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1 INTRODUCTION 

Noise induced hearing loss (NIHL) remains as one of the most common 

occupational health problems in the world. According to the World Health 

Organization (WHO), exposure to excessive noise is the major avoidable cause of 

permanent hearing loss worldwide (Smith, 1996). There are over 500 million 

individuals at risk of developing NIHL worldwide (Sliwinska-Kowalska & Davis, 

2012). In the United States, over 22 million workers were suffering from exposure 

to high-level noise which is loud enough to be potentially hazardous (Tak, Davis, 

& Calvert, 2009). Exposure to loud noise can cause serious damage to the hair cells 

inside the cochlea. The final result will be a permanent shift in the hearing 

threshold, known as NIHL. 

Noises can be classified into continuous Gaussian noise (also called as steady-

state noise), high-level transient noise (including impulse noise and impact noise), 

and complex noise (i.e., a non-Gaussian noise consisting of high-level transients 

noise mixed in a Gaussian noise) (Hamernik, Qiu, & Davis, 2003b) (Hamernik, 

Qiu, & Davis, 2007) (Qin, Sun, & Walker, 2014) (Smalt, Lacirignola, Davis, 

Calamia, & Collins, 2017) (Wu & Qin, 2013). All types of noise could generate 

hearing loss at high noise intensity levels. A number of animal studies showed that 

complex noises can cause more hearing loss than continuous noise with the same 

energy level (Hamernik, Henderson, Crossley, & Salvi, 1974) (Blakeslee, Hynson, 

Hamernik, & Henderson, 1977) (Hamernik & Qiu, 2000) (Hamernik et al., 2003b) 

(Qin & Sun, 2015).  

Various international standards have been developed to estimate NIHL, for 

example, CHABA (Smoorenburg, 1980), NOISH98 (Health & Services, 1998), 

MIL STD-1472F (AMSC & HFAC). These standards were designed based on 

either auditory weighting function (e.g., A-weighting) or based on the waveform 

empirical strategies (e.g., peak pressure and pulse duration) (Azizi, 2010) (Murphy 

& Kardous, 2012). In the current standards, the noise metrics are developed 

depending on the equal energy hypothesis (EEH), which states that NIHL mainly 

depends on the total acoustic energy of the exposure and it is independent on the 

temporal characteristics of that noise (Hamernik, Ahroon, Davis, & Lei, 1994) 

(Zhu, Kim, Song, Murphy, & Song, 2009). The primary metric to assess the 

exposure levels of the noise guideline is the A-weighted equivalent sound pressure 

level (SPL), LAeq. However, previous studies on  NIHL indicated that LAeq is 

applicable for continuous noise (i.e., Gaussian noise) but not for impact, impulsive 

or complex noises (Henderson & Hamernik, 1986) (Starck & Pekkarinen, 1987) 

(Hamernik et al., 1994) (Zhu et al., 2009) (Goley, Song, & Kim, 2011). Other 

studies also showed that the A-weighting filter is more appropriate to assess the 

low SPL, while the C-weighting filter is suitable for the high SPL (Parmanen, 
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2007). In addition, some researchers claimed that the EEH based metrics cannot 

provide a physical insight about NIHL, because they do not reflect the physical 

properties of the ear (Price, 2012).  

To accurately evaluate high-level complex noise, we have recently developed 

new noise models for assessment of NIHL, including an adaptive weighting filter 

(F-weighting) (Sun, Qin, & Qiu, 2016) and the complex velocity level (CVL) 

auditory fatigue model (Sun & Qin, 2016) (Sun, Fox, Campbell, & Qin, 2017). In 

this study, we will further evaluate the performances of the newly developed F-

weighting and CVL model based noise metrics using experimental noise exposure 

data on chinchilla, compared with conventional noise metrics (i.e., A-weighted and 

C-weighted equivalent SPL). 

 

2 METHODS AND MATERIALS 

2.1 A-Weighting and C-Weighting 

 In the current standards, A-weighting is used to evaluate relatively quiet 

sounds and C-weighting is used for detection of the peak SPLs (Parmanen, 2007) 

(Sun et al., 2016). Both A-weighting and C-weighting were developed to mimic the 

frequency responses of the human auditory system (Walworth, 1967). A-weighting 

was designed to be the best predictor for the ear’s sensitivity to tones at low SPLs, 

while C-weighting was designed to follow the frequency sensitivity of the human 

ear at high SPLs. Therefore, the C-weighting function has a better estimation of the 

auditory system’s response to high level sounds than the A-weighting (in terms of 

the magnitude perspective) (Houser et al., 2017).   

 A-weighting function, AW(f), and C-weighting function, CW(f), can be 

expressed as follows (Havelock, Kuwano, & Vorländer, 2008) 

𝐴𝑊(𝑓) = 𝐾𝐴
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where KA, KC, f1, f2, f3 and f4 are constants given by approximate values: KA = 

1.258905, KC = 1.007152, f1= 20.60 Hz, f2= 107.7 Hz, f3 = 737.9 Hz, f4 = 12194 Hz. 

The A-weighting and C-weighting are defined to have a unity gain at 1 kHz. 

Figure 1 shows the frequency response of the A-weighted and the C-

weighted filters. The A-weighted filter shows reduction at low frequencies (less 
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than 400 Hz), while the C-weighted filter is quite flat and has a very broad 

bandwidth (Havelock et al., 2008). Due to their abbreviated form, both A-weighted 

and C-weighted noise metrics have limitations on accurate assessment of a complex 

noise. Therefore, it is necessary and meaningful to develop new noise metrics, 

which can be used for more accurate assessment of the auditory risk for high-level 

complex noise (Dunn, Davis, Merry, & Franks, 1991) (Steele, 2001). 

 

Figure 1. Frequency response of A-weighted and C-weighted filters.  

 

2.2 Adaptive weighting (F-weighting) 

We have proposed an adaptive weighting (F-weighting) which is based on 

the idea of blending the two standard weighting functions (i.e., A-weighting and C-

weighting) (Sun et al., 2016). In F-weighting, the sound pressure 𝑃𝑓𝑒𝑞(𝑡) can be 

calculated as (Sun et al., 2016) 

𝑃𝑓𝑒𝑞(𝑡) = 𝛼𝐴,𝑇 (𝐴𝑊(𝑡) ∗ 𝑃(𝑡)) +  𝛼𝐶 ,𝑇 (𝐶𝑊(𝑡) ∗ 𝑃(𝑡))               (3) 

where AW(t) and CW(t) refer to A-weighed and C-weighted filters, respectively, 

‘*’ represents the convolution calculation. The parameters 𝛼𝐴,𝑇  and 𝛼𝐶 ,𝑇 are given 

by (Sun et al., 2016) 

                   𝛼𝐴,𝑇 = 𝑒𝑥𝑝 (𝛽𝐾𝑇𝑂𝑇)
1

|𝑙𝑛 (𝑂𝑇)|+1
                                            (4) 

                   𝛼𝐶 ,𝑇 = 𝑒𝑥𝑝 (𝛽𝐾𝑇𝑂𝑇)
𝑙𝑛 (𝑂𝑇)|

|𝑙𝑛 (𝑂𝑇)|+1
                                            (5) 
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where 𝐾𝑇 is the kurtosis and 𝑂𝑇 is the oscillation coefficient. 𝛽 is a positive constant 

used to let the amplification component (i.e., 𝑒𝑥𝑝 (𝛽𝐾𝑇𝑂𝑇)) equal to one 

approximately in the case of Gaussian noise. 

The kurtosis can be defined as the standardized fourth moment about the 

mean of the data (DeCarlo, 1997): 

                                    𝐾𝑇 =
𝐸[(𝑥−µ)4]

(𝐸[(𝑥−µ)2])2
=  

µ4

𝜎4
                                                     (6) 

where 𝐸 represents the expectation operator, µ represents the mean of 𝑥, µ4 

represents the fourth moment about the mean, and σ represents the standard 

deviation. A large kurtosis value implies more impulsive components in the noise 

(Qiu, Hamernik, & Davis, 2006) (Qiu, Hamernik, & Davis, 2013). 

Another parameter, oscillation coefficient 𝑂𝑇, can be defined as (Hamila, 

Astola, Cheikh, Gabbouj, & Renfors, 1999) 

                                𝑂𝑇 =
∑ |(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛 

𝑛−1

𝑛=2
+𝑥𝑛−1)|

∑ 𝑥𝑛 
2𝑛−1

𝑛=2

                                            (7) 

The oscillation coefficient is used to calculate the energy density distribution of the 

complex noise. 𝑂𝑇  is relevant to the local transition level and the frequency of the 

noise signal. The product of the differential values in the 𝑂𝑇 formula reflects the 

local transitions’ strength of the noise signal.  

 

2.3 Auditory fatigue model 

In our previous study, we have developed an auditory fatigue model, complex 

velocity level (CVL) model, to predict gradually developing hearing loss (Sun, Qin, 

& Campbell, 2015). The CVL model combines an auditory filter which can obtain 

the velocities distributions on basilar membrane (BM) in cochlea, and a fatigue 

theory which is based on the Miner rule to calculate hearing loss associated with 

BM velocity.  

 

2.3.1 Outer ear and middle ear transfer function  

The mammalian ear consists of three parts: outer ear, middle ear, and inner 

ear. The primary path for the environmental sound to the inner ear is through the 

coupled motion of tympanic membrane (TM), ossicles, and stapes footplate. The 

main function of the outer ear and the middle ear is to gather sound energy into the 

inner ear. The outer ear consists of an ear canal, concha, and pinna flange. The 

middle ear consists of tympanic membrane, middle-ear air spaces, Eustachian tube, 
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and ossicles. The middle ear acts like an impedance-matching device that extracts 

acoustic energy from a stimulus and transmits it to the inner ear (Ruggero, Rich, 

Robles, & Shivapuja, 1990) (Slama, Ravicz, & Rosowski, 2010). 

Figure 2 shows the transfer function for the outer ear and the middle ear of a 

chinchilla (Vrettakos, Dear, & Saunders, 1988). The transfer function of an outer 

ear has higher gain in mid-range frequencies (1000 – 8000 kHz). The transfer 

function of a middle ear is characterized by stapes velocity transfer function 

(SVTF), which is defined as the ratio between the linear velocity of the stapes and 

the sound pressure near TM in the ear canal (Slama et al., 2010). 

 

Figure 2. The transfer function of (a) the outer ear, and (b) the middle ear of 

chinchilla (Rosowski, 1991). 
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2.3.2 Inner ear model 

The cochlea in an inner ear can be considered as a two-chambered, fluid-

filled box with rigid side walls (Price & Kalb, 1991). The motion of the stapes 

produces pressure within the cochlea vestibule. The stimulus sound can be 

transferred as vibrations on the BM (Rhode & Cooper, 1996). In this study, the 

triple-path nonlinear (TRNL) filter (Lopez-Najera, Meddis, & Lopez-Poveda, 

2005) was applied to obtain the BM responses along the cochlea partitions. Figure 

3 shows the structure of the TRNL filter, in which the input is the middle ear stapes 

velocity and the output represents the velocity of the BM of a particular location at 

the cochlea partitions.  

The TRNL filter consists of three parallel independent paths. The linear path 

contains a gain /attenuation factor, a bandpass function, and a low pass function in 

a cascade. The nonlinear path is a cascade combination of the 1st bandpass function, 

a compression function, the 2nd bandpass function, and a low pass function (Meddis, 

O’Mard, & Lopez-Poveda, 2001). Each individual bandpass function contains a 

cascade of two or more gammatone filters (Hartmann, 1997) with unit gain at the 

center frequency (CF). The third path is used to allow modeling of the amplitude 

and the phase plateaus at high frequency observed in the BM responses (Robles & 

Ruggero, 2001) (Lopez-Najera et al., 2005). Moreover, the compressive function 

shape in the nonlinear path is derived from the animal data, and it is defined as 

(Meddis et al., 2001) 

                 𝑦[𝑡] = 𝑆𝐼𝐺𝑁 (𝑥[𝑡]) × 𝑀𝐼𝑁 (𝑎|𝑥[𝑡]|, 𝑏|𝑥[𝑡]|𝑐)                  (8) 

 

where 𝑥[𝑡] is the output from the first bandpass function in the nonlinear path. 

𝑦[𝑡]  represents the output of the compression function. 𝑎, 𝑏, and 𝑐 are models 

parameters as summarized in Table 1.  
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Figure 3. Schematic diagram of the TRNL filter, in which the input is the middle 

ear stapes velocities and the output is the velocity of the BM (Lopez-Najera et al., 

2005) (Sun & Qin, 2016).  
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Table 1 - TRNL filter parameters used to simulate the chinchilla inner ear (Lopez-

Najera et al., 2005) (Sun & Qin, 2016). 
 Simulated 

preparation  

0.8 

kHz  

5.5 

kHz  

7.25 

kHz  

9.75 

kHz  

10 

kHz  

12 

kHz 

14 

kHz 

Linear        
GT cascade    5 5 5 5 5 5 5 

LP cascade    7 7 7 7 7 7 7 

CFlin 750 5000 7400 9000 9000 11000 13000 

BWlin 450 3000 2500 3000 3500 5000 4000 

LPlin 750 6000 7400 9000 8800 12000 13500 

Gain, g 500 190 3000 300 500 500 350 

Nonlinear        

GT cascade    3 3 3 3 3 3 3 

LP cascade    4 4 4 4 4 4 4 

CFlin 730 5850 7800 9800 10000 12000 15000 

BWlin 350 1800 2275 1650 1800 2000 3200 

LPnl 730 5850 7800 9800 10000 12000 15000 

Gain, a 850 3000 15000 9000 15000 22500 3000 

Gain, b 0.03 0.04 0.06 0.05 0.06 0.07 0.045 

Exponent, c  0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Linear all-pass        

Gain, K 10 0.4 20 1 2 20 20 

 

 

2.3.3 Complex velocity level (CVL) fatigue model 

Sun et al. (Sun et al., 2015) proposed a complex velocity level (CVL) 

fatigue model based on the Miner’s rule to calculate the noise induced cumulative 

hazard. The Miner’s rule has been used to predict the materials’ high-cycle fatigue 

life. The CVL model takes into account the amplitude transition and the mean value 

of the BM velocities that is correlated with hearing loss. The instantaneous hearing 

fatigue in a single BM vibration cycle at Δt can be described by (Sun et al., 2015) 

                                   𝐻𝑉(𝑡),𝛥𝑡 =
∫  

𝛥𝑡
𝑉(𝑡)𝑑𝑁(𝑡)

𝐻𝑜
=  

∑  𝑗 |𝑉𝑗| .𝑁𝑗

𝐻𝑜
 

                                                                                    

where 𝑉(𝑡) is the BM velocities which are regarded as a complex stress. 𝑁(𝑡) is 

the corresponding failure cycle at time t. The discrete form refers to the jth category 

of the loads. 𝐻𝑜 refers to the hearing loss at the equivalent rectangular band (ERB) 

with 1 kHz CF.  

(9) 
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In real life, occupational noise is considered a complex load. The BM 

velocities can be demonstrated as a complex distribution. The hearing loss 𝐻𝑖,𝐶𝑉𝐿 

of the complex input loads (i.e., the velocities of BM) is the integration of different 

types of the inputs along the time axis as follows (Sun et al., 2015) 

          𝐻𝑖,𝐶𝑉𝐿 = ∑ 𝑁𝑗 . |𝑉𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑖, 𝑗). 𝑉𝑚𝑒𝑎𝑛(𝑖, 𝑗)| 
𝑗⊂𝑘

                     (10) 

where 𝑘 is the load categories total number with jth velocity type. i is the ERB 

band. 

Thus, the CVL in the ERB band i can be represented by (Sun et al., 2015) 

                                 𝐿𝑖,𝐶𝑉𝐿 = 10 𝑙𝑜𝑔10  
∑ 𝐻2

𝑖,𝐶𝑉𝐿 

𝐻2
𝑜

                                           (11) 

 Where 𝐿𝑖,𝐶𝑉𝐿 is the hearing loss metric log scale at the ith ERB.  

 

2.4 Chinchilla noise exposure data 

Chinchilla noise exposure data is used to evaluate the performances of the 

five noise metrics, including F-weighted SPL LFeq, the CVL model based SPL LCVL, 

and the three conventional noise metrics (i.e., Leq, LAeq and LCeq). The noise 

exposure data provided by a research group at State University of New York at 

Plattsburgh contains 263 chinchillas divided into 22 groups. Each group contained 

9–16 chinchillas. Animals were exposed for five successive days to a certain noise 

for 24 hours per day. The 22 noise samples include 3 Gaussian noises (90, 95, and 

100 dBA), and 19 complex noises (one sample at 95 dBA, two samples at 90 dBA, 

and 16 samples at 100 dBA). The hearing threshold level was measured at 0.5, 1, 

2, 4, 8, and 16 kHz for each animal from the auditory evoked potential (AEP) before 

the exposure, daily, and 30 days after noise exposure. Permanent threshold shift 

(PTS) is defined as the permanent hearing loss measured 30 days after the noise 

exposure, and temporary threshold shift (TTS) refers to temporary hearing loss 

measured immediately after the noise exposure. Both PTS and TTS in 0.5, 1, 2, 4, 

8, and 16 kHz octave bands were calculated based on the AEP data (as shown in 

Table 2). The noise data and the experimental protocols with detailed descriptions 

are available in several previous publications (Hamernik, Patterson, Turrentine, & 

Ahroon, 1989) (Hamernik, Qiu, & Davis, 2003a) (Hamernik et al., 2007). Table 2 

summarized the PTS and the TTS values of each animal group for each octave band 

at center frequency 0.5, 1, 2, 4, 8, and 16 kHz. 

Moreover, total effective hearing loss PTS5124 and TTS5124 can be calculated 

as the average of the PTS and TTS values at 0.5, 1, 2, and 4 kHz (Goley et al., 2011) 
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                    𝑃𝑇𝑆5124 = (𝑃𝑇𝑆0.5 + 𝑃𝑇𝑆1 + 𝑃𝑇𝑆2 + 𝑃𝑇𝑆4)/4                       (12) 

                          𝑇𝑇𝑆5124 = (𝑇𝑇𝑆0.5 + 𝑇𝑇𝑆1 + 𝑇𝑇𝑆2 + 𝑇𝑇𝑆4)/4                       (13) 

where 𝑃𝑇𝑆0.5, 𝑃𝑇𝑆1 , 𝑃𝑇𝑆2, and 𝑃𝑇𝑆4 are the PTS values measured at 0.5, 1, 2, and 

4 kHz respectively. 𝑇𝑇𝑆0.5, 𝑇𝑇𝑆1 , 𝑇𝑇𝑆2, and 𝑇𝑇𝑆4 are TTS values measured at 0.5, 

1, 2, and 4 kHz respectively.  

 

Table 2 – PTS and TTS values of chinchillas of each group measure at six octave 

bands with center frequency at 0.5,1, 2, 4, 8, and 16 kHz. 

Animal 

group 

index 

PTS(dB) 
  

TTS(dB) 

0.5 

kHz 

1 

kHz 

2 

kHz 

4 

kHz 

8 

kHz 

16 

kHz  

0.5 

kHz 

1 

kHz 

2 

kHz 

4 

kHz 

8 

kHz 

16 

kHz 

G-44 17.1 26.2 39.4 42.9 46.5 43.7  58.6 70.1 79.3 85.4 85.8 70.6 

G-49 22.1 34.3 47.2 54.6 46.8 47.2  62.6 75.3 77.6 86.5 79.9 70.6 

G-50 7.7 10.1 8.0 15.8 14.1 17.7  37.2 57.6 63.4 76.1 79.8 69.2 

G-51 15.7 19.5 29.0 24.3 27.8 25.1  59.7 63.9 73.2 75.9 81.9 67.9 

G-52 18.5 24.5 36.8 32.9 28.3 23.3  63.9 72.4 76.4 81.2 80.1 69.6 

G-53 19.0 24.4 34.5 31.7 29.9 28.1  59.4 68.0 77.4 85.0 84.3 69.0 

G-54 16.2 18.5 29.9 31.4 25.4 29.1  55.7 65.3 75.6 82.5 80.0 66.3 

G-55 18.8 21.7 36.5 46.8 60.1 47.5  67.1 74.1 76.2 82.3 80.3 68.8 

G-60 20.7 27.8 34.1 34.1 29.3 27.8  59.3 68.4 70.8 75.7 75.9 65.2 

G-61 2.6 5.0 10.0 20.5 18.2 24.0  36.1 45.6 50.4 74.4 80.4 72.0 

G-63 25.4 31.4 43.8 36.2 32.3 28.9  63.4 69.8 76.2 76.4 73.4 65.0 

G-64 15.8 17.4 24.7 22.1 19.0 13.5  60.0 66.3 73.8 79.4 73.9 67.1 

G-65 17.2 14.4 25.0 39.6 49.5 48.3  62.5 62.8 68.1 74.4 75.8 70.7 

G-66 7.5 9.3 19.2 32.9 44.8 36.2  49.4 58.9 70.0 82.9 76.1 70.4 

G-68 12.9 13.9 21.7 39.7 47.3 47.3  65.9 69.2 71.1 81.1 75.0 73.3 

G-69 4.8 10.9 9.3 11.3 5.5 8.0  28.8 47.4 48.8 49.3 47.8 50.1 

G-70 12.1 17.9 27.6 43.2 30.4 35.1  59.9 69.9 75.0 84.8 76.8 71.0 

G-47 0.3 -0.3 3.3 1.9 7.5 6.7  22.4 34.3 41.6 60.9 68.7 60.7 

G-48 3.0 6.8 9.4 5.4 11.2 10.8  26.9 35.9 37.6 41.5 58.0 63.9 

G-56 2.9 1.7 4.5 8.9 14.7 8.9  29.5 30.5 29.2 39.3 52.0 50.9 

G-57 6.8 5.8 6.7 16.7 23.3 18.9  35.5 41.4 52.1 66.4 71.8 66.0 

G-58 7.8 8.8 18.9 17.5 15.0 17.9   44.5 50.3 59.1 62.1 62.1 63.6 
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3 RESULTS AND DISCUSSIONS 

The linear regression analysis of the five noise metrics (i.e., Leq, LAeq, LCeq, LFeq, 

and 𝐿𝐶𝑉𝐿), and hearing loss indicators (PTS and TTS values at various octave 

bands) were conducted using all 22 groups of animal experimental data. The 

coefficient of determination (r2) is used to evaluate the performance of each metric. 

The r2 value indicates the correlation between the metrics and the hearing loss 

indicators. When the value of the r2=1, it indicates a perfect correlation and when 

r2=0 it means there is no correlation between noise metrics and hearing loss data. 

Table 3 summarizes the r2 values between the hearing loss indicators (PTS 

and TTS at six octave bands centered at 0.5, 1, 2, 4, 8, and 16 kHz), and the five 

noise metrics (Leq, LAeq, LCeq, LFeq, and LCVL). The results show that LCVL achieves 

the best correlation with the PTS at 0.5, 2, 4, 8, and 16 kHz. For TTS, LCVL has the 

best correlation at 0.5, 2, 8, and 16 kHz. The higher correlation between the hearing 

loss and the CVL model indicates that it can be used to predict NIHL accurately.  

 

Table 3 – Comparison of the regression analysis results of the two hearing loss 

indices represented by PTS and TTS with all metrics (i.e., Leq, LAeq, LCeq, LFeq, and 

LCVL) at six octave bands centered at 0.5, 1, 2, 4, 8, and 16 kHz. 

            r2           

 
    PTS         TTS     

Metric 
0.5 

kHz 

1 

kHz 

2 

kHz 

4 

kHz 

8 

kHz 

16 

kHz 

0.5 

kHz 

1 

kHz 

2 

kHz 

4 

kHz 

8 

kHz 

16 

kHz 

Leq 0.13 0.59 0.21 0.65 0.3 0.13 0.33 0.67 0.37 0.8 0.51 0.53 

LAeq 0.16 0.61 0.21 0.65 0.33 0.17 0.37 0.69 0.37 0.8 0.48 0.55 

LCeq 0.13 0.59 0.21 0.65 0.33 0.17 0.33 0.67 0.37 0.8 0.48 0.55 

LFeq 0.2 0.58 0.24 0.62 0.33 0.18 0.44 0.66 0.41 0.72 0.47 0.53 

LCVL 0.24 0.4 0.62 0.7 0.52 0.54 0.56 0.64 0.75 0.77 0.6 0.56 

 

 

Additionally, Figure 4 shows the correlation analysis between the three 

metrics (LAeq, LFeq, and LCVL) and hearing loss indicators (i.e., PTS and TTS values 

at 0.5, 1, 2, 4, 8, and 16 kHz octave bands). The lines in the figure represent the 

fitting results of the distributions of the symbols. The highest correlation between 

LFeq and both of the hearing loss indicators happens at 4 kHz octave band. Similar 
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to the F-weighting, the CVL model shows the highest correlation with both PTS 

and TTS at 4 kHz.  

 

Figure 4. Scatting plots and fitting lines between three noise metrics (LAeq, LFeq, 

and LCVL) and hearing loss indicators (PTS and TTS) at six octave bands with 

center frequency at 0.5, 1, 2, 4, 8, and 16 kHz. The red color represents PTS and 

the blue color represents TTS. 

 

Moreover, the linear regression analysis of the five noise metrics (Leq, LAeq, 

LCeq, LFeq, and LCVL) and the effective hearing loss indicators (TTS5124 and PTS5124) 

are conducted. The correlations between the five noise metrics (Leq, LAeq, LCeq, LFeq, 

and 𝐿𝐶𝑉𝐿) and the effective total hearing loss PTS5124 and TTS5124 are summarized 

in Table 4. The results show that the CVL fatigue model achieves the highest r2 

values for both PTS5124 (r
2=0.61) and TTS5124 (r

2=0.84) among all of the five noise 

metrics. It indicates that the CVL model is more accurate than the other four metrics 

for assessment of NIHL.  

F-weighting also has higher correlations with PTS5124 than the other three 

conventional noise metrics (Leq, LAeq, and LCeq). For TTS5124, LFeq achieves same r2 

with LCeq, and both are higher than Leq and LAeq. Therefore, the F-weighting metric 

can be more accurate for assessment of NIHL compared with the Leq, LAeq, and LCeq.  
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Table 4 – Regression analysis results of the five noise metrics (Leq, LAeq, LCeq, 

LFeq, and LCVL) and effective hearing loss indicators PTS5124 and TTS5124. 

  r2 

Metric PTS5124 TTS5124 

Leq 0.44 0.69 

LAeq 0.50 0.68 

LCeq 0.50 0.71 

LFeq 0.55 0.71 

LCVL 0.61 0.84 

 

Figure 5 shows scatting plots and fitting lines of linear regression analysis 

between the five noise metrics and the effective hearing loss indictors. The fitting 

lines show a positive proportion between the five noise metrics and effective 

hearing loss indictors (PTS5124 and TTS5124). The positive relationship indicates that 

these metrics can be used to evaluate the hearing loss effectively. The results are 

consistent with Table 4.  

 

Figure 5. Scatting plots and fitting lines of five noise metrics (Leq, LAeq, LCeq, LFeq, 

and LCVL) and effective hearing loss indicators (PTS5124 and TTS5124). The red 

color represents PTS5124 and the blue color represents TTS5124. 
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4 CONCLUSIONS 

In this study, we compared the performances of two newly developed noise 

models (i.e., F-weighting and CVL fatigue model) with the conventional noise 

metrics (i.e., Leq, LAeq, and LCeq) using animal noise exposure data. Linear regression 

analysis was used to evaluate the correlations between the five noise metrics (Leq, 

LAeq, LCeq, LFeq, and LCVL) and the hearing loss indicators (PTS and TTS centered at 

0.5, 1, 2, 4, 8, and 16 kHz octave bands). Moreover, to evaluate the effective hearing 

loss, the linear regression analysis was conducted between the five noise metrics 

and the effective hearing loss (PTS5124 and TTS5124). The results show that the CVL 

fatigue model demonstrates the highest correlations with the hearing loss indicators 

and the effective hearing loss among the five noise metrics. The F-weighting also 

achieves higher correlations with the hearing loss data compared with the three 

conventional noise metrics Leq, LAeq, and LCeq. It indicates that both developed 

metrics (i.e., CVL model and F-weighting) can predict the NIHL better than the 

conventional EEH based noise metrics in the current noise measurement standard. 

The F-weighting and CVL fatigue model can be applied to assess occupational 

noise induced hearing loss in various industrial and military applications.  
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