemed appropriate. To treat the roof runoff in the residential area,

four rain barrels (or cisterns) with 200 gallons in capacity were employed to each

household. Larger cisterns with 3000 gallons in capacity were also added to

subcatchments of industrial area at various locations based on site conditions as observed

by aerial photography and field visits. Since infiltration capacity of the native soil in the

study area is low (soil type C), bio-retention cells were provided with a drainage system

to discharge excess captured runoff off the site and avoid the area from flooding during

heavy storms. To use the full storage volume before draining occurs, and to allow

maximum infiltration into the soil, the drain was placed at the top of the storage layer.
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SWMM′s LID module has the provision of such drainage system for carious measures

including bio-retention, rain barrels, and permeable pavement systems. The GI measures

used in this study are presented in table 4.2

Table 4.2. Type and Quantity of GI Measures Used in the Study

GI Control Symbol Description Total Quantity
Bio-retention Cells BR RT1 5.59-m (18-ft) long and 2.13-m

(7-ft) wide cells applied to 1470 (no.)
TYPE1 roads in residential area

BR HW A 305-m long cell applied to a
highway section, catchment S3 1 (no.)

Permeable Pavement PR RT2 Applied to inner access TYPE2
roads in residential area 50,679 (m2)

Rain Barrels RB200 200-gallon capacity cisterns
applied to the residential area 1820 (no.)

RB300 3000-gallon capacity cisterns
applied to the industrial area 50 (no.)

Green Roof GR IA Green roofs applied to the
industrial area 41,898 (m2)

Determination of Parameters

As discussed in SWMM5 users manual (Rossman and Huber 2016), numerous design

parameters of GI affect the hydrologic performance. The parameters include size of unit,

properties of soil and gravel media contained in the unit, thickness of the media, and

discharge coefficient of the underdrain mechanism. Based on the values used by various

local and state agencies, the manual has presented values—or a range of values—of key

parameters for various GI measures. In this study, parameter values were adopted from

multiple sources and through judgement. The sources include SWMM manual, models

default values, MSD documents (MSD 2017), and other literature. In the case of range of

values, different values were tested in the model and the results were analyzed to select

the value that produces the best performance.

The parameters used for bio-retention cells are presented in table 4.3. The depths of
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the soil and storage layers were so that the units performance is maximized without being

affected by the ground water below it. To allow maximum storage on the storage layer

and avoid flooding on the surface during heavy precipitation, a drain system was kept at

the top of the storage layer. No clogging of the unit was assumed.

Table 4.3. Bio-retention Cell Parameters

Layers Parameters Values
Surface Berm height (in) 6

Vegetation volume fraction 0.2
Surface roughness ‘n’ 0.1
Surface slope (%) 1

Soil Thickness (in) 18
Porosity (volume fraction) 0.6
Field Capacity (volume fraction) 0.2
Wilting point (volume fraction) 0.08
Conductivity (in/hr) 5
Conductivity slope 10
Suction head (in) 3.5

Storage Thickness (in) 18
Void ratio (void/solid) 0.3
Seepage rate (in/hr) 0.5
Clogging factor 0

Drain Flow coefficient 60
Flow exponent 0.5
Offset height 18

The LID module of SWMM represents permeable pavement through a combination

of three layers: surface, pavement, and storage layers. Soil layer is optional. To maximize

the capacity of storage layer soil layer was not used. The module also has an optional

underdrain system, which was provided at the top of the storage layer, as in the case of

bio-retention and for the same reason. The parameters of permeable pavement used in

the model are presented in table 4.4. The pavement type adopted in this research is

continuous pavement.

Green roof captures only direct rainfall and is represented in SWMM by three layers:
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Table 4.4. Permeable Pavement Parameters

Layers Parameters Values
Surface Storage depth 0.1

Vegetation volume fraction 0
Surface roughness ‘n’ 0.1
Surface slope (%) 1

Pavement Thickness (in) 6
Void ratio 0.15
Impervious surface fraction 0
Permeability 100
Clogging factor 0
Suction head (in) 3.5

Storage Thickness (in) 24
Void ratio (void/solid) 0.3
Seepage rate (in/hr) 0.5
Clogging factor 0

Drain Flow coefficient 100
Flow exponent 0.5
Offset height 6

surface, soil, and drainage. The parameters of green roofs used in this dissertation are

presented in table 4.5. When compared with bio-retention cell, green roofs hydraulic

conductivity is much higher (Rossman and Huber 2016).

The “Rain Barrel” of the LID module represents both rain barrels and cistern

through two layers: storage unit and a drain system. Generally, rain barrels are 50–100

gallons in capacity and are used in individual household lots to capture roof runoff;

whereas cisterns are 250 to 30,000 gallons and are used for capturing rainwater from

households to commercial facilities (Rossman and Huber 2016). This dissertation used

200-gallon cisterns in residential area and 3000-gallon cisterns in industrial area. Since

the definition of rain barrels and cistern differ only in size and both are represented in

SWMM by Rain Barrel module, the 200-gallon and 3000-gallon cisterns used in this study

were defined as rain barrels and were named as RB200 and RB3000 respectively. The

outflow from all rain barrels were routed to pervious areas after they were full. To utilize
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Table 4.5. Green Roof Parameters

Layers Parameters Values
Surface Berm height 0

Vegetation volume fraction 0.1
Surface roughness ‘n’ 0.1
Surface slope (%) 1

Soil Thickness (in) 6
Porosity 0.52
Field capacity 0.4
Wilting point 0.1
Conductivity 50
Conductivity slope 10
Suction head (in) 3.5

Drainage mat Thickness (in) 2
Void fraction 0.3
Roughness 0.02

the full storage space before draining occurs, drain was placed at the top of the rain

barrel. The parameters used for rain barrels are presented in table 4.6.

Table 4.6. Rain Barrel Parameters

Components Parameters Values
Storage Barrel height (RB200) (in) 59

Barrel height (RB3000) (in) 120
Drain Flow coefficient 100

Flow exponent 0.5
Offset height (RB200) (in) 59
Offset height (RB3000) (in) 120
Drain delay (hr) 6

After finalizing the parameters, the GI modules were assigned to each subcatchment

and the GI added model was run for future 50-yr 3-hr climate change precipitation

scenario CCS6.004. As described in chapter 3, CCS6.004 refers to 50-yr 3-hr climate

change scenario rainfall depth of 6.004 inch and NCCS3.444 refers to 50-yr 3-hr no

climate change scenario rainfall depth of 3.444 inch. The model result was then compared

with the simulation results (chapter 3) produced by the model before incorporating the
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GI measures.

Result and Discussion

The model was run successfully with mass balance continuity errors of -0.54% for

runoff and -0.22% for routing. In SWMM simulation, these system wide errors are

considered negligible (Rossman 2015) and the errors less then 1% indicate that the

simulation is of excellent quality (Dickinson 2010).

SWMM can produce individual performance report for each LID control type in

addition to a system wide status report and summary results. For generating a separate

report file for each LID type in each subcatchment, a Detailed Report File can be

provided in the “LID Usage Editor” while assigning the LID control to the

subcatchments. Since the purpose of this research was to assess the overall system

performance, it was not necessary to have the results of individual performance. For

assessing overall system performance, the simulation results were analyzed for 6

parameters that exhibit the flooding and CSO conditions. The result was then compared

with the simulation results produced by the model before the application of GI. The

comparison of the results is presented in table 4.7. An upward arrow in the table indicates

an increase in impact, whereas a downward arrow indicates a decrease in impact.

Table 4.7. Comparison of Simulation Results with and without GI

Scenario Scenario Scenario Impact
Parameters Compared NCCS3.444 CCS6.004 CCS6.004 addressed

No GI No GI with GI by GI (%)
Flooded nodes (no.)

Total flooded nodes 49 56 [↑ 7] 52 [↓ 4] 57.14
Flooded (≥ 30 min) 8 21[↑ 13] 15 (↓ 6) 46.5
Flooded (≥ 1 hr) 1 5[↑ 4] 2 [↓ 2] 50.00

Exhausted conduits (%)
Exhausted (≥ 30 min) 12.5 18.55[↑ 6.05] 15.33 [↓ 3.22] 53.22
Exhausted (≥ 1 hr) 1.6 10.82[↑ 9.22] 6.12 [↓ 4.70] 50.97

CSO volume (million gallons) 4.74 8.45 [↑ 3.71] 6.98 [↓ 1.47] 39.62
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As described in chapter 3, the parameter “total nodes flooded” refer to those nodes

in which water level exceeds the rim level and excess water overflows, which practically

leads to flooding. Table shows that the number of such flooded nodes, which was

increased by 7 (from 49 to 56) due to climate change, was decreased by 4 (from 56 to 52)

after the application of LID. Thus, based on the decrease in number of flooded nodes, the

GI application addressed 57.14% of the impact of climate change. The duration of node

flooding was analyzed for two categories, one for nodes that flooded for 30 minutes or

more, and the other for nodes that flooded for 1 hr or more. The result showed that there

was a significant decrease in the number of flooded nodes in both the categories. The

number of nodes flooded for more than 30 min, which increased from 8 to 21 due to

climate change, reduced from 21 to 15 after LID application. Similarly, the number of

nodes flooded for more than 1 hr, which increased from 1 to 5 due to climate change,

decreased to 2. In other words, the application of LID measures addressed 46.5% and

50% of the impact on the two categories of the node flooding.

As presented in the table, the impact of climate change on the capacity of conduits

was also significantly addressed. The increase in percentage of the conduits exhausted for

30 min or more and 1 hr or more were reduced by 53.22% and 50.97% respectively. The

increase in CSO volume was also significantly addressed. Of the total additional volume

of 3.71 million gallons added due to climate change, GI was able to hold 1.47 million

gallons of water, reducing 39.62% of the increased CSO volume. This shows that GI can

be useful to a significant extent also to help MSD fulfill its regulatory obligations to

reduce the CSOs required by the Consent Decree Agreement with the U.S. EPA.

Conclusion

This chapter examined the efficacy of GI to address the impact of increased

precipitation on the combined sewer system of St. Louis, a U.S. city in the State of

Missouri. Four GI measures, including bio-retention cell, permeable pavement, rain
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barrel, and green roof, were considered for evaluation. One or more of the four selected

GI types were added to various subcatchments of the SWMM model developed for the

study area, and the model was run for the future (2041–2070) 50-yr 3-hr rainfall scenario

(CCS6.004) which was also used for quantifying the impact in chapter 3. Analysis of the

simulation outputs indicated that the impacts caused by the increased precipitation were

significantly lowered after the addition of GI measures. For example, the increases in the

number of node flooding and CSO volume caused by the increased precipitation were

reduced by 57.14% and 39.62% respectively. Impact on conduit capacity was also

significantly reduced. The increases in the percent of conduits with limited capacity for

30 minutes and 1 hour were reduced by 53.22% and 50.97% respectively. Though the

impacts caused by increased precipitation were not fully addressed by the GI measures

employed in this study, the produced results were highly encouraging. In both residential

and industrial areas GI measures were added only to a limited extent. For example, in

residential area, the 200-gallon capacity rain barrels were added only to 70% of the

households and flow from other impervious areas was not routed to bio-retention cells and

permeable pavements. In addition, no treatment was applied for sidewalks and other

impervious areas in the building premises. The number and capacity of rain barrels can

be increased, sidewalks and other impervious areas in the buildings premises can be either

converted to permeable pavements or their flow can be routed to other GI measures such

as roadside bio-retension cells. If needed, rain gardens can also be constructed in the

residential plats and excess flow from rain barrels and other areas can be routed to them.

Though bio-retention cells might not be feasible to treat pavements in the industrial area

due to insufficient depth to ground water, the paved area can be reduced by reducing lane

width to an optimal level and by putting a more stringent cap on the impervious areas.

Numerous policy strategies can be adopted for reducing imperviousness which are

discussed in the succeeding chapters.
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CHAPTER 5

POLICIES FOR GREEN INFRASTRUCTURE IMPLEMENTATION:

BARRIERS AND SOLUTIONS

Introduction

The simulation results presented in chapter 4 revealed that if employed appropriately

GI measures can serve as a means for adaptation of existing combined sewer system to

climate change. Other numerous sustainability benefits of GI were discussed in chapter 1

and chapter 2. The benefits can be socially significant only when the technology is

implemented in a sufficiently large scale. However, despite being an inevitable element of

urban sustainability and despite being an object of unrelenting expert advocacy for more

than two decades, GI implementation remains slow. On the other hand, the practice of

traditional gray infrastructure, which is known to have significant adverse effects on the

environment, is still ubiquitous in urban areas throughout the world. This relationship

between knowledge and practice seems unaccountable, which has not yet received

adequate attention from academia, policy makers, or research communities. This chapter

presents the barriers preventing the widespread implementation of GI policy solutions

that can expedite the use of technology.

It is important to note that there are some struggles with finding the causes behind

the sluggishness in using GI. Among the limited peer-reviewed literature available, Roy et

al. (2008) conducted a comparative study of the U.S. and Australian contexts and

identified these 7 barriers common to both countries: uncertainties in cost and

performance, lack of engineering standards and guidelines, fragmented responsibilities,

lack of institutional capacity, lack of legislative mandate, funding constraints, and

resistance to change. Brown and Farrelly (2009a) reviewed the available literature to

examine the status of sustainable water management over a wider context, local to

international, and identified 12 barrier types, mostly related to governance, resources,
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regulations, and perceptions. In a subsequent paper, the authors (Brown and Farrelly

2009b) surveyed three Australian cities, Perth, Melbourne, and Brisbane, from the

perspective of urban stormwater management, and grouped the identified barriers into

three major categories: management arrangements and responsibilities, regulation and

approval processes, and capital and maintenance costs. Recent case studies from the UK

conducted in England and Ireland (Matthews et al. 2015) and Newcastle (O′Donnell et

al. 2017) also revealed the presence of socio-institutional, perceptual, and resource-related

issues as major obstacles. Despite the variability in geography, time, scope, scale, context,

and the name and number of listed barrier categories, all the above studies implicate

similar barriers, most of which stem from personal perception and existing

socio-institutional setups including policy and governance. These findings are consistent

with what Niemczynowicz (1999) earlier presented as the future challenges of urban water

management. Many of the identified barriers outlined by the above studies are rooted in

social and organizational cultures, practices, and processes, and hence are difficult to

overcomeas argued by Brown and Farrelly (2009a). As indicated by many of the above

studies (e.g. Brown and Farrelly 2009a; Niemczynowicz 1999; Roy et al. 2008),

overcoming such barriers requires not only developing a new individual and

socio-institutional mindset through education and awareness, but also improving

socio-institutional arrangements such as governance and policies. This paper focuses on

policies.

We analyzed local policies of 10 U.S. cities, relevant state and federal policies, and

other available literature to diagnose the obstacles and explore policies that could both

overcome the barriers and expedite the adoption of GI. We identified 29 barriers and

grouped them into 5 categories. The findings show that most of the barriers stem from

cognitive limitations and socio-institutional arrangements. Accordingly, I suggest a set of

33 policies, also grouped into 5 policy types, which span from conducting education and

awareness programs to changing existing policies and governance structures.
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Study Approach and Scope

The research consists of two phases. The first phase explored the existing barriers

through a critical analysis of available literature. The materials that were analyzed

included pear reviewed journal articles, books, U.S. Constitution, U.S. laws and

regulations, court decisions, and U.S. EPA case study reports. Literature on ecosystem

services were also reviewed. Ruhl et al. (2007) provides a comprehensive analysis on the

status of U.S. law and policy on ecosystem services and National Research Council (2009)

provides a detailed review of urban stormwater management challenges in the U.S. These

two publications were analyzed in detail. To explore the city level barriers, six individual

reports published by the U.S. EPA on green infrastructure barriers and opportunities in

each of the six U.S. cities, including Dallas, TX; Camden, NJ; Macatawa watershed, MI;

Neosho, MO; Phoenix, AZ; and Los Angeles, CA (U.S. EPA 2016a), were analyzed.

Another case study of 12 cities conducted by the U.S. EPA in 2010 (U.S. EPA 2010) was

also reviewed.

In the second phase, I synthesized normative policy recommendations to address the

barriers identified in the first phase. For this, policy tools and strategies adopted by four

U.S. cities (Seattle, Washington; Portland, Oregon; Chicago, Illinois; and Philadelphia,

Pennsylvania) were analyzed against the identified barriers. These cities have been using

green infrastructure relatively widely (Chen et al. 2013). The documents examined

included ordinances, codes, manuals, and standards that influence the adoption of green

infrastructure and protection/enhancement of ecosystem services. Finally, based on the

findings, a policy framework was purposed. Though the focus of the study was on select

U.S. cities, the relevant publications on non-U.S. cities, specially cities in the UK and

Australia, were also analyzed.

While the options of green measuressuch as green roofs, rain barrels, infiltration

trenches, and rain gardensvary significantly from location to location, this study reveales

that adopting GI faces similar cognitive and socio-institutional challenges of
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implementation regardless of location. Cognitive barriers, for example, stem from a lack

of awareness, a particular socio-cultural mindset, and reliance on traditional institutional

arrangements, whether it is in the U.S., the UK, Australia, or any other country.

Therefore, with some location-specific adjustments, the findings of this paper should be

applicable to non-U.S. cities as well.

Findings and Discussions

Barriers

The barriers identified in the study are presented in table 5.1, and are discussed as

follows.

Federal and State Policy Barriers

The study revealed significant barriers prevailing across federal and state policies

including but not limited to provisions in the U.S. Constitution, case laws, and statutory

laws. While private property rights are considered fundamental to a free and democratic

society, the constitutional protection of the right under the Fifth Amendment to the U.S.

Constitution, which prohibits both the physical and regulatory taking of private property

for public purposes, also can prevent municipalities from implementing GI on private

property.

Though such “takings” are allowed if just compensation is made, the Fourteenth

Amendment guarantees a due process before such takings, which creates legal and

political proceedings that can give rise to complications for GI implementation.

Furthermore, a lack of further constitutional clarification on takings and just

compensation (Ruhl et al. 2007) can result in controversies that lead to litigations.

Historically, stormwater, or diffused surface water, was perceived as a nuisance.

Courts therefore established case laws (also known as court laws) for draining it off the

site instead of using on-site (Dellapenna 1991). Accordingly, the laws were also called the
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Table 5.1. Barriers to Implementation of GI

Types Specifics Description
1. Federal 1.1. Constitutional protection Prevents enforcement of GI on
and state of private property private parcels.
policy 1.2. Court law
barriers 1.2.1. Common Enemy Rule Contradictory to the concept of GI

1.2.2. Law of Natural Drainage Restrictive to urban development
1.2.3. Reasonable Use Rule Relatively GI-friendly, but not sufficient
1.3. Federal Statury Law
1.3.1. Insufficient statutory Maintenance of hydro-ecological integrity

goal is not included in the goal of the CWA
1.3.2. Responsibility versus Cities have no direct authority to control

authority dilemma stormwater from private parcels but
have responsibility to manage it.

1.3.3. No flow control Legal provisions focus only on pollutant
provision exists in law loading, but not flow quantity.

1.4. State Statury Law Some states have preventive policies.
1.5. Lack of stewardship of No economic incentive for owners to

ecosystem services maintain flow of ecosystem services.
1.6. Decoupling of For example, quality and quantity control

intercoupled jurisdictions duties are under different agencies.
1.7. Lack of design and National standards/codes are not

maintenance standards adequately available.
2. City 2.1. Regulatory threshold Too high to trigger SWM requirement.
policy 2.2. Problems in codes and Presence of conflicting or confusing
barriers guidance documents provisions but absence of suitable ones.

2.3. No provision for off-site Code does not allow owners to manage
mitigation stormwater off-site.

2.4. Use restriction Prevention in the use of available
mandatory open spaces to install GI.

2.5. Requirement to use gray Mandatory provisions to route flow
to existing gray infrastructure.

2.6. Restriction on harvesting Rainwater harvesting is not allowed.
2.7. No max. limit on facility size Provision for min requirement, not max.
2.8. Pavement material requirement Requirement of traditional pavement material
2.9. Curb requirement Generally, curb is mandatory in the code.
2.10.Lack of financial incentives No direct benefit for private parcel owners.

3. Governance 3.1. Pro-gray governance Centralized and technocratic governance
barriers 3.2. Fragmented governance Fragmented spatial and functional jurisdiction

3.3 Lack of coordination Both within and outside the government
3.4. Lack of public engagement Citizens have limited role in decision making.

4. Resource 4.1. Lack of financial resources Lack of public/private investment on GI
barriers 4.2. Lack of data on cost/performance Historical performance data is not available.

4.3. Dearth of human resources Shortage of workforce trained on GI.
5. Cognitive 5.1. Pro-gray mind-set People accustomed to using gray infrastructure.
barriers 5.2. Unawareness about gray and GI People unaware of harms/benefits of gray/green.

5.3. Perceived risk on cost/perormance Fear of higher cost and lower performance.
5.4. Risk aversion attitude and Unwillingness to shift to a new technology

reluctance to change due to fear of perceived risks of using it.
5.5. Hesitation to take maintenance Due to fear of lack of maintenance knowledge

responsibility as well as intention to avoid perceived burden.
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drainage laws and were defined according to one of the three doctrines: the Common

Enemy Rule, the Law of Natural Drainage, and the Reasonable Use Rule (Dellapenna

1991; Urban Drainage and Flood Control District 2008; Weston 1977). The Common

Enemy Rule regards stormwater runoff as a common enemy and allows a landowner to

protect his/her land by any means necessary, regardless of the possible consequences to

others (Dellapenna 1991). This can encourage hydrologic disruptions, which is contrary

to the concept of GI. As discussed earlier, GI regards stormwater as a resource, not an

enemy, and utilizes it on-site by reestablishing the disrupted hydrology. The Law of

Natural Drainage, or the Civil Law Rule, restricts any modifications of land that disturb

the natural flow of surface water. It can, however, prevent development, and is therefore

not appropriate in an urban context. The Reasonable Use Rule allows for the

modification of land and drainage. It also allows for a negative impact on other properties

if (i) there is a reasonable necessity; (ii) reasonable care be taken to prevent the possible

damage; and (iii) the benefit reasonably outweighs the harm (Urban Drainage and Flood

Control District 2008; Weston 1977). Since GI has the potential to prevent damage by

on-site treatment, it can be used to satisfy the second condition. However, the difficulty

can arise due to the transaction cost required to acquire information on the possible

damage and due to an arguably high potential of controversy over what level of care is

the reasonable care. Such controversies can lead to litigations. If the ecosystem services

provided by GI had an economic value with its property right assigned to the landowner,

GI would potentially satisfy the first and third conditions as well. However, since the U.S.

law provides no property rights for them and most ecosystem services have no economic

value (Lant et al. 2008; Ruhl et al. 2007), no one has an incentive to protect or install GI

on their private parcels.

The primary federal statute that governs stormwater in the U.S. is the Clean Water

Act (CWA) (33 U.S.C. §§1251–1387). Its objective is to restore and maintain chemical,

physical, and biological integrity of the Nations waters (§101(a)), but not to restore and
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maintain the hydrological integrity of landscapes, an inevitably important component of

urban ecology. The CWA does not only ignore hydrologic attributes such as surges in

volume and timing of discharge (National Research Council 2009), its implementation

also overlooks two of its own statutory concerns, physical and biological integrity, by

focusing only on chemical integrity (Adler 2007). The act is based on a permit scheme,

called the National Pollutant Discharge Elimination System (NPDES) (§402), which

requires an NPDES permit if there is a discharge of pollutants by a person from a point

source into navigable waters (§301, §502). However, as defined by the statute, stormwater

is neither a pollutant nor does it come from statutorily defined point sources. Since the

parcels that generate stormwater do not have ‘discernable, confined, and discrete

conveyance,’ which are the three essential statutory conditions for a source to be a point

source (§502(14)), they are not point sources, and hence are not subject to NPDES. Thus,

the NPDES scheme puts the responsibility of managing Municipal Separate Storm Sewer

System (MS4) upon cities without providing legal authority to control private parcels,

which comprise a significant portion of the actual sources generating the flow. This

results in the “responsibility versus authority dilemma,” as termed by Dhakal and

Chevalier (2016). Total Maximum Daily Load (TMDL) (§303), which refers to the

maximum allowable amount of a pollutant that a water body can receive and still meets

quality standards (McCulley 2002; U.S. EPA 2009), is another provision of the CWA

which is applied to control pollutants in the impaired waters. However, since stormwater

is not a pollutant, its quantity cannot be regulated by using TMDL. In Virginia

Departmet of Transportation v. United States Environmental Protection Agency (2013),

a federal court did not authorize the EPA to control stormwater flow as a surrogate for

sediment. In addition, TMDL is normally activated only after waters get impaired, but

has no role in land development activities (National Research Council 2009). Thus, the

CWA does not have provisions that require the restoration of hydrologic processes and

vegetation, two fundamental features of GI.
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Barriers also exist in state laws and policies. For example, the State of New Jersey

does not authorize cities to charge landowners a fee based on the amount of stormwater

generated from their land, thereby barring cities to implement an effective economic

incentive, discussed later. In Missouri, though the state law does not prevent such a fee,

recently the State Supreme Court disallowed the city of St. Louis the implementation of a

user charge based on impervious areas, deeming the charge a tax and requiring voters

approval pursuant to the State Constitution ((Zweig v. Metropolitan St. Louis Sewer

Dist 2013).

Even as a kind of natural capital that provides numerous other ecosystem services,

the status of GI in the U.S. law and policy is discouraging. Due to the absence of

marketable values for most ecosystem services, such as air purification and natural beauty,

owners cannot sell them in markets for profit. Legal avenues exist neither for owners to

charge recipient of the services, nor for the recipients to ensure the unabated supply of

the services from the owners (Ruhl et al. 2007). As a result, a rational landowner is

encouraged to destroy natural capital and develop his/her land to maximize the economic

benefits. Ecosystem services thus lack the stewardship they require and are destined to be

ruined. Ruhl et al. (2007) term this predicament the “tragedy of ecosystem services.”

The decoupling of stormwater regulation and land-use regulation in the federal

regulatory arrangement (National Research Council 2009) poses another significant

obstacle to GI. In such a scenario, the land-use policy, which controls development

activities, is likely to disregard landscape hydrology and result in developments noticeably

contrary to the concept of GI. The absence of design and maintenance standards or

general guidelines for GI at the national level has become a problem that discourages

urban stormwater system designers from adopting GI. This has the effect of motivating

them toward a gray approach, since the standards and guidelines for a gray approach are

already available.
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City Policy Barriers

We explored 10 major issues in city policies that can obstruct the adoption of GI

(Table 5.1). One is the threshold area that sets into motion a citys regulatory

requirement of stormwater management. Currently, a wide variation exists across cities.

For example, in Camden, NJ and Neosho, MO stormwater management is required if the

development area exceeds 1011.71 m2 and 929.03 m2 respectively; whereas in Dallas, TX,

the threshold is 4046.86 m2. These values are significantly higher than the thresholds set

by some other cities such as Washington DC and Portland, each of which has a threshold

value of 464.52 m2. If the threshold value is too high, such as the one in Dallas, it may

result in the uncontrolled development of a significantly large area.

The presence of conflicting or confusing provisions and the absence of suitable

provisions in codes and guidance documents are other obstacles. For example, in

Camden, the land development ordinance (§577) states that it allows turf blocks for

off-street parking; paradoxically, it does not permit materials that are susceptible to

vegetative growth. The State of Missouri requires land development permits for a

disturbance of one acre or more, while Neosho, a city in the state, does not require such a

permit, challenging the states requirements. The city code of Dallas does not define,

permit, or encourage GI as a means of stormwater management. Though the city has

created a voluntary Integrated Stormwater Management (iSWM), the code is not clear

about whether using the iSWM complies with the city code. Some cities such as Dallas

and Phoenix, do not allow off-site mitigation, which prevents landowners from installing

GI off-site or paying an in-lieu fee to city agencies in case it is technically or financially

not feasible for them to install GI on-site. The absence of a provision for off-site

mitigation prevents the establishment of an allowance market, discussed later. The

restriction on the use of open spaces also prevents the installation of GI on such spaces.

In Phoenix, for example, the zoning ordinance does not include GI in the list of the

elements allowed in the open spaces. Camdens code prevents the use of rain barrels and
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cisterns near building foundations, whereas in the Greater Los Angeles Region, the public

right-of-way is not allowed for stormwater control access. Camden follows the National

Standard Plumbing Code 2009, which requires to route runoff from impervious surfaces to

a storm sewer where available. The code also does not have provisions to use harvested

rainwater for activities such as toilet flushing and irrigation. In Phoenix, rainwater

harvesting has been deemed impractical due to the local precipitation regime (U.S. EPA

2013), essentially restricting the use of rain barrels.

Traditionally, engineering design standards only consider engineering functionality

and enforce minimum requirements on the size of facilities such as parking space (in both

geometry and number), lane width, and roundabout radius. Since the standards generally

disregard the impacts of land disturbance, they do not generally set the maximum limits.

Consequently, the current requirements for various amenities differ from city to city. For

example, the Phoenix City Code requires a minimum length of 5.5 m for parking spaces,

while 4.57 m is enough (U.S. EPA 2013). For double-loaded aisles, 6.7 m is enough, but

the zoning code requires a minimum width of 11.27 m. In Dallas and Macatawa, the

minimum required width for a travel lane is 3.653.96 m, which can be reduced to

3.04–3.65 m or even less . The city codes of Phoenix and Camden require a minimum of

15.24 m for a cul-de-sac radius, which can be 10.67 m or less (U.S. EPA 2013, 2014a).

Fire codes also require paved wide streets, the full width of which is used only rarely.

Such requirements result in the creation of unnecessarily large impervious areas.

There are some city codes, which require specific pavement materials, and do not

allow pervious materials on streets, sidewalks, parking lots, driveways, and other hard

surfaces. For example, the Street Planning and Design Guideline of Phoenix requires

asphalt for on-street parking and alleyways. The citys code also does not explicitly allow

pervious paving materials in off-street parking. The code requires all sidewalks to be

surfaced with Portland cement. Curb requirement provisions are other barriers which

prevent the flow of road runoff into adjacent vegetated areas. For example, in Phoenix,
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the zoning code requires curbs where the urban density equals or exceeds 3 lots per gross

area. Camden also requires raised curbs and does not allow curb cuts, flush curbs, curb

pullouts, or bumpouts. A lack of financial incentive and an absence of necessary

regulations are also critical barriers in some cities. For example, the City of Phoenix does

not offer any incentives, such as cost sharing, reduction in street width/parking

requirements, or assistance with maintenance, to property owners who utilize pervious

materials (U.S. EPA 2013). In Camden, though the Land Development Ordinance sets

impervious cover limits, there are no additional incentives for further reductions.

Governance Barriers

Governance has a leadership role in the implementation of infrastructure

technologies. The current governance was designed for and is adept at governing

centralized gray infrastructure (Dhakal and Chevalier 2016), therefore it inherently

supports gray, not GI. As opposed to GI, which is a decentralized approach requiring the

involvement of many stakeholders, the existing governance is centralized and exclusively

technocratic. Another major governance barrier is the prevailing institutional

fragmentation of both spatial and functional jurisdictions for stormwater management at

both local and higher levels. Spatially, the mismatch of hydrologic and political

boundaries results in the different governance entities for different portions of the same

hydrologic unit. Functionally, even the highly-interrelated functions are under different

leadership. For example, water quality control is governed by the U.S. EPA, whereas

flood control is under the jurisdiction of the U.S. Army Corps of Engineers. Since

different agencies generally have differing, and sometimes conflicting, priorities and goals,

interjurisdictional collaboration is inevitable for effective implementation of GI. However,

previous case studies show that generally there is a lack of such collaboration in many

cities (e.g., Cettner et al. 2013; Huron River Watershed Council 2014).

Inadequacy of motivation and opportunities for public involvement is another
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obstacle in the current governance model (Dhakal and Chevalier 2016). Though, the

Stormwater Phase II Rule4 adopted by the U.S. EPA requires “public participation and

involvement,” the current practice of public involvement is generally limited to

participation in education, outreach and cleanup programs. In case when public comment

is requested as required by the Stormwater Phase II Rule, these comments are highly

likely to be disregarded in the final decision (Dhakal and Chevalier 2016).

Resource Barriers

One of the most cited barriers in earlier studies is the lack of financial resources (e.g.,

Copeland 2014; Huron River Watershed Council 2014; Keeley et al. 2013; Porse 2013;

Thurston 2012; Tryhorn 2010). Given its cost-effectiveness and other general benefits, the

GI approach should not have been financially problematic, at least in comparison to the

gray approach. However, a problem exists for two reasons. First is the existing practice of

using funds from general revenue, the stormwater management portion of which is

intended for gray infrastructure development and maintenance on public land. The legal

restrictions generally discourage investing these public funds on private properties (Keeley

et al. 2013). Second is the absence of market for most ecosystem services, other than

provisioning services. Since these services are not monetized due to the lack of a proper

tool. As a result, the financial benefit of GI is undervalued. Consequently, the payback

period for GI projects becomes longer than a decade, discouraging private investors

(Valderrama et al. 2013) and resulting in a lack of financial market for project financing

(Clune and Braden 2007). As observed by Valderrama et al. (2012), currently there is no

existing approach for bringing private investments into stormwater retrofit projects.

Additionally, stormwater issues cannot compete with other more critical aspects of

existence, such as food, security, and shelter, in securing an appropriate budget from the

general fund. As a dedicated funding source, many cities have established stormwater

4https://www3.epa.gov/npdes/pubs/fact1-0.pdf
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utility fees (Porse 2013), which have faced legal challenges in some other cities (Keeley et

al. 2013).

A lack of data on cost and performance is another highly cited barrier in most of the

studies (e.g., Copeland 2014; Huron River Watershed Council 2014). In the absence of

such data, the adoption of GI appears risky to the municipal staff, policy makers, and the

public, discouraging them to embrace the technology. In addition, the lack of formal

coursework and research opportunities in university engineering programs, along with the

limitations of other training opportunities in the market (Clune and Braden 2007), leads

to a dearth of sufficient professionals with GI expertise in the job market (Tian 2011; U.S.

EPA 2014a). As a result, many cities face a shortage of staff for its design and

installation (Barbosa et al. 2012; LaBadie 2010; National Research Council 2009).

Cognitive Barriers

Our study reveals that mindset, unawareness, fear, attitudes, and perceptions are

other factors that discourage landowners, water resource managers, and policy-makers to

use GI. We have categorized these intangible factors as cognitive barriers. On one hand,

there is some doubt among professionals about the reliability of GI (Brown 2008;

Copeland 2014; Porse 2013) giving rise to some fear of liability concerns on the

implementation of the technology (Olorunkiya et al. 2012). On the other hand, there is a

legacy of unrestrained access to citys gray infrastructure for discharging runoff from

private parcels without paying the direct costs. As a result, there exists reluctance in the

public to switch to GI from gray. The perceived risk to cost and performance of GI due to

the absence of historical data, combined with a risk aversion attitude, are highly cited

factors in literature (Clune and Braden 2007; Nylen and Kiparsky 2015) that lead to such

reluctance. The reluctance persists also due to the unawareness among the public about

how the gray system is environmentally inappropriate and how GI manages stormwater

sustainably. Moreover, due to the fear of improper maintenance (Hammitt 2010) and
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attitudes to avoid perceived burden, landowners hesitate to take maintenance

responsibility and are encouraged to oppose the installation of GI on their land.

Driving GI ahead: The Suggested Policies

Policy, which provides the guidelines for collective human actions for shared

outcomes (Meehan 1985), is crucial to drive a technologys implementation (Ahern 2007;

Holzer and Schwester 2016). As discussed by Birkland (2010), and for the purpose of this

paper, by policy we mean constitutions, laws, statutes, regulations, court decisions, and

agency or leadership decisions. Governance is an inevitable aspect of policy, since it

provides a platform for the political process required for policy making and plays a

leadership role for implementation. Based on this scope and definition of policy, I suggest

33 policy tools grouped into 5 categories: federal and state level policies; city policies;

alternative governance; innovative funding mechanisms; and education, awareness,

awards, and recognition (table 5.2).

Federal and State Level Policies

Amending the constitution in regard to private property rights is very complex, not

only because of the politically complicated process it requires but also due to the

challenges it may pose to the basic rights of freedom and democracy. As the Drainage

Law doctrines were developed through court cases, their modification evolves over time

with changes in circumstances or new knowledge—as acknowledged by Justice Scalia in

(Lucas v. South Carolina Coastal Council 1992). Therefore, constitutional amendment

and change in drainage law are beyond the scope of this paper. For relatively prompt

policy actions, other statutory and regulatory approaches are required within the given

constitutional framework. Recently, some initiatives have been proposed and even

accepted at the federal level. For example, the U.S. Congress recently added §313 to the

CWA to require the federal government to pay stormwater fees as a reasonable service
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Table 5.2. Policy Measures for Overcoming Barriers and Encouraging GI Implementation

Policy Policy measures Targeted
categories barriers
1. Federal 1.1. Add hydro-ecological integrity the goal of the CWA. 1.3.1
and state 1.2. Establish flow (or its surrogate) as a control measure. 1.3.3
policies 1.3. Enact statutory provisions to allow cities to enforce 1.1,1.2,

flow control regulations on private parcels. 1.3.2
1.4. Require cities to conduct planning and development 1.6, 3.2

based on hydrologic features.
1.5. Integrate intercoupled functions under one institutional umbrella 1.6, 3.2, 3.3
1.6. Audit & amend other policies & standards to incorporate GI. 1.7, 1.4, 2.2
1.7. Establish national design/maintenance standards/guidelines for GI 1.7
1.8. Provide federal/state tax exemptions/credits on GI materials/works. 2.10
1.9. Enact a more meaningful nationwide land development threshold 2.1

that triggers stormwater management requirements.
2. City 2.1. Audit codes and eliminate/amend conflicting and confusing provisions. 2.12.9
policies 2.2. Remove mandatory requirements for curb and allow curb cuts. 2.9

2.3. Remove requirements for impervious pavement material in driveways. 2.8
2.4. Remove requirement for minimum parking space in transit-served areas. 2.2, 2.7
2.5. Remove requirement to route stormwater to gray system. 2.5
2.6. Create guidance documents & manuals for design/maintenance of GI. 2.2, 1.7
2.7. Enact ordinance that requires on-site stormwater retention using GI. 2.2
2.8. Allow use of GI in open spaces where technically feasible. 2.4
2.9. Allow rainwater harvesting where climatically feasible. 2.6
2.10. Assign fair share of responsibility to each stormwater generator. 2.10
2.11. Adopt market-based incentives (table 5.3) to motivate 1.5, 2.10, 4.1

private landowners.
2.12. Allow off-site mitigation or in-lieu fee. 2.3, 2.10, 4.1
2.13. Enact liability transfer ordinance to allow landowners to transfer 4.3, 5.5

maintenance liability to a third party licensed by the city.
3. Alternative 3.1. Restructure the governance to establish two-tier model as discussed 3.13.4
governance in Dhakal and Chevalier (2016).

3.2. Establish a regional watershed level agency 1.5, 4.1,
to facilitate and fund research, education, data 4.1, 4.2
collection, collaboration, and creation of market for ES.

3.3. Establish a functional mechanism at each level 3.13.4
for communication, interaction, and coordination within
government agencies and with stakeholders outside. ernment.

4. Innovative 4.1. Establish stormwater fee and allowance 1.5, 2.10, 4.1
funding trading as revenue sources as well as incentive mechanism.
mechanism 4.2. Ensure stable policies, such as 10–15 yr fee schedule to tackle 4.1

uncertainty & motivate private financiers (Valderrama et al. 2013).
4.3. Create municipal green bonds 4.1

5. Education, 5.1. Establish education/outreach programs to raise public awareness 1.2, 3.4, 5.15.5
awarenwss, on benefits of GI, harms of gray, and about how GI works.
award, and 5.2. Have programs in place to train existing staff responsible for 4.3
recognition stormwater management and other related functions.

5.3. Encourage universities to offer research opportunities and courses 1.2, 4.2, 4.3
on GI to graduate and undergraduate civil engineering students.

5.4. Include course on GI and ecosystem services in K-12 1.2, 5.15.5
(Kindergarten-12th grade) curriculums.

5.5. Establish awards and recognition programs to encourage individual 3.4, 5.1
and social capital.
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charge to the concerned city agencies or utilities which provide stormwater management

services for the federal properties. Some bills have been introduced in the house to

support the implementation of GI (e.g., H.R. 4648, 2016; H.R. 1775, 2015), which have

included many important provisions, such as federal financial assistance for research and

implementation. However, the bills do not include provisions to address many of the

barriers in the CWA. An example of this is the absence of restoring hydro-ecological

integrity in the statement of statutory goals.

At the federal and state levels, I suggest nine policy actions (table 5.2) including the

amendment of the CWA (§101(a)) to add hydro-ecological integrity of the urban

landscape as one of its goals. The inclusion of hydro-ecological integrity as a statutory

goal will equip and encourage the U.S. EPA to formulate and enforce regulations for

installing GI on private parcels. It is also necessary to add a statutory provision to the

CWA that incorporates flow or impervious cover as a measure of stormwater loading

(National Research Council 2009). Subsequently, a provision allowing cities to enforce

flow control on private parcels will become necessary. Such flow control provisions would

establish the CWA′s jurisdiction over water quantity, and help the U.S. EPA and cities

enforce regulations to control stormwater quantity on-site. Congress has already

established such a statutory provision in the Energy Independence and Security Act of

2007, where all new federal developments with a footprint larger than 464.5 m2 require

the restoration of predevelopment hydrologic characteristics like temperature, rate,

volume, and duration of flow. Similar provisions with a more stringent threshold should

be added to the CWA to control land development under any ownership. I also suggest

adopting a federal statutory provision that requires planning, zoning, and development in

conformity with the hydrologic features of the landscape. This will ensure that

development activities cause as little damage as possible to the vegetation and natural

hydrology. For this, interconnected functions such as land-use planning, stormwater

management, and flood control need to be brought under one federal institutional
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umbrella, or, at the very least, have an effective coordination that will overcome

conflicting policies and actions that discourage GI implementation.

Existing national standards and codes for the design and maintenance of roads,

parking lots, plumbing, and fire safety need to be updated to incorporate the concept of

GI to the maximum practical extent. As for other civil engineering infrastructures,

national standards and guidelines should be created for the design, construction, and

maintenance of GI. Such standards not only overcome potential risks of inappropriate

design and maintenance, but also encourage design and maintenance staff to incorporate

GI, and furthermore help maintain consistency. To minimize the area of paved surface,

the maximum limit on the size of facilities (e.g., lane width and radius of roundabouts)

should be fixed nationally. Additionally, as a financial incentive to install GI, I suggest

providing federal and state tax exemptions or credits on GI material and installation cost

to motivate landowners, developers, and manufacturers to adopt the technology.

In the absence of a federally enforced threshold of land development that initiates

stormwater management regulations, states have enforced their own thresholds. However,

a wide variability exists in such thresholds, most of which are too high. Currently over

three-fourths of statessuch as Texas, Missouri, Illinois, and Michiganhave a threshold of

4046.86 m2 of disturbed area; whereas, other statessuch as Washington, Florida,

Delaware, and Marylandhave more stringent thresholds (U.S. EPA 2011). In Maryland

and Delaware, the threshold is 464.5 m2 of disturbed land, whereas in Florida it is 371.6

m2 of impervious cover. The State of Washington has enforced thresholds on both

disturbed areas and impervious surfaces, which are 650.3 m2 and 185.8 m2 respectively.

The threshold of 4046.86 m2 currently adopted by most states is too high because it

leaves a significant portion of land development activities, especially on private residential

parcels, out of regulatory control from stormwater management perspectives. Though a

high threshold value at federal and state level does not restrict a city from adopting a

more stringent threshold, it also does not encourage a city to do so. Consequently, a city,
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such as Dallas (discussed earlier), can adopt the parent states too high threshold.

Therefore, we recommend adopting a more meaningful national threshold for both

disturbed and impervious areas so that most of the land perturbation activities in all

cities would come under regulatory control.

City Policies

In the U.S., a city can enact legislation as authorized by its parent state to govern

activities within its jurisdiction. Since land-use planning, zoning, and storm water

management are carried out by cities, the city policies play a crucial role for adopting GI.

Generally, courts also uphold local decisions in matters of land use (Thomas 2008). Even

within the current federal and state policy regimes, many cities, such as Portland, Seattle,

Chicago, and Philadelphia, have enacted several city policies and this has resulted in the

significant implementation of GI. This shows that, while a change in federal and state

policies is necessary to facilitate and encourage cities, cities by themselves can develop

and enforce several policies that drives GI implementation. I suggest 13 city-level policies,

which are presented in table 5.2.

As suggested in many studies, we recommend that each city also audit its existing

policies; find unclear, contradictory, and pro-gray language; and remove or amend them.

For example, the provisions that require raised curbs for roads, impervious pavement for

residential driveways and parking lots, and minimum parking spaces for transit-served

areas should be eliminated. Any code, such as the National Standard Plumbing Code,

which requires impervious areas to drain to a sewer system, should be either amended or

replaced by a new code. Provisions in fire codes that require paved streets wide enough

for fire trucks should be ammended to reduce the additional pavement because the

additional width required is very rarely used. Appropriate vegetative or other pervious

surfaces could be used on the additional width. Any regulatory restrictions on open

spaces, including setbacks, that prevent the use of the spaces for GI should be repealed
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and technically viable GI should be allowed in such open spaces. Rainwater harvesting

should also be allowed where doing so is climatically feasible.

Having guidance documents and manuals is critically important for the design,

installation, and maintenance of GI. In the absence of such documents, other cities′

documents (such as those of Seattle and Portland) can be adopted with some

context-sensitive adjustments. When viable, cities should enact command and control

ordinances that require on-site stormwater retention to maintain or restore

predevelopment hydrology. They can also use GI as a condition of development permit

approval. Many cities in the U.S. and abroad have embraced such policies. For example,

Portland requires new/redevelopment projects to manage stormwater on-site and all new

city buildings to construct a green roof over at least 70% of their roof area. Chicago

requires any building with a footprint over 1393.5 m2 or any parking lot over 696.75 m2 to

either detain the first half inch of rain on-site or reduce the prior imperviousness by 15%.

Command and control ordinances are exercised in other countries as well. Tokyo, Japan,

requires private buildings larger than 1000 m2 and public buildings larger than 250 m2 to

have 20% of the rooftop greened; whereas Linz, Australia, requires green roof on all new

buildings larger than 100 m2 (Carter and Fowler 2008). I also suggest having a policy

that ensures a fair share of stormwater management responsibility among all storm water

generators based on the relative extent of hydrological disruption and the additional

discharge generated due to the land development activities. For example, among two

landowners with equal impervious areas, the responsibility of the owner whose impervious

area is constructed on more pervious soil should be greater. Such a policy will discourage

development on more pervious land, and help correct the responsibility versus authority

dilemma discussed earlier.

When regulatory options are insufficient, market-based tools can be viable

alternatives to act beyond the regulatory limits, especially for encouraging private

landowners to install GI. Because they are voluntary, they are less likely to be opposed by
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residents. Currently available potential market instruments and their example

applications are presented in table 5.3. Though some of these tools, such as an allowance

market, are still in the nascent stages in the field of stormwater management, many other

options have been increasingly used in some pioneering cities in the U.S. and other

developed countries. In the U.S., more than 400 cities, towns, and utility districts utilize

parcel-based fee systems based on impervious area (Valderrama et al. 2012). A survey of

70 utilities conducted by Valderrama et al. (2012) in 20 states showed that a majority

offered credits against stormwater fees for installing GI. As discussed earlier, the U.S.

Congress has also added provision to the CWA requiring the federal government to pay

stormwater fees (§313). When designed appropriately, the system of fee (or charge) and

allowance trading can arguably combine to establish a functioning market. If an owner

cannot install GI due to cost or other technical constraints, the landowner should be

allowed off-site management within a designated geographical boundary. The off-site

control may be owned and operated by any private party or a government agency. If it is

owned and maintained by the government, the landowner can pay an in-lieu fee, which

should be used exclusively for GI. Portland has already adopted this policy, where the

collected off-site management fee is put in a mitigation account to be used to mitigate the

impacts of off-site discharge. However, while the mechanisms of stormwater fees and

allowance credits can help channel private investment to the projects yielding the highest

environmental benefits (Valderrama et al. 2012), such mechanisms may pose two

significant challenges.

First, low-income families may not be able to pay the required fee or install GI on

their property. To address this problem, cities need to develop financial assistance

programs to help the needy residents pay their stormwater bills. As an example, Portland

has already established such assistance in various forms that include bill discounts and

crisis vouchers. Second, because discharge is a local problem, if a market is created for it,

this can easily result in an insufficient number of buyers and sellers, leading to a failure of
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the allowance market. The viability can be increased by including other co-benefits, such

as pollutant control and carbon storage, for trading and expanding the market to larger

geo-political jurisdictions. For example, water quality trading can be expanded to

regional watersheds and carbon trading can be expanded both nationally and

internationally. However, institutional arrangements, such as regional governance

discussed in the subsequent section, should be created accordingly. To address the fear

among the landowners about maintenance of GI, a city can enact liability transfer

ordinance that allows a landowner to purchase maintenance services from a company

licensed by the city and transfer the maintenance liability to the company. The

involvement of a company in the installation and maintenance of GI helps create a

business. There are other co-benefits of GI, such as natural beauty and a reduction in the

urban heat island effect, that are considered public goods for being non-excludable and

non-rivalry. In such cases, direct payment to owners will encourage them to continue

having GI and supplying such services. Development incentives could be another

attractive policy with no financial burdens on the government. The market options are

explained with example applications in table 5.3.

Alternative Governance

Since urban GI requires the involvement of a large number of stakeholders, including

societies, individuals, private sectors, institutions, and formal and informal organizations,

many scholars (e.g., Dhakal and Chevalier 2016; Novotny et al. 2010; Roy et al. 2008)

indicate that small scale neighborhood-level governance could be appropriate for GI.

Novotny et al. (2010) propose small units called “interconnecting clusters” or “ecotones”

around the first or second order surface water body. Lant et al. (2008) argue for

establishing ecosystem service districts to govern ecosystem service and recommends

delineating their boundaries in coherence with watershed boundaries. I have proposed a

two-tier governance model for stormwater governance, consisting of hydrologic districts at
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Table 5.3. Potential Market (or Quasi-Market) Mechanisms and Examples.

Policy Mechanisms Example Applications
Stormwater fee and discount : Seattle enforces annual flat fee for single family and
This scheme enforces a fee on duplex smaller than 929 m2. For all other cases,
runoff quantity or impervious area the annual fee is based on impervious area. Portland
and provides discounts for enforces off-site (65%) and on-site (35%) charges separately.
installing GI. Flat rate for single family to 4-plex residences,

rate per 92.9 m2 of impervious area in other cases.
The Clean River Rewards program provides up to 100%
of discounts for on-site portion of the charge.

Allowance market : Stormwater Retention Credit (SRC) program in Washington
In this scheme, tradable allowances DC, U.S. Landowners obtain SRCs for voluntary reduction of
of discharge are distributed among stormwater runoff (one SRC per additional gallon
landowners, who are required to manage reduced above required reduction) using GI. The owners can
additional quantity. One who can bank for future use or trade their SRCs in an open market to
manage more than required, can sell his/ others who are willing to buy and use to meet regulatory
her allowances to others willing to buy and requirements for retaining stormwater (Hoffmann et al. 2013).
use them for their retention requirements. First of its kind in the nation.

Payment of ecosystem services : In use by U.S. cities—such as New York, NY; Syracuse, NY;
Owners are payed for providing ecosystem Boston, MA; Portland, OR; Seattle, WA—for protection of
services such as flood mitigation, carbon watershed that are their critical sources of water supply
storage, and water purification. (Mercer et al. 2011). Used for many other ecosystem services

in countries including the U.S., China, South Africa, Mexico,
Costa Rica, and Nicaragua (Schomers and Matzdorf 2013).

Rebates, credits, and installation In Philadelphia, the Tree Vitalization Rebate Program
financing : This includes financing, tax provides a $25 rebate for planting a tree. The Rain Check
credits, or reimbursements to landowners program provides rain barrels for free and/or helps construct
who install GI. downspout planter, rain garden, or porous paving for a

reduced price. In Seattle, the City and King County pays
up to the total cost of rain gardens and cisterns.

Development incentives : Chicago offers expedited permitting process for projects
Developers receive benefits including meeting Leadership in Energy and Environmental Design
expedited permitting, and bonuses for (LEED) criteria. For installing green roof, Philadelphia
floor area, height, density, and space. provides floor area ratio and height bonuses up to to 400%

and 10.97 m respectively; whereas Portland provides floor
area bonus up to 300% of the area of ecoroof installed.

Grants and awards : In Chicago, the Green Roof Grant program provides $5,000
Provides money directly to individual to residential and small (<929 m2) commercial buildings. In
landowners or communities for Portland, the Community Watershed Stewardship Program
installing GI provides up to $10,000 for watershed restoration activities.

Philadelphia has Stormwater Management Incentive Program
(SMIP) to provide grants for qualified non-residential owners,
and Green Acres Retrofit Program (GARP) to provide grants
for qualified contractors, companies or projector aggregators.
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neighborhood level and a city agency at city level (discussed in Dhakal and Chevalier

(2016) and presented in the next chapter). The hydrologic districts would provide small

scale governance within the local hydrological boundary, whereas the city agency would

utilize the current city jurisdictions to establish coordination among other stakeholders,

such as between the city and upper level government. We recommend using this model to

govern GI and ecosystem services because neighborhood level governance would provide a

better opportunity for face-to-face interactions and hence foster stakeholder engagement

(Cohen 2012), which is critical for sustainability (Ellis et al. 2010). The stakeholder

engagement leads to a shared sense of community and increases a communitys sense of

ownership (Tryhorn 2010). The resulted increase in social capital (Mazmanian and

Blanco 2014) will enhance the stewardship of GI. Thus, there will be better care and

management of GI assets by the community without being entirely dependent on

recurrent funding from the government (Wong and Eadie 2000). Since the current

stormwater permit scheme leaves a great deal of discretion to the regulated community to

set their own standards and to self-monitor compliance (National Research Council 2009),

such community stewardship is critically important. Hundreds of thousands of

successfully functioning neighborhood scale governance in the U.S. and abroad—such as

homeowners′ associations in the U.S. (McCabe 2011; Scheller 2015) and neighborhood

associations in Japan (Tsujinaka et al. 2014)—justify the viability of such neighborhood

scale governance.

The problem of fragmented jurisdictions at city and state levels that results from the

prevailing mismatch of hydrologic and political boundaries is a problem the scope of

which demands further research. However, I have some suggestions that can help begin a

conversation. I suggest establishing a regional watershed-scale governancein each regional

watershedwhose jurisdictional boundary would follow the boundary of the watershed.

Such a governance mechanism would be in the form of an alliance among those states

whose territories lie partially or wholly within its boundary. The regional governance
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would create guidelines for GI, monitor GI related activities, establish a functional

coordination among states within its jurisdiction, and provide both technical as well as

financial support to those cities which cannot afford GI. It would also function as a

clearing house to collect and share information on GI. Moreover, it would provide a

platform for trading ecosystem services other than those of local character, such as

carbon sequestration and water quality. Historically, different forms of regional

governments have been tried at different times in the U.S., including the extension of a

center city to encompass the region, the formation of regional councils for regional

planning and coordination, and voluntary cooperation among governance and sectors

through public and private partnership (Olberding 2002). Currently, numerous

metropolitan areas are also working as regional governments with the intent to share

resources between city cores and their surrounding settlements (Squires 2002). However,

since these traditional mechanisms generally do not follow wathershed boundaries, they

would not be able to solve the fragmented governance that results from the mismatch of

political and hydrologic boundaries. I realize that there is a necessity to reexamine all

forms of the current regional governance and restructure them under the regional

watershed governance of the type proposed in this dissertation.

Innovative Funding Mechanism

Previous studies by other scholars show that, in general, GI costs less than gray

infrastructure (e.g., Baerenklau et al. 2008; Foster et al. 2011; Shaver et al. 2009; U.S.

EPA 2015). However, the approach requires investments not only for installation and

maintenance but also on multiple other fronts including education, outreach, research,

new governance structure, rebates, and rewards. Fortunately, unlike traditional approach,

GI has multiple potential revenue sources other than general revenue funds. Examples

include revenue collected from stormwater fees (or charges), in-lieu fees, allowance

trading, and green bonds, discussed earlier. If designed appropriately, these sources can
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generate a considerable amount of revenue. As outlined in Valderrama et al. (2013), if

regulatory certainty, such as long-term fee schedules, can be ensured, private financiers

can invest in GI projects for the revenue to be generated in the form of the avoided

stormwater fee. Another way to attract investments is municipal green bonds, which,

though currently used on a small scale, is gaining popularity in the U.S. as well as abroad.

Recently, for example, Seattles Sound Transit sold nearly $1 billion of green bonds to help

fund regional transit projects; whereas, Johannesburg issued a green municipal bond of

$136 billion (Bloomberg and Lille 2016). Such a bond can be used to construct large scale

GI projects. However, at the beginning, especially unless these multiple resources become

fully functional, public funds may be required for education, awareness, outreach,

demonstration projects, awards and grants, research and development, and the

establishment of regional and community-level governance. Currently, gray infrastructure

annually requires billions of dollars of public revenue, a significant amount of which will

be saved due to GI. If managed appropriately, the saving will provide a significant portion

of the funding required by the recommended activities. However, the long-term solution is

to develop GI as a business rather than a burden on general revenue.

Education, Awareness, Awards, and Recognition

In a democratic society, social acceptance plays a central role in mainstreaming a

technology. The increased social acceptance can also foster a market, leading to an

enhanced GI stewardship as a business, which contributes to establishing a sustainable

financing mechanism. A study conducted in the Shephard Creek watershed in Cincinnati,

Ohio (Green et al. 2012 2013) has revealed that the social acceptance of GI can be

increased by investing in enhancing human and social capital through education and

awareness. Human capital is embodied in the skills, knowledge, and capabilities of an

individual, and the relationships among the individuals form the social capital (Colemn

1988) On the other hand, the social capital provides a collective forum for human capital
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(Green et al. 2012) and shapes the activities of human capital through socially

constructed norms and moralities (Onyx and Bullen 2000). A community with a high

social capital also monitors the behaviors of its members, making them accountable for

their actions (Bowles and Gintis 2002). In other words, human and social capitals work

synergistically to enhance social acceptance. By removing cognitive barriers and boosting

social and individual capital, education and awareness thus play critical roles in

expediting the adoption of GI. While the regulatory requirement in the Stormwater Phase

II Rule for public education and outreach provides a useful tool to increase public

awareness, the policy is insufficient. To have sufficient human resource to fulfill current

and future demands, cities should have policies to train their current staff and enhance

their expertise in GI. Furthermore, universities should be encouraged to offer courses and

research opportunities to graduate and undergraduate civil engineering students who

want to specialize in stormwater management. To have a pro-GI society in the future, I

suggest teaching GI to K–12 students as well. Federal policies and programs are needed

for encouraging academic programs in academic institutions. Awards and recognition are

other critical tools which work by motivating people to come forward and play a

leadership role, which is critically required for driving GI application. Many cities have

adopted such award and recognition programs. Mayor Daleys Green Works Community

Award in Chicago and Philadelphias Sustainability Award are notable examples.

Conclusion

Though GI is known to have numerous ecosystem benefits and is regarded as an

underpinning element of urban sustainability, its adoption by cities is slow. This paper

explores 29 barriers under 5 categories that cause the delay and suggests 33 policy

strategies under 5 categories that can both overcome these barriers and expedite

implementation. The study suggests that the most critical barriers are cognitive barriers

and socio-institutional path dependence. Other barriers, such as resource and policy
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barriers, are essentially the result of these two barriers. Social acceptance is arguably the

most decisive driver of a technology and an addresser of its impediments. Enhancing the

knowledge of GI through education and awareness, and the resulting removal of cognitive

barriers, can develop social acceptance. If social acceptance is high, formulating other

pro-GI policies and programs at any level becomes easier. A high social acceptance

encourages courts and legislatures to make favorable policy decisions, which will

inevitably result in the development of both common and statutory laws. The enhanced

social acceptance will also help update engineering standards to incorporate GI.

Additionally, it tends to foster markets and bring about GI stewardship as a business that

contributes to the generation of sustainable financing.

In addition to social acceptance, the availability of expertise, skilled personnel,

champions, and leaders are of paramount importance for driving GI implementation.

Therefore, I suggest adopting policies that focus on awareness, education, recognition,

training, coordination and engagement. In the short run, policies of “carrots and sticks”

would be more effective. The hydrologic district in the proposed two-tier governance

(Dhakal and Chevalier 2016) provides opportunities to restructure the governance in

compliance with hydrological features at the local level, whereas the proposed regional

governance addresses the problem of fragmented governance within the watersheds

boundary. We also suggest encouraging universities, especially civil and environmental

engineering departments, to develop and offer curriculum that include GI and provide

research opportunities to students. We should encourage vocational schools to offer

training and produce the professionals that will be required by current and future cities

to implement GI. To create a pro-GI society in the future, we need to teach K-12 students

about the concept, importance, and the reliability of GI through class work and

demonstration projects.

Since the focus of our investigation was on 10 U.S. cities, the identified barriers and

recommended policy solutions as such are more relevant to U.S. cities. However, our
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examination of available literature from non-U.S. cities, especially in the UK and

Australia, shows that most of the barriers and solutions are of global nature. While the

selection of alternative forms of green measures—such as green roof, rain barrel,

infiltration trench, and rain garden—is highly dependent on location, the study reveals

that adopting GI as an approach faces similar cognitive and socio-institutional challenges

in cities irrespective of where they are located. Because it is always eventually

cost-effective, GI is arguably more suited to low income countries, where many cities are

facing unprecedented growth and limited resource. However, due to the prevailing

methods of infrastructure planning, the decreased availability of open spaces in

traditional cities, and relatively low socio-economic development, the barriers and

solutions in existing low-income cities may be somewhat different, which will require

further research. Further research is also recommended for defining the institutional

structures, functional jurisdictions, authority, and resources for the proposed regional

governances as well as hydrologic districts.
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CHAPTER 6

GOVERNANCE FOR GREEN INFRASTRUCTURE:

BARRIERS AND SOLUTIONS

Introduction

While policy provides guidelines for shared activities of stakeholders to achieve

common outcomes, as discussed in chapter 5, governance provides the mechanism for

formulating those guidelines and monitoring stakeholder actions to ensure compliance. In

other words, governance governs policy, which in turn governs collective activities

including the governance itself. Thus, governance works in tandem with policy to foster

collaboration and cooperation among stakeholders for achieving their preferred outcomes.

Green infrastructure implementation is a shared undertaking because it involves

numerous stakeholders including landowners, business community, civic organizations,

environmental groups, and government agencies. Therefore, in addition to policies, any

issues in existing governance can also prevent green infrastructure implementation. Policy

was dealt in chapter 5; this chapter evaluates the governance and formulates a new

approach.

In general, governance is a broad notion with no unanimous definition. However, it

has some univerrsal functions and attributes. It provides a framework for decision making

(Porse 2013) to regulate human interactions in a shared environment (Oakerson 2004). It

refers to collective action accomplished for public purpose (Heaney 2007) within a defined

jurisdiction, and comprises a broader scope than government (Evans 2005; Feiock 2004).

In addition to government, it encompasses a range of other aspects such as societies,

individuals, private sectors, laws, regulations, institutions, and formal and informal

organizations (Porse 2013; Tortajada 2010). In other words, governance regulates the

works of people both inside and outhside the government (Oakerson 2004). As Bovaird

and Loffler (2009) outline, governance is the way an organization works with its partners,
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stakeholders, and networks to influence the outcomes of public policies. Based on the

definitions given by different international institutions including the World Bank, United

Nations agencies, and the European Union, Biswas and Tortajada (2010) determine that

accountability, transparency, participatory, and decentralized decision making are

common essential attributes of governance. For the purpose of this dissertation,

stormwater governance is defined as the organizational authority that formulates as well

as impliments stormwater policies and programs. As such, this chapter focuses on

leadership mechanism and functional jurisdiction of its various components, but not on

policies. The study is primarily focused on the US context.

The existing stormwater governance has a hierarchical structure comprising various

levels of government. At the federal level, the U.S. congress enacts laws (e.g., Clean

Water Act), which the U.S. EPA enforces through standards and regulations upon the

states and cities. Under the federal laws and guidelines, states can enact and implement

more stringent standards on city (or county) governments, which carry out the

stormwater management activities. The city governments implement the federal and state

laws and can also enforce their own discretionary standards and regulations keeping their

minimum standards in compliance with the state and federal standards. In a city, the

governance is heavily centralized on its designated agency which governs all stormwater

governance activities through its technocratic administration.

The existing centralized and technocratic governance was structured to govern the

gray infrastructure, which is highly centralized and engineered. However, green

infrastructure is distributed, and it employs natural hydrologic process of soil and

vegetation instead of complex engineering structures. The existing governance also does

not possess other attributes of modern governance discussed earlier. For example, it

ensures the involvement of government agencies in the decision-making process, not the

stakeholders outside of the government. Though public participation is required as per

Phase II rule, incorporating the participants suggestions is not mandatory. The final
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decision is made at the discretion of the city agencys staff. Since the decision authority is

solely on the city agency, there is arguably a lack of transparency.

A number of previous studies have defined current governance as a major barrier to

mainstreaming of the green technology (Ellis et al. 2010; Rijke et al. 2013). Scholars have

used different phrases to discuss the barriers, examples include socio-institutional barriers

(Brown and Farrelly 2009a; Clune and Braden 2007; Rijke et al. 2013), organizational

barriers (Cettner 2012; Keeley et al. 2013), and administrative inertia (Brown 2008 2005).

Unfortunately, there is a lack of comprehensive evaluation of governance from this

perspective (Van de Meene et al. 2011). This elucidates the critical research need for

exploring the government issues regarding its suitability for the green approach and

addressing them. This chapter attempts to fulfil this need.

The approach used in this study was largely exploratory. Five U.S. cities—Portland,

Oregon; Seattle, Washington; Philadelphia, Pennsylvania; Chicago, Illinois; and Syracuse,

New York—were selected for study. Their stormwater governance was studied from city

codes and other published materials. For each city, an assessment of the use of gray

infrastructure versus green infrastructure was considered and barriers to the full

implementation to green infrastructure were identified. Finally, a new stormwater

governance model conducive to green infrastructure implementation was proposed.

Major Issues of Stormwater Governance

Major issues identified by the study are presented as follows.

Intrinsic Issues

Existing urban stormwater governance inherently lacks many of the essential

attributes of governance discussed earlier. The approach is highly centralized and

dominantly technocratic, in which engineers of a designated city agency centrally manage

stormwater through a command-and-control approach. The technocrats are trained for,

106



experienced with, and inclined to design, construct, maintain and repair gray

infrastructure, not green infrastructure. This approach in part instills into their minds a

reluctance to implementing a green infrastructure (Brown 2008). Though cities solicit

public input in program development and implementation process, as per Stormwater

Phase II Rule, technical complexities of gray infrastructure may often discourage the

public to actively participate in the process. Even if citizens participate and provide their

opinions, it is very likely that the opinions appear technically less important to the

technocrats and are disregarded in the final decision. Since landowners do not have to

pay for the stormwater management costs directly from their pocket, because the budget

comes from the city′s general revenue funds, they perceive stormwater management as

city′s responsibility, not theirs. Hence, there is no incentive for the landowners to

participate in the governance. Due to this, the public may not show much concern to

stormwater governance activities, which potentially leads to lack of transparency. Thus,

traditional governance lacks the essential attributes of modern democratic governance

outlined by Bishwas and Tortaza, cited earlier.

Decoupled Governance of Intercoupled Functions

Urban stormwater is an integral part of an urban water system and is a subsystem of

urban environmental system. However, it is governed not as a subsystem (Brown 2005;

Wilkinson et al. 2013), but as an isolated and independent undertaking. Its governance,

in general, does not encompass other urban activities that impact hydrology, such as city

planning, land use policy decisions, development control, and building construction. Not

only the the governance of the mutually functioning urban vegetation and urban

stormwater are disconnected, but also the three components of urban water system, viz.

stormwater, waste water, and water supply, are generally governed separately under

different agencies. Though the idea of Integrated Water Management and/or Sustainable

Water Management has come into discussion among scholars for decades, it has not yet
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made considerable advancements (Biswas and Tortajada 2010; Foster and Ait-Kadi 2012).

As a result, viability of Integrated Water Management (Biswas 2004) and Sustainable

Water Management (Biswas and Tortajada 2010) has come into question, despite being

strongly advocated as efficient approaches by experts.

Runoff from Private Parcels: Responsibility vs. Authority Dilemma

Under current governance regime, a major predicament for city government to

implement green infrastructure is associated with managing stormwater runoff from

private land, which occupies most of the city area. The CWA requires a National

Pollutant Discharge Elimination System (NPDES) permit for a discharge of pollutants by

a person from a point source into navigable waters. Since municipal separate storm sewer

systems (MS4s) are point sources, it is mandatory for a city to obtain NPDES permit for

a MS4. Unfortunately, the cities cannot enforce the permits on private parcels, which are

major sources of MS4 discharges, since the statutory definition does not consider

stormwater as a pollutant and land parcels as point sources. Thus, the CWA for a city is

a liability, not a tool to manage stormwater. In other words, the statute gives cities

responsibility but not authority to control stormwater from a private property. City

governments also cannot enforce other regulatory measures to install green infrastructure

because of the exclusive constitutional right given to private property owners. The Fifth

Amendment prohibits both physical and regulatory taking of private property for public

purpose “without just compensation.” But the constitution, as Ruhl et al. (2007)

observe, does not further define what it means by “just compensation”. Additionally, the

Fourteenth Amendment guarantees “due process” and prohibits government control of

private property without legislative authorization, which as such is a very complex

process. Therefore, implementing green infrastructure on private land by the conventional

centralized governance through a command-and-control approach is very challenging.
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Pro Gray Mindset

Social mindset favoring gray infrastructure is another obstacle for the governance to

implement green infrastructure on private lands (Brown and Farrelly 2009a;

Niemczynowicz 1999; Wilkinson et al. 2013). The long-established practice of gray

infrastructure has made people accustomed to unrestrained access to city maintained gray

systems to discharge runoff from their property without paying the direct costs. Due to

this, green infrastructure appears costlier, hence noncompetitive, to the residents, even

when they would result in lower costs in the long run (Goddard 2012). This may

encourage landowners to oppose implementation of green infrastructure on their land.

Consequently, policies and programs supporting green infrastructure on private parcels

are likely to lose political support, because politicians, in general, do not want to put

their political career at risk by supporting the policies opposed by their voters.

Mismatch of Political and Hydrologic Boundary

Jurisdictional boundaries of political entities, such as cities, counties, and residential

districts, rarely match with those of hydrologic units. This mismatch results in

fragmented governance of a single hydrologic unit such as a watershed. Though this

incompatibility does not limit any governance entity from implementing source control

measures within its jurisdiction, it inhibits the implementation of the measures across the

whole hydrologic unit and integrate them to function as an integrated system, unless all

the governance entities within the hydrologic boundry coordinate to formulate consistent

policies and collaborate to implement them. This also results in piece-meal decision

making by different intities of governance Since, more often than not, different governing

entities have conflicting visions, priorities, and goals (Keeley et al. 2013), formulating

consistent policies and implementing them is politically and socially complex.
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Need for a Regime Change

Governance is not a static concept (Grigg 2011). For effective functioning, it needs

to be continuously updated to incorporate growing scientific knowledge as well as

changing socio-technical context. However, stormwater governance has essentially

remained unchanged since the inception and spread of gray infrastructures in the19th and

20th century, despite significant changes in technology, public perception, and other

contexts. A change in governance regime is, therefore, required to address the problems

inherent in the current governance discussed earlier, as well as to incorporate the changes

discussed below.

Shift in Perceptions and Attitudes

In recent decades, there has been a fundamental shift in the way stormwater is

perceived. It is now regarded as a freshwater resource (Cettner 2012; Karvonen 2011;

Marsalek et al. 2007; Novotny et al. 2010) rather than a nuisance (Marsalek et al. 2007;

Wong and Eadie 2000). Understanding of the importance of ecological health for urban

livability has also increased significantly (Wilkinson et al. 2013). Cities are designing and

implementing strategies for hydrological restoration of urban watersheds. Adoption of

ecological principles for urban design is on the rise (Hill 2007; Wu 2014) leading to the

emerging sustainability paradigm of urban development (Novotny and Brown 2007; Wu

2014), which sets maintaining or mimicking hydrological integrity of landscapes as a

central theme.

Technological Innovation

The changed perception and attitudes founded on the increased understanding of

ecological value of stormwater has resulted in the innovation of green technology, which is

fundamentally different from gray technology in many aspects including objectives,

materials, design, construction, and maintenance. Gray is largely an artificial method
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requiring highly skilled engineers to govern, whereas green is largely a natural approach

involving soil and vegetation, and requiring collaboration among experts from multiple

disciplines including hydrologists, soil scientists, plant biologists, and landscape designers.

Since the two approaches are substantially different and the old governance cannot

address many aspects of the new approach, as illustrated in the previous sections, a new

governance approach is warranted.

Evolving Goals and Objectives

Historically, the only objective of stormwater management was to control flood by

draining stormwater through hydraulically efficient conveyance systems (Grigg 2013;

Novotny et al. 2010; Wong and Eadie 2000). The engineers were concerned only with

technical performance and economic efficiency (Delleur 2003). Now, stormwater

management has become a highly integrated (Fletcher et al. 2014) and multi-objective

(Fletcher et al. 2014; Grigg 2013; Wong and Eadie 2000) undertaking that includes flood

control, water quality control, visual amenity, recreational value, and ecological protection

(Zhou 2014). The other objectives include restoration of infiltration in the urban

landscape, recharge of groundwater, and maintenance of more natural flow regimes in the

receiving water bodies (Fletcher et al. 2014; Walsh et al. 2012). To achieve these multiple

objectives, a governance approach with wider scope is required.

Altered Management Hierarchy

Traditional approach to stormwater management relies on collecting stormwater

from individual parcels to central system that conveys and discharges into receiving

waters. Most of the components of gray infrastructure are in the public domain under city

control. Accordingly, management responsibility is on the city government. Conversely, in

the new approach, management tendency is to promote flow distribution instead of

collecting it, and the system components has to be installed on the private properties as
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well. Thus, the management reverses from central collection to distribution. For

landowners, the out-of-sight ought-of-mind undertaking in the old approach now becomes

a responsibility, requiring their involvement in decision making as well as implementation.

Change in Actors of Governance

In traditional approach, a designated city agency is the only actor of governance.

Since green approach requires on-site management, it shifts some of the governing

responsibilities from government to the private landowners (Novotny et al. 2010), who

generate stormwater by changing their land features. Thus, actors of governance are

expanded from a government agency to multiple stakeholders including landowners,

business owners, community organizations, other city agencies, and outside government

agencies. This alters the decision-making structure of governance. Instead of dominantly

discretionary decision-making by city engineers who design and maintain a gray

approach, a green approach requires harmony among decisions of all stakeholders involved

in the process including landowners (Ellis et al. 2010).

Are the Frontrunner Cities on the Right Path?

Stormwater Governance in Five U.S. Cities

Recently, some U.S. cities have been implementing green infrastructure with

encouraging results (Chen et al. 2013; Foster et al. 2011; Novotny et al. 2010; U.S. EPA

2010). Among those, governance of five cities (Portland, Oregon (OR); Seattle,

Washington (WA); Philadelphia, Pennsylvania (PA); Chicago, Illinois (IL); and Syracuse,

New York (NY)) were studied to explore changes, if any, adopted to implement green

infrastructure. A recent study (Chen et al. 2013) shows that these cities are among the

leader cities in the U.S. for implementing green infrastructure. They are adopting

strategies including incentives for private party involvement, dedicated funding, long-term

green infrastructure plans, and stormwater retention standards.
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To analyze the stormwater governance, the city functions that have major impacts

on hydrology were grouped into following five categories: 1) city planning; 2) development

control; 3) water, wastewater, and stormwater management; 4) roads and streets; and 5)

parks and open spaces. The functional jurisdictions of city agencies were then analyzed

based on these categories. City codes were studied to identify the governance structures

and functional jurisdictions of the respective agencies. In cases where the city codes did

not provide sufficient information, other sources, such as official web sites and reports,

were used. The findings are summarized in Table 6.1.

Seattle, Wasington

In Seattle, planning, zoning and development control responsibilities are assigned to

the Department of Planning and Development (DPD) (Seattle Municipal Code 2014, 3).

The Seattle Public Utilities (SPU) is responsible for the management of stormwater,

water, solid waste, and wastewater. SPU and DPD share the inspection and response

responsibilities. All activities in the city right-of-way are the responsibility of the Seattle

Department of Transportation (SDOT). The Department of Parks and Recreation

implements stormwater codes in its jurisdiction. King County is responsible for

wastewater treatment (Seattle Public Utilities 2014). The city also participates in

regional programs, such as the Stormwater Outreach for Regional Municipalities

(STORM) and the Puget Sound Start Here (PSSH) regional campaigns. The SPU is a

member of Water Supply Forum, a regional organization of public water systems and

local governments from King, Pierce, and Snohomish counties (Seattle Public Utilities

2014). The SPU engages the public through community advisory councils and green

infrastructure partnerships. It conducts academic programs in schools for K–12 youths,

and organizes annual watershed forums and public tours for community people. For

community participation for cleanup, the SPU also sponsors programs such as

‘Adopt-a-Street’ and ‘Adopt-a-Drain.’
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Table 6.1. City Functions Affecting Stormwater and Responsible City Agencies

City Cities and Their Responsible Agencies
Functions Seattle Portland Philadelphia Chicago Syracuse
City Department of Bureau of City Planning Department of City Planning
planning Planning and Planning and Commission Planning and Commission

Development Sustainability Development

Development Department of Bureau of License and Department of Department of
control Planning and Development Inspection Planning and Neighborhood

Development Services Development, and Business
Department of Development
Building

Water (w) Seattle Public Water Bureau:w, Philadelphia Department of Department of
wastewater Utilities: Bureau of Water Water, Water: w,
(ww) and w, ww, sw Environmental Department Department of Department of
stormwater King County: Services: Building Public Works,
(sw) ww treatment ww, sw Department of

Engineering

Road/ Seattle Bureau of Department of Department of Department of
street Department of Transportation Streets: Streets and Engineering :

Transportation Projects in Sanitation: street grades,
right–of–way sanitation and Department of

median planting, Public Works:
Department of plan & design
Transportation: of streets
road construction

Park Department of Bureau of Department of Chicago Park Department of
and Parks and Parks Parks and District Parks, Recreation
recreation Recreation Recreation and Youth

Others Office of Office of Mayor′s Office Sustainability Department of
Sustainability Neighborhood of Transportation Council (chaired Community

Involvement and Utility by mayor) Development
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Portland, Oregon

In Portland, the Bureau of Planning and Sustainability (BPS) develops, modifies,

and updates comprehensives plans and land use plans (the City Code of Portland 2014,

3). The BPS establishes and updates sustainability principles, climate change

mitigation/adaptation practices, and other sustainability policies. The Bureau of

Development Services (BDS) implements and enforces planning, zoning, and building

regulations, and controls construction and land modification activities. The Bureau of

Environmental Services (BES) is the lead agency for sewage and stormwater collection

and treatment. The water supply system is under the Portland Water Bureau (PWB).

The Bureau of Parks is responsible for the construction and maintenance of parks and

golf courses. For public participation, the BES conducts watershed-specific as well as

citywide public activities including Clean Rivers Education programs for K–12 students,

community stewardship programs, and community activities. The BES also participates

in the Regional Coalition for Clean Rivers and Streams. It collaborates with the Port of

Portland, which manages stormwater in approximately 5,500 acres within the citys urban

service boundary. It also works with neighborhood associations, stream side property

owners, and Army Corps of Engineers. For public participation, the city has instituted

the Development Review Advisory Committee, which consists of representatives from 17

stakeholders such as communities, professionals, and business organizations. The

committee provides public inputs into the development review process.

Philadelphia, Pennsylvania

In Philadelphia, the City Planning Commission (CPC) prepares the physical

development plan and zoning code, which is implemented by the Department of License

and Inspection (DLI) (Philadelphia Code 2014, 5). The Philadelphia Water Department

(PWD) is responsible for water supply, stormwater management, and wastewater

management services that include wastewater treatment. Construction and maintenance
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in streets and right-of-ways are under the jurisdiction of the Department of Streets

(DOS). Facility construction and maintenance in parks fall under the responsibility of the

Department of Parks and Recreation. The PWD encourages stakeholder involvement

through programs such as education, outreach, and clean-up. It collects public inputs on

goal setting, and mobilizes the community to identify vacant land appropriate for green

infrastructure installation (Philadelphia Water Department 2014). The PWD collaborates

with outside government agencies for shared jurisdictions. For example, the city

collaborated with Delaware, Montgomery, and Chestar counties for Darby-Cobbs Creek in

2004 (Philadelphia Water Department 2014). The city is working with the U.S. EPA to

use the city as a “learning laboratory” for green infrastructure (Chen et al. 2013).

Chicago, Illinois

The Department of Planning and Development (DPD) is responsible for city

planning and land use policies and regulations in Chicago (Chicago Municipal Code 2014,

2). The Department of Building regulates construction activities, and approves and

enforces the stormwater management plan for development projects. Stormwater and

wastewater management are shared between the Department of Water Management

(DWM) and the Metropoltan Water Reclamation District (MWRD), which is a state

agency. The DWM collects the stomwater and wastewater through its combined sewer

system and routes to the MWRD′s interceptor sewers, after which the flow comes under

the responsibility of MWRD for storage, treatment, and discharge. The Department of

Streets and Sanitation (DSS) performs cleaning and sanitation works for public ways. It

is also responsible for planting trees on parkways and medians. The Chicago Department

of Transportation (CDOT) is responsible for the construction works on local

transportation projects, and controls activties on the right-of-way and public sidewalks.

It also supervises the dredging, deepening, and widening of waterways. All the parks and

open spaces are the responsibility of the Chicago Parks District (CPD). The DWM
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coordinates with city departments and agencies to integrate green infrastructures into

City projects. For example, in coordination with MWRD, Chicago Public Schools (CPS),

and CDOT, the DWM identified 39 green projects for 2014. It also involves community

non-profit organizations including the Metropolitan Planning Council, Chicago

Wilderness, Space to Grow, and the Center for Neighborhood Technology.

Syracuse, New York

In Syracuse, the City Planning Commission (CPC) prepares and maintains a

comprehensive development plan for the city including all lands located within three

miles of the citys jurisdictional boundary (the Charter of the City of Syracuse-1960, 2014,

§5). The CPC also prepares a zoning plan subject to the City Councils adoption. The

Department of Neighborhood and Business Development (NBD) formulates and approves

building code of the city. The NBD also coordinates neighborhood development activities.

The Engineering Department (ED) performs engineering and survey services for the

construction activities. The Department of Public Works (DPW) is the lead department

for collection, treatment, and disposal of wastewater and stormwater. It is also

responsible for the construction, repair, and cleaning of city streets and bridges. The

Department of Parks and Recreation (DPR) constructs facilities in the citys parks. The

CPC works in collaboration with other outside agencies, such as Syracuse-Onondaga

County Planning Agency, which comprises representatives from both the CPC and the

County Planning Agency. The CPC coordinates all the planning activities affecting the

County and the City.

Summary of the Findings

The study of the five cities elucidated the following facts:

• Each city in this study has a dedicated centralized agency (utility, department, or

bureau) designated to function as the lead agency for stormwater management. The
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agency governs stormwater predominantly through a command-and-control

approach. Therefore, the overall governance is dominantly centralized and

technocratic.

• The major functions, such as city planning, zoning, development control, and

construction and maintenance works in parks and right-of-ways, that have major

impacts on landscape hydrology and stormwater management are not under the

jurisdiction of the lead stormwater management agency. This leads to fragmented

governance, which are prone to conflicting policies and programs.

• Some cities share stormwater management responsibilities with other government

agencies (e.g., county or state agencies). Examples include Chicago and Seattle,

where the city bears the responsibility of the collection system but not the

treatment work. The treatment work is the responsibility of MWRD in Chicago,

and Metropolitan King County in Seattle. The agencies sharing such responsibilities

have been working in collaboration to accomplish their designated task.

• The problem of incongruence between political and hydrological boundary remains

unaddressed. Though cities collaborate with other local governments in shared

regional watersheds (e.g., Seattle participates in STORM and PSSH), the

collaboration is voluntary, which lacks decision-making and enforcement authority.

• As required by Stormwater Phase II Rule, cities encourage public participation in

stormwater management activities through programs such as education, outreach,

and cleanup campaigns. They also solicit public comments on major public projects

and policy formulation. However, since incorporating public suggestions in the final

decision-making is at the discretion of the agency leadership, it is likely that public

suggestions are not implemented. This may discourage the public to participate.

• There is no formal community-level governance mechanism to involve individual
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landowners and other local stakeholders (e.g., community organizations,

neighborhood groups, and business organizations) in the development of policies,

programs, and management needed to implement green infrastructure. Existing

subdivisions, such as residential districts and wards (e.g., Chicago), neither have

any such mechanisms and responsibilities nor are they delineated by their

hydrological boundaries.

• The city agencies have taken initiatives to motivate their staff to implement green

infrastructure through approaches such as training, enactment of new regulations,

and adoption of new manuals. These initiatives are important to shift mindset of

agency staff as well as developers.

• Currently, green infrastructure implementation is predominantly limited to public

land. However, it is estimated that 65–75 percent of land is private residential

property (Rodrigue 2013), where cities cannot enforce the programs due to

constitutional protection of private property from uncompensated governmental

takings. Many incentives (e.g., fee discount, development incentives, rebates and

installation financing) and other programs (e.g., education, outreach, and cleanup)

offered to private landowners have produced encouraging results. However, they

have not been sufficient to make green infrastructure a common practice on private

parcels.

The findings reveal that though initiatives taken by the cities have shown positive

results, the general problems associated with governance discussed earlier remain in place

preventing the mainstreaming of green infrastructure.

The Road Ahead: Two-tier Model of Stormwater Governance

Designing a new governance approach is a critically challenging task. In the

governance literature, three governance approaches are commonly identified: hierarchical,
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market, and network (Van de Meene et al. 2011). As a legacy of the past, we have a

hierarchical approach, which is not appropriate for green infrastructure implementation

because of multiple barriers outlined previously. Since the stormwater programs need to

be in compliance with federal, state, and city standards, some degree of hierarchical

oversight is, however, required. Markets for stormwater can be established by distributing

allowances of runoff or impervious area to each landowner within a hydrologic boundary

and permitting those allowances to transfer through a free trade. However, as stormwater

is largely a local issue having small market only within a hydrological boundary, it is

likely that it cannot be governed totally by market alone. Yet some degree of market is

desirable among local landowners (Parikh et al. 2005). The market can greatly increase if

price tag can be put on other ecosystem services (e.g., air purification, community

aesthetic, and carbon sequestration) as well.

Network governance emerges from a wide range of self-organized stakeholders (Kjaer

2004; Lemos and Agrawal 2006; Provan and Kenis 2007; Van de Meene et al. 2011). Since

it stimulates colaborative actions among stakeholders (Rijke et al. 2013), it is viewed as a

favorable approach to govern multi-stakeholder systems (Provan and Kenis 2007) such as

stormwater. However, some governmental oversight is required, otherwise the

self-organized network may tend to function without regard to government policies and

regulatory compliance and subsequently risk accountability as noted by Kjaer (2004).

Hence, any one of the three approaches cannot sufficiently address governance issues

alone. As such, a hybrid model that utilizes some attributes of each of the three

approaches is required to better address the governance needs (Lemos and Agrawal 2006).

Therefore, a two-tiered hybrid model consisting of a local hydrological district and a city

level agency is proposed (figure 6.1).

A Local hydrological district, similar to school and fire districts, would serve as a

neighborhood-level mechanism to involve landowners and other stakeholders within its

jurisdiction determined by hydrological boundary. The jurisdiction of such a district
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Figure 6.1. Two-tier Model of Urban Stormwater Governance
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would encompass all local land features, under public property regime, that can be

utilized for stormwater management. Examples include community parks, open spaces,

ponds, and road side rain gardens. The governing body would have democratically

elected representatives from all the stakeholders who own land or businesses within its

jurisdiction. The body would coordinate planning and implementation with individual

landowners, other local stakeholders, and city government. Since its jurisdictional

boundary would be defined by the local hydrological boundary, the hydrologic district

would help address the problem of mismatch between political and hydrological

boundaries.

It should be noted that several neighborhood-level governances (e.g., Homeowners′

Associations and Neighborhood Associations) are successfully conducting many

governance functions across U.S. cities (Chaskin and Greenberg 2013). Though they may

not necessarily fit the proposed hydrologic districts defined by hydrologic boundaries to

govern stormwater, their successful functioning shows that hydrological districts would be

viable. The viability of such governance is further justified from the fact that thousands

of other districts, whose intended goal lies in the domain of environmental protection and

enhancement, such as soil conservation, resource conservation, and flood control districts,

are currently working across the U.S. under different government agencies. Scholars have

also suggested similar mechanism, called ecosystem services district, at local level to

govern natural resources (Heal et al. 2001; Lant et al. 2008). These districts could be

rearranged under the hydrologic districts to bring governance of all interdependent

activities of environmental domain under the same umbrella.

Based on the city, state, and federal requirements, the proposed city level agency

would enforce standards and monitor the performance of the hydrologic districts. Since

management of stormwater requires sufficient knowledge of quality as well as quantity

control, the city agency would also provide resources including technical expertise,

training, and outreach materials to all its hydrological units. This would minimize the
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transaction cost for the hydrological districts. Since most cities have already been funding

stormwater management, resources to local hydrologic districts would require minimal

additional cost. The savings from the avoided cost of gray infrastructure related works

would provide the balance.

The city would determine the required level of stormwater control needed for each

hydrologic district based on modeled pre-development hydrology. Each hydrological

district would then distribute the stormwater control responsibility to its landowners in

commensurate with the lands stormwater generation potential determined by an

independent third party engineering consultant using hydrologic modeling. If a landowner

can control more stormwater than the required quantity, the landowner would be allowed

to sell that additional quantity in the form of tradable credits to any other landowner,

within the hydrologic district, who cannot control stormwater from his land to the

required level due to cost or space reasons. Thus, a market can be created among the

landowners within the jurisdiction of a hydrologic district. The potential benefits from the

allowance trading would provide incentive for a landowner to pay for the third party to

evaluate the stormwater generation potential of his/her land and install green measures.

Hydrologic district would also function as a clearing house to facilitate the trading of

stormwater credits within its jurisdiction. Similar markets can also be established in the

similar fashion among hydrologic districts within the regional watershed.

At the city level, an agency, potentially named the Department of Environmental

Services, would govern stormwater, water supply, parks, open spaces, and LID tools. It

would also provide leadership to the hydrologic districts within the city and coordinate

with other city and outside agencies. Based on the city, state and federal requirements,

the agency would enforce standards on and monitor the performance of the hydrological

districts. Since cities have already established separate agencies, such as utilities, bureaus,

or departments, to govern the five functions that have direct or indirect impact on

stormwater, some of the functions would need to be re-arranged. For example, each city
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has a dedicated department for parks and recreation except in Chicago where recreation

is not under the jurisdiction of the Chicago Park District. Since parks and open spaces

can be instrumental in stormwater management, the proposed model would bring them

under the Department of Environmental Services, which would be responsible for

managing stormwater as well as controlling activities, across the city jurisdiction, that

impact hydrology. As such, the Environmental Services would prepare and adopt the

hydrological map of the urban jurisdiction. The recreational and cultural activities would

be grouped into a separate agency named Culture and Recreation Department.

Since gray and green differ in nature and functioning as well as the expertise

required, a separated department (Department of Sewer) is proposed for governing gray

infrastructures. The Department of Sewer would be responsible for sanitary sewers,

combined sewers, large size storm sewers (e.g., collectors), and wastewater treatment

plants. Small storm sewers would be under the jurisdiction of hydrologic district. The

collaboration between the Environmental Services and the Planning Department would

be redefined to match planning and land use zoning with the hydrological map. The

Department of Building, which controls the construction of building and associated

infrastructures (e.g., driveways and parking lots), would work in collaboration with the

Environmental Services to regulate any addition of impervious areas. Similarly, the Street

Department would work with the Environmental Services for road alignment, grading,

and management of stormwater runoff within the right-of-way. If managing runoff within

right-of-way using green infrastructure is technically infeasible, the excess runoff would be

routed to a green infrastructure beyond its right-of-way operated by hydrologic district or

a private owner through allowance market. If managing stormwater using green

infrastructure within hydrologic district is infeasible, the runoff would be conveyed

through storm sewer maintained by the hydrologic district to the collector sewer

maintained by the Department of Sewer for a fee.

The Environmental Services would function as a focal agency to establish horizontal

124



(e.g., with other city departments, environmental advocacy groups, and civic

organizations) and vertical (e.g., with hydrologic districts, and upper management in the

city, state and federal agencies) coordination to perform its stormwater management

functions. Since each hydrologic unit is defined according to the hydrologic

characteristics, an umbrella organization that integrates all the hydrologic units can be

instituted at the watershed scale. This can assure the implementation of watershed scale

measures subsequently reducing fragmented governance.

The governance problems discussed in this paper also prevail in cities of other

developed countries, such as Australia (Brown 2005; Brown and Farrelly 2009b; Roy et al.

2008). A comparative study of urban stormwater management in the U.S. and Australia

by Roy et al. (2008) identified problems including fragmented responsibilities, lack of

institutional capacity, lack of legislative mandate, lack of market incentives, and

resistance to change as major barriers not only in U.S. cities but also in Australian cities.

This supports the rationale for the use of the proposed model in cities of the developed

countries other than the U.S.

In developing countries, cities suffer from a lack of financial resources and technical

expertise than cities in developed countries. Since green infrastructure is less demanding

than gray from both the technical and cost perspectives, it would be more suitable in

those cities. With the establishment of a city agency as a facilitator, the proposed model

would be appealing. Successfully functioning neighborhood organizations (called Tol

Sudhar Samiti in Nepali language) in the City of Butwal in Nepal reveal not only viability

but also necessity of such governance model in developing countries. For years, hundreds

of such organizations have been working citywide as neighborhood stewards. Currently,

the city provides guidance; and each household pays a flat monthly fee and provides at

least one volunteer for three hours on the first Saturday of every month for activities such

as neighborhood cleanup (S. Gyawali, vice president of Indreni Tol Sudhar Samiti,

telephone interview, August 23, 2015). According to Gyawali, the household which
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cannot send a volunteer, pays a fine. If neighborhood groups are rearranged according to

hydrological boundaries, and the city provides knowledge, guidance, and technical

support, these organizations would be able to work as the hydrologic districts of the kind

proposed in the two-tier model.

Due to the nature of many benefits GI provides to the society, and since the

implementation of GI requires extensive community involvement, governing GI can be

considered as governing commons. The necessity and viability of the the proposed

governance model is in line with Ostrome′s design principles for governing commons

(Ostrom 1999). In fact, the proposed governance and the design principles are

complementary to each other. For example, Ostrom’s principles require to define clear

group boundaries, which will be hydrological boundary proposed for hydrological

districts. The rules to be formulated for hydrologic districts will be formulated by the

local stakeholders based on local needs which will fulfil Ostrom′ another principle. The

proposed hydrologic district governance will be formed by the community people which

are directly affected. This will ensure Ostrom′ third principle. The hydrologic district will

also help fulfil Ostrom′s other principles, such as providing opportunity for community

members to guarantee their rule making rights, monitoring members behavior, using

sanctions for rule violators, and resolving dispute among the members cost-effectively.

The two-tier model along with the regional level watershed governance proposed in the

dissertation will provide a frame work for Ostrom′s “nested tiers” for building

“responsibility from the lowest up to the entire inconnected system.”

Conclusion

This chapter has three main areas of focus. First, it has identified the problems

inherent in traditional stormwater governance that prevent wide scale adoption of green

infrastructure. Second, it has examined the stormwater governance of five U.S. cities,

which have been implementing green infrastructure for some years, to see how they are
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addressing the governance problems. Finally, the paper proposes a new governance model

to address the problems.

Traditional urban stormwater governance was adopted to govern highly engineered

and centralized gray infrastructure. As such, the approach is highly technocratic and

centralized, which functions through enforcement of government regulations. In contrast,

green infrastructure uses natural processes and is distributed throughout the landscape.

It involves a wide range of stakeholders in the governance process, including individual

parcel owner, business organizations, social organizations, and government agencies, since

the generation of stormwater is characterized by the hydrological processes in the

landscape controlled by their activities. Therefore, the governance needs to be highly

collaborative and coordinated between them. The existing discord between political and

hydrological boundaries needs to be addressed to restore and enhance the watershed

health. In addition, the existing fragmentations of governance within a watershed, due to

presence of multiple authorities with multiple (sometimes conflicting) visions and goals,

have created significant problems. This also needs to be addressed.

The survey of the cities revealed that the current practice of public involvement in

cities is merely limited to participation in education, outreach, and cleanup programs. In

cases when public comment is requested by government or regulatory agencies, as

required by Stormwater Phase II Rule, the decision authority is, however, not required to

implement these comments. The coordination is also limited within government agencies.

The collaboration with stormwater generators and other local stakeholders out of the

government office is lacking.

The proposed two tier model can address the problems existing in the traditional

stormwater governance. The local hydrologic district is a neighborhood level body with

the hydrological boundary as its jurisdictional boundary. The governing body would

consist of representatives from land owners, community, civic-organizations,

environmental organizations, and businesses. The city agency would enforce regulatory
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standards and provide technical expertise, administrative support, and other resources to

the hydrologic district. The agency would function as an umbrella organization at the

city level, integrating the functions of all the hydrologic districts. The hydrologic district

would also work as a local ecosystem services district. In addition, markets for

stormwater trading can be established among parcels within a hydrologic district as well

as among hydrologic districts within a regional watershed.

The proposed model would provide opportunity for distributed governance, ensure

public involvement, and foster collaboration among stakeholders. This would also help

revive the decline in civic institutions outlined in Emerson et al. (2012). Since the

decision authority would be solely on the hydrologic district, integration of these

hydrologic districts at watershed level would minimize the fragmented governance.

However, additional research is needed to identify methods for appropriate and effective

integration. Additional research is also required to define the authority, logistics, and the

procedures of formation of the governing body, which may be unique to each city. If for

no other reasons, the hydrologic conditions are location-specific, case specific research is

needed to define the spatial scale of the hydrologic district. With minor adjustments to

incorporate a citys socio-political context, the model could be used globally, in developed

as well as developing countries.
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CHAPTER 7

OVERALL CONCLUSION

Summary

In addition to being a sustainable approach of stormwater management, green

infrastructure offers numerous other ancillary benefits that are crucial for urban

sustainability. However, the approach is yet to become a mainstream practice. To

encourage cities for implementing it, there is a critical need to overcome two primary

challenges. First, urban stormwater managers and decision makers should be ensured that

the approach can adequately and reliably manage stormwater. In the time when cities are

facing increasing flooding problems due to climate change, this concern has become

increasingly prominent. Second, if there exist any barriers that discourage the

implementation of GI, the barriers should be removed and strategies that can expedite the

use of GI should be adopted. This multidisciplinary research dealt with these challenges.

Specifically, the study focused on four central questions: What will be the

performance of a current drainage system when subjected to increased precipitations due

to climate change? What will be the performance if GI is applied? What barriers are

preventing the application of GI as a common practice? And what socio-institutional

arrangement can remove the barriers and expedite the implementation of GI?

For the first two questions, I conducted a case study on an existing 169.23-hectare

combined sewer system of St Louis, a U.S. city located in the state of Missouri. To

evaluate the impact of climate change, the system was modeled using U.S. EPA′s SWMM

hydrologic-hydraulic model and was simulated for historical (1971-2000) and future

(2041-2070) 50-yr 3-hr storms. The observed historical precipitation data was obtained

from NOAA and the future data was calculated by using a delta change factor. The delta

change factor was obtained from historical and modeled future 30-year data produced by

GCMs and obtained from NARCCAP. Finally, the simulation for the past and future
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rainfall scenarios were compared to quantify the impact. The results showed significant

impacts on the performance of the system. For example, total number of nodes flooded

increased by up to 14.28% and CSO volume increased by up to 78%. The details of this

investigation are presented in Chapter 3 of this dissertation.

To assess the efficacy of GI to address the climate change impact, four GI measures,

including bio-retention cells, permeable pavements, green roofs, and rain barrels, were

added to the subcatchments of SWMM model, and the model was run for the future

30-yr 3-hr rainfall data. The results showed that addition of GI significantly reduced the

impact of the increased rainfall. For example, the increase in the number of flooded nodes

was decreased by 57.14% and the increase in the CSO volume was decreased by 39.62%.

Details of the research on the performance of GI is presented in chapter 4.

To address the third and the fourth research problems, I critically examined the

available literature on the relevant areas. The study was focused on the U.S. context, for

which I reviewed peer reviewed journal articles, books, U.S. constitution, U.S. laws and

regulations, court decisions, and U.S. EPA case study reports related to the issues. In

addition, I examined ordinances, codes, manuals, and standards of 11 U.S. cities including

Seattle, Washington; Portland, Oregon; Chicago, Illinois; Philadelphia, Pennsylvania;

Syracuse, New York; Dallas, Texas; Camden, New Jersey; Macatawa, Michigan; Neosho,

Missouri; Phoenix, AZ; and Los Angeles, California. From the study, 29 barriers were

identified which were grouped into the following five types: federal and state policy

barriers, city policy barriers, governance barriers, resource barriers, and cognitive barriers.

To address these barriers and encourage GI implementation, 33 policies were suggested

which were also grouped into five corresponding categories including federal and state

policies, city policies, alternative governance, innovative funding mechanism, and EAAR

(education, awareness, awards and recognition). The fifth chapter of the dissertation has

presented the details of this study.

A further investigation was done for exploring governance barriers as well as for
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finding a new governance framework. Through exploratory research of literature and by

surveying current governance in five U.S. cities (Seattle, Portland, Chicago, Philadelphia,

and Syracuse), we identified multiple barriers inherent in current governance that prevent

adoption of GI. Major barriers identified included: centralized and technocratic approach,

fragmented governance, lack of public involvement opportunities, lack of coordination,

and lack of authority to control flow from private parcels. A two-tier new governance

model was proposed to address the barriers. The research procedure and outcomes are

presented in detail in chapter 6.

Conclusion

The research results indicated that the increase in precipitation due to climate

change will have a significant impact on the system evaluated in the research. With

increased precipitation, the system′s performance at both the conduits and nodes,

considerably decreased, resulting in increased flooding and CSO volume. Thus, the

system should be retrofitted to enable it to address the increased the precipitation. After

the addition of various combinations four GI measures (bio-retention cells, permeable

pavements, rain barrels, and green roofs) to the model, the impacts were significantly

lowered. Since there is room for adding significantly more GI measures in the study area

catchments, it can be deduced that if GI is added adequately and appropriately, the

impacts of increased precipitation will be addressed fully.

The study also concluded that currently there exist numerous barriers that prevent

implementation of GI. Most critical barriers are the current socio-institutional set-up and

cognitive status quo, which inherently support conventional gray infrastructure. Other

barriers, such as those related to resource, policy, and governance, are essentially the

result of these two barriers.

Social acceptance is arguably the most decisive driver of a technology and an

addresser of its impediments. Enhancing the knowledge of GI through education and
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awareness and the resulting removal of cognitive barriers can boost social acceptance. If

social acceptance is high, formulating other pro-GI policies and programs at any level

becomes easier. A high social acceptance also encourages courts and legislatures to make

favorable policy decisions, which will result in the development of GI-friendly common

and statutory laws. The enhanced social acceptance will also help update engineering

standards to incorporate GI. Additionally, it can foster markets and help establish GI

stewardship as a business that contributes to the generation of sustainable financing. In

addition to social acceptance, the availability of expertise, skilled personnel, champions,

and leaders are of vital importance for driving GI implementation. Therefore, I suggest

adopting policies that focus on awareness, education, recognition, training, coordination

and engagement.

Since GI involves a wide range of stakeholders, its governance needs to be highly

collaborative, coordinating, and participatory. However, the current governance

structured for gray infrastructure is highly technocratic and centralized, and functions

through enforcement of government regulations. In addition, the unaligned political and

hydrological boundaries have traditionally resulted in fragmented governances, which

generally leads to inconsistent policies and actions. I concluded that the current

governance is not suitable for GI, and proposed a two-tiered new governance approach.

Through hydrologic districts and city level agencies, the proposed model can address the

existing governance barriers. Since the hydrological districts will be structured according

to local hydrological boundaries, and since the decision authority would be on the

hydrologic districts, integration of these hydrologic districts at regional watershed level

would minimize the fragmented governance. In addition, since the districts function at

neighborhood level, they will provide better opportunity for public participation. They

will also function as ecosystem services districts and establish stormwater trading among

parcels within the hydrological district and among hydrological districts within the parent

regional watershed. The city-level agency will establish coordination among hydrological
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districts as well as with city and/or other higher-level agencies.

Recommendations

This study gives rise to many potential agenda for future research. Particularly, I

make the following recommendations.

• The SWMM model developed in this study is for a single rainfall event. The model

can be enhanced for modeling continuous events to evaluate the performance of the

system and assess the efficacy of GI measures for such events.

• A significant uncertainty exists in GCM/RCM outputs. However, with the increase

in knowledge base and computational capacity, increasingly improved data are

being available. Model should be updated with the updated future rainfall data for

assessing the impact and adaptation more realistically.

• The climate change scenario analysis and assessment of GI performance conducted

here is just a demonstration only for this dissertation. To get to a more realistic and

applicable results, more analysis, involving more scenarios and more watersheds, is

necessary. Similarly, efficiency of each GI option needs to be evaluated for each

context and an optimal combination needs to be worked out. Further research is

needed for these works.

• The selected GI measures applied in the SWMM model were based on my personal

judgment, and were not optimized. A research is necessary to identify the most

suitable GI measures and their best combinations to have optimal performance.

• Research also remains to be done to identify the most cost-effective combinations of

GI options. Since cost plays a vital role in making implementation decisions, it is

essential to find optimally cost-effective approaches.
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• The study to explore barriers, policies, and governance structure was focused on

some U.S. cities, though some case studies for some cities in Europe and Australia

were also examined. However, due to the prevailing methods of infrastructure

planning, the decreased availability of open spaces in traditional cities, and

relatively low socio-economic development, the barriers and solutions in cities in

developing countries may be somewhat different, which necessitates further research.

• A research is also needed to establish market among the parcels within a hydrologic

district and among hydrologic districts within a regional watershed.

• The study indicated a need to create a pro-GI society in the future by teaching

K–12 students about the concept, importance, and the reliability of GI through

class work and demonstration projects. Further research is needed to design the

scope, material, and modality of the teaching.

• Research is also necessary to design study materials and modality for university

students as well as to design training materials and methods for current city staffs.

Further research is also recommended for defining institutional structures,

procedures of formation of the governing body, functional jurisdictions, authority,

and resources for the proposed regional governance as well as the hydrologic district.
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