ASSESSING EQUIVALENT TEMPERATURE TRENDS IN MAJOR EASTERN US CITIES

Mercedes Lissette Gomez-Jacobo
Southern Illinois University Carbondale, clima.mercedes@gmail.com

Follow this and additional works at: http:// opensiuc.lib.siu.edu/theses

Recommended Citation

Gomez-Jacobo, Mercedes Lissette, "ASSESSING EQUIVALENT TEMPERATURE TRENDS IN MAJOR EASTERN US CITIES" (2017). Theses. 2236.
http://opensiuc.lib.siu.edu/theses/2236

ASSESSING EQUIVALENT TEMPERATURE TRENDS IN MAJOR EASTERN US

 CITIESby
Mercedes Gomez Jacobo

B.S., Southern Illinois University, 2013

A Thesis
Submitted in Partial Fulfillment of the Requirements for the Master of Science.

Department of Geography and Environmental Resources
in the Graduate School
Southern Illinois University Carbondale
December 2017 CITIES

By

Mercedes Lissette Gomez Jacobo
A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Degree of Master of Science
in the field of Geography and Environmental Resources

Approved by:

Dr. Justin Schoof, Chair
Dr. Trenton Ford
Dr. Aldo Migone

Graduate School
Southern Illinois University Carbondale
March 3, 2017

AN ABSTRACT OF THE THESIS OF

Mercedes L. Gomez Jacobo, for the Master of Science degree in Geography and Environmental Resources, presented on September 2016, at Southern Illinois University Carbondale.

TITLE: ASSESING EQUIVALENT TEMPERATURE TRENDS IN MAJOR EASTERN US CITIES
 MAJOR PROFESSOR: Dr. Justin Schoof

Summer (JJA) temperature (T) and equivalent temperature $\left(T_{E}\right)$ for 18 of the largest cities in the eastern United States are investigated for two time periods: 19482014 and 1973-2014. Because temperature provides an incomplete description of lower tropospheric heat content, we supplement with T_{E}, which also accounts for the energy associated with moisture. An auxiliary investigation using air mass data from the Spatial Synoptic Classification (SSC) augments the investigation of T and T_{E} trends. The trend analysis revealed significant trends in $\mathrm{T}_{\text {min }}$ at all stations over the 67-year time period and over most stations for the shorter (41-year) period. Minimum T_{E} likewise increases nearly everywhere in the longer series, but at only around half of the stations in the shorter series. Stations with increasing T_{E} in the shorter period are primarily coastal or located in the southern and upper Midwest, where there has also been a noticeable lack of warming. Our results also exhibit a decrease in the diurnal T_{E} range that accompanies the documented decrease in diurnal temperature range over the same period. Trends in T^{T} and T_{E} are evaluated in the context of changes in air mass frequency. A heat wave analysis was also conducted to identify changes in intensity and frequency using T and T_{E} Overall, our findings suggest that T_{E} provides a more comprehensive perspective on recent climate change than T alone. With heat wave
frequency and intensity projected to increase, we recommend adoption of T_{E} to account for changes in total surface heat content.

TABLE OF CONTENTS

CHAPTER PAGE
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 5
CHAPTER 3 METHODS AND DATA 20
CHAPTER 4 RESULTS 29
CHAPTER 5 DISCUSSION AND CONCLUSION 45
REFERENCES 51
APPENDIX A 64
APPENDIX B 76
APPENDIX C 88
APPENDIX D 100
APPENDIX E 111
APPENDIX F 124
APPENDIX G 136
APPENDIX H 148
APPENDIX I 160
APPENDIX J 175
APPENDIX K 187
APPENDIX L 197
APPENDIX M 210
APPENDIX N 223
APPENDIX P 248
APPENDIX Q 261
APPENDIX R 274
APPENDIX S 287
APPENDIX T 288
APPENDIX U 289
APPENDIX V 290
VITA 291

LIST OF TABLES

TABLE PAGE
Table 1 21
Table 2 25
Table 3 25
Table 4 31
Table 5 34
Table 6 37
Table 7 39

LIST OF FIGURES

FIGURES PAGE
Figure 1 22
Figure 2 29
Figure 3 30
Figure 4 32
Figure 5 33
Figure 6 36
Figure 7 38
Figure 8 38
Figure 9 39
Figure 10 41
Figure 11 42
Figure 12 43
Figure 13 44

CHAPTER 1

INTRODUCTION

Extreme heat events in the United States are responsible for more deaths on average than all other fatal weather events combined (National Weather Service, 2014). During the years 1999-2009 the United States experienced extreme heat events that claimed 7,233 lives, which is an average of 658 heat-related deaths per year (US Department of Health and Services, morbidity and mortality report, 2013). Many of these deaths often occur in large cities which tend to house their own microclimates by creating their own set of thermal, radiative and moisture conditions (Oke, 1997).

Urban microclimates have been studied intensely over the years, particularly because cities produce the urban heat island effect (UHI). The urban heat island effect refers to the warmer air temperatures that occur in cities when compared to their rural neighbors (Oke, 1986). Urban regions and their unique microclimates are important because it is where human activities display the changes they create in the atmosphere most (Oke, 1997). Large cities have copious amounts of asphalt, concrete and various metals, these impervious surfaces enable cities to modify the local hydrologic cycle.

High temperatures coupled with high humidity contribute to human heat stress. For this reason, it is important to analyze changes in heat wave events using metrics that account for both humidity and temperature. A thermodynamic metric called equivalent temperature T_{E} allows us to quantify the amount of energy in a parcel of air by using temperature, dew point, and pressure (Bolton, 1980). T_{E} is the temperature that an air parcel would have if all associated water vapor were condensed and the resulting latent heat is used to increase the temperature of the parcel (Schoof et al.,
2014). Equivalent temperature $\left({ }^{\circ} \mathrm{C}\right)$ allows us to quantify and separate the moist and dry components which contribute to its magnitude; this makes it a good metric for assessing heat waves (Davey, 2006; Fall et al., 2010; Schoof et al., 2014). High humidity prevents the body from sweating and therefore cooling itself off, this increases the chances for heat related stress and illness (Willett et al., 2007). When T_{E} is high both the temperature and dew point are high because it is dependent on both variables. By contrast the heat index, another common heat metric, is highly dependent on temperature (or apparent temperature) and can be high, even when the humidity is not. The T_{E} metric provides a more accurate measure of lower atmospheric energy content (Pielke, 2004).

Another important factor that may impact trends in T_{E} at a synoptic scale is the frequency of air masses over large cities. The influence of air mass frequency over large urban areas and their potential to influence equivalent temperature trends has yet to be investigated. Therefore, in addition to examining trends in T and T_{E}, this study will include an analysis of air mass data from the spatial synoptic classification system (SSC) (Kalkstein and Nichols, 1995; Sheridan, 2002). The purpose of this study is to analyze equivalent temperature trends in 18 of the largest cities in the eastern US (US Census Bureau, 2010) to better understand the relationship between temperature and T_{E} trends. In addition, SSC data will be analyzed in order to help determine the frequency of air masses in specific regions as well as their trends. Finally, this study will include two auxiliary analyses: 1) diurnal temperature range (DTR= $T_{\max }-T_{\min }$) and 2) heat wave frequency and intensity for the study period. Previous studies have found that due to differential changes between daily minimum and maximum temperatures

DTR is decreasing in many parts of the world (Easterling et al., 1997). The decrease in DTR is a signal of climate change and is important to consider since water vapor is a strong greenhouse gas and has the ability to retain heat (Trenberth, 1997). Heat wave intensity and frequency are also expected to increase (Meehl and Tebaldi, 2004), therefore observing the trends of heat waves using T_{E} will be helpful understanding its potential impacts.

Despite knowledge that humidity also plays a role in most heat waves, there has been relatively little attention paid to the role of humidity in studies of urban climate hazards. Surface heating trends can be influenced by moisture trends this can lead to changes in precipitation both in geographic distribution and intensity (Davey, 2006; Willett et al., 2007). This thesis is designed to answer three main questions: 1) How do temperature and equivalent temperature trends differ in urban areas? 2) How do synoptic-scale weather patterns and air masses relate to the observed temperature and equivalent temperature changes? 3) Are the intensities and frequencies of heat waves changing along with observed temperature and equivalent temperature trends? The purpose of this study is to expand on previous work dedicated to investigating the differences between T and T_{E}. The cities chosen for this study are all located east of the $100^{\text {th }}$ meridian; we refer to this area as the eastern United States (US). The cities are both in coastal and continental regions, and together in 2010 were home to over 21 million Americans (US Census Bureau, 2010). We expect to find positive significant trends in T and T_{E}, particularly in the summer which has been found in previous works such as Davey (2006). Davey (2006) found that urban sites and sites that are closer to major bodies of water were relatively warmer in T_{E} when compared to T . Overall, we
expect our findings to align with previous research which have found that trends in T_{E} to be larger in magnitude relative to trends in T (Davey, 2006), noticeable changes in air mass frequency (Kalkstein et al., 1998), decrease in DTR (Easterling et al., 1997) and increases in heat wave frequency and intensity (Meehl and Tebaldi, 2004). This study will contribute to existing literature on T_{E} by focusing on large cities over an extensive study period, one that is longer than any other study to date. Additionally, no other study that has used T_{E} as its metric to interpret surface heat content has taken into consideration the potential impacts of air masses, heat waves and their frequencies over urban regions.

CHAPTER 2
 LITERATURE REVIEW

Climate related challenges are already on the rise in the US. In some areas of the country multiple threats can occur at once and often some communities are disproportionately vulnerable (Madrigano et al., 2015; Crimmins, 2016,). In this chapter, we discuss four main ideas that drive the scope of this study. First, we explore urban heat islands and their impacts. Second, we look at several definitions of heat waves in the US and note how they vary regionally. Finally, we discuss previous findings on equivalent temperature and humidity as well as other factors that influence their trends.

Urban Heat Islands

The urban regions of the United States (US) are representative of the growth and development experienced since the industrial age. Cities offer economic opportunity, cultural diversity, centralized business districts, extensive road systems, complex infrastructure, and a variety of jobs for booming populations. The urban heat island (UHI) effect refers to the warmer air temperatures that occur in cities when compared to their rural neighbors (Oke, 1986). Previous studies have found that the UHI can increase temperatures in urban regions by $8-10^{\circ} \mathrm{F}$ and even twice as warm as rural counterparts during the summer months (McCormick et al., 2016 and Wouters et al., 2017). The impacts that cities have on the environment is the focus of many studies because they show clear examples of human induced change, particularly when it comes to local climates (Oke, 1997).

Urban weather patterns are often driven by synoptic and meso-scale features. In addition to synoptic influences, they are unique to the local characteristics of the urban setting (Meir et al., 2013). Glanz (1990) noted that cities possess several characteristics which make them interesting" laboratories" or analogues in which research questions regarding the mechanisms and impacts of global climate change can be studied.

Differences in temperature in cities are related to land cover use/change, the predominance of impervious surfaces and the presence of low albedo construction materials, as well as other differences between cities and rural areas (Stewart and Oke, 2012). This is of important because half of the world's population lives in cities and this proportion continues to grow (Grimm et al., 2008). It is also important to recognize that the UHI effect is not limited to large cities, but can exist within built environments as small as 1 km² (Coseo and Larsen, 2014). Stone (2012) suggests that land cover use/change combined with waste-heat (byproduct of industrial activity) are making larger contributions to warming in US cities than global climate change. UHI's are not always found in the urban core, but may dispersed within the urban and suburban areas away from downtown (Coseo and Larsen, 2014). A study by Lo \& Quattrochi (2003) found that over a 10-year period during the late 1990's, suburban areas of Atlanta had become warmer than the urban core of the city or downtown area. These irregularities can also be related to the amount of vegetation present in specific locations, affluent neighborhoods tend to have more areas of green space. It is also important to note that not all types of vegetation help equalize the UHI effect, for example grass is not as effective as trees that can cast shade and contribute more
moisture with broad leaves. Stone and Norman (2006) determined that if the suburban neighborhoods of Atlanta reduced lawn areas by 25% and replaced it with trees, the heat related to UHI could be reduced by 13%.

In addition to their spatial variability, urban microclimates can be divided vertically into two separate areas: the urban boundary layer, the area above the building rooftops and the urban canopy layer is considered as the area that extends from the building tops to the surface (Oke, 1987). The air within the urban canopy is the air that impacts human health and comfort. Another perspective to consider with UHIs is the urban canyon ratio. It consists of measurements that include the height of the buildings relative to the width of the street $(\mathrm{h} / \mathrm{w})$. Tall buildings with narrow streets retain heat from solar radiation as absorbed by building walls, this also creates elevated air temperatures (Oke, 1988). Previous studies have shown that the urban canyon ratio is a useful predictor of air temperatures (Eliasson, 1996, Sakakibara, 1996). The contribution of increased air temperatures from impervious surfaces and the urban canyon ratio have been found to be approximately equal in UHI's (Oke et al., 1991). The orientation of city streets can also affect the amount of air circulation and shading received in an UHI, studies have found higher temperatures in east-west streets when compared to north-south streets (Coseo and Larsen, 2014). East-west streets lack shading during the course of the day contributing to warmer temperatures. In addition to shading, streets that are in alignment with prevailing wind patterns are expected to have lower air temperatures in comparison to temperatures in streets that were perpendicular (Ali-Toudert and Mayer, 2007).

Maximum UHI temperatures occur predominantly in the late afternoon, however research shows that night time air temperatures or minimum temperatures are the strongest predictor of heat-related mortality and morbidity (Kalkstein \& Davis, 1989). A study in 2014 found that nighttime (minimum) temperatures in Chicago were significantly affected by the amount of tree canopy and impervious surfaces. These two factors within an urban block were attributable for 68% of the air temperature, the strength of this relationship increases to 91\% during heat events (Coseo and Larsen, 2014). Buildings absorb heat during the day and release the stored heat at night. The released heat is then trapped in the thin atmospheric boundary layer which can continue to accumulate heat as the air moves across the urban area (Zhao et al., 2014). Parks in cities can create an "oasis" or cooling effect in urban areas due to evapotranspiration. Parks and other large green spaces that create this effect are also known as heat sinks (Oke, 1987; Jenerette et al., 2011; Zhao et al., 2014; Hall et al., 2016). Although green spaces can provide some cooling, it is not enough to offset daytime warming. One possible mitigation attempt is the increasing of urban albedo. This is accomplished with roofs being painted white or being covered in a highly reflective material. Increasing albedo would have little direct effect on minimum temperatures. The indirect effect is a reduction of heat storage throughout the day therefore less heat is being released back into the atmosphere at night (Zhao et al., 2014). Because of the UHI effect, cities are more vulnerable to heat waves or extreme heat events which threaten the livability and safety of densely populated urban environments.

Heat Waves in the US

Heat is the number one weather killer in the US; heat related deaths averaged 237 per year during the 10-year period of 1994-2003(National Weather Service, 2014). In fact, heat is attributed to more deaths annually than floods, lightning, tornadoes, and hurricanes combined. The precise definition of a heat wave is not uniform in the literature and varies by study region, there is no universally accepted definition of a heat wave (Souch and Grimmond, 2004). The thresholds for heat stress and illness vary from place to place, and factors such as prior conditioning, and social and cultural practices can influence human response to excess heat. Living in a particular climate as well as recent exposure to extreme events can impact how a population will be affected by a heat event (Souch and Grimmond, 2004). The National Weather Service (NWS) has created thresholds using generalized criteria for human heat stress: the challenge is that these thresholds cannot be applied nationwide. For example, the regions that have naturally occurring high levels of humidity will have a different human heat stress threshold than dry regions such as deserts. Populations are conditioned to their environments and climate; therefore, definitions generally carry some level of variation based on location and are not agreed upon in the scientific community (Souch and Grimmond, 2004). Many widely used measurements for heat waves found in scientific literature are expressed by different heat indices which combine different variables such as maximum temperatures, cloud cover, humidity and other factors that create multi-measurement indices (Perkins, 2015).

More generally, a heat wave is defined as an extended period of high atmosphererelated heat stress, which causes temporary modification of lifestyles and may have
adverse health consequences for the affected population (Robinson, 2001). The heat index is a measure that is commonly used to communicate to the public how hot it really feels when relative humidity is factored in with the actual air temperature (NWS, 2017). The heat index expressed as apparent temperature in degrees Fahrenheit. A previously stated, the heat index is highly dependent of temperature (or apparent temperature) and can be high, even when the humidity isn't. Another common use of the term heat wave is defined by as an event that exceeds average temperatures for a minimum over a number of days, usually 2-3 (Peterson et al., 2013), this is also the definition used for European studies like Fischer and Schaar (2010). Heat waves can also be defined as multi-day periods in which $T_{\text {max }}$ exceeds its summer $90^{\text {th }}$ percentile value (Schoof et al., 2014, Meehl and Tebaldi, 2004). In this study, we adopt these strategies and define a heat wave day as any day above the $90^{\text {th }}$ percentile of June, July and August (JJA).

A heat wave is defined by NWS as an event in which the maximum temperature meets or exceeds $90^{\circ} \mathrm{F}$ at least 3 consecutive days. Many cities in the US follow the NWS guidelines when issuing warnings and advisories while other cities modify the criteria to suit their specific needs. For example, New York City (NYC) will issue a heat advisory when temperatures reach $100-104^{\circ} \mathrm{F}$ for at least two consecutive hours and when the heat index is expected to reach $95-99^{\circ} \mathrm{F}$ for at least two consecutive days (weather.gov, 2016). The National Weather Service (NWS) issues heat advisories and warnings when heat index values reach $105^{\circ} \mathrm{F}\left(41^{\circ} \mathrm{C}\right)$ or greater. When the heat index has a potential to reach $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ or higher within a $24-48$-hour period an excessive heat watch is issued. When the heat index values are expected to reach or
exceed $110^{\circ} \mathrm{F}$ within a $12-14$-hour period an excessive heat warning is issued (NWS, 2016).

One example of a high humidity and high temperature event is the heat-wave of Chicago in 1995, which claimed the lives of over 700 people, heat stress was amplified by high dew point temperatures (Palecki et al., 2001; Meehl and Tebaldi, 2004; Souch and Grimmond,2004). During a heat wave event, low winds coupled with higher temperatures offer no relief to urban areas at night. Heat waves in cities can be longer lasting and extend to the rural surroundings (Meir et al., 2013). Intensity and frequency of heat waves is expected to grow in the coming years (Meehl and Tebaldi, 2004). Studies have found that there is an interaction between UHI's and Heat Waves, UHI's provide the conditions necessary for heat to remain trapped in urban regions for days (Li and Bou-Zeid, 2012). Zhao (2014) suggested that UHI's will increase heat wave stress on humans, particularly in wet climates where high humidity is coupled with high temperatures such as the eastern US.

Impacts on population

A report by the US Department of Health and Human Services (2013) points out that the most vulnerable demographic is the elderly, especially people who live alone. During the Midwestern heat event of 2012 over 69\% of the victims lacked air conditioning. Other factors that the study mentioned were that even with government response, many people do not use the cooling centers due a multitude of reasons. Some of the reasons listed include: stigmas attached to their use, lack of transportation, restriction of pets, and lack of awareness of the dangers that extreme heat poses. A study in Alabama used different heat indices to compare heat waves in
urban vs. rural areas. It was discovered that having different heat index definitions resulted in different association estimates when studying extreme heat events and the effects that heat has on humans (Kent et al., 2004). This further proves that the public's responses and perceptions of what a heat wave is and how it is defined varies by region in the US. The researchers also emphasized the need to develop heat wave response systems that addressed both cities and rural areas since populations exhibited different responses.

Heat waves have effects that can last from days to a week after the event. A study from 2014 found that hospital admissions for people 65 and older generally increase by approximately 3\% over the eight days that follow heat waves. In addition to an increase in cardiovascular diseases, hospital admissions increased by 15\% for renal and 4\% for respiratory issues in the 8-day period following an extreme heat event (Gronlund et al., 2014, Crimmins et al., 2016). The effects on the body are numerous, exposure to heat above $105^{\circ} \mathrm{F}\left(41^{\circ} \mathrm{C}\right)$ can lead to heat stroke, central nervous system dysfunction, and heat exhaustion (McCormick et al., 2016). Increased temperatures have also been found to be positively correlated with hospital trauma admissions for children and adults (Ali and Willett., 2015). There is a strong need to educate and target patients whose conditions may be worsened by extreme heat and humidity. There are also large social disparities in heat related deaths that reflect socioeconomic advantages or lack thereof.

Several studies have confirmed that often hotter temperatures are present in poorer neighborhoods (Coseo and Larsen, 2014; Madrigano et al., 2015). A case study in New York City found that deaths related to heat in UHI's were more likely among

African American residents than any other ethnicity. In addition, most of the deceased lived in areas that had little or no green space; usually their neighborhoods contained more highly developed industrial environments and residents lack air conditioning (Madrigano et al., 2015). UHI's often create a disproportionate burden for the poorest residents, a 2006 study found that for every \$10K increase in annual household income leads to a $0.5^{\circ} \mathrm{C}$ in cooling due to the prevalence of more trees and grass in affluent neighborhoods in Phoenix (Jenerette et al., 2006; Coseo and Larsen, 2014; Hall et al., 2015).

Heat deaths are not always reported accurately and may also occur days after the event, therefore may not be categorized as such (Madrigano et al., 2015; McCormick et al., 2016). A different study in NYC also acknowledged that deaths due to hyperthermia can be difficult to assess and recognize since the cause of direct cause of death may be respiratory or cardiovascular disease for example, both of these conditions can be exacerbated with extreme heat and death would not be attributed to heat (Matte et al., 2016).

Souch and Grimmond (2004) report that 'heat' when referred to as a hazard goes largely under recognized as having a strong impact. Epidemiological studies have found a consistent relationship between increased morbidity and mortality related to heat events (McCormick et al., 2016). Another impact of heat is an increase in vector borne diseases such as west Nile virus. As temperatures increase so does the spatial variability and seasonal distribution of mosquitos, this includes activity happening earlier in the season (Crimmins et al., 2016). There is a need to better educate the
public about UHI's and their potential impacts especially for the health and safety of children and the elderly (Madrigano et al., 2015; Crimmins et al., 2016).

Equivalent temperature (T_{E})

Equivalent temperature $\left(T_{E}\right)$ is the temperature that an air parcel would have if all associated water vapor were condensed and the resulting latent heat were used to increase the temperature of the parcel (Schoof et al., 2014). Equivalent Temperature uses observed air temperature and moist enthalpy.

$$
\begin{equation*}
T_{E}=T+L_{v} q / C_{p} \tag{1}
\end{equation*}
$$

where T is the observed air temperature in ${ }^{\circ} \mathrm{C}, \mathrm{L}_{v}$ is the latent heat of vaporization in Joules per kilogram $\left(\mathrm{J} \mathrm{kg}^{-1}\right)$, q is specific humidity $\left(\mathrm{kg}^{-1} \mathrm{~kg}^{-1}\right)$ and C_{p} is the specific heat of air at constant pressure (Joules per kilogram per Kelvin). The term on the right-hand side of the plus sign in the equation is the moist enthalpy contribution whose subcomponents are $L_{v} q$ and C_{p}. This thermodynamic metric allows us to investigate the joint behavior of temperature and humidity as well as the heat content of near surface atmospheric moisture (Pielke, 2005; Davey, 2006; Fall et al., 2010; Schoof et al., 2014;).
T_{E} trends in the US have been found to be increasing in recent studies (Fall et al.,2010; Schoof et al, 2014). Pielke (2004) suggested that in order to properly measure the effects of "global warming" studying and analyzing temperature trends alone did not suffice. Equivalent temperature lets us look at surface heat content which accounts for water vapor; therefore, it is a more comprehensive way to analyze global climate trends (Pielke, 2004).

Fall (2010) used a combination of reanalysis data along with land use/cover classifications from 1979-2005 and concluded that T_{E} showed a strong relationship to vegetation cover and areas with higher transpiration and evaporation rates. Moisture in the atmosphere increases mostly from late spring to early fall, the warmest time of the year in the northern hemisphere, the largest contributions occur in the summer months (JJA) (Pielke, 2004). In addition to looking at surface trends, Fall (2010) analyzed T_{E} at different altitudes and found that nearly half of the water vapor in the air is found within the lowest 1.5 km of the atmosphere. The results help to exemplify this because T and T_{E} show increasing and positively correlated trends when measured at the standard station height of 2 m , however, the relationship becomes weak at 300 mb . The study found that temperature contributed more to the magnitude of T_{E} than the specific humidity did. Temperature can account for up to 90% of its magnitude (Fall et al., 2010).

Davey (2006) observed T_{E} trends for cities in the eastern half of US from 19821997, overall T_{E} trends were relatively warmer than temperature trends. This is an expected result since T_{E} accounts not only for sensible heating, but also heat which is driven by changes in the near surface atmospheric moisture. The magnitude of T_{E} is expected to be larger in places where moisture is available; for example: as a natural response to increased temperature more evaporation occurs near surface bodies of water. Increased evaporation will influence near-surface humidity; therefore, it will also influence T_{E} (Davey et al., 2006).

Humidity

The thorough investigation of moisture is of vital importance for understanding changes in T_{E}. Water vapor is an important greenhouse gas (GHG), it is considered a key driver for many atmospheric processes such as the hydrologic cycle and surface energy budgets, it is also the gas that absorbs the most solar radiation (Kiehl and Trenberth, 1997; Willett et al., 2007; Brown and DeGaetano, 2012). The two most commonly used measures of humidity are relative humidity ($\mathrm{RH} \%$), and specific humidity ($q, g k g-1$). The degree of saturation in the air relative to the temperature creates the ratio for RH , whereas q represents the amount of water vapor per unit mass of air (Brown and DeGaetano, 2012). The Clausius-Clapeyron equation shows that if relative humidity stays constant, specific humidity increases exponentially with temperature (Brown and DeGaetano, 2012; Willett et al., 2007). Studies based on observations and modeling are already confirming this relationship as the climate warms on a global scale (with regional variability): relative humidity is staying the same while increases in specific humidity are being documented (Willett et al., 2007). Willett (2007) identified significant increases in specific humidity on a global scale that are attributable to human influence. Water vapor in the atmosphere is expected to continue increasing along with other GHG's (Willet et al., 2007). Gaffen and Ross (1999) found that specific humidity trends in the US had increased over the period from 1961-1995. Trends for humidity also aligned with trends in apparent temperature (Ta), values were found to be twice as high in the eastern US when compared to the western states (Gaffen and Ross, 1999). Near surface specific humidity has significantly increased over the last 40 years; these increases are larger in the tropics and in the Northern
hemisphere during summer (Willett et al.,2007). Brown and DeGaetano (2012) found significant increases in dew point temperatures over the period of 1947-2010 for all seasons except winter. The same study also found significant increases in annual dew point temperature minimums. As absolute humidity increases, heat events may become amplified in the humid tropical regions of the world and the midlatitudes, even if rising air temperatures are less than the global average (Willett and Sherwood, 2012).

Air masses: Spatial Synoptic Classification (SSC)

Air mass definitions have expanded and evolved over the years along with advances in climatological studies. Crowe (1971) defined an air mass as a large volume of air that has acquired characteristics of temperature and humidity related to the condition of the land sea or ice beneath it. This is very much in alignment with Bergeron's (1930) theory that air masses should be defined by their source regions. New definitions of air masses such as those provided by SSC are not based on source region alone; however, response is dependent most frequently on the meteorological character of the air at a place in time (Kalkstein et al., 1996). Air masses are composed of various thermal and moisture variables which include, but are not limited to cloud cover, visibility, and precipitation. These variables allow air masses to be defined by their distinctive thermodynamic characters. The criterion for categorization is rooted on similarities in moisture and thermal characteristics. It is possible that wind and pressure could exhibit considerable variations among the days within an air mass (Kalkstein et al., 1996). The foundation of the original SSC is dependent on proper identification of the character of each weather type for a location, this is done with the selection of seed
days. Seed days are defined as the actual days in a station record that contain the typical meteorological characteristics of a particular weather type for the given location (Kalkstein et al., 1996). The original work done in the creation of SSC (1996) only provided air mass data for the summer and winter seasons. Sheridan (2002) improved the SSC system by including the use of 'sliding seed days', this allows for year-round classification of air masses. Spatial continuity of weather types was also improved because the number of stations increased to cover a larger area (Sheridan, 2002).

The SSC system defines six different air mass types applicable to stations in the contiguous United States. These are listed as: 1) DP-dry polar 2) DT-dry tropical 3) DMdry moderate 4) MP-moist polar 5) MM-moist temperate and 6) MT-moist tropical. In relation to heat waves and extreme heat events, MM and MT are the masses which carry the highest amounts of moisture and heat and are of importance to our study. The MM air mass is warm and humid, it usually appears in areas south of MP and may be present for many days if frontal movement is sluggish. MT air masses are typically found in the warm sectors of frontal cyclones or in a gulf return flow on the western side of an anticyclone in the central and eastern US (Kalkstein et al., 1998; Sheridan, 2001).

Kalkstein (1998) focused a study on air mass frequency and found that MM is exclusively confined to the eastern half of the US. In the summers, it has frequencies of12-25\% east of the Mississippi River (Kalkstein et al., 1998). Another air mass with much influence in the eastern US is MT. During the summer, frequencies are greater than 50\% throughout much of the southeast and about 30\% in large mid-Atlantic cities (Kalkstein et al., 1998). The presence of the MT air mass has been increasing significantly in many stations. Some have noted very high increases of approximately 2 -

4\% per decade in the interior southeast (Kalkstein et al., 1998). This increase in MT frequency is believed to be responsible for major contributions to increases in overnight cloudiness, upward trends in $T_{\text {min }}$, and increasing dew point temperatures (Kalkstein et al., 1998)

Diurnal Temperature Range (DTR)

Air temperature records from all over different parts of the world indicate that DTR has been decreasing since approximately 1950, this is due to larger increases in $\mathrm{T}_{\text {min }}$ than in $\mathrm{T}_{\max }$ (Karl et al., 1993; Easterling et al., 1997; Vose et al., 2005;). Due to the UHI effect and impervious surfaces, studies have found increases in minimum temperatures in urban areas (Coseo and Larsen, 2014; Zhao et al., 2014). Many regions in the US have little to no increase in maximum temperatures, however the increasing minimum temperatures are responsible for smaller DTR in some areas (Lauritsen and Rogers, 2012). Studies have found that DTR is decreasing in a warming climate, specifically urban areas are experiencing a narrower DTR when compared to nearby rural areas (Easterling et al., 1997). Local land use, urban growth, desertification, and irrigation practices can have an effect on DTR. In addition, there are large scale influences that can also impact DTR such as increases in cloud cover, greenhouse gases, tropospheric aerosols and surface evaporative cooling from precipitation (Easterling et al., 1997, Karl et al., 1993). A study by Lauritsen and Rogers (2012) found that increasing trends in cloud cover have a significant effect on DTR trends in different regions of the US, particularity in the south-central US which also experienced a decrease in $T_{\text {max }}$.

CHAPTER 3
 METHODS AND DATA

PART 1: Data

Weather station data was gathered for the 21 most populated cities in the eastern US (Table 1 and Figure 1). The data consists of hourly values for dew point in degrees ${ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right)$, station pressure in $\mathrm{mb}(\mathrm{P})$ and temperature in degrees ${ }^{\circ} \mathrm{C}(\mathrm{T})$, these are necessary for the calculation of T_{E}. The data was acquired from the National Oceanic and Atmospheric Administration (NOAA) Integrated Surface Database (ISD) which is available from the National Climatic Data Center (NCDC) along with all available station metadata for the period for 1948 to 2014 . Four of the cities in this study did not have records that went back as far as 1948, however they were analyzed starting from the year 1973 to 2014. We refer to these time periods as the long 67-year series and the short 41-year series throughout the rest of the paper.

Table 1. Eastern US cities, population, land area per square mile and populations density. Source: US CENSUS BURAEU, 2010

Eastern US cities	Census $\mathbf{(2 0 1 0)}$	Area per km2	Population Density: people per km2
New York, NY	$8,175,133$	487.05	$27,012.50$
Chicago, IL	$2,695,598$	366.34	$11,841.80$
Philadelphia, PA	$1,526,006$	215.81	$11,379.50$
Jacksonville, FL	824,784	1202.18	$1,100.10$
Indianapolis, IN	820,445	581.67	$2,270.00$
Columbus, OH	787,033	349.50	$3,624.10$
Charlotte, NC	731,424	479.07	$2,457.10$
Detroit, MI	713,777	223.30	$5,144.30$
Memphis, TN	646,889	507.04	$2,053.30$
Baltimore, MD	620,961	130.26	$7,671.50$
Boston, MA	617,594	77.70	$12,792.70$
Washington, DC	601,723	98.25	$9,856.60$
Nashville, TN	601,222	764.65	$1,265.40$
Louisville, KY	597,337	523.44	$1,836.60$
Milwaukee, WI	594,833	154.69	$6,188.30$
Kansas City,	459,787	506.86	$1,459.90$
MO	400.76	$1,758.90$	
Virginia Beach, VA	437,994	214.28	$3,154.30$
Atlanta, GA	420,003	229.98	$2,826.30$
Raleigh, NC	403,892	57.73	$11,135.90$
Miami, FL	399,457	$24,775,343$	
Total Population			

Figure 1. Major cities east of the 100th meridian in the United States. These cities naturally experience humid summers due to their location.

Homogeneity of the data is an important part of the investigative process since weather stations are often moved and the instruments change over time. Another factor that can affect the data is urbanization and land use change around the stations (Schoof et al. 2014; Peterson et al., 2013). It is crucial to measure, define and understand all the uncertainties that may be present in climatic historical records.

The accuracy of weather data is also dependent on the observers who collected the data and the level of training that observers received. Few stations in the country have meticulous record keeping by trained scientists (Changnon and Kunkel, 2006).

Changes in station elevation can also have an impact on recorded temperatures. For example, one of the stations with the best records in the US is in Urbana, Illinois. Its elevation was increased from 1.2 to 3 meters from 1904 to 1948, this change lowered the annual temperatures by $0.17^{\circ} \mathrm{C}$ for that period. That same station also recorded a temperature increase while it was in an urban area that experienced growth for a period of approximately 60 years. Annual average air temperatures had increased by $0.7^{\circ} \mathrm{C}$ during that time, this is likely due to the urban heat island effect. In 1984 when the station was relocated to a more rural setting, a change was noticed. The urban heat island effect was accounted for, annual air temperatures then decreased by $0.8^{\circ} \mathrm{C}$ (Changnon and Kunkel, 2006).

Instrument changes over the 67 years of data collected for this study have been verified with station metadata, however, not all changes were recorded and many of the records overall are incomplete. Wet bulb and dry bulb temperatures were measured by hand using mercury thermometers and sling psychrometers during the early 1960's before the installation of lithium chloride hygrothermometers (Gaffen and Ross, 1999). The hygrothermometers were used to measure T_{d} and T , they remained in operation for over 20 years until the installation of the model HO-83 in the mid 1980's. From 1987 to 1997 the Automatic Surface Observing System (ASOS) was introduced to the network, this change included the HO-83 sensors for T_{d} and T , a modification for the HO-83 system was introduced within the ASOS systems starting in 1991 (Gaffen and Ross, 1999). This change to the HO-83 system was implemented to reduce a warm bias. Per Karl (1995) the change to the HO-hygrothermometers may have led to false increases of $0.5^{\circ} \mathrm{C}$ in daily maximum temperatures and possibly a
$0.1^{\circ} \mathrm{C}$ in daily minimum temperatures. Issues with data inhomogeneity due to the $\mathrm{HO}-$ 83 have been addressed by previous studies. Gall (1992) found that if a station was not properly aspirated large biases were present, specifically the temperatures at a Tucson station were reporting $2-3^{\circ} \mathrm{F}$ higher than the ambient temperatures. The issue with insufficient aspiration reporting higher temperatures created the largest errors in environments in which solar radiation was quite high, this is why the problem was very noticeable in the Sonoran Desert. The cities in this study are all in vegetated and/or subtropical regions where moisture is present, a series of tests were conducted to address possible uncertainties in the record.

For a station to be included in this study, at least 90% of the time series needed to be present for the seasonal analysis, 4 stations (Kansas City, Jacksonville, Washington DC and Detroit) were eliminated due to insufficient records from the 68year record (see table 2). The annual analysis includes stations that have over 85\% of the data present, this was the highest percentage of annual data available for the long series (see table 2). The shorter 41-year time series required an additional adjustment, all stations have at least 90% of the data present for the seasonal analysis however, the parameter was reduced to 80% of data needing to be present in order for to be included (see table 3).

Table 2. Missing years of data used for trends 1948-2014. Data present: 90\%= no more than 6 years missing for seasonal analysis and 85\%=no more than 9 years missing for annual analysis. *Detroit series begins at 1958

City	Annual	Seasonal
1948-2014		
1) Atlanta	7	5
2) Boston	5	3
3) Charlotte	7	5
4) Chicago		4
5) Columbus	7	3
6) Indianapolis	7	4
7) Louisville	6	6
8) Memphis	9	3
9) Miami	7	4
10) Nashville	7	5
11) New York City	6	4
12) Philadelphia	6	6
13) Raleigh	7	3
14) Virginia Beach	5	5
15) Detroit*	6	

Table 3. Missing years of data used for trends 1973-2014. Data present: 90\%= no more than 4 years missing for seasonal analysis and 80\%=no more than 7 years missing for annual analysis.

City	Annual	Seasonal
1973-2014		
16) Jacksonville	5	3
17) Kansas City	7	4
18) Washington DC	7	4

Metadata from all 18 stations varied in a multitude of ways. In some cases, the values were recorded hourly, but not at the same time every hour. In these situations, traditional rounding principles were applied in the time records. For many of the stations during the mid-1960's to early 1980's values were recoded every 3 hours. In order to assure consistency over the time series, each day was partitioned into eight 3hour blocks. If a 3-hour block contained at least 1 hour of valid data then it was used to calculate daily averages for: Maximum Temperature ($\mathrm{T}_{\max }$), Maximum Equivalent Temperature ($\mathrm{T}_{\mathrm{E} \text { max }}$), Minimum Temperature $\left(\mathrm{T}_{\text {min }}\right.$) and Minimum Equivalent Temperature ($T_{\mathrm{E} \text { min }}$). For the calculation of monthly averages 90% of the month needed to not be missing in order for it to be used. Data was then separated into seasons, we specifically look at the summer months (JJA). In order for seasonal values to be calculated, all 3 months of data had to be present. Finally, we calculated annual averages in which all 12 months had to be present for a year to be considered.

Every station had documented moves and/or instrument changes. In order to assess whether or not these changes had an effect on the time series we conducted station t-tests were for instrument changes and station moves. Instrument changes happened in 1964, 1985, the mid 1990's (ASOS installation) and the early 2000's for DTS1 installations. For ASOS and DTS1 implementations, specific dates are associated with station history. Since the changes in the mid 1960's and 1980's occurred over a period of several years, 1964 and 1985 are used as the best possible estimates as in previous studies (Gaffen and Ross, 1999; Schoof et al., 2014). The ttests for the difference in means were conducted with $\alpha=0.05$ using monthly anomalies for 4 years before and after the instrument changes and documented station
moves for all 4 variables: $T_{\max }, T_{E \max }, T_{\min }$ and $T_{E \text { min }}$, following Gaffen and Ross (1999).

Methods

Variations in heat can be related to changes in moisture content. Using moist static energy can help give a good description of available energy near the surface, this is a key variable in the computation of equivalent temperature (Pielke et al., 2004). The moist static energy (H) is given by:

$$
\begin{equation*}
H=C_{p} T+L v_{q} \tag{2}
\end{equation*}
$$

C_{p} is the specific heat of air at a constant pressure $\left(1005 \mathrm{~J} \mathrm{~kg}^{\circ} \mathrm{C}^{-1}\right), T$ is the temperature of the air $\left({ }^{\circ} \mathrm{C}\right)$, L_{v} is the latent heat of vaporization $\left(\mathrm{J} \mathrm{kg}^{-1}\right)$ and q is the specific humidity $\left(\mathrm{kg} \mathrm{kg}^{-1}\right)$. The division of H by CP gives us equivalent temperature ($\mathrm{T}_{\mathrm{E}},{ }^{\circ} \mathrm{C}$), this quantifies near-surface heat content and creates separate terms for both the moist and dry contributions:

$$
\begin{equation*}
T_{E}=\frac{H}{C_{p}}=T+\frac{L_{v} q}{C_{p}} \tag{3}
\end{equation*}
$$

The computation of equivalent temperature requires specific humidity as previously stated. For each station observation, Bolton's empirical relation was first used to derive the vapour pressure (e) from the recorded dew point temperature $\left(\mathrm{T}_{\mathrm{d}} ;{ }^{\circ} \mathrm{C}\right)$:

$$
\begin{equation*}
e=6.112 \exp \left(\frac{17.67 T_{d}}{T_{d}+243.5}\right) \tag{4}
\end{equation*}
$$

The vapour pressure and observed station pressure were then used to compute specific humidity $\left(q ; \mathrm{kg} \mathrm{kg}^{-1}\right)$:

$$
\begin{equation*}
q=\frac{0.622 e}{P-0.378 e} \tag{5}
\end{equation*}
$$

Latent heat of vapourization $\left(L_{v}, \mathrm{~J} \mathrm{~kg}^{-1}\right)$, is computed as a function of temperature (T, ${ }^{\circ} \mathrm{C}$) following the Priestley-Taylor method as in Fall et al. (2010):

$$
\begin{equation*}
L_{v}=2.5-0.0022 T * 10^{6} \tag{6}
\end{equation*}
$$

Daily estimates for maximum and minimum equivalent temperature were computed. The trend analysis was conducted using median of pairwise slopes regression(MPWS), with a 95\% confidence level (MPWS; Lanzante, 1996). This technique was used in order to minimize the impact of unidentified inhomogeneities and is considered a robust regression method (Schoof et al., 2014).

CHAPTER 4

RESULTS

The results of this investigation will be presented in four parts. The first part will focus on temperature and equivalent temperature for two different time series. The second part will focus on air masses and their frequencies over the study area. The third part will present our analysis of DTR for all the cities. The fourth and final part will focus on heat wave intensity and frequency.

4.1 Temperature and Equivalent Temperature-Long Series

The long-time series shows significant increases in $T_{\text {min }}$ for all 15 stations. Significant increases in $T_{E \text { min }}$ were present 13 out of 15 stations in the long-time series (except Charlotte and Memphis), all stations show warming (see figure 2)

Figure 2. Summer (JJA) averages in degrees Celsius per decade. Long time series years: 19482014. Left minimum air temperature ($T_{\text {min }}$), right minimum equivalent temperature (TE min).

Significant increases in maximum temperatures $T_{\max }$ were minimal in the long record exhibited in only 3 stations (Raleigh, Miami, and Philadelphia), two of which are located on the coast (see figure 3). Stations in the Midwest showed little to no trend in $\mathrm{T}_{\text {max. }}$. Maximum equivalent temperature $\left(T_{E \max }\right)$ had results that were similar to $T_{\max }$ only 3 coastal stations (Boston, NYC and Miami) showed significant increases in the long record while other stations, predominately in the Midwest showed significant decreases (see figure 3).

Figure 3. Summer (JJA) averages in degrees Celsius per decade. Long time series years: 1948-2014. Left maximum air temperature ($T_{\text {max }}$), right maximum equivalent temperature (TE max).

Table 4. Long period trends 1948-2014 for the 18 largest cities in the eastern US. Maximum air temperature ($T_{\text {max }}$), maximum equivalent temperature ($T_{E \max }$), minimum air temperature ($T_{\text {min }}$) and minimum equivalent temperature ($\mathrm{T}_{\mathrm{E} \text { min }}$). Units: C° per decade. ${ }^{*}=$ significant at the 0.05 level.

City	T max	T_{E} max	T min	$\mathrm{T}_{\mathrm{E}} \mathrm{min}$
New York	0.07	0.28*	0.26*	0.5*
Chicago	0.03	-0.12	0.31*	0.66*
Philadelphia	0.13*	0.16	0.37*	0.68*
Indianapolis	0	-0.1	0.22*	0.41*
Columbus	-0.02	-0.08	0.31*	0.62*
Charlotte	0	0.04	0.1*	0.26
Detroit	0.08	0.29	0.56*	1.1*
Memphis	0.09	-0.03	0.28*	0.33*
Boston	-0.03	0.3*	0.15*	0.5*
Nashville	0	-0.28	0.16*	0.09
Louisville	0	0	0.35*	0.59*
Virginia Beach	0.11	0.27	0.28*	0.62*
Atlanta	0.12	0.11	0.23*	0.4*
Raleigh	0.17*	0.19	0.25*	0.49*
Miami	0.14*	0.38*	0.28*	0.5*

4.2 Temperature and Equivalent Temperature-Short Series

The 41 -year (short) record consists of 18 stations total. In the shorter series 12 out of 18 stations had significant increases for $\mathrm{T}_{\text {min. }}$. Most of the stations show some warming and two stations show no trend (Memphis and Washington, DC). Here, only half of the stations show significant increases for $T_{E \min }$ (see figure 4). These are located predominantly in coastal, southern and upper Midwest regions. Interestingly Memphis and Washington, DC show cooling of $T_{E \text { min }}$ while other stations show warming.

In addition, significant decreases in T max were noted in the shorter record and overall a noticeable lack of warming is present for many of the Midwestern states (see figure 5). These results are inconsistent as the cooling and warming signals show no consistent patterns. For $\mathrm{T}_{\text {E max }}$, a cooling signal is present in the Midwest with Indianapolis showing a significant decrease in $T_{E \max }$ as well as Washington, DC.

Figure 5. Summer time (JJA) averages in degrees Celsius per decade. Short time series years: 1973-2014. Left maximum air temperature ($T_{\max }$), right maximum equivalent temperature ($T_{E \max }$).

These results suggest that warming is present in $T_{\min }$ as well as $T_{E \text { min }}$, the two behave similarly especially during summer. Since T is one of the main drivers of increased moisture content (where moisture is available) we find that this variable follows a similar trend to T min.

Table 5. Short period trends 1973-2014 for the 18 largest cities in the eastern US. Maximum air temperature ($\mathrm{T}_{\max }$), maximum equivalent temperature ($\mathrm{T}_{\mathrm{E} \max }$), minimum air temperature ($\mathrm{T}_{\mathrm{min}}$) and minimum equivalent temperature ($\mathrm{T}_{\mathrm{E} \text { min }}$). Units: C° per decade. ${ }^{*}=$ significant at the 0.05 level.

City	T max	T_{E} max	T min	$\mathrm{T}_{\mathrm{E}} \mathrm{min}$
New York	0.26	0.11	0.47*	0.84*
Chicago	0	-0.38	0.43*	0.95*
Philadelphia	0.17	-0.22	0.48*	0.91*
Jacksonville	0	-0.17	0.15*	0.82*
Indianapolis	-0.09	-1.13	0.35*	0.2
Columbus	0.25	-0.16	0.57*	1.17*
Charlotte	0.32	0.25	0.15	0.57
Detroit	0	-0.06	0.65*	1.18*
Memphis	-0.12	-0.65	0.03	-0.1
Boston	-0.09	-0.15	0.12	0.22
Washington, DC	0.08	-0.47	0.18	0.2
Nashville	0.22	-0.77	0.29	0.23
Louisville	0.32	-0.52	0.41	0.6
Kansas City	-0.03	0.21	0.25	0.58
Virginia Beach	0.03	0.58	0.39*	1.1*
Atlanta	0.24	0.18	0.38*	0.62*
Raleigh	0.46	0.07	0.47*	0.87*
Miami	0.25*	0.33	0.25*	0.36

4.3 Air Masses

Air mass frequencies for all 18 stations were analyzed using data from the spatial synoptic classification system (SSC). The first step was to calculate trends for four air mass classifications: moist, dry, polar and tropical. The data analyzed focuses specifically on summer air masses which are defined as June, July and August (JJA). The first trend analysis (see figure 6) focuses on moist air masses versus dry air masses. This tells us something about the moisture component in the air from a synoptic scale point of view. Using MPWS (Lanzante, 1996), results show a significant increase in the frequency of moist air masses for 89% of the stations. Dry air mass frequencies showed in significant decreases for 67% of the stations. Located mostly in the Midwest and Northeast region from North Carolina to New England.

The second observation (see figure 6) separates the masses into two classifications: tropical and polar, this allows us to focus more on the temperature of the air masses. Tropical air mass frequency shows significant increases in the southern states as well as the northeast region, approximately 50% of the stations. Polar air masses show significant decreases for 67% of the stations. One station produced results that were inconsistent with nearby stations: Jacksonville results indicate a significant decrease in moist and tropical air masses. We tested stations in Daytona, FL and Savannah, GA and both showed increases in frequency. Miami also produced results which showed increases in moist and tropical (significant) air masses. There could be an error due to instrumentation or another factor that is affecting the results from Jacksonville.

Moist Air Masses (mass/decade)

Dry Air Masses (mass/decade)

			1	1	2	3
-3	-2	-1	0	1	2	

Figure 6. Summer time(JJA) air mass frequency in mass per decade for period 19482014. Top left: moist air masses (polar, temperate and tropical). Top right: dry air masses (polar, moderate and tropical). Bottom left: tropical air masses (dry and moist). Bottom right: polar air masses (dry and moist). *= significant at the 0.05 level.

Table 6. Trend analysis for air mass frequency show in mass per decade. Long time series years: 1948-2014. Categories are separated by temperature and moisture components. Dry and moist masses combined (polar, moderate and tropical) followed by P-value. Polar and Tropical (moist and dry) followed by their respective P-values.

City	Dry	P-Value	Moist	P-Value	Polar	P-Value	Tropical	P-Value
NYC	-0.08	0.122	0.09	0.083	-0.12	<0.001	0.21	0.001
Chicago	-0.07	0.107	0.08	0.082	-0.13	0.035	0.12	0.135
Philadelphia	0	0.968	0	0.872	-0.1	<0.001	0.22	0.000
Jacksonville	0	0.864	0	0.951	0	0.350	-0.13	0.008
Indianapolis	-0.09	0.072	0.1	0.053	-0.11	0.039	0.05	0.411
Columbus	-0.11	0.042	0.13	0.057	-0.11	0.005	0.11	0.082
Charlotte	-0.1	0.177	0.11	0.132	-0.03	0.125	0.07	0.227
Detroit	-0.26	0.001	0.24	0.001	-0.22	<0.001	0.24	0.005
Memphis	-0.13	0.035	0.1	0.115	0	0.128	0.11	0.189
Boston	-0.11	0.047	0.11	0.040	-0.04	0.157	0.06	0.182
Washington DC	-0.07	0.330	0.09	0.198	-0.1	<0.001	0.18	0.001
Nashville	-0.08	0.156	0.07	0.401	-0.03	0.042	0.07	0.290
Louisville	-0.16	0.006	0.13	0.032	-0.11	<0.001	0.05	0.329
Kansas City	-0.32	0.094	0.31	0.054	-0.09	0.317	0.33	0.050
Virginia Beach	-0.11	0.105	0.13	0.084	-0.11	<0.001	0.24	<0.001
Atlanta	-0.04	0.572	0.04	0.550	-0.05	0.006	0.17	<0.001
Raleigh	0.03	0.502	-0.02	0.578	-0.08	<0.001	0.2	0.001
Miami	-0.07	<0.001	0.06	0.003	0	0.878	0.21	<0.001

4.4 Diurnal Temperature Range (DTR)

Trends in diurnal temperature range show significant decreases in 16 of the 18 stations. The strongest trend was identified in Detroit with other Midwestern cities showing similar results. When the time series is broken up into two periods, the two trends show slightly different results. The early part of the series from 1948-1980 shows a normal looking distribution for almost all the cities. The late part of the series 19812014 shows a shift, with the probability of a smaller DTR occurring in the $25^{\text {th }}$ percentile (figure6). The shift is virtually identical, this suggests that the entire distribution is shifting.

Figure 7. Diurnal temperature range for NYC 1948-2014 in degrees Celsius. Median of pairvise slopes was used to determine significance. The trend of- $0.33^{\circ} \mathrm{C}$ per decade was significant at the 0.05 confidence level with an associated p-value of < 0.01 .

Figure 8. New York City trends in diurnal temperature range (top) and diurnal temperature range distributions for an early (1948-1980) period and a late period (19812014) (bottom). Vertical dotted lines represent $25^{\text {th }}, 50^{\text {th }}$ and $75^{\text {th }}$ percentile.

Figure 9. Diurnal Temperature Range trend analysis for 18 eastern US cities. Range is calculated by subtracting Maximum air temperature from minimum air temperature (DTR= Tmax-Tmin). Years: 1948-2014. *= significant at the 0.05 level

Table 7. Diurnal temperature range trend analysis for the 18 largest cities in the eastern US in degrees Celsius per decade. Years: 1948-2014. Trends were calculated using median of pairwise slopes, significant at the 0.05 level.

| City | Trend/C | |
| :--- | :--- | ---: | ---: |
| Atlanta | -0.14 | P-Value |
| Boston | -0.33 | 0.02 |
| Charlotte | -0.12 | <0.001 |
| Chicago | -0.3 | 0.095 |
| Columbus | -0.38 | <0.001 |
| Detroit | -0.48 | <0.001 |
| Indianapolis | -0.25 | <0.001 |
| Jacksonville | -0.1 | <0.001 |
| Kansas City | -0.29 | 0.254 |
| Louisville | -0.34 | 0.029 |
| Memphis | -0.2 | <0.001 |
| Miami | -0.11 | <0.001 |
| Nashville | -0.18 | 0.028 |
| New York | -0.33 | 0.004 |
| Philadelphia | -0.23 | <0.001 |
| Raleigh | -0.14 | <0.001 |
| Virginia Beach | -0.2 | 0.0363 |
| Washington, DC | -0.22 | <0.001 |

4.5 Heat Waves

We calculated heat wave frequency and intensity for 17 cities using $T_{E \text { min }}, T_{\text {min }}$, $T_{E \max }$ and $T_{\max .}$ Frequency is measured by increases or decreases in heat wave frequency by days per decade. Intensity is defined by increases or decreases in temperature in degrees C° per decade. Jacksonville was removed from this analysis due to inconsistencies with its record as previously mentioned in the air mass results section, there are 17 stations used for this analysis. Another change for this analysis is Detroit, here it is included in the short series and not the long series as previously done. This was done to improve the results with a full record for Detroit between 1958 and 2014.

To identify intensity, we calculated the $90^{\text {th }}$ percentile for JJA for each variable, then the daily maximum value is subtracted, this defines a heat wave day. We then computed trends in annual frequency and actual daily values on heat wave days in order calculate frequency.

The results for $T_{E \min }$ and $T_{\text {min }}$ show some of the most extreme results in both time series and are discussed below. In this section, we focus on maps for the shorter series presented below, while the maps for the long series are available in appendix S . The results for $\mathrm{T}_{\mathrm{E} \text { max }}$ and $\mathrm{T}_{\max }$ did not yield any trends, however, the results are presented in the appendix ($T_{E \max }$ appendix U and $T_{\max }$ appendix V, respectively). Results for $T_{E \min }$ and $T_{\text {min }}$ exhibit some similarities with the results we've seen thus far for these variables with increases present in many of the stations.

$T_{E \min }$ Heat Wave Frequency

When analyzing the linear trends in T_{E} min frequency in the long record, we see that every station except one (Nashville) shows a significant increase in days per decade with alpha at 0.05 (see appendix S). The shorter time series shows increases in frequency for all stations but one (Memphis), this time only 10 out of 17 stations show significant increases (see figure 10). In this map, most of the significant increases are in the southernmost and eastern stations from Atlanta to Washington DC.

Figure 10. Linear trend in $T_{E \text { min }}$ heat wave frequency 1973-2014 in days per decade. *= significant at the 0.05 level

$T_{E \min }$ Heat Wave Intensity

In the long record $T_{E \text { min }}$ heat wave intensity has significant increases in 8 out of 14 stations particularly from Charlotte up to New England with a few exceptions in the Midwest: Louisville and Columbus (see appendix S). Indianapolis has a neutral signal; however, all other stations show positive increases. The shorter record shows that heat wave intensity has increased in all stations but Memphis which appears to be cooling, however this time only 4 are significant. Eastern stations such as Raleigh, Virginia Beach along with Washington DC show some of the most extreme increases along with Kansas City (see figure 11).

Figure 11. Linear trend in $T_{E \text { min }}$ heat wave intensity 1973-2014 in degrees C° per decade. *= significant at the 0.05 level

T min Heat Wave Frequency

In the long series T min shows significant increases at every station in the study area (see appendix T). In the shorter series the results are different, while every station shows positive trends 13 out of 17 are significant. The only exceptions are Boston, Columbus, Memphis and Charlotte. Many of the stations have increases in heat wave frequency for 3-4 days per decade.

Figure 12. Linear trend in $T_{\text {min }}$ heat wave frequency 1973-2014 in days per decade. *= significant at the 0.05 level

$\mathrm{T}_{\text {min }}$ Heat Wave Intensity

In the long series T min intensity during heatwaves shows significant increases in 10 out of 14 stations. In the east coast, results are significant from Atlanta to Philadelphia, with some of the most extreme changes happening in Virginia Beach and Philadelphia. In the short series, all the stations show positive increases with only the Memphis station showing neutral results (see figure 13). The amount of intensity is only significant in 6 of the 17 stations with Philadelphia, Virginia Beach and Raleigh showing some of the strongest trends along the coast. Louisville and Nashville show some of the strongest trends inland.

Figure 13. Linear trend in $T_{\text {min }}$ heat wave intensity 1973-2014 in days per decade. *= significant at the 0.05 level

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Discussion

This study focused on the 18 largest cities in the eastern US, which are collectively home to over 21 million people. All of these cities reside in humid subtropical or humid continental climates, meaning that atmospheric humidity is typically higher than semi-arid or arid environments. High temperatures in the summer coupled with high humidity can lead to heat stress, heat exhaustion and exacerbate many existing diseases. In the United States heat alone is responsible for more deaths on average than all other fatal weather events combined (National Weather Service, 2014). Future predictions of heat waves indicate that they are expected to increase in frequency, intensity and be longer lasting in the $21^{\text {st }}$ century (Meehl and Tebaldi, 2004). Large cities have the added complexity of the UHI effect which amplifies the dangers of heat waves to vulnerable populations. Willett and Sherwood (2010) found that frequency of both single extreme event and extended periods of heat has increased in all regions since 1973. The results presented in this thesis contribute to a large body of existing literature which demonstrate that water vapor in the atmosphere has been increasing over recent decades (Kalkstein et al., 1998; Willett et al., 2007; Fall et al., 2010). A combination of high humidity and high temperatures create potentially dangerous conditions for people living in urban regions. Certain demographics are more vulnerable than others, government agencies and cities should take future precautions and provide education to the public regarding the potential dangers of heat waves especially when the event is combined with high levels of humidity.

5.2 Research questions

Q1) How do temperature and equivalent temperature trends differ in urban areas?

Our results show that air temperature and equivalent temperature behave similarly. Every city had a significant increase in $\mathrm{T}_{\min }$ and all but two stations also had significant increases in $T_{E \text { min. }}$. Both variables look similar when plotted (see appendix) with T_{E} having larger values and being warmer than T min. This result is consistent with previous findings since T_{E} also accounts for sensible heating it's magnitude is larger than temperature alone.

Regionally, increases of moisture in the Midwest have also been found by previous studies. Isaac and Van Winjngaarden (2011) which focused on surface water vapor pressure and temperature and found the largest temperature increases occur in the Midwest. In addition, the largest increasing water vapor pressure trends are found to be occurring in the summer, mainly in the eastern half of the US. Since the relationship of T and T_{E} are extremely similar and implicate increases in surface moisture, our findings also align with past research on humidity which observed that specific humidity has been increasing in response to rising temperatures (Willett et al., 2007a). Future projections indicate that heat events may worsen as much or more in humid tropical and mid latitude regions even if they warm less than the global average due to greater increases in absolute humidity (Willett and Sherwood, 2010). Surface specific humidity has increased significantly in many parts of the world including the tropics and Northern hemisphere especially during the summer months (Willett et al., 2007b). Studies which have focused on dew point temperatures along with relative humidity (RH) have also found similar results. Brown and DeGaetano (2012) observed that moistening was
pronounced during Midwest summers while RH shows little change for 1947-2010. The analysis of DTR in this study provides evidence to the one of the effects of increasing minimum temperatures in urban regions. The diurnal temperature range is significantly decreasing in many large US cities (Easterling et al., 1997). All our stations except for two (Raleigh and Jacksonville) showed significant decreases in DTR. The largest trend was found in Detroit, MI with a decrease of $-0.48^{\circ} \mathrm{C}$ per decade. A study by Lauritsen and Rogers (2012) found that increasing trends in cloud cover have a significant effect on DTR trends in different regions of the US since 1950, particularity in the south-central US which also experienced a decrease in $T_{\text {max. }}$. The narrowing of DTR is representative of the increases in $T_{\text {min }}$ and decreases in $T_{\text {max. }}$ In addition, as previously stated, the decrease in DTR has a stronger signal in urban regions when compared to rural (Easterling et al., 1997, Vanos et al., 2014).

Q2) How do air mass frequency trends vary in urban regions as they relate

to temperature and moisture?

Our results show that moist tropical air masses are increasing in frequency while dry polar air masses are decreasing, these findings are consistent with previous studies (Kalkstein et al., 1998, Vanos et al., 2015). It is important to consider the contribution of moisture brought into a region by these large synoptic scale features during the summer months. Kalkstein (1998) also found that moist moderate (MM) masses are common to the eastern half of the US, in summers it has an increase in frequency along with moist tropical (MT) masses. This increase in warm and moist air is believed to be responsible for major contributions to increases in overnight cloudiness, upward trends in $T_{\text {min }}$, and
increasing dew point temperatures (Kalkstein et al., 1998, Vanos et al., 2014). The increase of moist tropical air mass frequency suggests potential challenges for populations in urban regions during summertime. Our findings indicate that significant increases of tropical air masses along the eastern seaboard could have an effect on these densely-populated areas from Raleigh, NC to New York City, NY. The significant decreases of dry and polar masses are also noteworthy since the decrease of these air masses means that urban populations will receive less relief during heat events if the trends continue. These decreases are strongest in the Midwest as well as the eastern seaboard and are consistent with previous studies (Vanos et al., 2014). Changes in air mass frequencies can also alter moisture variables such as soil moisture, precipitation and cloud cover.

Q3) Are the intensities and frequencies of heat waves changing along with observed temperature and equivalent temperature trends?

The intensities and frequencies of heat waves are increasing predominantly in the minimums, similarly to how Brown and DeGaetano (2012) saw increases in night time dew point temperatures. A significant increase of heat wave frequency was observed in the long record for every station in the study area for $\mathrm{T}_{\mathrm{E} \text { min }}$ except Nashville. In the short record, only 10 out of 17 stations showed significant increases in frequency these stations were located predominantly in the Southeast with a few in the Midwest, this result is also interesting because of the increases of warm humid air masses and their frequencies in these areas (Kalkstein, 1998). Changes in heat wave intensities for $T_{E \text { min }}$ in the long record were significant in 8 out of the 15 stations, many of these on the coast from Charlotte to New England. Increases in $\mathrm{T}_{\mathrm{E} \text { min }}$ heat wave intensities showed
an increase in all stations except Memphis, however, only 4 out of 17 were significant. These findings support what previous research has found regrading increases in temperature and T_{E} heat wave days predominantly in the Central and Northeast regions of the US (Schoof et al. 2017).

5.3 Conclusion

The investigations carried out in this thesis demonstrate several aspects of climate change as it relates to average temperatures in large eastern US cities. The urban heat island effect combined with naturally occurring humidity in many cities increases dangerous conditions during extreme heat events. Our findings contribute to the body of evidence which shows that as humidity increases it also contributes to increasing nighttime minimum temperatures (Willett et al., 2007a). As heat events continue to occur, greater understanding of their effects particularly on vulnerable populations is necessary. The analysis conducted with air masses provides an example of synoptic factors which can contribute to heat waves during the summer time. The increase of minimum temperatures and equivalent temperatures was strikingly similar and could be affected by many factors present in cities. Influences from synoptic factors can only offer us a part of the story of what happens during extreme heat events. Heat sinks and high albedo rooftops may provide some relief; however, the effects would not be enough to offset the increasing temperatures. One result of increasing $T_{\text {min }}$ is a narrowing of DTR which is has been occurring in many places since the latter half of the $20^{\text {th }}$ century (Vose et al., 2005). This is also an indication that heat is being trapped in the lower atmosphere predominantly at night when relief from the heat is expected.

5.4 Study Limitations

The lack of complete data records was a challenge in this study. For many cities that were originally considered, climate records were incomplete or missing. In some cases, temperature and dew point temperature were available, but not station pressure. The multiple station moves and instrument changes also create the possibility of inhomogeneity in the data. Modern instrumentation is more reliable; however, those records do not go back far enough in many cases to carry out a robust study.

5.5 Future Work

This study could be improved by finding ways to combine datasets where data is missing. The use of reanalysis data for the computation of TE similar to the approach that Fall (2010) used may help bridge some of the gaps in missing records for cities like Milwaukee and Baltimore. These cities have large populations and incomplete records. Additionally, remotely sensed data can also help further this research. Infrared images at night time can provide qualitative analysis of "hot spots" in urban regions. Thermal imagery could offer a broader perspective on the UHI because the observations are not limited to a weather station at the local airport. Mapping these hot spots and over laying them with race and income data could lead to the creation of a "heat vulnerability index" which could be used to help identify the people that are at highest risk for heat related illness, morbidity and mortality.

The investigation of other synoptic influences could also help to further understand extreme heat events. Future work could also include a thorough analysis of the El Nino Southern Oscillation and high humidity heat events to look for possible correlations.

REFERENCES

Ali-Toudert, Fazia, and Helmut Mayer. 2007. "Effects of Asymmetry, Galleries, Overhanging Façades and Vegetation on Thermal Comfort in Urban Street Canyons." Solar Energy 81 (6): 742-54. doi:10.1016/j.solener.2006.10.007.

Anderson, G. Brooke, and Michelle L. Bell. 2011. "Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities." Environ Health Perspect Environmental Health Perspectives 119 (2): 210-18. doi:10.1289/ehp. 1002313.

Bergeron, T. n.d. "Richtlinien Einer Dynamischen Klimatologie." Meteorol 47: 246-62.
Bobb, Jennifer F., Roger D. Peng, Michelle L. Bell, and Francesca Dominici. 2014. "Heat-Related Mortality and Adaptation to Heat in the United States." Environ Health Perspect Environmental Health Perspectives, August, 811-16. doi:10.1289/ehp. 1307392.

Bolton, David. 1980. "The Computation of Equivalent Potential Temperature." Mon. Wea. Rev. Monthly Weather Review 108 (7): 1046-53. doi:10.1175/15200493(1980)1082.0.co;2.

Boucher, O., G. Myhre, and A. Myhre. 2004. "Direct Human Influence of Irrigation on Atmospheric Water Vapour and Climate." Climate Dynamics 22 (6-7). doi:10.1007/s00382-004-0402-4.

Brown, Paula J., and Arthur T. Degaetano. 2013. "Trends in U.S. Surface Humidity, 1930-2010." J. Appl. Meteor. Climatol. Journal of Applied Meteorology and Climatology 52 (1): 147-63. doi:10.1175/jamc-d-12-035.1.

Changnon, Stanley A., and Kenneth E. Kunkel. 2006. "Changes in Instruments and Sites Affecting Historical Weather Records: A Case Study." J. Atmos. Oceanic Technol. Journal of Atmospheric and Oceanic Technology 23 (6): 825-28. doi:10.1175/jtech1888.1.

Coseo, Paul, and Larissa Larsen. 2014. "How Factors of Land Use/Land Cover, Building Configuration, and Adjacent Heat Sources and Sinks Explain Urban Heat Islands in Chicago." Landscape and Urban Planning 125 (March): 117-29. doi:10.1016/j.landurbplan.2014.02.019.

Crimmins, Allison J, John L Balbus, Janet L Gamble, Charles B Beard, Jesse E Bell, Daniel Dodgen, Rebecca J Eisen, et al. 2016. "The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment." The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program. https://health2016.globalchange.gov/.

Crowe, P. R. 1971. "Concepts in Climatology." Essay. In Concepts in Climatology, 589. London: Longman.

Davey, Christopher A, Roger A Pielke, and Kevin P Gallo. 2006. "Differences between near-Surface Equivalent Temperature and Temperature Trends for the Eastern United States Equivalent Temperature as an Alternative Measure of Heat Content." Global and Planetary Change 54 (June): 19-32.

Davis, Robert E., David M. Hondula, and Anjali P. Patel. 2016. "Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities." EHP Environmental Health Perspectives 124 (6): 795-804. doi:10.1289/ehp. 1509946.

Diem, Jeremy E. 2012. "Influences of the Bermuda High and Atmospheric Moistening on Changes in Summer Rainfall in the Atlanta, Georgia Region, USA." International Journal of Climatology Int. J. Climatol. 33 (1): 160-72. doi:10.1002/joc.3421.

Easterling, D. R., Briony Horton, Phillip D Jones, Thomas C Peterson, Thomas R Karl, David E Parker, M James Salinger, et al. 1997. "Maximum and Minimum Temperature Trends for the Globe." Science 277 (5324): 364-67. doi:10.1126/science.277.5324.364.

Eliasson, Ingegärd. 1996. "Urban Nocturnal Temperatures, Street Geometry and Land Use." Atmospheric Environment 30 (3): 379-92. doi:10.1016/1352-2310(95)00033-x.

Fall, Souleymane, Noah S. Diffenbaugh, Dev Niyogi, Roger A. Pielke, and Gilbert Rochon. 2010. "Temperature and Equivalent Temperature over the United States (1979-2005)." International Journal of Climatology 30 (13): 2045-54. doi:10.1002/joc. 2094.

Gaffen, Dian J., and Rebecca J. Ross. 1999. "Climatology and Trends of U.S. Surface Humidity and Temperature." Journal of Climate 12 (3): 811-28. doi:10.1175/1520-0442(1999)0122.0.CO;2.

Gall, R., K. Young, R. Schotland, and J. Schmitz. 1992. "The Recent Maximum Temperature Anomalies in Tueson: Are They Real or an Instrumental Problem?" Journal of Climate J. Climate 5 (6): 657-65. doi:10.1175/15200442(1992)0052.0.co;2.

Glanz, M H. 1990. "The Use of Analogies in Assessing Physical and Societal Responses to Global Warming." National Center for Atmospheric Research.

Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs. 2008. "Global Change and the Ecology of Cities." Science 319 (5864): 756-60. doi:10.1126/science.1150195.

Grimmond, C. S. B., and T. R. Oke. 1995. "Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities." Journal of Applied Meteorology 34 (4): 873-89. doi:10.1175/15200450(1995)0342.0.CO;2.

Grimmond, C. S. B., T. R. Oke, and D. G. Steyn. 1986. "Urban Water Balance: 1. A Model for Daily Totals." Water Resources Research 22 (10): 1397. doi:10.1029/WR022i010p01397.

Gronlund, Carina J., Antonella Zanobetti, Joel D. Schwartz, Gregory A. Wellenius, and Marie S. O'neill. 2014. "Heat, Heat Waves, and Hospital Admissions among the Elderly in the United States, 1992-2006." Environ Health Perspect Environmental Health Perspectives 122 (11): 1187-92. doi:10.1289/ehp. 1206132.

Hall, Sharon J., J. Learned, B. Ruddell, K. L. Larson, J. Cavender-Bares, N. Bettez, P. M. Groffman, et al. 2015. "Convergence of Microclimate in Residential

Landscapes across Diverse Cities in the United States." Landscape Ecology Landscape Ecol 31 (1): 101-17. doi:10.1007/s10980-015-0297-y.
"Heat-Related Deaths After an Extreme Heat Event - Four States, 2012, and United States, 1999-2009." 2013. Morbidity and Mortality Weekly Report 62 (22).

Isaac, V., and W. A. Van Wijngaarden. 2012. "Surface Water Vapor Pressure and Temperature Trends in North America during 1948-2010." Journal of Climate J. Climate 25 (10): 3599-3609. doi:10.1175/jcli-d-11-00003.1.

Jenerette, G. Darrel, Sharon L. Harlan, Anthony Brazel, Nancy Jones, Larissa Larsen, and William L. Stefanov. 2006. "Regional Relationships between Surface Temperature, Vegetation, and Human Settlement in a Rapidly Urbanizing Ecosystem." Landscape Ecology Landscape Ecol 22 (3): 353-65. doi:10.1007/s10980-006-9032-z.

Jenerette, G. Darrel, Sharon L. Harlan, William L. Stefanov, and Chris A. Martin. 2011. "Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green Spaces, and Social Inequality in Phoenix, USA." Ecological Applications 21 (7): 2637-51. doi:10.1890/10-1493.1.

Kalkstein, Laurence S., and Robert E. Davis. 1989. "Weather and Human Mortality: An Evaluation of Demographic and Interregional Responses in the United States." Annals of the Association of American Geographers 79 (1): 44-64. doi:10.1111/j.1467-8306.1989.tb00249.x.

Karl, Thomas R., Richard W. Knight, Kevin P. Gallo, Thomas C. Peterson, Philip D. Jones, George Kukla, Neil Plummer, Vyacheslav Razuvayev, Janette Lindseay, and Robert J. Charlson. 1993. "A New Perspective on Recent Global Warming:

Asymmetric Trends of Daily Maximum and Minimum Temperature." Bulletin of the American Meteorological Society 74 (6): 1007-23. doi:10.1175/15200477(1993)0742.0.co;2.

Karl, Thomas R., Vernon E. Derr, David R. Easterling, Chris K. Folland, David J. Hofmann, Sydney Levitus, Neville Nicholls, David E. Parker, and Gregory W. Withee. 1996. "Critical Issues for Long-Term Climate Monitoring." Long-Term Climate Monitoring by the Global Climate Observing System, 55-91. doi:10.1007/978-94-011-0323-7_6.

Kent, Shia T., Leslie A. Mcclure, Benjamin Zaitchik, Tiffany T. Smith, and Julia M.. Gohlke. 2013. "Heat Waves and Health Outcomes in Alabama (USA): The Importance of Heat Wave Definition." Environmental Health Perspectives 122 (2): 151-58. doi:10.1289/ehp. 1307262.

Kiehl, J. T., and Kevin E. Trenberth. 1997. "Earth's Annual Global Mean Energy Budget." Bull. Amer. Meteor. Soc. Bulletin of the American Meteorological Society 78 (2): 197-208. doi:10.1175/1520-0477(1997)0782.0.co;2.

Li, Dan, and Elie Bou-Zeid. 2013. "Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts*." Journal of Applied Meteorology and Climatology 52 (9): 2051-64. doi:10.1175/JAMC-D-13-02.1.

Lo, C.p., and Dale A. Quattrochi. 2003. "Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications." Photogrammetric Engineering \& Remote Sensing Photogramm Eng Remote Sensing 69 (9): 105363. doi:10.14358/pers.69.9.1053.

Madrigano, Jaime, Kazuhiko Ito, Sarah Johnson, Patrick L. Kinney, and Thomas Matte. 2015. "A Case-Only Study of Vulnerability to Heat Wave-Related Mortality in New York City (2000-2011)." Environ Health Perspect Environmental Health Perspectives. doi:10.1289/ehp. 1408178.

Matte, Thomas D., Kathryn Lane, and Kazuhiko Ito. 2016. "Excess Mortality Attributable to Extreme Heat in New York City, 1997-2013." Health Security 14 (2): 64-70. doi:10.1089/hs.2015.0059.

Meehl, G. A., and C Tebaldi. 2004. "More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century." Science 305 (5686): 994-97. doi:10.1126/science.1098704.

Meir, Talmor, Philip M. Orton, Julie Pullen, Teddy Holt, William T. Thompson, and Mark F. Arend. 2013. "Forecasting the New York City Urban Heat Island and Sea Breeze during Extreme Heat Events." Weather and Forecasting 28 (6): 1460-77. doi:10.1175/WAF-D-13-00012.1.
"National Weather Service Weather Forecast Office." 2014. Heat: A Major Killer. Accessed November 25. http://www.crh.noaa.gov/lmk/?n=noaaexcessiveheat.

Oke, T. R. 1987. Boundary Layer Climates. London: Routledge.
Oke, T. R., G. T. Johnson, D. G. Steyn, and I. D. Watson. 1991. "Simulation of Surface Urban Heat Islands under ?Ideal? Conditions at Night Part 2: Diagnosis of Causation." Boundary-Layer Meteorol Boundary-Layer Meteorology 56 (4): 33958. doi:10.1007/bf00119211.

Oke, T.r. 1988. "Street Design and Urban Canopy Layer Climate." Energy and Buildings 11 (1-3): 103-13. doi:10.1016/0378-7788(88)90026-6.

Peterson, Thomas C., David R. Easterling, Thomas R. Karl, Pavel Groisman, Neville Nicholls, Neil Plummer, Simon Torok, et al. 1998. "Homogeneity Adjustments Ofin Situ Atmospheric Climate Data: a Review." International Journal of Climatology Int. J. Climatol. 18 (13): 1493-1517. doi:10.1002/(sici)1097-0088(19981115)18:133.0.co;2-t.

Peterson, Thomas C., Richard R. Heim, Robert Hirsch, Dale P. Kaiser, Harold Brooks, Noah S. Diffenbaugh, Randall M. Dole, et al. 2013. "Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge." Bulletin of the American Meteorological Society 94 (6): 821-34. doi:10.1175/BAMS-D-12-00066.1.

Pielke, R A. 2005. "What Does Moist Enthalpy Tell Us?" Climate Science Roger Pielke Sr. Roger Pielke Sr. July 18.
http://pielkeclimatesci.wordpress.com/2005/07/18/what-does-moist-enthalpy-tellus/.

Pielke, Roger A, Christopher Davey, and Jack Morgan. 2004. "Assessing ‘Global Warming' with Surface Heat Content." Eos, Transactions American Geophysical Union 85 (21): 210-11.

Pryor, S. C., and J. T. Schoof. 2016. "Evaluation of near-Surface Temperature, Humidity, and Equivalent Temperature from Regional Climate Models Applied in Type II Downscaling." Journal of Geophysical Research: Atmospheres J. Geophys. Res. Atmos. 121 (7): 3326-38. doi:10.1002/2015jd024539.

Ramamurthy, P., and E. Bou-Zeid. 2014. "Contribution of Impervious Surfaces to Urban Evaporation." Water Resources Research 50 (April): 2889-2902. doi:10.1002/2013WR013909.

Roberts, Sarah M., T. R. Oke, C. S. B. Grimmond, and J. A. Voogt. 2006. "Comparison of Four Methods to Estimate Urban Heat Storage." Journal of Applied Meteorology and Climatology 45 (12): 1766-81. doi:10.1175/JAM2432.1.

Robinson, Peter J. 2001. "On the Definition of a Heat Wave." Journal of Applied Meteorology 40 (4): 762-75. doi:10.1175/1520-0450(2001)0402.0.co;2.

Rotach, M. W., R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, et al. 2005. "BUBBLE - an Urban Boundary Layer Meteorology Project." Theoretical and Applied Climatology 81 (3-4): 231-61. doi:10.1007/s00704-004-0117-9.

Sakakibara, Yasushi. 1996. "A Numerical Study of the Effect of Urban Geometry upon the Surface Energy Budget." Atmospheric Environment 30 (3): 487-96. doi:10.1016/1352-2310(94)00150-2.

Schoof, J T, Z A Heern, M. D. Therrell, and J. W.F. Remo. 2014. "Assessing Trends in Lower Tropospheric Heat Content in the Central United States Using Equivalent Temperature." Wiley Online Library. International Journal of Climatology. September. http://onlinelibrary.wiley.com/doi/10.1002/joc.4175/full.

Schoof, J.t., T.w. Ford, and S.c. Pryor. 2017. "Recent Changes in United States Regional Heat Wave Characteristics in Observations and Reanalyses." Journal of Applied Meteorology and Climatology. doi:10.1175/jamc-d-16-0393.1.

Sheridan, Scott C. 2002. "The Redevelopment of a Weather-Type Classification Scheme for North America." International Journal of Climatology 22 (1): 51-68. doi:10.1002/joc.709.

Somers, Kayleigh A., Emily S. Bernhardt, James B. Grace, Brooke A. Hassett, Elizabeth B. Sudduth, Siyi Wang, and Dean L. Urban. 2013. "Streams in the Urban Heat Island: Spatial and Temporal Variability in Temperature." Freshwater Science 32 (1): 309-26. doi:10.1899/12-046.1.

Souch, Catherine, and C.s.b. Grimmond. 2004. "Applied Climatology: 'Heat Waves'." Progress in Physical Geography 28 (4): 599-606. doi:10.1191/0309133304pp428pr.

Souch, Catherine, and Sue Grimmond. 2006. "Applied Climatology: Urban Climate." Progress in Physical Geography 30 (2): 270-79. doi:10.1191/0309133306pp484pr.

Stewart, I. D., and T. R. Oke. 2012. "Local Climate Zones for Urban Temperature Studies." Bulletin of the American Meteorological Society 93 (12): 1879-1900. doi:10.1175/BAMS-D-11-00019.1.

Stone, Brian. 2012. The City and the Coming Climate: Climate Change in the Places We Live. New York: Cambridge University Press.

Stone, Brian, and John M. Norman. 2006. "Land Use Planning and Surface Heat Island Formation: A Parcel-Based Radiation Flux Approach." Atmospheric Environment 40 (19): 3561-73. doi:10.1016/j.atmosenv.2006.01.015.

Thompson, Russell D., A. H. Perry, and TR Oke. 1997. "Urban Climates and Global Environmental Change." Essay. In Applied Climatology: Principles and Practice, 273-87. London: Routledge.

Vanos, J. K., L. S. Kalkstein, and T. J. Sanford. 2014. "Detecting Synoptic Warming Trends across the US Midwest and Implications to Human Health and HeatRelated Mortality." International Journal of Climatology 35 (1): 85-96. doi:10.1002/joc. 3964.

Vose, Russell S., David R. Easterling, and Byron Gleason. 2005. "Maximum and Minimum Temperature Trends for the Globe: An Update through 2004." Geophysical Research Letters 32 (23). doi:10.1029/2005gl024379.

Willett, Katharine M., and Steven Sherwood. 2010. "Exceedance of Heat Index Thresholds for 15 Regions under a Warming Climate Using the Wet-Bulb Globe Temperature." International Journal of Climatology Int. J. Climatol. 32 (2): 16177. doi:10.1002/joc.2257.

Willett, Katharine M., Nathan P. Gillett, Philip D. Jones, and Peter W. Thorne. 2007. "Attribution of Observed Surface Humidity Changes to Human Influence." Nature 449 (7163): 710-12. doi:10.1038/nature06207.

Willett, Katharine M., Philip D. Jones, Nathan P. Gillett, and Peter W. Thorne. 2008. "Recent Changes in Surface Humidity: Development of the HadCRUH Dataset." Journal of Climate J. Climate 21 (20): 5364-83. doi:10.1175/2008jcli2274.1.

Wouters, Hendrik, Koen DeÂ Ridder, Lien Poelmans, Patrick Willems, Johan Brouwers, Parisa Hosseinzadehtalaei, Hossein Tabari, Sam VandenÂ Broucke, Nicole P. M. VanÂ Lipzig, and Matthias Demuzere. 2017. "Heat Stress Increase under

Climate Change Twice as Large in Cities as in Rural Areas: A Study for a Densely Populated Midlatitude Maritime Region." Geophysical Research Letters, July. doi:10.1002/2017gl074889.

Wu, Jianyong, Ying Zhou, Yang Gao, Joshua S. Fu, Brent A. Johnson, Cheng Huang, Young-Min Kim, and Yang Liu. 2013. "Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States." Environmental Health Perspectives, June. doi:10.1289/ehp.1306670.

Zhao, Lei, Xuhui Lee, Ronald B Smith, and Keith Oleson. 2014. "Strong Contributions of Local Background Climate to Urban Heat Islands." Nature 511 (July): 216-28. doi:10.1038/nature13462.

APPENDIX

APPENDIX A

New York

The weather station and New York's La Guardia Airport was moved one time and experienced 6 instrument changes for the time period of the study, some of these changes are confirmed and some are estimated. In 1961 the station was moved 0.6 miles west, t-test results showed a significant change for $T_{\max }$ and $T_{d \text { max. }}$. For the estimated instrument change of $1964 \mathrm{~T}_{\mathrm{d} \max }$ and $\mathrm{T}_{\text {min }}$ showed significant changes, however no other significant changes occurred in the rest of the series until the installation of the Vaisala DTS1 station in August 2004. After the instrument changes of $2004 T_{\text {max }}$ and $T_{d \text { min }}$ showed a significant change. By contrast Philadelphia also showed a significant change in $\mathrm{T}_{\max }$ after the installation of DTS1 in 2003, however Boston did not. Analyzing the summer trends, we see positive correlations in all variables, and significant results for $T_{E \max }, \mathrm{~T}_{\text {min }}$ and $\mathrm{T}_{\mathrm{E} \text { min. }}$ Significant increases were also noted for $T_{\min }$ and $T_{E \text { min }}$ in the annual trend results. New York City had a population of 8,175,133 in 2010 (US Census), land area per square mile of 303 and the population density of 27,012.

New York City_LaGuardia	Station Metadata		Latitude: 40.77944
	WBAN\# 14732		Longitude: 73.88028
Year	Site (m)	Instruments	Comments
1948-1991	15.8 (1948-1961)	unknown	unknown, obs times 2400. 1991 instrument changed from unknown to Hygrothermometer
1991-Present	3(1961-1982)	Hygrothermo meter	Daily, obs times 2400, Receiver NCEI, Reporting Method: FOSJ-SFC
	3.4 (1982-Present)		
Station Moves			
Latitude	Longitude	Initial	Final Date
40.76667		10/1/1939	5/1/1996
	73.86667	10/1/1939	1/1/1961
40.77889		5/1/1996	11/12/2000
	73.88083	5/1/1996	11/12/2000
40.77917		11/12/2000	7/7/2007
	73.88	11/12/2000	7/7/2007
40.77944		7/7/2007	Present
	73.88028	7/7/2007	Present
T-test 1961	Station move 06/30/1961 moved 0.6 miles west		
T-test 1964	estimated instrument change		
T-test 1985	estimated instrument change		
T-test 1991	instrument change from unknown to Hygrothermometer		
T-test 1995	estimated instrument change		
T-Test 2004	08/19/2004 DTS1 Installation		

New York City	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal Trends			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.11{ }^{\circ}$	0.46288
Te_max	not significant at 0.05	$0.04{ }^{\circ}$	0.79629
T_min	not significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.119
Te_min	not significant at 0.05	$0.15{ }^{\circ}$	0.27582
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.11{ }^{\circ}$	0.15731
Te_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.30711
T_min	is significant at 0.05	$0.16{ }^{\circ}$	0.00969
Te_min	is significant at 0.05	$0.23 C^{\circ}$	0.04921
Summer-June, July, August			
T_max	not significant at 0.05	$0.07{ }^{\circ}$	0.23262
Te_max	is significant at 0.05	$0.28{ }^{\circ}$	0.04352
T_min	is significant at 0.05	$0.26{ }^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.50{ }^{\circ}$	0.00186
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	(-0.00C ${ }^{\circ}$)	0.74325
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.69042
T_min	is significant at 0.05	$0.18{ }^{\circ}$	0.00546
Te_min	is significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.03653

New York City	95\% confidence	Degrees Celsius per decade	
Annual Trend			P-value
	Significance	Trend	
			0.10409
T_max	not significant at 0.05	$0.13 C^{\circ}$	0.17646
Te_max	not significant at 0.05	$0.17 C^{\circ}$	0.00041
T_min	is significant at 0.05	$0.19 C^{\circ}$	0.00544
Te_min	is significant at 0.05	$0.27 C^{\circ}$	

ANNUAL TREND

New York City	95% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
			0.10409
T_max	not significant at 0.05	$0.13 \mathrm{C}^{\circ}$	0.17646
Te_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.00041
T_min	is significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.00544
Te_min	is significant at 0.05	$0.27 \mathrm{C}^{\circ}$	

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.11 C^{\circ}$	0.46288
Te_max	not significant at 0.05	$0.04 C^{\circ}$	0.79629
T_min	not significant at 0.05	$0.14 C^{\circ}$	0.119
Te_min	not significant at 0.05	$0.15 C^{\circ}$	0.27582

SPRING

Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.11 C^{\circ}$	0.15731
Te_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.30711
T_min	is significant at 0.05	$0.16 C^{\circ}$	0.00969
Te_min	is significant at 0.05	$0.23 C^{\circ}$	0.04921

SUMMER

Summer-June, July,August			
T_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.23262
Te_max	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0.04352
T_min	is significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0.00186

FALL

Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.74325
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.69042
T_min	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.00546
Te_min	is significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.03653

A. 9 Summer trends 1973-2014

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	0.26	0.05295
Te_max	not significant at 0.05	0.11	0.5959
T_min	is significant at 0.05	0.47	0.00005
Te_min	is significant at 0.05	0.84	0.00656

A. 10 Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

New York/LaGuardia	Dew Point			Station move 06/30/1961 (0.6 miles west)		
T-Test	1957- $\mathbf{1 9 6 0}$	1962- $\mathbf{1 9 6 5}$				
	P-value	Cl- Lower	CI-Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0326	0.0591	1.3409	2.1686	94	1.5813
Tdmax	0.0013	0.4221	1.6904	3.3073	94	1.56460
Tmin	0.5389	-0.4069	0.7736	0.6167	94	1.4564
Tdmin	0.508	-0.4928	0.9886	0.6646	94	1.8276

New York/LaGuardia	Dew Point			Estimated instrument Change		
T-Test	$1960-$ 1963	1965- 1968				
	P-value	CI- Lower	CI-Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.5277	-0.4576	0.8867	0.6339		94
Tdmax	0.008	0.2533	1.6425	2.7096		94
Tmin	0.024	-1.2908	-0.0925	-2.2921		1.6584
Tdmin	0.5146	-1.0171	0.513	-0.6542		94

New York/LaGuardia	Dew Point				Estimated instrument change	
T-Test	1981- $\mathbf{1 9 8 4}$	1986- $\mathbf{1 9 8 9}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.7649	-0.762	0.562	-0.2999		94
Tdmax	0.5889	-0.9323	0.5323	-0.5423		1.6335
Tmin	0.7273	-0.7234	0.5067	-0.3497	94	1.8068
Tdmin	0.576	-0.6186	1.1061	0.5612	94	1.5175

New York/LaGuardia	Dew Point			1991	Instrument change from unknown to Hygrothermometer	
T-Test	$\mathbf{1 9 8 7 -}$ 1990	$\mathbf{1 9 9 2 -}$ $\mathbf{1 9 9 5}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.9952	-0.6866	0.6825	-0.006	94	1.689
Tdmax	0.4635	-0.4456	0.9706	0.7361	94	1.74710
Tmin	0.6934	-0.5109	0.7651	0.3955	94	1.5741
Tdmin	0.2942	-0.3989	1.303	1.0549		94

New York/LaGuardia	Dew Point			1995	Estimated instrument change	
T-Test	1991- $\mathbf{1 9 9 4}$	$1996-$ 1999				
	P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1748	-0.2114	1.1446	1.3684	85	1.5818
Tdmax	0.7187	-0.7253	0.5022	-0.3614	85	1.43180
Tmin	0.0679	-1.23	0.0446	-1.8493	85	1.4868
Tdmin	0.1333	-1.4544	0.1961	-1.5159	85	1.9253

New York/La Guardia	Dew Point		2004	DTS1 Installation 08/19/2004		
T-Test	$1999-$ 2003	2005- 2008				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	$7.87 \mathrm{E}-04$	-2.1385	-0.5836	-3.4796		87
Tdmax	0.6539	-0.5989	0.9493	0.4499	87	1.8394
Tmin	0.9711	-0.6891	-0.6643	-0.0364		87
Tdmin	$1.52 \mathrm{E}-05$	1.0145	2.5677	4.5841		87

APPENDIX B

Chicago

The weather station at Chicago's O'Hare Airport was moved two times and had a combined total of 4 instrument changes. T-tests for this station show that none of the instrument changes in the earlier part of the record created significant changes in the time series, however $T_{d \max }$ and $T_{d \text { min }}$ did show a difference in 1989 when the station was moved 1.2 miles northeast. Maximum temperature seems to have been affected with an instrument change in 2004, this could be related to a change from the Hygrothermometer which had a warm bias, Indianapolis also showed an increase in T_{d} max; this could also be a regional increase that occurred during that time period. $T_{d m i n}$ shows a change with the installation of the DTS1 station in 2005. Seasonal summer trend analysis shows a significant increase of $T_{\min }\left(0.31^{\circ} \mathrm{C}\right)$ and $\mathrm{T}_{\mathrm{E} \text { min }}\left(0.66^{\circ} \mathrm{C}\right)$ for the study period of 67 years, this was consistent with significant increases in the annual record as well (see appendix). Interestingly $\mathrm{T}_{\mathrm{E} \text { max }}$ showed a decrease, although not significant, it is worth noting. According to the 2010 Census, Chicago's population was $2,695,598$, land area per square mile 228 and the population density was 11,841 .

| Chicago
 O'Hare Int'l AP | Station Metadata | | Latitude:
 41.995 |
| :--- | :--- | :--- | :--- | :--- |
| | WBAN\# 94846 | | Longitude:
 -87.9336 |
| Year | Ground Elevation (m) | Instruments | Comments |
| 1958-1960 | 200.6 (1958-1989) | Maximum and
 Minimum
 Thermometers | Daily/obs times 2400 |
| 1960-1992 | 200.6 (1989-2013) | Hygrothermomete
 r | Daily readings/
 observation times
 2400 |
| 1992-2004 | 201.8 (2013-Present) | Tempx: Other
 temperature
 equipment | Observation times
 2400, Reporting
 method: ASOS data
 downloaded to NCDC
 -MF1-10 from 1992-
 $1996 . ~ F r o m ~ 1998-~$ |
| 2004 Reporting | | | |
| method B91. | | | |

Chicago O'Hare	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal			P-value
Winter-Dec, Jan, Feb	Significance	Trend	0.67563
T_max	not significant at 0.05	$0.06 C^{\circ}$	0.75152
Te_max	not significant at 0.05	$0.06 C^{\circ}$	0.04417
T_min	is significant at 0.05	$0.33 C^{\circ}$	0.03989
Te_min	is significant at 0.05	$0.44 C^{\circ}$	0.09713
Spring-Mar, Apr, May			0.96172
T_max	not significant at 0.05	$0.18 C^{\circ}$	0.00061
Te_max	not significant at 0.05	$0.00 C^{\circ}$	0.00455
T_min	is significant at 0.05	$0.25 C^{\circ}$	
Te_min	is significant at 0.05	$0.35 C^{\circ}$	0.73617
Summer-June, July, August			0.60175
T_max	not significant at 0.05	$0.03 C^{\circ}$	0.00091
Te_max	not significant at 0.05		0.00445
T_min	is significant at 0.05	$0.31 C^{\circ}$	-0.12
Te_min	is significant at 0.05	$0.66 C^{\circ}$	0.39788
Fall-Sept, Oct, Nov			0.21246
T_max	not significant at 0.05		0.001
Te_max	not significant at 0.05		-0.1
T_min	is significant at 0.05	$0.27 C^{\circ}$	-0.18
Te_min	is significant at 0.05	$0.47 C^{\circ}$	0.00331

Chicago	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.51466
Te_max	not significant at 0.05	$\left(-0.04 \mathrm{C}^{\circ}\right)$	0.80483
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00055
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.00063

ANNUAL TREND

Chicago	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.51466
Te_max	not significant at 0.05	$\left(-0.04 \mathrm{C}^{\circ}\right)$	0.80483
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00055
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.00063

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
			0.67563
T_max	not significant at 0.05	$0.06 C^{\circ}$	0.75152
Te_max	not significant at 0.05	$0.06 \mathrm{C}^{\circ}$	0.04417
T_min	is significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.03989
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	

Spring-Mar, Apr, May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.09713
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.96172
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00061
Te_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.00455

SUMMER

Summer-June, July, August	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.03 C^{\circ}$	0.73617
Te_max	not significant at 0.05		-0.12
T_min	is significant at 0.05	$0.31 C^{\circ}$	0.60175
Te_min	is significant at 0.05	$0.66 C^{\circ}$	0.00091

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05		-0.1
Te_max	not significant at 0.05		-0.18
T_min	is significant at 0.05	$0.27 C^{\circ}$	0.21246
Te_min	is significant at 0.05	$0.47 C^{\circ}$	0.001

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	0	0.85753
Te_max	not significant at 0.05	-0.38	0.2878
T_min	is significant at 0.05	0.43	0.02418
Te_min	is significant at 0.05	0.95	0.04561

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Chicag o O'Hare	Dew Point			1960	Instrument change Max/min thermometer to Hygrothermometer	
T-Test	$\mathbf{1 9 5 6 -}$ 1959	$\mathbf{1 9 6 1 -}$ $\mathbf{1 9 6 4}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.6622	-1.1156	0.7122	-0.4382		93

Chicago O'Hare	Dew Point			1964	Estimated instrument change	
T-Test	$\mathbf{1 9 6 0 -}$ $\mathbf{1 9 6 3}$	$1965-$ 1968				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.8945	-0.8945	0.9957	0.133		94
Tdmax	0.7542	-0.7432	1.0223	0.314	94	2.3025
Tmin	0.2115	-1.4933	0.335	-1.258	9.178	
Tdmin	0.5087	-1.356	0.6768	-0.6634	94	2.2555

Chicago O'Hare	Dew Point			1985	Estimated instrument change and station move (0.75 miles east 03/11/1985)	
T-Test	$\begin{aligned} & \text { 1981- } \\ & 1984 \end{aligned}$	$\begin{aligned} & 1986- \\ & 1989 \end{aligned}$				
	P-value	Cl- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.1824	1.5952	0.3077	-1.3434	94	2.3476
Tdmax	0.7165	1.0484	0.7234	-0.3642	94	2.1858
Tmin	0.0643	1.7431	0.0514	-1.8718	94	2.2138
Tdmin	0.6565	-1.249	0.7906	-0.4462	94	2.5162

Chicago O'Hare	Dew Point			1989	Station move (1.2 miles NE 01/19/1989)

T-Test	$\mathbf{1 9 8 5 -}$ $\mathbf{1 9 8 8}$	$\mathbf{1 9 9 0}$ $\mathbf{1 9 9 3}$				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.7599	-0.7416	1.0125	0.3066	94	2.164
Tdmax	0.0286	-1.6289	-0.092	-2.2231	94	1.8961
Tmin	0.1628	-1.4619	0.2494	-1.4619	94	2.1112
Tdmin	0.0313	-1.9799	-0.0951	-2.186	94	2.3251

Chicago O'Hare	Dew Point			$\mathbf{2 0 0 4}$	Instrument change from Tempx to ATEMP	
T-Test	$\mathbf{1 9 9 9 -}$ 2003	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.015	-2.1045	-0.2336	-2.4866	81	2.1152
Tdmax	0.5294	-1.1336	0.5873	-0.6316	81	1.9457
Tmin	0.5565	-0.6626	1.222	0.5906	81	2.1307
Tdmin	0.0879	-0.1325	1.8789	1.7276	81	2.274

Chicago O'Hare	Dew Point			2005	DTS1 Installation 06/03/2005	
T-Test	2001- 2004	2006- 2009				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.3528	-1.3309	0.4801	-0.9345	82	2.0646
Tdmax	0.9283	-0.7898	0.8649	0.0903	82	1.8864
Tmin	0.0825	-0.1028	1.6646	1.758	82	2.0148
Tdmin	0.0076	0.3574	2.2546	2.7389	82	2.1628

APPENDIX C

Philadelphia

The station at the Philadelphia International Airport was moved in 1954, it was also lowered in elevation from 7.9 meters to 3 meters where it still stands today. T-tests showed changes in $T_{\max }$ and $\mathrm{T}_{\mathrm{d} \max }$ for 1954 , this could be due to the station being closer to the ground during this time. Only of the estimated instrument changes showed a possible error in the record in 1995 when many of the stations were changed to ASOS, $T_{\max }$ was affected here. After the installation for DTS1 in 2004, $T_{\max }$ and $T_{d \text { min }}$ were showing possible discontinuities. Philadelphia had a population of $1,526,006$, with a land area of 134 and population density of 11,379 according to the 2010 US Census. The seasonal summer trend analysis shows significant increases for all variables except $T_{E \text { max. }} T_{\max }$ shows an increase of $0.13 \mathrm{C}^{\circ}, \mathrm{T}_{\text {min }}$ increased $0.37 \mathrm{C}^{\circ}$ and $\mathrm{T}_{\mathrm{E} \text { min }}$ increased by $0.68 C^{\circ}$. In the shorter time period starting at 1973 significant increases are present in $\mathrm{T}_{\min }\left(0.48 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{Emin}}\left(0.91 \mathrm{C}^{\circ}\right)$. Annual trend analysis shows increases in $\mathrm{T}_{\min }\left(0.31 \mathrm{C}^{\circ}\right)$ and $T_{E \min }\left(0.44 C^{\circ}\right)$.

Philadelphi a Int'I AP	Station Metadata	Latitude: 39.8683		
	WBAN\# 13739	Longitude: 75.2311		
Year	Site (m)	Instruments		Comments
1948-1954	7.9 (1948-1954)	Hygrothermomete r		Daily, obs times 2400
1954-2011	3 (1954-2003)	Hygrothermomete r		Daily, obs times 2400. Instrument change from Hygrothermomete r to ATEMP.
2011Present	3 (2003-Present)	ATEMP: ASOS Hygrothermometer		Reporting method: ADP-ASOS-Era Data Downloaded to NCDC. No recorded change in observation times
Station Moves				
Latitude	Longitude	Initial	Final Date	
39.88333		7/1/1940	12/1/1995	
	75.23333	7/1/1940	$\begin{array}{r} 12 / 22 / 195 \\ 4 \end{array}$	
	75.25	12/22/1954	12/1/1995	
39.86833		12/1/1995	9/15/2011	
	75.23111	12/1/1995	9/15/2011	
39.8683		9/15/2011	Present	
	75.2311	9/15/2011	Present	
T-test 1954	Station move from old terminal bldg to new terminal bldg			
T-test 1964	estimated instrument change			
T-test 1985	estimated instrument change			
T-test 1995	estimated instrument change			
T-Test 2004	03/11/2004 DTS1 Installation			
T-test 2011	instrument change from Hygrothermometer to ATEMP (not enough data to conduct T-Test ends 2014)			

Philadelphia	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal Trends			
Winter-Dec, Jan, Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.36617
Te_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.77934
T_min	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.11302
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.25087
Spring-Mar, Apr, May			
T_max	is significant at 0.05	$0.20{ }^{\circ}$	0.00978
Te_max	not significant at 0.05	$0.23 \mathrm{C}^{\circ}$	0.18426
T_min	is significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0.00089
Te_min	is significant at 0.05	$0.38 \mathrm{C}^{\circ}$	0.01456
Summer-June, July, August			
T_max	is significant at 0.05	$0.13 \mathrm{C}^{\circ}$	0.02153
Te_max	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.36672
T_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.68 \mathrm{C}^{\circ}$	0.00013
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.35967
Te_max	not significant at 0.05	$0.06 \mathrm{C}^{\circ}$	0.50478
T_min	is significant at 0.05	$0.31 \mathrm{C}^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.46 \mathrm{C}^{\circ}$	0.00212

Philadelphia	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
			0.00728
	is significant at 0.05	$0.18 C^{\circ}$	0.21885
T_max	not significant at 0.05	$0.16 C^{\circ}$	0
Te_max	is significant at 0.05	$0.31 C^{\circ}$	0.00047
T_min	is significant at 0.05	$0.44 C^{\circ}$	
Te_min			

ANNUAL TREND

Philadelphia	95\% confidence	Degrees Celsius per decade	
Annual			
	Significance	Trend	P-value
			0.00728
T_max	is significant at 0.05	$0.18 C^{\circ}$	0.21885
Te_max	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0
T_min	is significant at 0.05	$0.31 \mathrm{C}^{\circ}$	0.00047
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
			0.36617
T_max	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.77934
Te_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.11302
T_min	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.25087
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	

SPRING

Spring- Mar,Apr,May	Significance	Trend	P-value
T_max	is significant at 0.05	$0.20 C^{\circ}$	
Te_max	not significant at 0.05	$0.23 C^{\circ}$	0.00978
T_min	is significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0.18426
Te_min	is significant at 0.05	$0.38 C^{\circ}$	0.00089

SUMMER

Summer-June, July, August			
T_max	is significant at 0.05	$0.13 \mathrm{C}^{\circ}$	0.02153
Te_max	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.36672
T_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.68 \mathrm{C}^{\circ}$	0.00013

FALL

Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.35967
Te_max	not significant at 0.05	$0.06 \mathrm{C}^{\circ}$	0.50478
T_min	is significant at 0.05	$0.31 \mathrm{C}^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.46 \mathrm{C}^{\circ}$	0.00212

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.06767
Te_max	not significant at 0.05	$-0.22 \mathrm{C}^{\circ}$	0.49783
T_min	is significant at 0.05	$0.48 \mathrm{C}^{\circ}$	0.00005
Te_min	is significant at 0.05	$0.91 \mathrm{C}^{\circ}$	0.01584

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Philadelphia Int'I AP	Dew Point			1954	Station move from old terminal bldg to new terminal bldg.	
T-Test	$\mathbf{1 9 5 0}$ $\mathbf{1 9 5 3}$	$1955-$ $\mathbf{1 9 5 8}$				
	P- value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0038	0.3377	1.7081	2.9642		94
Tdmax	0.0271	0.1	1.625	2.2458	94	1.6906
Tmin	0.1501	-0.1689	1.0856	1.4509	98140	
Tdmin	0.0541	-0.0148	1.669	1.9506	94	1.5476

Philadelphi a Int'I AP		Dew Point		1964	Estimated instrument change	
T-Test	$\begin{aligned} & 1960- \\ & 1963 \end{aligned}$	$\begin{aligned} & 1965- \\ & 1968 \end{aligned}$				
	P-value	CI- Lower	CIUpper	Tstatisti c	Degrees of Freedom	Standard Deviation
Tmax	0.3772	1.0185	0.3893	-0.8873	94	1.7368
Tdmax	0.9858	0.7031	0.6906	-0.0178	94	1.71930
Tmin	0.0575	-1.156	0.0185	-1.9229	94	1.449
Tdmin	0.4784	0.4885	1.0344	0.7117	94	1.8787

Philadelphi a Int'I AP		Dew Point		1985	Estimated instrument change	
T-Test	1981-1984	$\begin{aligned} & 1986- \\ & 1989 \end{aligned}$				
	P-value	CI- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.0863	1.3097	0.0888	-1.7333	94	1.7253
Tdmax	0.0542	1.4256	0.0131	-1.9495	94	1.7748
Tmin	0.2571	0.9709	0.2625	-1.1402	94	1.5216
Tdmin	0.173	1.3403	0.2445	-1.3729	94	1.9551

Philadelphia Int'I AP		Dew Point		1995	Estimated instrument change	
T-Test	$\begin{array}{\|l\|} \hline 1991- \\ 1994 \end{array}$	$\begin{gathered} 1996- \\ 1999 \end{gathered}$				
	Pvalue	CI- Lower	CIUpper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0256	0.1087	1.6345	2.2715	85	1.7798
Tdmax	0.9108	0.7735	0.6907	-0.1123	85	1.70800
Tmin	0.7936	0.7396	0.5671	-0.2625	85	1.5242
Tdmin	0.1712	1.4372	0.2595	-1.3801	85	1.9791

Philadelphia Int'I AP		Dew Point		$\mathbf{2 0 0 4}$	DTS1 Installation 03/11/2004	
T-Test	$\mathbf{1 9 9 9 - 2 0 0 3}$	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0451	-1.7715	-0.02	-2.0348	82	1.9966
Tdmax	0.5094	-0.5903	1.1801	0.6627	82	2.0183
Tmin	0.0664	-0.044	1.3171	1.8607	82	1.5516
Tdmin	$3.65 \mathrm{E}-05$	1.052	2.8119	4.3674	82	2.0063

APPENDIX D

Jacksonville

Jacksonville is one of the fasters growing cities in the US (citation). With a population of 824,784 , land area per square mile 747 and population density of 1,100 . Station at Jacksonville International airport experienced a large move in 1971, the move was more than several miles, for this reason only data after 1971 was used. The most complete records began in 1973, this is where our analysis starts. T-tests for this station show a homogeneous time series for 1985, estimated instrument change as well as 1995 which experienced an estimated instrument change and station move 1.5 miles west. In 1996 the station was moved 1mile northeast, t-test for this move show no inconsistencies. In 2004 the station installed the Vaisala DTS1 station, according to t-tests, this could have caused some inhomogeneity in $T_{\text {max }}, T_{\text {min }}$ and $T_{d \text { min }}$.

Jacksonville	Median of Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.54932
Te_max	not significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.67925
T_min	not significant at 0.05	$0.42 \mathrm{C}^{\circ}$	0.13369
Te_min	not significant at 0.05	$0.75 \mathrm{C}^{\circ}$	0.18416
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$\left(-0.05 C^{\circ}\right)$	0.53443
Te_max	not significant at 0.05	$\left(-0.50 C^{\circ}\right)$	0.09186
T_min	not significant at 0.05	$\left(-0.06 C^{\circ}\right)$	0.63753
Te_min	not significant at 0.05	$\left(-0.06 C^{\circ}\right)$	0.96017
Summer-June, July,August			
T_max	not significant at 0.05	$\left(-0.00 C^{\circ}\right)$	0.91058
Te_max	not significant at 0.05	$\left(-0.17 C^{\circ}\right)$	0.39576
T_min	is significant at 0.05	$0.15 C^{\circ}$	0.04695
Te_min	is significant at 0.05	$0.82 C^{\circ}$	0.00369
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$\left(-0.08 C^{\circ}\right)$	0.35656
Te_max	not significant at 0.05	$\left(-0.50 C^{\circ}\right)$	0.05994
T_min	not significant at 0.05	$0.12 C^{\circ}$	0.45475
Te_min	not significant at 0.05	$0.30 C^{\circ}$	0.53789

Jacksonville	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.592
Te_max	not significant at 0.05	$\left(-0.18 \mathrm{C}^{\circ}\right)$	0.29868
T_min	not significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.10227
Te_min	not significant at 0.05	$0.43 \mathrm{C}^{\circ}$	0.07889

ANNUAL TREND

Jacksonville	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.592
Te_max	not significant at 0.05	$\left(-0.18 \mathrm{C}^{\circ}\right)$	0.29868
T_min	not significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.10227
Te_min	not significant at 0.05	$0.43 \mathrm{C}^{\circ}$	0.07889

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.54932
Te_max	not significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.67925
T_min	not significant at 0.05	$0.42 \mathrm{C}^{\circ}$	0.13369
Te_min	not significant at 0.05	$0.75 \mathrm{C}^{\circ}$	0.18416

Spring-Mar, Apr, May	Significance	Trend	P-Value
T_max	not significant at 0.05	$\left(-0.05 C^{\circ}\right)$	0.53443
Te_max	not significant at 0.05	$\left(-0.50 \mathrm{C}^{\circ}\right)$	0.09186
T_min	not significant at 0.05	$\left(-0.06 \mathrm{C}^{\circ}\right)$	0.63753
Te_min	not significant at 0.05	$\left(-0.06 \mathrm{C}^{\circ}\right)$	0.96017

Summer-June, July, August	Significance	Trend	P- Value
T_max	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.91058
Te_max	not significant at 0.05	$\left(-0.17 \mathrm{C}^{\circ}\right)$	0.39576
T_min	is significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.04695
Te_min	is significant at 0.05	$0.82 \mathrm{C}^{\circ}$	0.00369

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$\left(-0.08 C^{\circ}\right)$	0.35656
Te_max	not significant at 0.05	$\left(-0.50 C^{\circ}\right)$	0.05994
T_min	not significant at 0.05	$0.12 C^{\circ}$	0.45475
Te_min	not significant at 0.05	$0.30 C^{\circ}$	0.53789

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Jacksonville Int'l AP	Dew Point			1985	estimated instrument changes	
1981-1984	$\begin{aligned} & 1986- \\ & 1989 \end{aligned}$					
T-Test						
	Pvalue	Cl- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.3022	0.9591	0.3008	-1.0374	94	1.5544
Tdmax	0.668	0.5499	0.854	0.4302	94	1.7319
Tmin	0.527	0.9372	0.483	-0.6349	94	1.7521
Tdmin	0.8974	0.8372	0.9539	0.1293	94	2.2096

Jacksonville Int'I AP	Dew Point			1995	estimated instrument change (unknown to Hygrothermometer) and station move 1.5 miles W	
T-Test	$\mathbf{1 9 9 1 -}$ $\mathbf{1 9 9 4}$	$\mathbf{1 9 9 6 -}$ $\mathbf{1 9 9 9}$				
	P- value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.333 1	- 0.2788	0.8141	0.9733	89	1.3098
Tdmax	0.788 2	- 0.5044	0.6627	0.2695	89	1.39860
Tmin	0.502	0.843	0.6741	89	1.5087	
Tdmin	0.779	-0.893	0.6716	-0.2811	89	1.8751

Jacksonville Int'I AP	Dew Point		1996			station move 1 mile NE (03/01/1996)		
T-Test	1991- 1994	$1996-$ 1999						
	P- value	Cl- Lower	CI-Upper	T- statistic	Degrees of Freedom	Standard Deviation		
Tmax	0.6599	0.4673	0.7341	0.4416	84	1.3911		
Tdmax	0.7533	-0.713	0.5179	-0.3153	84	1.42530		
Tmin	0.1818	--	0.2028	-1.3464	84	1.4547		
Tdmin	0.1482	1.0534	-	0.2112	-1.4593	84		

Jacksonville Int'I AP				$\mathbf{2 0 0 4}$	DTS1 Installation 1/16/2004	
T-Test	$\mathbf{2 0 0 0 - 2 0 0 3}$	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0025	-1.4756	-0.326	-3.1153	86	1.3506
Tdmax	0.5227	-0.42	0.8205	0.6418	86	1.4575
Tmin	0.0366	0.0456	1.3886	2.1229	86	1.5778
Tdmin	0.0011	0.5773	2.2125	3.3915	86	1.9211

APPENDIX E

Indianapolis

Indianapolis has a population of 820,445 , land area per square mile is 361 , and population density of 2270 . The station had 6 instrument changes and one station move. T-tests reveal that an instrument change in 1962 had no effect on the time series. However, an estimated instrument change in 1964 may have affected $T_{\text {min. }}$ In 1978 the station changed from a Hygrothermometer to a max/min thermometer, this change showed possible changes in dew point temperatures for both minimum and maximum. Estimated instrument changes in 1985 and 1995 showed no possible discontinuities, one more T-test was attempted for 1996 when the station changed from max/min thermometer to ATEMP/ASOS Hygrothermometer. The station was also moved 1.8 miles south in 1996, however no enough data was present for a T-Test, the results were inconclusive. The installation of Vaisala DTS1 in 2004 did show an inconsistency for $T_{\max }$ and $\mathrm{T}_{\mathrm{d} \text { min. }}$ Seasonal trend analysis shows significant increases for $\mathrm{T}_{\min }\left(0.22 \mathrm{C}^{\circ}\right)$ and $T_{E \min }\left(0.41 \mathrm{C}^{\circ}\right)$. Significant increases for the same variables are also noticed in the Spring and Fall seasons. The analysis also shows a decrease of $T_{E \max }$ in the summer, although not significant. Annual trend analysis also shows significant increases in $T_{\text {min }}$ $\left(0.18 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{Emin}}\left(0.30 \mathrm{C}^{\circ}\right)$. These results are very similar to one of the closest stations nearby in this study which is Columbus, OH .
$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Indianapolis } \\ \text { Int'I AP }\end{array} & \text { Station Metadata } & & \text { Latitude: 39.7318 }\end{array}\right]$

Indianapolis	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal			P-value
Winter-Dec, Jan, Feb	Significance	Trend	0.74776
T_max	not significant at 0.05	$\left(-0.02 \mathrm{C}^{\circ}\right)$	0.74755
Te_max	not significant at 0.05	$\left(-0.06 \mathrm{C}^{\circ}\right)$	0.68196
T_min	not significant at 0.05	$0.06 \mathrm{C}^{\circ}$	0.70778
Te_min	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	
Spring-Mar, Apr, May			0.03092
T_max	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.14052
Te_max	not significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00724
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.01867
Te_min	is significant at 0.05	$0.39 \mathrm{C}^{\circ}$	
Summer-June, July,			0.8632
August	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.59802
T_max	not significant at 0.05	$\left(-0.10 \mathrm{C}^{\circ}\right)$	0.00179
Te_max	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.01425
T_min	is significant at 0.05	$0.41 \mathrm{C}^{\circ}$	
Te_min			0.92642
Fall-Sept, Oct, Nov	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.76046
T_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.00195
Te_max	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.02721
T_min	is significant at 0.05	$0.36 \mathrm{C}^{\circ}$	
Te_min			

Indianapolis	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.26625
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.67795
T_min	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.0039
Te_min	is significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.00589

ANNUAL TREND

Indianapolis	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.26625
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.67795
T_min	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.0039
Te_min	is significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.00589

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$\left(-0.02 \mathrm{C}^{\circ}\right)$	0.74776
Te_max	not significant at 0.05	$\left(-0.06 \mathrm{C}^{\circ}\right)$	0.74755
T_min	not significant at 0.05	$0.06 \mathrm{C}^{\circ}$	0.68196
Te_min	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.70778

Spring-Mar, Apr, May	Significance	Trend	P-Value
T_max	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.03092
Te_max	not significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.14052
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00724
Te_min	is significant at 0.05	$0.39 \mathrm{C}^{\circ}$	0.01867

SUMMER

Summer-June, July, August			
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.8632
Te_max	not significant at 0.05	$\left(-0.10 \mathrm{C}^{\circ}\right)$	0.59802
T_min	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.00179
Te_min	is significant at 0.05	$0.41 \mathrm{C}^{\circ}$	0.01425

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.92642
Te_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.76046
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00195
Te_min	is significant at 0.05	$0.36 \mathrm{C}^{\circ}$	0.02721

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	-0.09	0.54543
Te_max	is significant at 0.05	-1.13	0.00396
T_min	is significant at 0.05	0.35	0.00833
Te_min	not significant at 0.05	0.2	0.53185

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Indianapolis	Dew Point		1962	Instrument change from unknown to Hygrothermometer		
T-Test	$\begin{aligned} & \hline 1960- \\ & 1963 \end{aligned}$	$\begin{aligned} & \hline 1965- \\ & 1968 \end{aligned}$				
	P -value	CI- Lower	CI-Upper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.0674	$1.740 \overline{6}^{-}$	0.0615	-1.8501	94	2.2232
Tdmax	0.1368	0.2074	1.4907	1.5005	94	2.095
Tmin	0.6608	1.1022	0.7022	-0.4402	94	2.226
Tdmin	0.1579	0.2673	1.6214	1.4236	94	2.3301

Indianapolis	Dew Point		1964	Estimated instrument change		
T-Test	$1960-$ 1963	$1965-$ 1968				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.195	-1.4654	0.3029	-1.3053		94
Tdmax	0.3866	-0.4703	1.2037	0.8698	94	2.1815
Tmin	$8.59 \mathrm{E}-04$	-2.286	-0.614	-3.4437	94	2.0627
Tdmin	0.5553	-1.2064	0.6522	-0.592		94
2.293						

Indianapolis	Dew Point		1978		Instrument change from Hygrothermometer to Max/min thermomer	
1974-1977	$1979-$ 1982					
Two-Tailed T-Test						
	P-value	Cl- Lower	CI-Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.2954	-0.4416	1.4374	1.0523		94
Tdmax	0.0093	0.3	2.0792	2.6551		94
Tmin	0.4412	-0.5843	1.3302	0.7735		94
Tdmin	0.0213	0.1794	2.1831	2.3411		94

Indianapolis	Dew Point		1985	Estimated instrument change		
1981-1984	1986- 1989					
Two-Tailed T- Test						
	P- value	CI-Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.5814	-1.1949	0.6741	-0.5533		94

Indianapolis	Dew Point		1995	Estimated Instrument change			
T-Test	1991- 1994	$1996-$ 1999					
	P- value	CI- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation	
Tmax	0.5251	-0.5289	1.0292	0.638	90	1.8788	
Tdmax	0.7191	-0.6139	0.8864	0.3608	90	1.80920	
Tmin	0.4134	-1.1157	0.4628	-0.8217	90	1.9034	
Tdmin	0.6655	-1.0914	0.7002	-0.4337	90	2.1604	

Indianapolis	Dew Point			1996	Instrument change from Max/min thermometer to ATEMP/ASOS Hygrothermometer. Station move 1.8 miles S (07/26/1996).	
T-Test	$\mathbf{1 9 9 2 -}$ $\mathbf{1 9 9 5}$	$1997-$ $\mathbf{2 0 0 0}$				Standard Deviation
					N-	
	P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	NaN
Tmax	NaN	NaN	NaN	NaN	NaN	NaN
Tdmax	NaN	NaN	NaN	NaN	NaN	NaN
Tmin	NaN	NaN	NaN	NaN	NaN	NaN
Tdmin	NaN	NaN	NaN	NaN	NaN	NaN

Indianapolis	Dew Point		2004	$\begin{array}{\|l\|} \hline 01 / 13 / 2004 \\ \text { DTS1 } \\ \text { Installatio } \\ \mathrm{n} \\ \hline \end{array}$		
T-Test	$\begin{aligned} & 1999- \\ & 2003 \end{aligned}$	$\begin{aligned} & 2005- \\ & 2008 \end{aligned}$				
	Pvalue	Cl- Lower	CIUpper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	$\begin{aligned} & \hline 0.043 \\ & \hline \end{aligned}$	1.8649	0.0303	-2.0519	91	2.2256
Tdmax	$\begin{array}{r} 0.827 \\ \hline \end{array}$	0.7139	0.8906	0.2187	91	1.9465
Tmin	$\begin{array}{r} 0.623 \\ \hline \end{array}$	$0.621{ }^{-}$	1.0313	0.4921	91	2.0054
Tdmin	$\begin{aligned} & 0.028 \\ & 5 \end{aligned}$	0.1072	1.8911	2.2252	91	2.164

APPENDIX F

Columbus

Columbus, Ohio has 787,033 residents, land area per square mile is 217 , with a population density of 3,624 (US Census, 2010). The Columbus International Airport experienced 2 confirmed instrument changes, two estimated instrument changes and one move. In 1964 the station changed the max/min thermometer to a hygrothermometer, t-tests show a change in $T_{\text {min }}$ for this year. An estimated instrument change in 1985 shows no effect on the time series, however a similar change in 1995 shows $\mathrm{T}_{\text {min }}$ being affected once again. In 1996 the station was moved 1.5 miles southeast, once again $T_{\text {min }}$ shows a possible inhomogeneity. The station did not experience any other changes until the installation of the Vaisala DTS1 equipment in 2004, t-test show a possible inconsistency in $T_{\max }$ and $T_{d \text { min }}$ Seasonal trend analysis for summer shows significant increases in $T_{\min }\left(0.31 C^{\circ}\right)$ and $T_{E \min }\left(0.62 C^{\circ}\right)$. Similar to Indianapolis these increases are also present in the spring and fall time series as well as the annual trend. In the shorter record from 1973 a significant decrease in $\mathrm{T}_{\mathrm{E} \text { max }}$ is present $-1.13 \mathrm{C}^{\circ}$ along with a significant increase of $\mathrm{T}_{\min } 0.35 \mathrm{C}^{\circ}$.

Columbus Port Columbus Int'l AP	Station Metadata		Latitude: 39.9942	
	WBAN\#14821		$\begin{aligned} & \text { Longitude } \\ & : 82.8767 \end{aligned}$	
Year	Site (m)	Instruments		Comments
1948-1964	253.0 (1948-1959)	Max/min thermometer		Daily, reporting method unknown.
1964-1976	247.8 (1959-1998)	Hygrothermometer		Receiver NCEI, reporting method unknown.
1976-1996	$\begin{aligned} & 246.9 \text { (1998- } \\ & \text { Present) } \end{aligned}$	Hygrothermometer		Receiver NCEI, reporting method: MF1-10
1996-2016		Hygrothermometer		Daily, obs times 2700, reporting method: ASOS-Era Data Downloaded to NCDC
2016-Present		ATEMP: ASOS Hygrothermometer		Daily, obs times 2400, reporting method: ASOS-Era Data Downloaded to NCDC
Station Moves				
Latitude	Longitude	Initial	Final Date	
39.98333		7/1/1929	1/1/1959	
	82.86667	7/1/1929	1/1/1959	
40		1/1/1959	2/1/1996	
	82.88333	1/1/1959	2/1/1996	
39.9942		2/1/1996	Present	
	82.8767	2/1/1996	Present	
T-test 1964	Instrument change: Max/min thermometer to Hygrothermometer			
T-test 1985	estimated instrument change			
T-test 1995	estimated instrument change			
T-test 1996	station move 1.5 miles SSE (02/02/1996)			
T-test 2004	DTS1 installation 2/10/2004			

Columbus Int'l AP	Median Pairwise Slopes 95% confidence	Degrees Celsius per decade	
Seasonal Trends			
Winter-Dec, Jan, Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.03 C^{\circ}$	0.91473
Te_max	not significant at 0.05	$\left(-0.00 C^{\circ}\right)$	0.84851
T_min	not significant at 0.05	$0.14 C^{\circ}$	0.35402
Te_min	not significant at 0.05	$0.16 C^{\circ}$	0.44754
Spring-Mar, Apr, May			
T_max	not significant at 0.05	$0.16 C^{\circ}$	0.06095
Te_max	not significant at 0.05	$0.04 C^{\circ}$	0.79889
T_min	is significant at 0.05	$0.2 \mathrm{C}^{\circ}$	0.00618
Te_min	is significant at 0.05	$0.27 C^{\circ}$	0.04076
Summer-June, July, August			
T_max	not significant at 0.05	$\left(-0.02 C^{\circ}\right)$	0.83949
Te_max	not significant at 0.05	$\left(-0.08 C^{\circ}\right)$	0.65188
T_min	is significant at 0.05	$0.31 C^{\circ}$	0
Te_min	is significant at 0.05	$0.62 C^{\circ}$	0.0002
Fall-Sept, Oct, Nov			0.4335
T_max	not significant at 0.05	$\left(-0.06 C^{\circ}\right)$	0.33348
Te_max	not significant at 0.05	$\left(-0.13 C^{\circ}\right)$	0.00231
T_min	is significant at 0.05	$0.21 C^{\circ}$	0.02634
Te_min	is significant at 0.05	$0.29 C^{\circ}$	

Columbus Int'l AP	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Annual Trend		Trend	P-value
	Significance	$0.05 \mathrm{C}^{\circ}$	0.54346
T_max	not significant at 0.05	$\left(-0.03 \mathrm{C}^{\circ}\right)$	0.77704
Te_max	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.00048
T_min	is significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.00269
Te_min	is significant at 0.05		

ANNUAL TREND

Columbus	95\% confidence	Degrees Celsius per decade	
Annual Trend			P-value
	Significance	Trend	0.54346
T_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.77704
Te_max	not significant at 0.05	$\left(-0.03 \mathrm{C}^{\circ}\right)$	0.00048
T_min	is significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.00269
Te_min	is significant at 0.05	$0.33 \mathrm{C}^{\circ}$	

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.03 \mathrm{C}^{\circ}$	0.91473
Te_max	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.84851
T_min	not significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.35402
Te_min	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.44754

SPRING

Spring-Mar, Apr, May	Significance	Trend	P-value
T_max	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.06095
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.79889
T_min	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.00618
Te_min	is significant at 0.05	$0.27 \mathrm{C}^{\circ}$	0.04076

SUMMER

Summer-June, July, August			
T_max	not significant at 0.05	$\left(-0.02 C^{\circ}\right)$	0.83949
Te_max	not significant at 0.05	$\left(-0.08 C^{\circ}\right)$	0.65188
T_min	is significant at 0.05	$0.31 C^{\circ}$	0
Te_min	is significant at 0.05	$0.62 \mathrm{C}^{\circ}$	0.0002

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$\left(-0.06 \mathrm{C}^{\circ}\right)$	0.4335
Te_max	not significant at 0.05	$\left(-0.13 \mathrm{C}^{\circ}\right)$	0.33348
T_min	is significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.00231
Te_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.02634

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	$-0.09 \mathrm{C}^{\circ}$	0.54543
Te_max	is significant at 0.05	$-1.13 \mathrm{C}^{\circ}$	0.00396
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.00833
Te_min	not significant at 0.05	$0.2 \mathrm{C}^{\circ}$	0.53185

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Columbus	Dew Point			1964	Instrument change: Max/min thermometer to Hygrothermometer	
T-Test	$\mathbf{1 9 6 0 - 1 9 6 3}$	$\mathbf{1 9 6 5 -}$ $\mathbf{1 9 6 8}$				
Tmax	0.4131	-0.5308	1.2808	0.822	94	2.2349
Tdmax	0.4042	-0.4765	1.1723	0.8379	94	2.03410
Tmin	0.0188	-1.8155	-0.1679	-2.3901	94	2.0326
Tdmin	0.4427	-1.2738	0.5613	-0.7709	94	2.2639

Columbus	Dew Point			1985	estimated instrument change	
Two-Tailed T-Test	1981-1984	$\begin{aligned} & \text { 1986- } \\ & 1989 \end{aligned}$				
	P-value	Cl- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.1657	1.5032	0.2616	-1.397	94	2.1772
Tdmax	0.0958	1.4672^{-}	0.1213	-1.6822	94	1.9597
Tmin	0.5357	-1.066	0.5577	-0.6216	94	2.0031
Tdmin	0.0611	1.7659	0.0409	-1.8955	94	2.2291

Columbus	Dew Point			1995	Estimated instrument changes	
T-Test	1991- 1994	$\mathbf{1 9 9 6 -}$ $\mathbf{1 9 9 9}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.4975	-0.5428	1.1091	0.6813		88
Tdmax	0.7525	-0.6079	0.838	0.3163	88	1.9671
Tmin	0.0375	-1.6501	-0.0502	-2.1119	1.72160	
Tdmin	0.5812	-1.1148	0.629	-0.5536	88	1.9052

Columbus	Dew Point			1996	Station move 1.5 miles SSE (02/02/1996)	
T-Test	1992- 1995	$1997-$ $\mathbf{2 0 0 0}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.6738	-1.0838	0.7041	-0.4225	82	2.0381
Tdmax	0.9595	-0.7687	0.8091	0.051	82	1.79870
Tmin	$3.08 \mathrm{E}-$	-2.4949	-0.7709	-3.7685	82	1.9653
Tdmin	0.0797	-1.7645	0.1008	-1.7744		82

Columbus	Dew Point			$\mathbf{2 0 0 4}$	DTS1 installation 02/10/2004	
T-Test	$\mathbf{2 0 0 0}$ $\mathbf{2 0 0 3}$	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0107	-2.2629	-0.3067	-2.6147	79	2.173
Tdmax	0.7446	-0.6883	0.9588	0.3269		79
Tmin	0.4641	-0.5502	1.1953	0.7357	79	1.8297
Tdmin	$3.89 E-$ 04	0.7434	2.4688	3.7057	1.9389	

APPENDIX G

Charlotte

The city of Charlotte, NC is home to 731,424 people, it has a land area of 298 and population density is 2,457 (US Census, 2010). Seasonal summer trend analysis shows a significant increase in $T_{\text {min }}$, but no other variable. $T_{\text {E min }}$ showed an increase, but it was not significant. Interestingly, the similar results are present in in the annual trend, increases are noted, but they are not statistically significant. When looking at the shorter record starting in 1973, positive trends are noted, but none are significant. This station was never moved, it did experience 2 confirmed instrument changes and several estimated instrument changes. T-tests for estimated instrument changes in 1964 show no impacts, however 1985 seems to have affected the $T_{\text {min. }}$ In 1989 the metadata entry changed from unknown instrument to Hygrothermometer, this also had an effect on $\mathrm{T}_{\text {min }}$. An estimated instrument change in 1995, showed no significant results, however, the installation of the Vaisala DTS1 station in 2004 may have created an inhomogeneity in $T_{d \text { min }}$.

Charlotte Douglas AP	Station Metadata		$\begin{aligned} & \text { Latitude: } \\ & 35.2236 \end{aligned}$	
	WBAN\# 13881		Longitude: 80.9552	
Year	Ground Elevation (m)	Instruments		Comments
1948-1989	234.1 (1948-1954)	unknown		Observation times 2400
1989-1998	224.6 (1954-1982)	Hygrothermometer		Daily Observation 2400
1998-2007	219.5 (1982-1998)	Hygrothermometer		Daily observation times 2400Reporting Method_FOSSFC
2007-2016	221.9 (1998-Present)	Hygrothermometer		ASOS-Era Data Downloaded to NCDC
		** no station moves in any of the records		
Station Moves				
Latitude	Longitude	Initial	Final Date	
32.225		1/1/1937	1/1/1998	
	80.93333	1/1/1937	1/1/1998	
35.225		7/1/1998	5/15/2007	
	80.95417	7/1/1998	5/15/2007	
35.2236		5/15/2007	present	
	80.9552	5/15/2007	present	
$\begin{aligned} & \hline \text { T-test } \\ & 1964 \end{aligned}$	Estimated instrument changes			
$\begin{aligned} & \text { T-test } \\ & 1985 \end{aligned}$	Estimated instrument changes			
$\begin{aligned} & \text { T-test } \\ & 1989 \end{aligned}$	Instrument change from	unknown to hygro	nermometer	
$\begin{aligned} & \text { T-test } \\ & 1995 \end{aligned}$	Estimated instrument changes			
$\begin{aligned} & \text { T-test } \\ & 2004 \end{aligned}$	DTS1-Installation (4/14/2004)			

Charlotte-Douglas AP	Median Pairwise Slopes 95\% Confidence		
Winter-Dec, Jan, Feb	Significance	Trend	P-value
Seasonal Trend			
T_max	not significant at 0.05	$0.1 \mathrm{C}^{\circ}$	0.38008
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.90826
T_min	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.28937
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.45127
Spring-Mar, Apr, May			
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.26817
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.92245
T_min	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.22242
Te_min	not significant at 0.05	$0.03 \mathrm{C}^{\circ}$	0.7997
Summer-June, July, August			
T_max	not significant at 0.05		0
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.80784
T_min	is significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.00435
Te_min	not significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0.08037
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05		0
Te_max	not significant at 0.05	0.84863	
T_min	not significant at 0.05	(-0.03)	0.8398
Te_min	not significant at 0.05	$0.05 C^{\circ}$	0.37426
		$0.02 C^{\circ}$	0.73918

Charlotte-Douglas AP	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
			0.27194
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.57667
Te_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.0711
T_min	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.26699
Te_min	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	

ANNUAL TREND

Charlotte	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Annual Trend		Trend	P-value
	Significance	$0.08 \mathrm{C}^{\circ}$	0.27194
T_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.57667
Te_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.0711
T_min	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.26699
Te_min	not significant at 0.05		

SEASONAL TRENDS

WINTER

Winter-Dec, Jan, Feb	Significance	Trend	P-value
Seasonal Trend			
T_max	not significant at 0.05	$0.1 \mathrm{C}^{\circ}$	0.38008
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.90826
T_min	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.28937
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.45127

Spring-Mar, Apr, May	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 C^{\circ}$	0.26817
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.92245
T_min	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.22242
Te_min	not significant at 0.05	$0.03 \mathrm{C}^{\circ}$	0.7997

SUMMER

Summer-June, July, August	Significance	Trend	P-value
T_max	not significant at 0.05		0.80784
Te_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.88183
T_min	is significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.00435
Te_min	not significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0.08037

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05		0
Te_max	not significant at 0.05	(-0.03)	0.84863
T_min	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.37426
Te_min	not significant at 0.05	$0.02 \mathrm{C}^{\circ}$	0.73918

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	0.32	0.0736
Te_max	not significant at 0.05	0.25	0.42908
T_min	not significant at 0.05	0.15	0.06378
Te_min	not significant at 0.05	0.57	0.06823

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Charlotte	Dew Point			1964	Estimated instrument change	
T-Test	1960- 1963					
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1459	-0.1984	1.3193	1.4663		94

Charlotte	Dew Point			1985	Estimated instrument change	
T-Test	1981-1984	$\begin{aligned} & \hline 1986- \\ & 1989 \end{aligned}$				
	P-value	Cl- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.059	1.3549	0.0257	-1.9115	94	1.7032
Tdmax	0.5569	1.0555	0.5722	-0.5896	94	2.0081
Tmin	0.008	1.5194	-0.2348	-2.7112	94	1.5848
Tdmin	0.8199	1.0302	0.8177	-0.2283	94	2.2798

Charlotte	Dew Point			$\mathbf{1 9 8 9}$	Instrument change from unknown to hygrothermometer	
T-Test	1985-1988	$\mathbf{1 9 9 0}$ $\mathbf{1 9 9 3}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0565	-1.2972	0.018	-1.9311		94

Charlotte	Dew Point					Estimated instrument change
T-Test	1991- 1994	$1996-$ 1999				
		Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.3742	-0.3935	1.0359	0.8931		88
Tdmax	0.4433	-0.9619	0.4246	-0.7701		88
Tmin	0.3899	-0.3313	0.8412	0.8641		88
Tdmin	0.1733	-1.3924	0.2547	-1.3727		88

Charlotte	Dew Point			$\mathbf{2 0 0 4}$	DTS1 Installation 4/14/2004	
T-Test	1999-2003	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	$4.64 \mathrm{E}-04$	-2.3529	-0.6928	-3.6512		80
Tdmax	0.4573	-0.529	1.1647	0.7469		80
Tmin	0.1185	-0.1418	1.2279	1.5781		80
Tdmin	$4.26 \mathrm{E}-04$	0.7589	2.5497	3.6767		1.5385

APPENDIX H

Detroit

The city of Detroit, MI has a population of 713,777 , with a land area per square mile of 139 and population density of 5,144 (US Census, 2010). The record for this station begins in 1958, a comprehensive record before then was not available. This station had a total of three estimated instrument changes, four confirmed instrument changes and it was moved twice during the study period. T-tests reveal possible discontinuities for two of the previously named changes, the first is an estimated instrument change in 1985 reflected in $T_{d \text { max, }} T_{\text {min }}, T_{d \text { min. }}$. The second is in 2005 when the installation of the DTS1 happened, $T_{\max }$ and $T_{d \min }$ may have been impacted. Annual trend analysis shows a significant increase for all 4 variables: $T_{\max }(0.18), T_{E \max }(0.25), T_{\min }(0.45), T_{E \min }(0.72)$. Summer seasonal trend analysis shows significant increases in $T_{\text {min }}(0.56)$ and $T_{E \min }$ (1.10). Increases in $T_{\text {min }}$ and $T_{E \min }$ are also increasing in all 4 seasons, this is unique to the Detroit station. In the shorter period starting from 1973, significant increases are noted in $T_{\min } 0.65$ and $T_{E \min } 1.18$, this suggests that more warming occurred in the more recent part of the record as opposed to the earliest.

Detroit	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	0.28C ${ }^{\circ}$	0.10681
Te_max	not significant at 0.05	$0.50{ }^{\circ}$	0.09518
T_min	is significant at 0.05	$0.55 \mathrm{C}^{\circ}$	0.00456
Te_min	is significant at 0.05	$0.73{ }^{\circ}$	0.00745
Spring-Mar,Apr,May			
T_max	is significant at 0.05	$0.32{ }^{\circ}$	0.01202
Te_max	not significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.16518
T_min	is significant at 0.05	$0.38 \mathrm{C}^{\circ}$	0.00031
Te_min	is significant at 0.05	$0.50{ }^{\circ}$	0.00216
Summer-June, July,August			
T_max	not significant at 0.05	0.08C ${ }^{\circ}$	0.29409
Te_max	not significant at 0.05	$0.29{ }^{\circ}$	0.17656
T_min	is significant at 0.05	$0.56 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$1.10{ }^{\circ}$	0
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.01{ }^{\circ}$	0.79408
Te_max	not significant at 0.05	(-0.08C ${ }^{\circ}$)	0.68187
T_min	is significant at 0.05	$0.29{ }^{\circ}$	0.00134
Te_min	is significant at 0.05	$0.43 \mathrm{C}^{\circ}$	0.01341

Detroit	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.02089
T_max	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.04265
Te_max	is significant at 0.05	$0.45 \mathrm{C}^{\circ}$	0
T_min	is significant at 0.05	$0.72 \mathrm{C}^{\circ}$	0
Te_min			

ANNUAL TREND

	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.02089
T_max	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.04265
Te_max	is significant at 0.05	$0.45 \mathrm{C}^{\circ}$	0
T_min	is significant at 0.05	$0.72 \mathrm{C}^{\circ}$	0
Te_min			

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0.10681
Te_max	not significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0.09518
T_min	is significant at 0.05	$0.55 \mathrm{C}^{\circ}$	0.00456
Te_min	is significant at 0.05	$0.73 \mathrm{C}^{\circ}$	0.00745

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-value
T_max	is significant at 0.05	$0.32 C^{\circ}$	0.01202
Te_max	not significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.16518
T_min	is significant at 0.05	$0.38 \mathrm{C}^{\circ}$	0.00031
Te_min	is significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0.00216

SUMMER

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.29409
Te_max	not significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.17656
T_min	is significant at 0.05	$0.56 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$1.10 \mathrm{C}^{\circ}$	0

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.01 C^{\circ}$	0.79408
Te_max	not significant at 0.05	$\left(-0.08 C^{\circ}\right)$	0.68187
T_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00134
Te_min	is significant at 0.05	$0.43 \mathrm{C}^{\circ}$	0.01341

SUMMER 1973-2014

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	0	0.92
Te_max	not significant at 0.05	-0.06	0.93116
T_min	is significant at 0.05	0.65	0.00003
Te_min	is significant at 0.05	1.18	0.00053

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Detroit	Dew Point		1964	Estimated instrument changes		
T-Test	$1960-$ 1963	$1965-$ 1968				
	P-value	Cl- Lower	CI-Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.8636	-0.8613	0.7238	-0.1722	94	1.9555
Tdmax	0.3962	-0.4349	1.0891	0.8523	94	1.88010
Tmin	0.3718	-1.0976	0.4143	-0.8974	94	1.8652
Tdmin	0.8605	-0.7702	0.9202	0.1762	94	2.0853

Detroit	Dew Point			1985	Estimated instrument changes	
	$1981-$ 1984	$1986-$ 1989				
T-Test						
	P-value	Cl- Lower		Cl- Upper	T- statistic	Degrees of Freedom
Tmax	0.4013	-1.2161	0.4911	-0.8432		Standard Deviation
Tdmax	0.0348	-1.5857	-0.0601	-2.142	94	2.1061
Tmin	0.0411	-1.624	-0.0343	-2.0712	94	1.8821
Tdmin	0.023	-1.8976	-0.144	-2.3117	94	1.9612

Detroit	Dew Point			1992	Instrument change from unknown to Max/min thermometer	
T-Test	$\mathbf{1 9 8 8}-$ $\mathbf{1 9 9 1}$	$\mathbf{1 9 9 3 -}$ $\mathbf{1 9 9 6}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1837	-0.2615	1.345	1.3396	92	1.9602
Tdmax	0.1786	-0.2476	1.3122	1.3556	92	1.90320
Tmin	0.7792	-0.6736	0.8958	0.2812	92	1.9148
Tdmin	0.4654	-0.5744	1.2464	0.733	92	2.2216

Detroit	Dew Point			1995	Estimated instrument change and station move 3 miles SW (07/01/1995)	
T-Test	1991-1994	$\begin{aligned} & \hline 1996- \\ & 1999 \end{aligned}$				
	P-value	CI-Lower	CI-Upper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.8505	-0.7167	0.8675	0.189	92	1.933
Tdmax	0.9702	-0.7492	0.7215	-0.0375	92	1.79450
Tmin	0.2358	-1.2403	0.3093	-1.1933	92	1.8907
Tdmin	0.3206	-1.3081	0.4328	-0.9986	92	2.1241

Detroit	Dew Point			2000	Station move (possible, not clearly recorded). Instrument change from Max/Min thermometer to Hygrothermometer	
T-Test	1996-1999	$\begin{aligned} & \hline 2001- \\ & 2004 \\ & \hline \end{aligned}$				
	P-value	ClLower	ClUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.0854	$\begin{array}{r} - \\ 0.1051 \\ \hline \end{array}$	1.5796	1.7409	83	1.9456
Tdmax	0.6331	$\begin{array}{r} - \\ 0.5923 \\ \hline \end{array}$	0.9683	0.4791	83	1.8023
Tmin	0.3102	1.2487	0.4016	-1.021	83	1.9059
Tdmin	0.1949	1.5243	0.3156	-1.3066	83	2.1249

Detroit	Dew Point			2005	DTS1 installation 06/03/2005	
T-Test	2001-2004	2006-2009				
	P-value	CI-Lower	CI-Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0372	-1.6488	-0.0515	-2.1166	85	1.8632
Tdmax	0.4661	-0.4662	1.0096	0.7322	85	1.7215
Tmin	0.1132	-0.1527	1.4143	1.6007	85	1.828
Tdmin	0.0014	0.5542	2.2256	3.3068	85	1.9497

APPENDIX I

Memphis

The city of Memphis, TN has a population of 646,889 , with a land area per square mile of 315 and population density of 2,053 (US Census, 2010). The Memphis station was moved approximately 4 times according to station metadata, five instrument changes occurred during the period of study, we ran t-test for all except one of the changes in the record. $T_{d \max }$ seems to have been affected by an estimated instrument change 1964 and a station move in 1973. A possible station move affected $\mathrm{T}_{\min }$ in 1999. The move is marked on a map as a previous location, but the move is not documented in any other form of kept record. $T_{\max }$ shows a possible change in the series related to the DTS1 installation. Annual trend analysis shows a significant increase in both $\mathrm{T}_{\min }$ (27) and $T_{E \min }(37)$. Memphis' summers have been also increasing in both $T_{\text {min }}(0.28)$ and $T_{E \text { min }}$ (0.33). In the earlier part of the record which begins in 1973 cooling occurs for $T_{\max }$, $T_{E \max }$ and $T_{E \min }$, a slight warming is present for $T_{\text {min }}$, none of the observations are significant.

Memphis International Airport	Station Metadata		Latitude: 35.0564	
	WBAN\# 13893		Longitude: 89.9865	
Year	Site (m)	Instruments		Comments
1948-1970	$\begin{aligned} & 78.6 \text { (1948- } \\ & 1987) \end{aligned}$	unknown		temperature recorded daily, obs times 2400
1970-1985		unknown		temperature recorded daily, obs times 2400
1985-1987		Max/min thermometer		temperature recorded daily, obs times 2400 (1985 temp. instrument from unknown to Max/min thermometer)
1987-2005	$\begin{aligned} & 80.8 \text { (1987- } \\ & 2001) \end{aligned}$	Hygrothermometer		temperature recorded daily, obs times 2400. Instrument change from Max/min thermometer to Hygrothermometer (1987). From 2001-2005 Reporting method: FOSJ-SFC
2005-2006	$\begin{array}{\|l} 77.4 \text { (2001- } \\ \text { Present) } \\ \hline \end{array}$	unknown as written in NCDC (DTS1 installed 2003)		temperature recorded daily, obs times 2400, Receiver NCEI, Reporting Method: ADP
2006-2011		Hygrothermometer		temperature recorded daily, obs times 2400, Receiver NCEI, Reporting Method: ADP
2011-Present		ATEMP: ASOS Hygrothermometer		temperature recorded daily, obs times 2400, Receiver NCEI, Reporting Method: ADP
Station Moves				
Latitude	Longitude	Initial	Final Date	
35.05		7/1/1930	4/30/1999	
	89.9833	7/1/1930	4/1/1973	
	90	4/1/1973	4/30/1999	
35.0611		4/30/1999	10/2/2001	
	89.985	4/30/1999	10/2/2001	
35.05639		10/2/2001	11/15/2005	
	89.9864	11/15/2005	6/16/2011	

	Station Metadata
T-test 1964	Estimated instrument change
T-test 1973	Station move 0.3 miles NW (04/01/1973) Estimated instrument change (from unknown to Max/min thermometer) and station move 0.3 miles E (10/01/1985)
T-test 1985	Instrument change from Max/min thermometer to Hygrothermometer
T-test 1987	Estimated instrument change
T-test 1995	Station move, visible from "location data map (5)" 1999-2001.
T-test 1999	Station move, visible from "location data map (5)" 1999-2001.
T-test 2001	DTS1 Installation 12/15/2003 /Instrument change
T-test 2003	Station move and instrument entry changed from Hygrothermometer to ATEMP (T-Test can't be performed, data only goes to 2014, and 2015 would be needed to conduct test like all the others)
T-test 2011	

Memphis	Median Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal			P-value
Winter-Dec,Jan,Feb	Significance	Trend	0.99597
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.69667
Te_max	not significant at 0.05	$\left(-0.11 \mathrm{C}^{\circ}\right)$	0.5138
T_min	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.97861
Te_min	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.046
Spring-Mar,Apr,May			0.18293
T_max	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.00354
Te_max	not significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.05611
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	
Te_min	not significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.36772
Summer-June, July,August			0.93165
T_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0
Te_max	not significant at 0.05	$\left(-0.03 \mathrm{C}^{\circ}\right)$	0.01419
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	
Te_min	is significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.71402
Fall-Sept, Oct, Nov			0.54748
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0
Te_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.00051
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	
Te_min	is significant at 0.05	$0.53 \mathrm{C}^{\circ}$	

Memphis	95\% confidence	Degrees Celsius per decade	
Annual			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.09703
Te_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.18908
T_min	is significant at 0.05	$0.27 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0.00003

ANNUAL TREND

Memphis	95\% confidence	Degrees Celsius per decade	
Annual		Trend	P-value
	Significance	$0.10 \mathrm{C}^{\circ}$	0.09703
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.18908
Te_max	not significant at 0.05	$0.27 \mathrm{C}^{\circ}$	0
T_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0.00003
Te_min	is significant at 0.05		

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.99597
Te_max	not significant at 0.05	$\left(-0.11 \mathrm{C}^{\circ}\right)$	0.69667
T_min	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.5138
Te_min	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.97861

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-value
T_max	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.046
Te_max	not significant at 0.05	$0.24 \mathrm{C}^{\circ}$	0.18293
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.00354
Te_min	not significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.05611

SUMMER

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.36772
Te_max	not significant at 0.05	$\left(-0.03 \mathrm{C}^{\circ}\right)$	0.93165
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.01419

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.71402
Te_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.54748
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.53 \mathrm{C}^{\circ}$	0.00051

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	-0.12	0.37896
Te_max	not significant at 0.05	-0.65	0.0541
T_min	not significant at 0.05	0.03	0.70613
Te_min	not significant at 0.05	-0.1	0.69922

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Memphis International Airport	Dew Point			1964	Estimated instrument changes	
T-Test	$\begin{aligned} & \hline 1960- \\ & 1963 \end{aligned}$	$\begin{aligned} & \hline 1965- \\ & 1968 \end{aligned}$				
	P-value	Cl- Lower	CIUpper	Tstatisti c	Degrees of Freedom	Standard Deviation
Tmax	0.7296	0.6993	0.9951	0.3467	94	2.0903
Tdmax	0.0166	0.1812	1.7688	2.4388	94	1.95860
Tmin	0.095	1.3879	0.1129	-1.6867	94	1.8516
Tdmin	0.9609	0.8617^{-}	0.82	-0.0492	94	2.0747

Memphis International Airport		Dew Point		1973	station move 0.3 miles NW (04/01/1973)	
1969-1972	$\begin{aligned} & \text { 1974- } \\ & 1977 \end{aligned}$					
T-Test						
	Pvalue	Cl- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.0635	1.5472^{-}	0.043	-1.8781	94	1.9618
Tdmax	0.0038	2.1596	0.4279	-2.9668	94	2.1363
Tmin	0.2871	1.1181	0.3348	-1.0705	94	1.7923
Tdmin	0.1685	1.4989	0.2656	-1.3878	94	2.1768

Memphis International Airport	Dew Point			1985	Estimated instrument change (from unknown to Max/min thermometer) and station move 0.3 miles E (10/01/1985)	
T-Test	$\begin{aligned} & \text { 1981- } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { 1986- } \\ & 1989 \end{aligned}$				
	P-value	Cl- Lower	CI-Upper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.398	1.0989	0.4406	-0.8491	94	1.8992
Tdmax	0.3798	-0.461	1.1985	0.8824	94	2.0473
Tmin	0.614	-0.536	0.9027	0.506	94	1.7749
Tdmin	0.1838	0.3129	1.6087	1.3389	94	2.3707

Memphis International Airport	Dew Point			1987	instrument change from Max/min thermometer to Hygrothermometer	
T-Test	$\begin{aligned} & \text { 1983- } \\ & 1986 \end{aligned}$	$\begin{aligned} & \hline 1988- \\ & 1991 \end{aligned}$				
	P-value	CI- Lower	ClUpper	Tstatisti C	Degrees of Freedom	Standard Deviation
Tmax	0.2675	$\begin{array}{r} 1.297 \\ 3 \end{array}$	0.364	-1.1154	94	2.0496
Tdmax	0.815	0.777	0.9856	0.2346	94	2.1749
Tmin	0.9356	$\begin{array}{r} 0.797 \\ 2 \\ \hline \end{array}$	0.7347	-0.081	94	1.8898
Tdmin	0.1881	$\begin{array}{r} 0.328 \\ 6 \\ \hline \end{array}$	1.6494	1.3258	94	2.4402

Memphis International Airport	Dew Point			1995	estimated instrument change	
T-Test	$\begin{aligned} & \text { 1991- } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline 1996- \\ & 1999 \end{aligned}$				
	P-value	$\mathrm{Cl}-$ Lower	$\mathrm{Cl}-$ Upper	statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.0733	-0.062	1.3399	1.8172	72	1.444
Tdmax	0.2062	0.2785	1.2683	1.2757	72	1.59320
Tmin	0.2672	0.3021	1.074	1.1183	72	1.4174
Tdmin	0.4386	0.5664	1.2928	0.7789	72	1.9151

Memphis International Airport	Dew Point			1999	Station move, visible from "location data map (5)" 19992001.	
T-Test	$\begin{aligned} & \text { 1995- } \\ & 1998 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2004 \end{aligned}$				
	P-value	CI- Lower	ClUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.2959	0.4031^{-}	1.3052	1.053	71	1.8215
Tdmax	0.1458	0.2289^{-}	1.5155	1.4707	71	1.8601
Tmin	0.0041	1.9896	-0.3612	-2.9699	71	1.7044
Tdmin	0.0696	-1.841	0.0728	-1.8423	71	2.0406

Memphis International Airport	Dew Point			2001	station move, visible from "location data map (5)" 19992001.	
T-Test	$\begin{aligned} & 1997- \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 2002- \\ & 2005 \end{aligned}$				
	P-value	CI- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.1682	1.7535	0.3128	-1.3951	59	1.9544
Tdmax	0.814	1.1848	0.9345	-0.2363	59	2.0046
Tmin	0.1046	1.6391	0.1584	-1.6484	59	1.7001
Tdmin	0.8421	1.2579	1.0292	-0.2001	59	2.1632

Memphis International Airport	Dew Point			DTS1 Installation 12/15/2003 /Instrument change		
T-Test	$\begin{aligned} & \hline \text { 1998- } \\ & 2002 \end{aligned}$	$\begin{aligned} & \hline 2004- \\ & 2007 \end{aligned}$				
	P-value	CILower	CIUpper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.0017	2.6543	-0.6397	-3.261	70	2.0403
Tdmax	2.0403	1.3102	0.7603	-0.5296	70	2.0969
Tmin	0.7444	1.0274	0.7377	-0.3274	70	1.7876
Tdmin	0.0531	0.0148	2.1759	1.9674	70	2.2187

APPENDIX J

Boston

The city of Boston has a land area per square mile of 48 , with population density of 12,793, in 2010 the population stood at 617,594 (US Census, 2010). This weather station did not experience any moves however; it did experience quite a large change in elevation for the period of study. T-test in 1964 for estimated instrument change along with a change in elevation shows a possible discontinuity in $\mathrm{T}_{\text {max }}$, other t-tests show no changes until 1995. Estimated instrument changes in 1995 show a possible change in $T_{d \text { min }}$, the installation of Vaisala DTS1 in 2003 may have affected results in $T_{d \text { max }}, T_{\text {min }}$ and $T_{d \text { min. }}$ Annual trend analysis shows significant increases in $T_{\text {min }}\left(0.11 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \text { min }}$ $\left(0.20 \mathrm{C}^{\circ}\right)$. Seasonal summer trend analysis also shows significant increases in $\mathrm{T}_{\text {min }}$ $\left(0.15 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{Emin}}\left(0.50 \mathrm{C}^{\circ}\right) . \mathrm{T}_{\mathrm{Emax}}$ also shows a significant increase in the summer $0.30 \mathrm{C}^{\circ}$. The later part of the record which begins in 1973 shows some cooling in $\mathrm{T}_{\max }$ and $T_{E \max }$ and some warming in $T_{\text {min }}$ and $T_{E \min }$ although none were significant.

Boston Logan Int'l AP	Boston Metadata		Latitude: 42.3606	
	WBAN\# 14739		Longitude: 71.0106	
Year	Ground Elevation (m)	Instruments	Comments	
1948-1987	13.1 (1948-1951)	unknown	Observations daily, 2400	
1987-1995	10.1 (1951-1964)	Hygrothermometer	daily/ observation times 2400. Instrument change from unknown to Hygrothermometer. Reporting Method_FOS-SFC	
1995-2009	6.1 (1964-2009)	Hygrothermometer	Observation times 2400, Reporting method: FOSJ-SFC	
2009-present	3.7 (2009-Present)	Hygrothermometer	Observation times 2400, Reporting method: ASOS-Era Data Downloaded to NCDC	
	*note changes in elevation		**No recorded station moves in any of the records	
Station Moves				
Latitude	Longitude	Initial	Final Date	
42.36667		1/1/1936	1/1/1951	
	71.03333	1/1/1936	1/1/1951	
42.36667		1/1/1951	1/1/1964	
	71.01667	1/1/1951	1/1/1964	
42.36667		1/1/1964	4/1/1996	
	71.03333	1/1/1964	4/1/1996	
42.36056		4/1/1996	10/9/2009	
	71.01056	4/1/1996	10/9/2009	
		2009-present		
T-test 1964	estimated date for c	hanges in instrument lowered 4 meters	ation and equipment	
T-test 1985	estimated d	te for changes in ins	trumentation	
T-test 1987	instrument chang	from unknown to H	ygrothermometer	
T-test 1995	estim	mated instrument cha	nges	
T-test 2003		TS1-Station Installat	on 10/28/2003	

Boston Logan Int'l AP	Median Pairwise Slopes 95\% confidence	Degrees C per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	(-0.00)	0.95665
Te_max	not significant at 0.05	-0.03	0.84876
T_min	not significant at 0.05	$0.09 C^{\circ}$	0.36102
Te_min	not significant at 0.05	$0.10 C^{\circ}$	0.54563
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0 C^{\circ}$	0.943
Te_max	not significant at 0.05	$0.08 C^{\circ}$	0.47296
T_min	not significant at 0.05	$0.08 C^{\circ}$	0.1774
Te_min	not significant at 0.05	$0.16 C^{\circ}$	0.13454
Summer-June, July,August			
T_max	not significant at 0.05	-0.03	0.62389
Te_max	is significant at 0.05	0.03171	
T_min	is significant at 0.05	$0.30 C^{\circ}$	0.00206
Te_min	is significant at 0.05	$0.50 C^{\circ}$	0.00038
Fall-Sept, Oct, Nov		not significant at 0.05	
T_max	not significant at 0.05	$0.07 C^{\circ}$	0.6189
Te_max	not significant at 0.05	$0.08 C^{\circ}$	0.11304
T_min	not significant at 0.05	$0.17 C^{\circ}$	0.23424
Te_min			

Boston Logan Int'I AP	95\% confidence	Degrees C per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	is not significant at 0.05	$0 \mathrm{C}^{\circ}$	0.89969
Te_max	is notsignificant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.19728
T_min	is significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.00507
Te_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00613

ANNUAL TREND

Boston Logan Int'l AP	95\% confidence	Degrees Co per decade	
Annual Trend	Significance	Trend	P-value
T_max	is not significant at 0.05	$0 \mathrm{C}^{\circ}$	0.89969
Te_max	is notsignificant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.19728
T_min	is significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.00507
Te_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00613

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	(-0.00)	0.95665
Te_max	not significant at 0.05		0.84876
T_min	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.36102
Te_min	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.54563

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-value
T_max	not significant at 0.05	$0 \mathrm{C}^{\circ}$	0.943
Te_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.47296
T_min	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.1774
Te_min	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.13454

SUMMER

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05		-0.03
Te_max	is significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.02389
T_min	is significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.00206
Te_min	is significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0.00038

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05		0.60211
Te_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.6189
T_min	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.11304
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.23424

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	-0.09	0.52855
Te_max	not significant at 0.05	-0.15	0.61662
T_min	not significant at 0.05	0.12	0.22497
Te_min	not significant at 0.05	0.22	0.45293

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Boston	Dew Point			1964	Estimated instrument changes and elevation change		
T-Test	$1960-$ $\mathbf{1 9 6 3}$	$\mathbf{1 9 6 5 -}$ $\mathbf{1 9 6 8}$					
	P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation	
Tmax	0.004	0.309	1.5785	2.9521	94	1.5661	
Tdmax	0.0619	-0.0306	1.2306	1.8892	94	1.5559	
Tmin	0.3012	-0.9033	0.2824	-1.0396	94	1.4627	
Tdmin	0.2965	-1.2227	0.3769	-1.0499	94	1.9735	

Boston	Dew Point			1985	Estimated instrument changes	
T-Test	$\begin{aligned} & \hline 1981- \\ & 1984 \end{aligned}$	$\begin{aligned} & \hline 1986- \\ & 1989 \end{aligned}$				
	Pvalue	CILower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.1254	-0.1557	1.2515	1.5462	94	1.736
Tdmax	0.7919	-0.691	0.9035	0.2646	94	1.9672
Tmin	0.0607	-0.0273	1.2232	1.8987	94	1.5427
Tdmin	0.7131	-0.7579	1.1037	0.3688	94	2.2967

Boston	Dew Point			1987	Instrument change from unknown to Hygrothermometer		
T-Test	$\mathbf{1 9 8 3 -}$ $\mathbf{1 9 8 6}$	$\mathbf{1 9 8 8 -}$ $\mathbf{1 9 9 1}$					
P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation		
Tmax	0.4115	-1.0363	0.428	-0.8248	94	1.8065	
Tdmax	0.7784	-0.8537	0.6412	-0.2822	94	1.8442	
Tmin	0.6539	-0.7557	0.4765	-0.4498	94	1.5202	
Tdmin	0.9375	-0.8091	0.8758	0.8758	94	2.0786	

Boston	Dew Point			1995	Estimated instrument changes	
T-Test	1991- 1994	$1996-$ $\mathbf{1 9 9 9}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1268	-0.1386	1.097	1.5408		91

Boston	Dew Point			2003	DTS1 installation 10/28/2003	
T-Test	$\mathbf{1 9 9 8 -}$ $\mathbf{2 0 0 2}$	$\mathbf{2 0 0 4 -}$ $\mathbf{2 0 0 7}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.7308	-0.5841	0.8299	0.3452	93	1.7349
Tdmax	0.013	0.2069	1.7107	2.5324	93	1.8451
Tmin	0.0023	0.3386	1.5017	3.142	93	1.4271
Tdmin	$4.41 \mathrm{E}-05$	0.9434	2.5714	4.2875	93	1.9975

APPENDIX K

Washington DC

Population of 601, 723 land area per square mile 61, and population density of 9,856.60. No first order stations had records that were long enough to be used. The weather station at Washington Reagan National Airport did not experience any moves, but it did have three estimated instrument changes and three confirmed instrument changes including the installation of the DTS1 station. Reliable data was available for the more recent part of the time series, this station begins at 1973. T-tests show no possible in-continuities were present in the earlier part of the record however the estimated instrument change in 1985 may have affected $T_{\text {min. }}$ In 1998 the station metadata shows a change from max/min thermometers to Hygrothermometer, t-test reveals significance for $T_{\min }$ and $T_{d \text { min }}$, the same result was present in 2003 when the ASOS Hygrothermometer was installed. Seasonal summer trend analysis shows a significant increase in $T_{\min }\left(0.24 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \min }\left(0.34 \mathrm{C}^{\circ}\right)$. This station did not meet the threshold of having 90\% available for analysis for the annual trend to be calculated.

Washington Reagan National AP	Median of Pairwise Slopes95\% confidence	Degrees Celsius per decade	
Seasonal			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	0.18C ${ }^{\circ}$	0.61406
Te_max	not significant at 0.05	$0.30{ }^{\circ}$	0.44883
T_min	not significant at 0.05	$0.40{ }^{\circ}$	0.11007
Te_min	not significant at 0.05	$0.47{ }^{\circ}$	0.12326
Spring-Mar,Apr,May			
T_max	not significant at 0.05	(-0.20C ${ }^{\circ}$)	0.34555
Te_max	not significant at 0.05	(-0.32C ${ }^{\circ}$)	0.33613
T_min	not significant at 0.05	$\left(-0.00 C^{\circ}\right)$	0.74713
Te_min	not significant at 0.05	$0.20{ }^{\circ}$	0.33806
Summer-June, July,August			
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.64995
Te_max	not significant at 0.05	(-0.47C ${ }^{\circ}$)	0.07855
T_min	not significant at 0.05	$0.18{ }^{\circ}$	0.07863
Te_min	not significant at 0.05	$0.10{ }^{\circ}$	0.62562
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	(-0.25C ${ }^{\circ}$)	0.12702
Te_max	is significant at 0.05	$\left(-0.75 C^{\circ}\right)$	0.02275
T_min	not significant at 0.05	$0 \mathrm{C}^{\circ}$	0.81767
Te_min	not significant at 0.05	(-0.11C ${ }^{\circ}$)	0.74403

SEASONAL TREND

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.61406
Te_max	not significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.44883
T_min	not significant at 0.05	$0.40 \mathrm{C}^{\circ}$	0.11007
Te_min	not significant at 0.05	$0.47 \mathrm{C}^{\circ}$	0.12326

Spring-Mar,Apr,May			
T_max	not significant at 0.05	$\left(-0.20 C^{\circ}\right)$	0.34555
Te_max	not significant at 0.05	$\left(-0.32 C^{\circ}\right)$	0.33613
T_min	not significant at 0.05	$\left(-0.00 C^{\circ}\right)$	0.74713
Te_min	not significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.33806

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.64995
Te_max	not significant at 0.05	$\left(-0.47 \mathrm{C}^{\circ}\right)$	0.07855
T_min	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.07863
Te_min	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.62562

FALL

Washington DC T min $_{\text {min }}{ }^{\text {1973-2014 }} \quad$ Washington DC Te min $^{\text {1973-2014 }}$

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$\left(-0.25 C^{\circ}\right)$	0.12702
Te_max	is significant at 0.05	$\left(-0.75 C^{\circ}\right)$	0.02275
T_min	not significant at 0.05	$0 C^{\circ}$	0.81767
Te_min	not significant at 0.05	$\left(-0.11 C^{\circ}\right)$	0.74403

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Washington Reagan National AP, VA	Dew Point		1985	Estimated instrument change		
T-Test	$1981-$ 1984	$1986-$ 1989				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1444	-0.184	1.2382	1.4717	94	1.7545
Tdmax	0.9122	-0.7067	0.79	0.1106	94	1.8464
Tmin	0.0292	0.0721	1.3238	2.2142	94	1.5442
Tdmin	0.505	-0.5328	1.0744	0.6692	94	1.9828

Washington Reagan National AP, VA	Dew Point		1992		Estimated instrument change	
T-Test	1988- 1991	$1993-$ 1996				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.1365	-0.1932	1.392	1.5018	93	1.945
Tdmax	0.6575	-0.5935	0.9361	0.4448	93	1.87680
Tmin	0.2968	-0.3094	1.0026	1.0492	93	1.6099
Tdmin	0.9112	-0.7531	0.843	0.1119	93	1.9583

Washingto n Reagan National AP, VA	Dew Point		1995	Estimated instrumen t change		
T-Test	1991- 1994	$1996-$ 1999				
	P- value	Cl- Lower	Cl- Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.6627	- 0.5424	0.849	0.4376	92	1.6977
Tdmax	0.1098	- 0.1246	1.2082	1.6148	92	1.62620
Tmin	0.0765	- 1.1968	0.0617	-1.7914	92	1.5355
Tdmin	0.8121	- 0.6854	0.8723	0.2384	92	1.9006

Washington Reagan National AP, VA	Dew Point		1998	Change from Max/min thermometer to Hygrothermometer		
T-Test	$1994-$ 1997	$1999-$ $\mathbf{2 0 0 3}$				
	P-value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.2951	-0.3656	1.1902	1.0533	88	1.8549
Tdmax	0.4059	-0.4098	1.004	0.8351	88	1.68570
Tmin	$1.76 \mathrm{E}-$ 04	-1.859	-	-3.9175	88	1.4919
Tdmin	0.0028	-1.9676	-	-3.076	88	1.8415

Washington Reagan National AP, VA	Dew Point		2003	Instrument change from hygrothermometer to ATEMP: ASOS Hygrothermometer		
T-Test	$\mathbf{1 9 9 9}$ 2002	2004- 2007				
	P- value	Cl- Lower	Cl- Upper		Degrees of Freedom	Standard Deviation
Tmax	0.5411	-1.0868	0.5747		76	1.8119
Tdmax	0.9805	-0.7702	0.7895		76	0.0246
Tmin	0.0297	0.0723	1.3567		76	1.4008
Tdmin	0.41	0.4205	2.1492		76	1.8854

APPENDIX L

Nashville

The city of Nashville, TN has a population of 601 , 222 , land area per square mile of 475 and population density stood at 1,265 in 2010 (US Census, 2010). The station at Nashville Int'I AP had 6 instrument changes and 1 station move. T-tests show a possible discontinuity in 1964 for T_{d} max, this was an estimated instrument change. In 1975 there was a noted instrument change from an unknown instrument to Hygrothermometer, this may have effected $T_{d \max }, T_{\min }$, and $T_{d \text { min. }}$ In 2003 the DTS1 station was installed, t-test reveal changes in $T_{\max }$ and $T_{d \text { min }}$. The final change that may reflect in the record was a station move over 3000 ft south may have affected $\mathrm{T}_{\mathrm{d} \text { min }}$. Summer trend analysis shows a significant increase in $\mathrm{T}_{\min }\left(0.16 \mathrm{C}^{\circ}\right)$, an increase was also noted in $\mathrm{T}_{\mathrm{E} \text { min, }}$ but it was not significant at $\left(0.09 \mathrm{C}^{\circ}\right)$ Annual trend analysis shows significant decrease in $T_{E \max }\left(-0.14 \mathrm{C}^{\circ}\right)$ (like Louisville) and a significance increase in Tmin $\left(0.10 C^{\circ}\right)$. From 1973 there is a significant increase in $\mathrm{T}_{\min }\left(0.29 \mathrm{C}^{\circ}\right)$, there is also an increase in $T_{E \text { min }}$, but it is not significant, $T_{E \max }$ shows a decrease of $-0.77 \mathrm{C}^{\circ}$ with no significance.

Nashville Intl' AP	Station Metadata		Latitude: 36.11889	
	WBAN\# 13897		Longitude: 86.68917	
Year	Site (m)	Instruments		Comments
1952-1975	$\begin{aligned} & 177.1 \text { (1948- } \\ & \text { 1964) } \\ & \hline \end{aligned}$	unknown		unknown
1975-2001	$\begin{aligned} & 182.9 \text { (1964- } \\ & 1976) \end{aligned}$	Hygrothermometer		Daily, obs times 2400
2001-Present	$\begin{aligned} & 179.8 \text { (1976- } \\ & 1996) \end{aligned}$	ATEMP: ASOS Hygrothermometer		Daily, obs times 2400, Receiver NCEI, Reporting Method: ADP
	$\begin{aligned} & 176.8(1996- \\ & 2001) \\ & \hline \end{aligned}$			
	$\begin{aligned} & 182.9 \text { (2001- } \\ & \text { Present) } \end{aligned}$			
Station Moves				
Latitude	Longitude	Initial	Final Date	
36.11667		12/1/1928	9/18/2001	
	86.68333	12/1/1928	9/18/2001	
36.12528		9/18/2001	8/18/2004	
	86.67639	9/18/2001	8/18/2004	
36.1252		8/18/2004	6/15/2006	
	86.6763	8/18/2004	6/15/2006	
36.11889		6/15/2006	Present	
	86.68917	6/15/2006	Present	
T-test 1964	estimated instrument change			
T-test 1975	instrument change from unknown to hygrothermometer			
T-test 1985	estimated instrument change			
T-test 1995	estimated instrument change			
T-Test 2001	instrument change from Hygrothermometer to ATEMP			
T-Test 2003	09/11/2003 DTS1 Installation			
T-Test 2009	Station move $3612 \mathrm{ft} \mathrm{South} \mathrm{(7/23/2009)}$			

Nashville	Median of Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	0.05C ${ }^{\circ}$	0.91381
Te_max	not significant at 0.05	(-0.14C ${ }^{\circ}$)	0.41825
T_min	not significant at 0.05	$0.12{ }^{\circ}$	0.49493
Te_min	not significant at 0.05	$0.00{ }^{\circ}$	0.91074
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.07{ }^{\circ}$	0.33009
Te_max	not significant at 0.05	(-0.23C ${ }^{\circ}$)	0.22729
T_min	not significant at 0.05	0.08C ${ }^{\circ}$	0.21179
Te_min	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.88359
Summer-June, July,August			
T_max	not significant at 0.05	(-0.00C ${ }^{\circ}$)	0.84256
Te_max	not significant at 0.05	(-0.28C ${ }^{\circ}$)	0.0929
T_min	is significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.00141
Te_min	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.35694
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.00{ }^{\circ}$	0.85249
Te_max	not significant at 0.05	(-0.17C ${ }^{\circ}$)	0.25446
T_min	is significant at 0.05	0.14C ${ }^{\circ}$	0.00945
Te_min	not significant at 0.05	$0.17{ }^{\circ}$	0.20936

Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.02 \mathrm{C}^{\circ}$	0.71442
Te_max	is significant at 0.05	$\left(-0.14 \mathrm{C}^{\circ}\right)$	0.04884
T_min	is significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.03001
Te_min	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.30607

ANNUAL TREND

Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.02 \mathrm{C}^{\circ}$	0.71442
Te_max	is significant at 0.05	$\left(-0.14 \mathrm{C}^{\circ}\right)$	0.04884
T_min	is significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.03001
Te_min	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.30607

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.91381
Te_max	not significant at 0.05	$\left(-0.14 \mathrm{C}^{\circ}\right)$	0.41825
T_min	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.49493
Te_min	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.91074

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.33009
Te_max	not significant at 0.05	$\left(-0.23 \mathrm{C}^{\circ}\right)$	0.22729
T_min	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.21179
Te_min	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.88359

SUMMER

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$\left(-0.00 \mathrm{C}^{\circ}\right)$	0.84256
Te_max	not significant at 0.05	$\left(-0.28 \mathrm{C}^{\circ}\right)$	0.0929
T_min	is significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.00141
Te_min	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.35694

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.85249
Te_max	not significant at 0.05	$\left(-0.17 \mathrm{C}^{\circ}\right)$	0.25446
T_min	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.00945
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.20936

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	0.22	0.21323
Te_max	not significant at 0.05	-0.77	0.05086
T_min	is significant at 0.05	0.29	0.01189
Te_min	not significant at 0.05	0.23	0.41691

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Nashville Int'I AP	Dew Point			1964	Estimated instrument change	
T-Test	$\mathbf{1 9 6 0 -}$ $\mathbf{1 9 6 3}$	$\mathbf{1 9 6 5 -}$ $\mathbf{1 9 6 8}$				
P-value	Cl-Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation	
Tmax	0.9715	-0.9075	0.9408	0.0358	94	2.2803
Tdmax	0.0409	0.0349	1.6192	2.0731	94	1.95450
Tmin	0.056	-1.5703	0.0203	-1.9348	94	1.9623
Tdmin	0.5629	-0.5948	1.0865	0.5806	94	2.0742

Nashville Int'I AP	Dew Point			$\mathbf{1 9 7 5}$	Instrument change from unknown to Hygrothermometer	
T-Test	$1971-$ 1974	$\mathbf{1 9 7 6 -}$ $\mathbf{1 9 7 9}$				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0825	-0.1108	1.7983	1.7551	94	2.3552
Tdmax	0.0015	0.6213	2.5412	3.2705	94	2.36860
Tmin	0.0223	0.1524	1.9393	2.3242	94	2.2044
Tdmin	0.0236	0.1608	2.1809	2.3017	94	2.4921

Nashville Int'I AP	Dew Point			1985	estimated instrument change	
T-Test	1981- $\mathbf{1 9 8 4}$	$\mathbf{1 9 8 6 -}$ $\mathbf{1 9 8 9}$				
	P- value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1345	-1.3892	0.1892	-1.5095	94	1.9473
Tdmax	0.9801	-0.8354	0.8146	-0.0251	94	2.0355
Tmin	0.7071	-0.9012	0.6137	-0.3768	94	1.8688
Tdmin	0.8576	-0.8781	1.0531	0.1799	94	2.3825

Nashville Int' AP	Dew Point			1995	Estimated instrument change	
T-Test	1991- 1994					
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.5615	-0.5132	0.9394	0.5828		92

Nashville Int'I AP	Dew Point		$\mathbf{2 0 0 1}$			Instrument change from Hygrothermometer to ATEMP		
T-Test	1997- 2000	$\mathbf{2 0 0 2 - 2 0 0 5}$						
	P-value	CI-Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation		
Tmax	0.1281	-0.1734	1.3521	1.5368	83	1.7666		
Tdmax	0.2555	-0.306	1.1366	1.1451	83	1.6708		
Tmin	0.8535	-0.6325	0.7625	0.1853	83	1.6156		
Tdmin	0.7713	-0.7394	0.9935	0.2916	83	2.0068		

Nashvill e Int'I AP	Dew Point				09/11/2003 DTS1 Installation	
T-Test	$\begin{aligned} & 1998- \\ & 2002 \end{aligned}$	$\begin{aligned} & 2004- \\ & 2007 \end{aligned}$				
	P-value	CI- Lower	ClUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	$\begin{array}{r} 1.69 \mathrm{E}- \\ 02 \\ \hline \end{array}$	1.7521	0.1777	-2.4348	91	1.9108
Tdmax	0.0938	0.1099	1.3795	1.6932	91	1.8077
Tmin	0.491	0.4382	0.9062	0.6915	91	1.6317
Tdmin	$\begin{array}{r} 2.94 \mathrm{E}- \\ 04 \\ \hline \end{array}$	0.7855	2.5394	3.7656	91	2.1287

Nashville Int'l AP	Dew Point			2009	Station move 3612 ft South (7/23/2009)	
T-Test	$\begin{aligned} & \text { 2005- } \\ & 2008 \end{aligned}$	$\begin{aligned} & 2010- \\ & 2013 \end{aligned}$				
	Pvalue	CI- Lower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.6115	-0.6093	1.0302	0.5097	94	2.0226
Tdmax	0.2271	-1.1959	0.2876	-1.2157	94	1.83020
Tmin	0.1976	-0.2341	1.1174	1.2977	94	1.6674
Tdmin	0.0415	-1.6829	0.0337	-2.0668	94	2.0346

APPENDIX M

Louisville

Louisville, KY has land area per square mile 325 , population density is 1,837 and the city had 597,337 people in 2010 (US Census, 2010). The station at Louisville International Airport experienced five instrument changes and was moved four times. Station metadata was not as detailed as other stations for example, several station moves were logged in the text, but other moves were only visible on the maps provided along with changes in latitude and longitude. In 1960 there was a change from max/min thermometer to a Hygrothermometer, this may have affected $T_{\text {min }}$, this is consistent with an estimated instrument change in 1964. No other issues were present until a station move that occurred in 1994 where Tmax may have been affected. One of the moves which had an undefined distance and direction may have created an inhomogeneity in 2003, $T_{\max }$ and $T_{d \min }$ (different directions). The installation of DTS1 in 2005 may have affected $T_{d \max }$ and $T_{d \text { min }}$. Seasonal summer trend analysis shows significant increases for $T_{\min }\left(0.35 C^{\circ}\right)$ and $T_{E \min }\left(0.59 C^{\circ}\right)$, significant increases for these same variables were also noted for spring and fall. Annual trend analysis shows a similar trend, increases in $T_{\text {min }}\left(0.26 C^{\circ}\right)$ and $T_{E \min }\left(0.41 C^{\circ}\right)$. For the shorter record that begins in 1973 as significant increase was noted for $\mathrm{T}_{\min }\left(0.41 \mathrm{C}^{\circ}\right)$.

Louisville Internationa I Airport	Louisville Station Metadata		Latitude: 38.18111	
	WBAN\# 93821		Longitude: 85.73917	
Year	Site (m)	Instruments	Comments	
1948-1960	147.8 (1947- 1950)	Max/Min thermometer	temperature recorded daily, obs times 2400 (station moved 0.7 miles NW $9 / 19 / 1950) ~ T-T e s t ~ n o t ~ p o s s i b l e, ~ d a t a ~ d o e s ~$	
			Hot go back to 1946.	

Louisville	Median of Pairwise Slopes95\% confidence	Degrees Celsius per decade	
Seasonal			P-value
Winter-Dec,Jan,Feb	Significance	Trend	0.97783
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.73227
Te_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.34912
T_min	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.53239
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	
Spring-Mar,Apr,May			0.06217
T_max	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.29065
Te_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.00085
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0.00431
Te_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	
Summer-June, July,August			0.86318
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.67235
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.00004
Te_min	is significant at 0.05	$0.59 \mathrm{C}^{\circ}$	
Fall-Sept, Oct, Nov			0.92083
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.8564
Te_max	not significant at 0.05	$0.03 \mathrm{C}^{\circ}$	0.00001
T_min	is significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.00061
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	

Louisville	95\% confidence	Degrees Celsius per decade	
Annual Trend			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.31041
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.63519
T_min	is significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.41 \mathrm{C}^{\circ}$	0.00001

ANNUAL TREND

WINTER

Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.31041
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.63519
T_min	is significant at 0.05	$0.26 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.41 \mathrm{C}^{\circ}$	0.00001

SEASONAL TREND

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.97783
Te_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.73227
T_min	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.34912
Te_min	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.53239

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-value
T_max	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.06217
Te_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.29065
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0.00085
Te_min	is significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0.00431

SUMMER

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.86318
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.67235
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.59 \mathrm{C}^{\circ}$	0.00004

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-value
T_max	not significant at 0.05	$0.00 C^{\circ}$	0.92083
Te_max	not significant at 0.05	$0.03 \mathrm{C}^{\circ}$	0.8564
T_min	is significant at 0.05	$0.32 C^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.00061

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.17378
Te_max	not significant at 0.05	$-0.52 \mathrm{C}^{\circ}$	0.22782
T_min	is significant at 0.05	$0.41 \mathrm{C}^{\circ}$	0.0005
Te_min	not significant at 0.05	$0.6 \mathrm{C}^{\circ}$	0.05506

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Louisville	Dew Point		1960	Instrument change from Max/min thermometer to Hygrothermometer		
T-Test	$1956-$ 1959	$1961-$ 1964				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1832	-0.2605	1.3438	1.3408	94	1.9791
Tdmax	0.484	-0.5249	1.0999	0.7026	94	2.0046
Tmin	0.0061	0.3113	1.8137	2.8082	94	1.8536
Tdmin	0.2219	-0.3343	1.4218	1.2296		94

Louisville	Dew Point		1964	Estimated instrument changes		
T-Test	$\begin{aligned} & 1960- \\ & 1963 \end{aligned}$	$\begin{aligned} & 1965- \\ & 1968 \end{aligned}$				
	P -value	ClLower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.9849	0.8662	0.8829	0.0189	94	2.1578
Tdmax	0.0659	0.0536	1.6494	1.8606	94	2.10100
Tmin	0.0012	-2.05	-0.5208	-3.338	94	1.8865
Tdmin	0.8379	0.9567	0.7775	-0.2051	94	2.1394

Louisville	Dew Point		1981	Station move 0.9 miles SE (07/29/1981)		
T-Test	$1981-$ 1984	$1986-$ 1989				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.6676	-1.2502	0.8044	-0.4308	94	2.5347
Tdmax	0.7905	-0.8201	1.0742	0.2664	94	2.3369
Tmin	0.4143	-1.34	0.5566	-0.8201	94	2.3398
Tdmin	0.6481	-0.7993	1.2785	0.4579	94	2.5633

Louisville	Dew Point		1985	Estimated instrument changes		
T-Test	$1981-$ 1984	$1986-$ 1989				
	P-value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.1222	-1.5248	0.1832	-1.5596	94	2.1071
Tdmax	0.4894	-1.1019	0.5311	-0.6941	94	2.0146
Tmin	0.622	-0.9506	0.5715	-0.4946	94	1.8778
Tdmin	0.6903	-1.1065	0.7356	-0.3997	94	2.2726

Louisville	Dew Point		1994	Station move-distance undefined		
	$1990-$ 1993	$1995-$ 1998				
	T-Test	Cl- P-value	Cl- Lower	T- Statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0374	0.0486	1.5764	2.1117	94	1.8849
Tdmax	0.9183	-0.6486	0.7194	0.1028	94	1.68770
Tmin	0.8131	-0.6147	0.7814	0.237	94	1.7223
Tdmin	0.7765	-0.6971	0.9304	0.2847		94

Louisville	Dew Point		1995	Estimated instrument change		
T-Test	$1991-$ 1994	$1996-$ 1999				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.2621	-0.3411	1.2373	1.1289		85
Tdmax	0.5682	-0.9524	0.5263	-0.5729	85	1.8413
Tmin	0.2908	-1.1668	0.3539	-1.0629	85	1.72490
Tdmin	0.7032	-1.0495	0.711	-0.3822	85	

Louisville	Dew Point		$\mathbf{2 0 0 3}$	Station move (distance undefined)		
T-Test	$\mathbf{1 9 9 9 -}$ $\mathbf{2 0 0 2}$	$\mathbf{2 0 0 4 -}$ $\mathbf{2 0 0 7}$				
	P-value	CI- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0431	-2.446	- 0.0396	-2.0623	66	2.2959
Tdmax	0.9556	-1.0464	1.1068	0.0559	66	2.05440
Tmin	0.9577	-1.0053	1.0604	0.0532	66	1.9708
Tdmin	0.048	0.0108	2.3463	2.015	66	2.2283

Louisville	Dew Point		2005	DTS1 Installation 03/30/2005		
T-Test	2001- 2004	2006- 2009				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.074	-1.7556	0.0831	-1.8106	79	2.0425
Tdmax	0.0376	0.0478	1.5716	2.1153	79	1.6927
Tmin	0.1407	-0.1981	1.3714	1.488	79	1.7435
Tdmin	$8.97 \mathrm{E}-06$	1.1449	2.7969	4.7493	79	1.8352

Louisville	Dew Point		$\mathbf{2 0 0 9}$	Station move (distance undefined)		
T-Test	2005-2008	$\mathbf{2 0 1 0}$ $\mathbf{2 0 1 3}$				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.6384	-1.1401	0.7026	-0.4714		94

APPENDIX N

Kansas City

Kansas City, MO is home to 459,787 people, it has a land area per square mile of 315 and population density stands at 1,460 (US Census, 2010). Record begins in 1973, the station was moved two times and had four instrument changes. Estimated instrument change in 1985 may have affected $T_{\max }$ values. In 2002 the max/min thermometer was replaced with a Hygrothermometer, there was also a station move that year, t-tests show that $T_{d \text { min }}$ may have been affected with these changes. DTS1 station was installed in 2005, these was another move for the station this year, this may have affected $T_{d \max }$ and $T_{d \text { min }}$. Summer seasonal analysis shows warming for all variables except $T_{\max }$ which shows slight cooling, these results were insignificant. Annual trend analysis shows warming for all 4 variables, again without significance.

Kansas City Int'l Airport	Station Metadata		Latitude: 39.2972
	WBAN\# 03947		Longitude: 94.7306
Year	Site (m)	Instruments	Comments
1972-1979	$\begin{aligned} & 314.9 \text { (1973- } \\ & 1979) \end{aligned}$	unknown	Observation times daily 2400
1979-1989	$\begin{aligned} & 296.6 \text { (1979- } \\ & \text { 1995) } \end{aligned}$	unknown	Observation times daily 2400
1989-2002	$\begin{aligned} & 298.4 \text { (1995- } \\ & \text { 2002) } \end{aligned}$	Max and Min Thermometers	Observations times daily 2400. 1989 instrument change from unknown to Max/min thermometer
2002-2011	$\begin{aligned} & \hline 306.3 \text { (2002- } \\ & \text { Present) } \end{aligned}$	Hygrothermometer	Observation times daily 2400. Instrument change from Max/min thermometer to Hygrothermometer.
2011Present		ATEMP: ASOS Hygrothermometer	Observation times daily 2400
Station Moves			
Latitude	Longitude	Initial	Final Date
39.3		6/1/1957	1/1/1979
	94.71667	6/1/1957	7/1/1995
39.31667		1/1/1979	7/1/1995
	94.71667	6/1/1957	7/1/1995
39.29917		7/1/1995	9/4/2002
	94.71778	7/1/1995	9/4/2002
39.29722		9/4/2002	4/1/2005
	94.73056	9/4/2002	4/1/2005
39.2972		4/1/2005	Present
	94.7306	4/1/2005	Present
T-test 1985	estimated instrument change		
T-test 1989	instrument change from unknown to Max/min thermometer		
T-test 1995	estimated instrument change		
T-test 2002	instrument change from Max/min thermometer to Hygrothermometer. Station move (noticeable in map and change in lat and long)		
T-test 2005	station move and DTS1 Installation 3/11/05		

Kansas City	Median Pairwise of Slopes95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.53 C^{\circ}$	0.17615
Te_max	not significant at 0.05	$0.73 C^{\circ}$	0.16009
T_min	not significant at 0.05	$0.50 C^{\circ}$	0.26194
Te_min	not significant at 0.05	$0.60 C^{\circ}$	0.26391
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.18 C^{\circ}$	0.52077
Te_max	not significant at 0.05	$0.15 C^{\circ}$	0.74745
T_min	not significant at 0.05	$0.15 C^{\circ}$	0.53314
Te_min	not significant at 0.05	$0.21 C^{\circ}$	0.58508
Summer-June,			
July,August	not significant at 0.05	$\left(-0.03 C^{\circ}\right)$	0.79595
T_max	not significant at 0.05	$0.21 C^{\circ}$	0.70689
Te_max	not significant at 0.05	$0.25 C^{\circ}$	0.056
T_min	not significant at 0.05	$0.58 C^{\circ}$	0.14228
Te_min			
Fall-Sept, Oct, Nov	not significant at 0.05	$0.12 C^{\circ}$	0.40572
T_max	not significant at 0.05	$\left(-0.05 C^{\circ}\right)$	0.85773
Te_max	not significant at 0.05	$0.04 C^{\circ}$	0.51344
T_min	not significant at 0.05	$0.00 C^{\circ}$	0.92103
Te_min			

Kansas City	95\% confidence	Degrees C $^{\circ}$ per decade	
Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.30211
Te_max	not significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.13394
T_min	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.09446
Te_min	not significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.05039

ANNUAL TREND

Kansas City	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.30211
Te_max	not significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.13394
T_min	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.09446
Te_min	not significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.05039

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.53 \mathrm{C}^{\circ}$	0.17615
Te_max	not significant at 0.05	$0.73 \mathrm{C}^{\circ}$	0.16009
T_min	not significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0.26194
Te_min	not significant at 0.05	$0.60 \mathrm{C}^{\circ}$	0.26391

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.18 C^{\circ}$	0.52077
Te_max	not significant at 0.05	$0.15 C^{\circ}$	0.74745
T_min	not significant at 0.05	$0.15 C^{\circ}$	0.53314
Te_min	not significant at 0.05	$0.21 C^{\circ}$	0.58508

SUMMER

Summer-June, July,August	Significance	Trend	P-value
T_max	not significant at 0.05	$\left(-0.03 \mathrm{C}^{\circ}\right)$	0.79595
Te_max	not significant at 0.05	$0.21 \mathrm{C}^{\circ}$	0.70689
T_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.056
Te_min	not significant at 0.05	$0.58 \mathrm{C}^{\circ}$	0.14228

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.40572
Te_max	not significant at 0.05	$\left(-0.05 \mathrm{C}^{\circ}\right)$	0.85773
T_min	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.51344
Te_min	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.92103

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Kansas City	Dew Point			T-test 1985	Estimated instrument change	
T-Test	$1981-$ 1984 $1986-$ 1989	P- value	Cl- Lower	Cl- Upper	T-statistic	Degrees of Freedom
Tmax	0.0153	- 2.3783	- 0.2592	-2.4712	Standard Deviation	
Tdmax	0.8912	- 0.9674	0.8424	-0.1371	94	2.6144
Tmin	0.4081	- 1.3135	0.5385	-0.8309	94	2.2327
Tdmin	0.8976	-	1.1611	0.129	94	2.2847
1.0195						

Kansas City	Dew Point			1989	Instrument change from unknown to Max/min thermometer	
T-Test	$\mathbf{1 9 8 5 -}$ $\mathbf{1 9 8 8}$	$\mathbf{1 9 9 0 -}$ $\mathbf{1 9 9 3}$				
	P-value	CI- Lower	Cl-Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.482	-0.6534	1.3743	0.7058	94	2.5015
Tdmax	0.1717	-1.2362	0.2237	-1.3771	94	1.80090
Tmin	0.8002	-0.9556	0.739	-0.2539	94	2.0906
Tdmin	0.1697	-1.5522	0.2772	-1.3839	94	2.2568

Kansas City	Dew Point			1995	estimated instrument change	
T-Test	$1991-$ 1994	$1996-$ 1999				
P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation	
Tmax	0.9713	- 0.9303	0.9647	0.036	86	2.2263
Tdmax	0.6024	- 1.1084	0.6468	-0.5228	86	2.06210
Tmin	0.0949	- 1.6357	0.1332	-1.6886	86	2.0781
Tdmin	0.3002	-	0.5078	-1.0423	86	2.5083

$\begin{array}{l}\text { Kansas } \\ \text { City }\end{array}$	$\begin{array}{l}\text { Dew } \\ \text { Point }\end{array}$			2002	$\begin{array}{l}\text { Instrument change from } \\ \text { MaxImin thermo. To } \\ \text { Hygrothermometer. Station }\end{array}$		
move (noticeable in map and							
change in lat and long)							

Kansas City	Dew Point			2005	DTS1 Installation 3/11/05 and Station move	
T-Test	2001- 2004	2006- $\mathbf{2 0 0 9}$				
	P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0634	-1.8932	0.0525	-1.8813		84
Tdmax	0.0403	0.0336	1.4553	2.0827	84	1.253
Tmin	0.1621	-0.247	1.4521	1.4103	84	1.9675
Tdmin	$8.82 \mathrm{E}-$ 05	0.8575	2.4572	4.1206	84	1.8523

Virginia Beach

The city of Virginia Beach is home to 437,994 people, it has a land area per square mile of 249 and population density of 1,760 (US Census, 2010). The data for this station was taken from Norfolk International Airport, the station was moved two times and had six instrument changes. The first move was in 1950, however a t-test could not be performed as 4 years of data were needed before the date of the documented move. In 1952 the station was moved 0.3-mile north t-test reveals no inhomogeneity for this move. In 1964 was there an estimated instrument change and $T_{d m a x}$ may have been affected. Estimated instrument changes in 1985 may have affected both $\mathrm{T}_{\mathrm{d} \max }$ and T_{d} min. Another estimated instrument change in 1995 shows that the series may have been impacted in regard to $T_{\max }$ and $T_{d \text { min. }}$. The installation of Vaisala DTS1 in 2005 may have created an inhomogeneity in $T_{\max }, T_{\text {min }}$ and $T_{d \text { min }}$. Seasonal summer trend analysis shows significant increases in $\mathrm{T}_{\min }\left(0.28 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \text { min }}\left(0.62 \mathrm{C}^{\circ}\right)$. Annual trend also analysis shows significant increases in $T_{\min }\left(0.20 C^{\circ}\right)$ and $T_{E \min }\left(0.32 C^{\circ}\right)$. The shorter time series from 1973 is consistent with these results showing significant increases in $\mathrm{T}_{\text {min }}\left(0.39 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \min }\left(1.10 \mathrm{C}^{\circ}\right)$.

Virginia Beach/Norfol k Intl' AP	Station Metadata		Latitude: 36.9033
	WBAN\# 13737		Longitude: 76.1922
Year	Site (m)	Instruments	Comments
1940-1992	11.9 (1948-1952)	unknown	Daily, obs times 2400
1992-1996	7.3 (1952-1996)	Hygrothermometer	Daily, obs times 2400. Instrument change 1992 from unknown to Hygrothermometer.
1996-2013	9.1 (1996-Present)	Hygrothermometer	Reporting method: ADP-ASOS-Era Data Downloaded to NCDC. No recorded change in observation times
2013-Present		ATEMP: ASOS Hygrothermometer	Reporting method: ADP-ASOS-Era Data Downloaded to NCDC. No recorded change in observation times
Station Moves			
Latitude	Longitude	Initial	Final Date
36.88333		1/1/1948	1/1/1952
	76.2	7/8/1938	3/1/1996
36.9		1/1/1952	3/1/1996
36.90333		3/1/1996	Present
	76.19222	3/1/1996	Present
T-test 1950	Station move (900 ft WNW 05/01/1950) Not enough data to conduct T-Test, would need to go back to 1946)		
T-test 1952	Station move (. 3 miles North, 03/05/1952)		
T-test 1964	Estimated instrument change		
T-test 1985	Estimated instrument change		
T-test 1992	Instrument change from unknown to Hygrothermometer		
T-test 1995	Estimated instrument change		
T-Test 2005	07/15/2005 DTS1 Installation		

Virginia Beach	Median of Pairwise Slopes 95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 C^{\circ}$	0.63699
Te_max	not significant at 0.05	$0.14 C^{\circ}$	0.71157
T_min	not significant at 0.05	$0.23 C^{\circ}$	0.13618
Te_min	not significant at 0.05	$0.30 C^{\circ}$	0.17576
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.10 C^{\circ}$	0.20225
Te_max	not significant at 0.05	$0.16 C^{\circ}$	0.33514
T_min	is significant at 0.05	$0.19 C^{\circ}$	0.00471
Te_min	is significant at 0.05	$0.35 C^{\circ}$	0.00963
Summer-June,			
July,August		not significant at 0.05	$0.11 C^{\circ}$
T_max	not significant at 0.05	$0.27 C^{\circ}$	0.05685
Te_max	is significant at 0.05	$0.28 C^{\circ}$	0
T_min	is significant at 0.05	$0.62 C^{\circ}$	0.0001
Te_min	not significant at 0.05	$0.10 C^{\circ}$	0.17112
Fall-Sept, Oct, Nov	not significant at 0.05	$0.18 C^{\circ}$	0.24359
T_max	is significant at 0.05	$0.18 C^{\circ}$	0.00151
Te_max	not significant at 0.05	$0.25 C^{\circ}$	0.06537
T_min	Te_min		

Virginia Beach	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.14708
Te_max	not significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.20209
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.00076

ANNUAL TREND

Virginia Beach	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.14708
Te_max	not significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.20209
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00001
Te_min	is significant at 0.05	$0.32 \mathrm{C}^{\circ}$	0.00076

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 C^{\circ}$	0.63699
Te_max	not significant at 0.05	$0.14 C^{\circ}$	0.71157
T_min	not significant at 0.05	$0.23 C^{\circ}$	0.13618
Te_min	not significant at 0.05	$0.30 C^{\circ}$	0.17576

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.20225
Te_max	not significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.33514
T_min	is significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.00471
Te_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.00963

SUMMER

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.05685
Te_max	not significant at 0.05	$0.27 \mathrm{C}^{\circ}$	0.0663
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.62 \mathrm{C}^{\circ}$	0.0001

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.17112
Te_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.24359
T_min	is significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.00151
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.06537

SUMMER 1973-2014

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	0.03	0.86867
Te_max	not significant at 0.05	0.58	0.13066
T_min	is significant at 0.05	0.39	0.00002
Te_min	is significant at 0.05	1.1	0.00037

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Virginia Beach/Norf olk	Dew Point			1952	Station move (.3 miles North, 03/05/1952)	
T-Test	1948-1951	$1953-$ 1956				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.3715	-1.037	0.3911	-0.8979	94	1.7618
Tdmax	0.4064	-0.443	1.0847	0.834	94	1.8847
Tmin	0.3852	-0.9487	0.3695	-0.8724	94	1.6262
Tdmin	0.8141	-0.7267	0.9226	0.2358	94	2.0347

Virginia Beach/ Norfolk	Dew Point			1964	Estimated instrument changes	
T-Test	$1960-$ 1963	$1965-$ 1968				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.3004	-0.3457	1.1082	1.0413	94	1.7936
Tdmax	0.0171	0.1842	1.8366	2.4283	94	2.03850
Tmin	0.5257	-0.8149	0.419	-0.637	94	1.5222
Tdmin	0.6175	-0.6419	1.0753	0.501	94	2.1185

Virginia Beach/Norf olk	Dew Point			1985	estimated instrument changes	
T-Test	1981- 1984	1986- 1989				
	P- value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.2716	-1.0425	0.2966	-1.1059	94	1.652
Tdmax	0.0359	-1.49	-0.0517	-2.1282	94	1.7744
Tmin	0.463	-0.8389	0.3848	-0.7369	94	1.5096
Tdmin	0.0498	-1.6616	-0.0009	-1.9877	94	2.0488

Virginia Beach/Norfol k	Dew Point			$\mathbf{1 9 9 2}$	instrument change from unknown to	
T-Test	1988- Hygrothermometer					
	P- (value	1993- Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.1596	-0.2136	1.2803	1.4177	94	1.843
Tdmax	0.3222	-0.3628	1.092	0.9952	94	1.79470
Tmin	0.7788	-0.5419	0.7211	0.2817	94	1.5582
Tdmin	0.4828	-0.5076	1.0659	0.7046	94	1.9411

Virginia Beach/Norfo Ik	Dew Point			1995	Estimated instrument changes	
T-Test	1991- 1994	$1996-$ 1999				
	P-value	Cl- Lower	Cl- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.0026	0.3557	1.6296	3.0952	92	1.5543
Tdmax	0.5435	-0.844	0.4475	-0.6098	92	1.57580
Tmin	0.5613	-0.7888	0.4307	-0.4307	92	1.488
Tdmin	0.0176	-1.7385	-0.1704	-2.4177	92	1.9134

Virginia Beach/Norfol k	Dew Point			2005	DTS1 Installation 07/15/2005	
T-Test	2001- 2004	2006- 2009				
	P-value	CI- Lower	CI- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.0218	-1.481	-0.1195	-2.3369	86	1.5996
Tdmax	0.7124	-0.5607	0.817	0.3699	86	1.6186
Tmin	0.0046	0.2454	1.3023	2.9112	86	1.2416
Tdmin	$3.45 \mathrm{E}-06$	1.14	2.6629	4.9644	86	1.7891

APPENDIX P

Abstract

Atlanta The station at Atlanta Hartsfield-Jackson Airport was moved only once and had six instrument changes. An estimated instrument change in 1985 may have altered the readings of $T_{\max }$ and $T_{\text {min. }}$ In 1991 a metadata entry reads instrumentation from unknown to Hygrothermometer, this change may have affected $T_{d \max }$ and $T_{d m i n}$. The DTS1 station was installed in 2004, t-test reveal that $T_{\max }$ and $T_{d \text { min }}$ may have some discontinuity. Seasonal summer trend analysis shows significant increases $\mathrm{T}_{\text {min }}(0.23$ $\left.\mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \text { min }}\left(0.40 \mathrm{C}^{\circ}\right)$. Annual trend analysis is also consistent with these findings as trend analysis shows significant increases $T_{\min }\left(0.20 C^{\circ}\right)$ and $T_{E \min }\left(0.29 C^{\circ}\right)$. The more recent trend from 1973 also shows significant increases $T_{\text {min }}\left(0.38 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \text { min }}$ $\left(0.62 C^{\circ}\right)$.

Atlanta Hartsfield- Jackson Int'I AP	Station Metadata		Latitude: 33.6301
	$\begin{aligned} & \text { WBAN\# } \\ & 13874 \end{aligned}$		Longitude: 84.4418
Year	Ground Elevation (m)	Instruments	Comments
1948-1991	$\begin{aligned} & 306 \text { (1948- } \\ & 1956) \end{aligned}$	unknown	Observations daily, times are unknown
1991-2001	$\begin{aligned} & 303 \text { (1956- } \\ & 1962 \end{aligned}$	Hygrothermometer	Observations daily, obs times 2400. Instrument change from unknown to Hygrothermometer. Receiver NCEI, Reporting Method F6= NWS Form F6Prelim.Local Clim. Data
$\begin{aligned} & \text { 2001- } \\ & \text { Present } \end{aligned}$	$\begin{aligned} & 307.8 \text { (1962- } \\ & \text { Present) } \end{aligned}$	ATEMP: ASOS Hygrothermometer	Reporting method: ADP-ASOSEra Data Downloaded to NCDC. No recorded change in observation times
Station Moves			
Latitude	Longitude	Initial	Final Date
33.65		9/1/1928	8/1/1995
	84.41667	9/1/1928	1/1/1962
33.64028		8/1/1995	4/13/2001
	84.43333	1/1/1962	8/1/1995
33.63		4/13/2001	6/22/2004
	84.42694	8/1/1995	4/13/2001
33.6301		6/22/2004	Present
	84.4418	6/22/2004	Present
T-test 1964	estimated instrument change		
T-test 1985	estimated instrument change		
T-test 1991	instrument change from unknown to Hygrothermometer		
T-test 1995	Station move (08/01/1995 0.5 miles WNW) and estimated instrument change		
T-test 2001	instrument changes: Hygrothermometer to ATEMP Hygrothermometer		
T-test 2004	DTS1 Installation 03/24/2004		

Atlanta Hartsfield-Jackson Airport AP	Median of Pairwise Slopes95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.43349
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.90042
T_min	not significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.19927
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.34866
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.19822
Te_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.54118
T_min	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.00379
Te_min	not significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.06416
Summer-June, July,August			
T_max	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.20214
Te_max	not significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.37194
T_min	is significant at 0.05	$0.23 C^{\circ}$	0.00002
Te_min	is significant at 0.05	$0.40 C^{\circ}$	0.0018
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.10 C^{\circ}$	0.10407
Te_max	not significant at 0.05	$0.15 C^{\circ}$	0.2304
T_min	is significant at 0.05	$0.19 C^{\circ}$	0.00034
Te_min	is significant at 0.05	$0.30 C^{\circ}$	0.04238

Atlanta Hartsfield-Jackson Int'l AP	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.04519
Te_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.38199
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00026
Te_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00562

ANNUAL TREND

Atlanta Hartsfield-Jackson Int'l AP	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.04519
Te_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.38199
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00026
Te_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00562

SEASONAL TREND

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.43349
Te_max	not significant at 0.05	$0.05 \mathrm{C}^{\circ}$	0.90042
T_min	not significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.19927
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.34866

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.11 C^{\circ}$	0.19822
Te_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.54118
T_min	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.00379
Te_min	not significant at 0.05	$0.33 \mathrm{C}^{\circ}$	0.06416

SUMMER

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.12 \mathrm{C}^{\circ}$	0.20214
Te_max	not significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.37194
T_min	is significant at 0.05	$0.23 \mathrm{C}^{\circ}$	0.00002
Te_min	is significant at 0.05	$0.40 \mathrm{C}^{\circ}$	0.0018

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.10407
Te_max	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.2304
T_min	is significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.00034
Te_min	is significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0.04238

Summer-June, July,August	Significance	Trend	P-Value
T_max	not significant at 0.05	0.24	0.30771
Te_max	not significant at 0.05	0.18	0.48872
T_min	is significant at 0.05	0.38	0.00104
Te_min	is significant at 0.05	0.62	0.04769

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Atlanta Hartsfield- Jackson Int'l AP	Dew Point		1964	Estimated instrument changes		
T-Test	$1960-$ 1963	$1965-$ 1968				
	P-value	CI- Lower	CI- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.335	-	1.0989	0.96906	94	1.822
Tdmax	0.99173	-0.8005	0.7921 6	- 0.01039	94	1.96480
Tmin	0.3197	-0.3197	0.9762 8	1.0004	94	1.6018
Tdmin	0.66342	-1.0749	0.6874 2	- 0.43657	94	3.1303

Atlanta Hartsfield- Jackson Int'I AP	Dew Point			$\mathbf{1 9 8 5}$	Estimated instrument changes	
T-Test	$\mathbf{1 9 8 1 -}$ $\mathbf{1 9 8 4}$	$\mathbf{1 9 8 6 -}$ $\mathbf{1 9 8 9}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.026864	-1.475	0.091693	-2.2488	94	1.7065
Tdmax	0.5667	-1.0298	0.56735	-0.57495	94	1.9704
Tmin	0.023379	-1.4	-0.10418	-2.3048	94	1.5986
Tdmin	0.85554	-1.0144	0.84359	-0.18256	94	2.2922

Atlanta HartsfieldJackson Int'I AP	Dew Point			1991	Instrument change from unknown to Hygrothermometer	
T-Test	$\begin{aligned} & \hline \text { 1987- } \\ & 1990 \end{aligned}$	$\begin{aligned} & \text { 1992- } \\ & 1995 \end{aligned}$				
	Pvalue	ClLower	ClUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.5732	-0.4919	0.8836	0.5654	94	1.6969
Tdmax	0.025	-1.5441	-0.1059	-2.278	94	1.77420
Tmin	0.5286	-0.7675	0.3967	-0.6324	94	1.4363
Tdmin	0.0174	-1.8508	0.1825	-2.4199	94	2.0582

Atlanta Hartsfield- Jackson Int'I AP	Dew Point			1995	Station move (0.5 miles WNW 08/01/1995) and estimated instrument change	
T-Test	1991- 1994	$1996-$ 1999				
	P-value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.21846	- 0.28306	1.2212	1.2396	87	1.7795
Tdmax	0.23988	- 0.27265	1.0751	1.1834	87	1.59420
Tmin	0.29884	- 0.29367	0.94505	1.0452	87	1.4653
Tdmin	0.60455	-	1.0659	0.51977	87	1.9989

Atlanta HartsfieldJackson Int'l AP	Dew Point			2001	Instrument change: hygrothermometer to ATEMP Hygrothermometer	
T-Test	$\begin{aligned} & 1997- \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 2002- \\ & 2005 \end{aligned}$				
	P-value	CILower	CIUpper	Tstatistic	Degrees of Freedom	Standard Deviation
Tmax	0.40254	0.50223	1.237	0.84199	73	1.8879
Tdmax	0.64825	0.60537	0.96671	0.45809	73	1.7064
Tmin	0.48436	0.99931	0.47822	0.70289	73	1.6038
Tdmin	0.68919	-1.082	0.71912	0.40154	73	1.9551

Atlanta Hartsfield- Jackson Int'l AP	Dew Point			$\mathbf{2 0 0 4}$	DTS1 Installation $\mathbf{0 3 / 2 4 / 2 0 0 4}$	
T-Test	$\mathbf{2 0 0 0}-$ $\mathbf{2 0 0 3}$	$\mathbf{2 0 0 5 -}$ $\mathbf{2 0 0 8}$				
	P-value	Cl- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	$2.37 E-$ 05	-2.4155	-0.9325	-4.4934	79	1.6474
Tdmax	0.7141	-0.6149	0.8936	0.3677	79	1.6758
Tmin	0.8849	-0.5719	0.6619	0.1452	79	1.3706
Tdmin	$2.49 \mathrm{E}-$ 04	0.8093	2.5532	3.8379	79	1.9372

APPENDIX Q

Raleigh

The station at Raleigh/Durham Airport was moved 3 times and had five instrument changes for the study period. T-tests were performed on all of the mentioned changes, the only change that may have affected the time series was the installation of Vaisala's DTS1 station in 2004, $T_{\max }$ and $T_{d \text { min }}$ reflect this. Seasonal summer trend analysis shows significant increases $T_{\max }\left(0.17 \mathrm{C}^{\circ}\right), \mathrm{T}_{\min }\left(0.25 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{Emin}}\left(0.49 \mathrm{C}^{\circ}\right)$. Annual trend analysis shows significant increases $T_{\min }\left(0.20 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{Emin}}\left(0.29 \mathrm{C}^{\circ}\right)$. The trend analysis from 1973 also shows significant increases $\mathrm{T}_{\min }\left(0.47 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\mathrm{E} \min }\left(0.87 \mathrm{C}^{\circ}\right)$.

Raleigh/Durha m Airport	Dew Point		Latitude: 35.8923
	WBAN\# 13722		Longitude: 78.7819
Year	Ground Elevation (m)	Instruments	Comments
1948-1991	135 (1948-1954)	unknown	Daily, obs times 2400
$1991-2009$	$132.3(1954-1979)$		Daily, obs times 2400. Instrument change from unknown to Hygrothermometer. Receiver NCEI, Reporting Method:
FOSJ-SFC			

Raleigh/Durham	Median of Pairwise Slopes95\% confidence	Degrees Celsius per decade	
Seasonal Trend			
Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 C^{\circ}$	0.47813
Te_max	not significant at 0.05	$0.15 C^{\circ}$	0.66351
T_min	is significant at 0.05	$0.28 C^{\circ}$	0.03807
Te_min	not significant at 0.05	$0.37 C^{\circ}$	0.08143
Spring-Mar,Apr,May			
T_max	not significant at 0.05	$0.10 C^{\circ}$	0.25001
Te_max	not significant at 0.05	$0.18 C^{\circ}$	0.319
T_min	is significant at 0.05	$0.16 C^{\circ}$	0.04867
Te_min	not significant at 0.05	$0.19 C^{\circ}$	0.17453
Summer-June, July,August			
T_max	is significant at 0.05	$0.17 C^{\circ}$	0.04315
Te_max	not significant at 0.05	$0.19 C^{\circ}$	0.13575
T_min	is significant at 0.05	$0.25 C^{\circ}$	0
Te_min	is significant at 0.05	$0.49 C^{\circ}$	0.00106
Fall-Sept, Oct, Nov			
T_max	not significant at 0.05	$0.04 C^{\circ}$	0.53281
Te_max	not significant at 0.05	$0.09 C^{\circ}$	0.47622
T_min	is significant at 0.05	$0.16 C^{\circ}$	0.00162
Te_min	is significant at 0.05	$0.22 C^{\circ}$	0.03582

Raleigh/Durham AP	95\% confidence	Degrees Celsius per decade	
Annual			
	Significance	Trend	P-value
T_max	not significant at 0.05	$0.11 C^{\circ}$	0.09121
Te_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.42098
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00011
Te_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00162

ANNUAL TREND

Raleigh/Durham AP	95\% confidence	Degrees Celsius per decade	
Annual	Significance	Trend	P-value
T_max	not significant at 0.05	$0.11 \mathrm{C}^{\circ}$	0.09121
Te_max	not significant at 0.05	$0.07 \mathrm{C}^{\circ}$	0.42098
T_min	is significant at 0.05	$0.20 \mathrm{C}^{\circ}$	0.00011
Te_min	is significant at 0.05	$0.29 \mathrm{C}^{\circ}$	0.00162

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.47813
Te_max	not significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.66351
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0.03807
Te_min	not significant at 0.05	$0.37 \mathrm{C}^{\circ}$	0.08143

SPRING

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.10 \mathrm{C}^{\circ}$	0.25001
Te_max	not significant at 0.05	$0.18 \mathrm{C}^{\circ}$	0.319
T_min	is significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.04867
Te_min	not significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.17453

SUMMER

Summer-June, July,August	Significance	Trend	P-Value
T_max	is significant at 0.05	$0.17 \mathrm{C}^{\circ}$	0.04315
Te_max	not significant at 0.05	$0.19 \mathrm{C}^{\circ}$	0.13575
T_min	is significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.49 \mathrm{C}^{\circ}$	0.00106

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.04 \mathrm{C}^{\circ}$	0.53281
Te_max	not significant at 0.05	$0.09 \mathrm{C}^{\circ}$	0.47622
T_min	is significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.00162
Te_min	is significant at 0.05	$0.22 \mathrm{C}^{\circ}$	0.03582

SUMMER 1973-2014

Summer-June, July,August	Significance	Trend	P-Value
T_max	is significant at 0.05	0.46	0.00323
Te_max	not significant at 0.05	0.07	0.81953
T_min	is significant at 0.05	0.47	0.00003
Te_min	is significant at 0.05	0.87	0.00576

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Raleigh/Durha m AP	Dew Point			1964	Estimated instrument change	
T-Test	$1960-$ 1963	$1965-$ 1968				
	P-value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.8046	-0.8252	0.6419	-0.2481	94	1.8099
Tdmax	0.3169	-0.3852	1.1769	1.0062	94	1.92710
Tmin	0.1854	-1.0628	0.2086	-1.3339	94	1.5685
Tdmin	0.1527	-1.4808	0.235	-1.4416	94	2.1168

Raleigh/Durham AP	Dew Point			1985	Estimated instrument change	
T-Test	1981- $\mathbf{1 9 8 4}$	$1986-$ 1989				
	P- value	CI- Lower	CI- Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.3657	-0.9752	0.3627	-0.909	94	1.6505
Tdmax	0.4698	-1.0818	0.5026	-0.7258	94	1.9547
Tmin	0.4438	-0.9328	0.412	-0.769	94	1.659
Tdmin	0.4891	-1.1978	0.577	-0.6945	94	2.1896

Raleigh/Durha m AP	Dew Point			1991	instrument change from unknown to Hygrothermometer	
T-Test	$1987-$ $\mathbf{1 9 9 0}$	$1992-$ $\mathbf{1 9 9 5}$				
	P- value	CI- Lower	CI- Upper	T- statistic	Degrees of Freedom	
Standard Deviatio n						
Tmax	0.5087	-0.4692	0.9404	0.6633	94	
Tdmax	0.4284	-1.0198	0.4365	-0.7953	94	
Tmin	0.636	-0.7773	0.4773	-0.4773	94	
Tdmin	0.4523	-1.0741	0.4824	-0.7547	94	

Raleigh/Durha m AP	Dew Point			1995	Estimated instrument change	
T-Test	1991- 1994	1996- $\mathbf{1 9 9 9}$				
	P-value	Cl- Lower	CI- Upper	T-statistic	Degrees of Freedom	Standard Deviatio \mathbf{n}
Tmax	0.5921	-0.4966	0.8651	0.5378	88	1.6215
Tdmax	0.8379	-0.6073	0.7472	0.2052	88	1.61290
Tmin	0.501	-0.4074	0.827	0.6756	88	1.4699
Tdmin	0.2965	-1.2157	0.3751	-1.0501	88	1.8942

Raleigh/Durham AP	Dew Point			1996	Station move (\#3 under location data). Visible on map.	
T-Test	1992- 1995	1997- 2000				
	P- value	CI- Lower	CI- Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.7788	-0.8742	0.6572	-0.2818	83	1.7598
Tdmax	0.4763	-0.5036	1.0695	0.7155	83	1.80760
Tmin	0.5825	-0.8363	0.473	-0.552	83	1.5045
Tdmin	0.273	-1.356	0.3882	-1.1036	83	2.0043

Raleigh/Durha m AP	Dew Point			2004	DTS1 Installation 06/03/2004	
T-Test	$1997-$ $\mathbf{2 0 0 0}$	$\mathbf{2 0 0 2 - 2 0 0 5}$				
	P-value	CI-Lower	CI- Upper	T- statisti \mathbf{c}	Degrees of Freedo \mathbf{m}	Standard Deviatio \mathbf{n}
Tmax	$1.13 \mathrm{E}-04$	-2.4297	-	-4.0507	84	1.8528
Tdmax	0.547	-1.11	0.8296	-0.5924	-0.6047	84
Tmin	0.7083	-0.5236	- 0.7674	0.3755	84	1.9712
Tdmin	0.0046	0.4095	2.1696	2.914	84	2.0381

Raleigh/Durha m AP	Dew Point			2009	Station move (\#2 under location data). Visible on map.	
T-Test	2005- 2008	$\mathbf{2 0 1 0 - 2 0 1 3}$				
	P-value	Cl-Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviatio n
Tmax	0.4119	-0.4756	1.1506	0.8242	94	2.0061
Tdmax	0.8236	-0.7227	0.9061	0.2235	94	2.00940
Tmin	0.5262	-0.8758	0.4508	-0.6361	94	1.6365
Tdmin	0.2512	-1.3429	0.3554	-1.1545	94	2.0951

APPENDIX R

Miami

The station at Miami International Airport was moved approximately six times, the instrumentation was changed at least four times. One of the first moves estimated in the record happens in 1957, it is noted by a difference in latitude and longitude, a t-test shows that this change may have affected Tmax. Estimated instrument changes in 1964 show a possible alteration of $T_{\max }$ and $T_{d \text { min }}$. A confirmed station move took it 2.2 miles northwest in 1977, t-tests for this change show that both $T_{\text {min }}$ and $T_{d m i n}$ may have been affected. An estimated instrument change in 1985 may have altered $T_{\text {max }}$, the same result for the exact same change is present in 1995 t-tests. A station move and in instrument change produced results in a t-test that show that $T_{\text {min }}$ and $T_{d \text { min }}$ have possible inhomogeneities. The installation of the Vaisala DTS1 occurred in 2005, t-tests indicate that $T_{\max }$ and $T_{d \text { min }}$ may be affected by this change. Finally, in 2010, the station was moved one last time, this is a change only reflected in latitude and longitude rather than an entry in the metadata, $T_{d \max }$ and $T_{d \text { min }}$ show possible discontinuities. Summer trend analysis shows significant increases across all four variables $\mathrm{T}_{\max }\left(0.14 \mathrm{C}^{\circ}\right), \mathrm{T}_{\min }$ $\left(0.38 C^{\circ}\right), T_{E \max }\left(0.28 C^{\circ}\right)$ and $T_{E \min }\left(0.50 C^{\circ}\right)$. All four variables also showed significant increases in for the fall season. Winter also saw increases in all variables except $T_{\text {max. }}$ Annual trend analysis also shows increases in all four variables: $T_{\max }\left(0.15 C^{\circ}\right), T_{\min }$ $\left(0.34 C^{\circ}\right), T_{E \max }\left(0.28 C^{\circ}\right)$ and $T_{E \min }\left(0.45 C^{\circ}\right)$. Trend analysis for the shorter series which begins in 1973 shows significant increases in $T_{\max }\left(0.25 \mathrm{C}^{\circ}\right)$ and $\mathrm{T}_{\min }\left(0.25 \mathrm{C}^{\circ}\right)$.

Miami International Airport	WBAN\# 12839		Latitude: 25.7905
			Longitude: 80.3163
Year	Site (m)	Instruments	Comments
1948-1980	7 (1948-1957)	unknown	unknown
1980-1995	4 (1957-1977)	unknown	Daily, obs times 2400
1995-2002	$\begin{aligned} & \hline 3.7(1977- \\ & 1995) \end{aligned}$	Hygrothermomete r	Daily, obs times 2400. Instrument change from unknown to Hygrothermometer. Receiver NCEI, Reporting Method: FOSJ-SFC
2002-2004	$\begin{aligned} & 10.7 \text { (1995- } \\ & 2002) \end{aligned}$	ATEMP: ASOS Hygrothermomete r	Daily, obs times 2400, Receiver NCEI, Reporting Method: FOSJ-SFC
2004-Present	$\begin{aligned} & \hline 8.8 \text { (2002- } \\ & \text { Present) } \end{aligned}$	ATEMP: ASOS Hygrothermomete r	Reporting method: ADP-ASOS-Era Data Downloaded to NCDC. No recorded change in observation times
Station Moves			
Latitude	Longitude	Initial	Final Date
25.91667		6/1/1932	1/1/1957
	80.28333	6/1/1932	1/1/1957
25.8		1/1/1957	1/24/1995
	80.2667	1/1/1957	3/1/1977
	80.3	3/1/1977	1/24/1995
25.78333		1/24/1995	7/1/1996
	80.28333	1/24/1995	7/1/1996
25.82389		7/1/1996	1/8/2002
	80.29972	7/1/1996	1/8/2002
25.79056		1/8/2002	11/6/2010
	80.31639	1/8/2002	11/6/2010
25.7905		11/6/2010	Present
	80.3163	11/6/2010	Present
T-test 1957	Station move represented in Lat. Long.		
T-test 1964	estimated instrument change		
T-test 1977	Station move 2.2 miles NW (03/01/1977)		
T-test 1985	estimated instrument change		
T-test 1995	Station move 1mile South (1/24/1995) and instrument change from unknown to Hygrothermometer.		
T-Test 1996	Station move slight changes in Lat. Long. Visible in map		
T-Test 2002	Station move slight changes in Lat. Long. Visible in map. Instrument change from Hygrometer to ATEMP.		
T-Test 2005	10/13/2005 DTS1 Installation		
T-Test 2010	Station move Lat. Long. Change, visible in map		

Miami International AP	Median of Pairwise Slopes95\% confidence	Degrees Celsius per decade	
Seasonal Trend		Trend P-value	
Winter-Dec,Jan,Feb	Significance	$0.14 \mathrm{C}^{\circ}$	0.05633
T_max	not significant at 0.05	0.01824	
Te_max	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.00208
T_min	is significant at 0.05	$0.35 C^{\circ}$	0.01545
Te_min	is significant at 0.05	$0.69 C^{\circ}$	
Spring-Mar,Apr,May			0.06417
T_max	not significant at 0.05	$0.08 C^{\circ}$	0.94392
Te_max	not significant at 0.05	$0.00 C^{\circ}$	0.00059
T_min	is significant at 0.05	$0.23 C^{\circ}$	0.27831
Te_min	not significant at 0.05	$0.25 C^{\circ}$	
Summer-June, July,August			0.00029
T_max	is significant at 0.05	$0.14 C^{\circ}$	0.00009
Te_max	is significant at 0.05	$0.38 C^{\circ}$	0
T_min	is significant at 0.05	$0.28 C^{\circ}$	0
Te_min	is significant at 0.05	$0.50 C^{\circ}$	
Fall-Sept, Oct, Nov			0.0001
T_max	is significant at 0.05	$0.16 C^{\circ}$	0.03833
Te_max	is significant at 0.05	$0.35 C^{\circ}$	0.00113
T_min	is significant at 0.05	$0.30 C^{\circ}$	$0.53 C^{\circ}$

Miami International AP	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	is significant at 0.05	$0.15 C^{\circ}$	0.00001
Te_max	is significant at 0.05	$0.34 \mathrm{C}^{\circ}$	0.00218
T_min	is significant at 0.05	$0.28 C^{\circ}$	0
Te_min	is significant at 0.05	$0.45 C^{\circ}$	0.00017

ANNUAL TREND

Miami	95\% confidence	Degrees Celsius per decade	
Annual Trend	Significance	Trend	P-value
T_max	is significant at 0.05	$0.15 \mathrm{C}^{\circ}$	0.00001
Te_max	is significant at 0.05	$0.34 \mathrm{C}^{\circ}$	0.00218
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.45 \mathrm{C}^{\circ}$	0.00017

SEASONAL TRENDS

WINTER

Winter-Dec,Jan,Feb	Significance	Trend	P-value
T_max	not significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.05633
Te_max	is significant at 0.05	$0.44 \mathrm{C}^{\circ}$	0.01824
T_min	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.00208
Te_min	is significant at 0.05	$0.69 \mathrm{C}^{\circ}$	0.01545

Spring-Mar,Apr,May	Significance	Trend	P-Value
T_max	not significant at 0.05	$0.08 \mathrm{C}^{\circ}$	0.06417
Te_max	not significant at 0.05	$0.00 \mathrm{C}^{\circ}$	0.94392
T_min	is significant at 0.05	$0.23 \mathrm{C}^{\circ}$	0.00059
Te_min	not significant at 0.05	$0.25 \mathrm{C}^{\circ}$	0.27831

SUMMER

Summer-June, July,August	Significance	Trend	P-Value
T_max	is significant at 0.05	$0.14 \mathrm{C}^{\circ}$	0.00029
Te_max	is significant at 0.05	$0.38 \mathrm{C}^{\circ}$	0.00009
T_min	is significant at 0.05	$0.28 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.50 \mathrm{C}^{\circ}$	0

FALL

Fall-Sept, Oct, Nov	Significance	Trend	P-Value
T_max	is significant at 0.05	$0.16 \mathrm{C}^{\circ}$	0.0001
Te_max	is significant at 0.05	$0.35 \mathrm{C}^{\circ}$	0.03833
T_min	is significant at 0.05	$0.30 \mathrm{C}^{\circ}$	0
Te_min	is significant at 0.05	$0.53 \mathrm{C}^{\circ}$	0.00113

Summer-June, July,August	Significance	Trend	P-Value
T_max	is significant at 0.05	0.25	0.00855
Te_max	not significant at 0.05	0.33	0.08914
T_min	is significant at 0.05	0.25	0.00014
Te_min	not significant at 0.05	0.36	0.13284

Two Tailed T-Tests: Station moves, instrument changes, DTS1 installation

Miami Intl' AP	Dew Point			1957	Station move represented in Lat. Long.	
T-Test	$\mathbf{1 9 5 3 -}$ $\mathbf{1 9 5 6}$	$\mathbf{1 9 5 8 -}$ $\mathbf{1 9 6 1}$				
	P-value	Cl- Lower	Cl- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0221	0.0673	0.0673	2.3272	94	0.9648
Tdmax	0.9221	-0.4413	0.4872	0.098	94	1.1454
Tmin	0.3203	-0.8091	0.2674	-0.9991	94	1.328
Tdmin	0.9696	-0.6625	0.6375	-0.0382	94	1.6038

Miami Int'I AP	Dew Point			1964	Estimated instrument change	
T-Test	$\begin{aligned} & 1960- \\ & 1963 \end{aligned}$	$\begin{aligned} & \hline 1965- \\ & 1968 \end{aligned}$				
	Pvalue	CI- Lower	CIUpper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0042	0.177	0.9188	2.9334	94	0.9151
Tdmax	0.2081	-0.1463	0.663	1.2676	94	0.99840
Tmin	0.0757	-0.9212	0.0462	-1.7959	94	1.1934
Tdmin	0.0018	-1.4551	-0.3449	-3.2193	94	1.3696

Miami Intl' AP	Dew Point			1977	Station move 2.2 miles NW (03/01/1977)	
T-Test	1973- 1976	$1978-$ $\mathbf{1 9 8 1}$				
	P-value	CI- Lower	CI- Upper	T- statisti c	Degrees of Freedom	Standard Deviation
Tmax	0.4811	-0.2711	0.5711	0.7073	94	1.0389
Tdmax	0.2089	-0.1803	0.8136	1.2652	94	1.2262
Tmin	0.0338	0.0513	1.2612	2.1538	94	1.4927
Tdmin	0.0288	0.0833	1.4958	2.2198	94	1.7426

Miami Int'I AP	Dew Point			1985	Estimated instrument change	
T-Test	$\mathbf{1 9 8 1 -}$ $\mathbf{1 9 8 4}$	$\mathbf{1 9 8 6 -}$ $\mathbf{1 9 8 9}$				
Tmax	0.0161	-0.8861	-0.0931	-2.4516	94	Clua Lower Upper
T-statistic	Degrees of Freedom	Standard Deviation				
Tdmax	0.2218	-0.7788	0.183	-1.23	94	0.9783
Tmin	0.4218	-0.8581	0.3622	-0.8068	94	1.1866
Tdmin	0.2641	-1.1358	0.315	-1.1234	94	1.7898

Miami Int'I AP	Dew Point			1995	Station move 1 mile South (1/24/1995) and instrument change from unknown to Hygrothermometer.	
T-Test	$1991-$ 1994	1996- 1999				
	P-value	CI- Lower	Cl- Upper	T-statistic	Degrees of Freedom	Standard Deviation
Tmax	0.0042	0.1602	0.8316	2.935	90	0.8096
Tdmax	0.3401	-0.2222	0.637	0.9591	90	1.03610
Tmin	0.8167	-0.416	0.5262	0.2324	90	1.1361
Tdmin	0.8735	-0.5781	0.6792	0.1596	90	1.5161

Miami Int'I AP	Dew Point			2002	Station move sligth changes in Lat. Long. Visible in map. Instrument change from Hygrometer to ATEMP.	
T-Test	$\mathbf{1 9 9 8}$ $\mathbf{2 0 0 1}$	$\mathbf{2 0 0 3 -}$ $\mathbf{2 0 0 6}$				
	P- value	CI-Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	0.8231	-0.4641	0.3701	-0.2244	78	0.9322
Tdmax	0.5542	-0.3494	0.6466	0.594	78	1.1131
Tmin	0.0379	0.0314	1.0632	2.1119	78	1.1532
Tdmin	0.0018	0.3803	1.6044	3.2278	78	1.368

Miami Int'l AP	Dew Point			$\mathbf{2 0 0 5}$	$\mathbf{1 0 / 1 3 / 2 0 0 5}$ DTS1 Installation	
T-Test	$\mathbf{2 0 0 1 -}$ $\mathbf{2 0 0 4}$	$\mathbf{2 0 0 6 - 2 0 0 9}$				
	P-value	CI-Lower	CI-- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	$4.18 \mathrm{E}-05$	-1.2204	-0.4532	-4.3434	78	0.8442
Tdmax	0.0713	-0.0424	0.9981	1.8285	78	1.1451
Tmin	0.664	-0.459	0.7165	0.4361	78	1.2935
Tdmin	$3.74 \mathrm{E}-05$	0.8002	2.1375	4.3734	78	1.4717

Miami Int'I AP	Dew Point			$\mathbf{2 0 1 0}$	Station move Lat. Long. Change, visible in map	
T-Test	2006-2009	$\mathbf{2 0 1 1 - 2 0 1 4}$				
	P-value	CI-Lower	CI- Upper	T- statistic	Degrees of Freedom	Standard Deviation
Tmax	1	-0.321	0.321	$2.75 \mathrm{E}-$ 15	94	0.7921
Tdmax	0.0371	-0.9452	-0.0298	-2.1148	94	1.1293
Tmin	0.6822	-0.5956	0.3915	-0.4107	94	1.2178
Tdmin	0.0243	-1.3693	-0.0974	-2.2895	94	1.5692

APPENDIX S

Linear Trend in $\mathrm{T}_{\mathrm{E}} \min$ HW Frequency 1973-2014 (days/decade)

Linear Trend in $\mathrm{T}_{\mathrm{E}} \min \mathrm{HW}$ Intensity 1948-2014 $\left({ }^{\circ} \mathrm{C} /\right.$ decade $)$

$70^{\circ} \mathrm{W}$

			1			
-3	-2	-1	0	1	2	3

Linear Trend in $T_{E} \min$ HW Intensity 1973-2014 ($C^{\circ} /$ decade)

APPENDIX T

Linear Trend in Tmin HW Intensity 1973-2014 (C ${ }^{\circ} /$ decade)

70 W

APPENDIX U

Linear Trend in T_{E} max HW Frequency 1973-2014 (days/decade)

Linear Trend in $\mathrm{T}_{\mathrm{E}} \max \mathrm{HW}$ Intensity 1948-2014 ($\mathrm{C}^{\circ} /$ decade)

$70^{\circ} \mathrm{W}$
$80^{\circ} \mathrm{W}$

Linear Trend in $\mathrm{T}_{\mathrm{E}} \max$ HW Intensity 1973-2014 ($\mathrm{C}^{\circ} /$ decade)

$70^{\circ} \mathrm{W}$

APPENDIX V

Linear Trend in Tmax HW Frequency 1973-2014 (days/decade)

Linear Trend in Tmax HW Intensity 1973-2014 (C ${ }^{\circ} /$ decade)

$90^{\circ} \mathrm{W}$
$80^{\circ} \mathrm{W}$
$70^{\circ} \mathrm{W}$

VITA

Graduate School
Southern Illinois University
Mercedes Gomez Jacobo
Clima.mercedes@gmail.com
Southern Illinois University Carbondale
Bachelor of Science, Geography and Environmental Resource, May 2013

Thesis Title:
Assessing Equivalent Temperature Trends in the Eastern United States
Major Professor: Justin T Schoof

