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PATRICK B. SOULE, for the Master of Science degree in MATHEMATICS, presented on
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TITLE: PREDICTING STUDENT SUCCESS: A LOGISTIC REGRESSION ANALYSIS

OF DATA FROM MULTIPLE SIU-C COURSES

MAJOR PROFESSOR: Dr. B. Bhattacharya

The objective of this report is to improve prediction techniques regarding the future

performance of students in select university courses through the utilization of multiple logis-

tic regressions. This is achieved with the aid of statistical computing software which applies

forward step-wise variable selection methods that identify influential variables sufficient to

accurately predict student success. Once a logit model is constructed with the required pa-

rameters and predictors, the inverse logit function outputs a probability of student success.

In all cases, logistic prediction models matched or exceeded the performance of current

prediction methods while using an equal or lesser number of explanatory variables. These

findings show that current prediction methods can improve by using a statistically justified

procedure. It also suggests the inefficacy of some predictors used to currently estimate

student performance.
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CHAPTER 1

INTRODUCTION

Southern Illinois University Carbondale has recently begun using an early warning

intervention program (EWIP). This program aims to detect struggling students in general

education core courses early in the semester. Once a student is classified as struggling or

at risk of not earning a grade of C or higher there are several ways the university initiates

intervention. The student may be contacted by the instructor, an academic advisor or a

residence hall academic peer associate who, after consultation, then best directs them to

additional resources. This research paper investigates to detect such students, but does not

address the subsequent intervention.

Each course participating in EWIP has its own predictive functions which are employed

early in the semester, usually at the end of week three. The output of each function

estimates a score between zero and one hundred percent which is then classified into one

of four color codes. The following guidelines are used:

Green > .75

.75 ≥ Yellow > .65

.65 ≥ Orange > .55

.55 ≥ Red

The precise cutoffs are tailored to each course but signify the same warning; the coding

scheme labels students ’least at risk’ to ’most at risk’ by assigning the colors green, yellow,

orange and red respectively. The goal of the university is to maximize the number of green

coded students. Concern arises when students are misclassified, as is possible with an

estimating function. The current models that determine academic risk are working well

however were created ad hoc and are not, probably, generated statistically. Also, it does

not use the final grade in consideration.
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The current EWIP functions are linear in their predictors with weighted coefficients

derived from specific knowledge of each course. It is not known if the individual predictors

being used are best or if the coefficients are optimal. Using data to determine the weights

of influential predictors provides a way to maximize the chance of correct predictions and

therefore minimize misclassifications.

Optimization means that the university’s limited available resources can be efficiently

applied to the correct population with the greatest need. Successful interventions lead to

students passing the course or avoiding a D, F or WF grade. Further, this leads to fewer

students on academic probation or suspension which protects university retention rates.

By statistically analyzing previous student performance, we build multiple logistic

regression models that predict student success. The binary nature of the equations best

lend themselves to partitioning the response into two categories and not four. Whereas it

is possible to assign color codes, particularly in an ordinal regression model, the end goal

is to determine whether the student requires intervention. It is with this end goal in mind

that the two methods will be compared.
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CHAPTER 2

THE DATA

CLEANING

In this report the records of four Southern Illinois University Carbondale courses from

2015 fall semester are analyzed. These include: BIO200A, MATH101, MATH106 and

MATH108. We combine all sections of a course for one semester and treat them as one

sample. Records are collected in the third and eighth week.1 The early week class sizes

rarely equal the size of the samples at week eight: invariably students drop, withdraw or

transfer from the course. Future records are subsequently left lacking; likewise, eighth week

records occasionally contain students who transfer in after week three. In these events we

use case-wise deletion.

We use the terms: variable, covariate, predictor, response variable, explanatory or

independent variable. A variable is a quantity that is unknown, a covariate is a potential

predictor of the response and explanatory or independent variable are used interchangeably.

Descriptives, multicollinearity diagnostics, model fitting and model selection for BIO200A

are covered in detail. The other courses follow similarly with figures to summarize results.

DESCRIPTIVE STATISTICS

BIO200A has records for students regarding Pretest, Homework, Quiz and Test scores

as well as Attendance. Week three scores for Quiz are unfortunately incomplete until week

eight.2 Each of these explanatory variables is converted to a percent so they can be directly

compared. The descriptive statistics for the potential predictors act as an additional check

for errors incurred from data entry by illuminating any extreme outliers. Histograms, box-

and-whisker plots and scatterplots help to show distribution and trends. From Figure 2.1

it is clearly observable that not all covariates are normally distributed. Homework and

1MATH101 collects in the fifth and eighth weeks due to course structure.
2Not all sections of BIO200A have a Quiz score recorded by week three.
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Figure 2.1. Boxplots of Covariates

Attendance are strongly skewed left. However, since logistic regression is used as opposed

to linear, these variables don′t require a transformation.

CORRELATIONS

PerformanceAnalytics [2] is a convenient R [9] package that combines paired his-

tograms, scatterplots, and correlation coefficients in a square matrix, see Figure 2.2. Dis-

playing the data in this way helps to visualize how the explanatory variables relate to one

another. In the lower triangular portion of the matrix the scatterplots have overlaid trend

lines that attempt to describe the relationship. Note the effect caused by zeros in the data.

For example, between Pretest and Test the trend line is strongly affected, creating the

perception of a quadratic effect. This is considered an artifact of the smoothing technique.

If the relationship were true it would imply, to a point, that higher pretest scores lead to

decreased test scores.
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Figure 2.2. Descriptives and Correlations of Covariates

Pearson’s R

Bivariate Pearson correlation coefficients are reported in the upper triangular portion

of the matrix in Figure 2.2. Pearson′s r is a measure of the linear relation between two

variables and is determined by calculating

n∑
i=1

(x1i − x1)(x2i − x2)[ n∑
i=1

(x1i − x1)2
n∑
i=1

(x2i − x2)2
]1/2 , (2.1)

where x1 and x2 are distinct covariates and x̄ is the arithmetic mean. Pearson′s r is bound

between -1 and 1. A value of ±1 indicates a perfect positive or negative linear relationship,

whereas 0 signifies no linear relationship between the variables.

Test and Pretest exhibit a moderate correlation with r = 0.53. Using Fisher′s z′
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transformation, we find the 95% confidence interval about r to be (0.425, 0.612). The

large sample size of 234 helps to keep the range relatively small. A Student′s t test is also

calculated to determine if there is enough evidence to suggest a linear relationship in the

population. Using the formula:

t =
r
√
n− 2√

1− r2
(2.2)

and substituting our value of r, we have t = 9.403 on n − 2 = 232 degrees of freedom

resulting in a p-value less than 0.0001. It should be noted that using both methods is

redundant, since the above confidence interval does not contain zero.

Spearman′s rho & Kendall′s tau

Recall that not all covariates are normally distributed, in fact any other bivariate

combination will require nonparametric methods. Spearman′s rho and Kendall′s tau are

rank correlation coefficients that measure monotonic relationships. Monotonic functions

cover a broader set of relationships than simply linear, specifically nonincreasing or non-

decreasing functions. Using either method requires ranking the data and comparing pairs.

We report both Spearman and Kendall coefficients together in Table 2.1. The Spearman

rho values appear in the upper triangular portion of the matrix and Kendall’s tau in the

lower triangular portion.

Table 2.1. Matrix of Nonparametric Correlation Coefficients

Covariates Pretest Homework Attendance Test
Pretest - 0.28∗∗∗ 0.05 0.62∗∗∗

Homework 0.20∗∗∗ - 0.21∗∗ 0.46∗∗∗

Attendance 0.04 0.17∗∗ - 0.25∗∗∗

Test 0.46∗∗∗ 0.33∗∗∗ 0.20∗∗∗ -

Asterisks denote level of statistical significance. ∗, ∗∗, and ∗∗∗ correspond
to p < 0.05, < 0.01, and < 0.001 respectively.

Most values are low except when measuring Test versus Pretest and Test versus Home-

work. Spearman′s rho suggests a slightly increased correlation for each, this could be due

to Spearman′s rank being a less robust statistic [3]. At any rate, they are still within the
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moderate range for the statistic.

MULTICOLLINEARITY

To build an informative and predictive logistic regression model, the explanatory vari-

ables must be independent of each other. Measuring correlations is one way to evaluate how

much one variable explains another. If two variables essentially behave the same, including

both for modeling purposes introduces redundancy as well as increases the size of param-

eter errors. Unfortunately, even if pairwise comparisons show low correlation coefficients

there is still the possibility of collinearity. If this occurs, it becomes difficult to determine

the distinct effects each covariate has on the response variable.

Although there is no definitive test for multicollinearity, there are diagnostic measures

that are commonly used to assess the degree to which collinearity may be present. One

such measure involves regressing each explanatory variable on all other covariates. If the

coefficient of determination (R2) is high, multicollinearity may be present. Of course high

is a relative term, some [4] argue that values above 0.8 are concerning. The coefficient of

determination is the portion of variation in the regressing variable that is explained by the

other covariates and is calculated as follows.

R2 =

∑n
i=1 (ŷi − ȳ)2∑n
i=1 (yi − ȳ)2

(2.3)

where ŷ is the fitted value that the model predicts. This is a ratio of variances. The numer-

ator of (2.3) is the sum of squared residuals (SSR), the squared difference between model

predictions and actuality. The denominator represents total variance in the model. As the

SSR increases, R2 approaches 1. For our purposes we want R2 to be low, otherwise the

other covariates are explaining much of what is assumed to be an independent variable. In

Table 2.2 we include two other measures that are related to the coefficient of determination:

Tolerance = 1−R2, and Variance Inflation Factor (VIF) = 1/(1−R2). Following the rule

of thumb for R2 < 0.8 this corresponds to Tolerance > 0.2 and a VIF < 5.
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Table 2.2. Collinearity Measures

Statistic
Regressor

Pretest Homework Attendance Test

R2 0.279 0.172 0.117 0.393
Tolerance 0.721 0.828 0.883 0.607

VIF 1.386 1.208 1.133 1.647

VIF is interpreted [4] as the percentage of inflation in the variance of the coefficient

due to collinearity. For Test, VIF = 1.647 which suggests that its variance is inflated by

65%. This may sound worse than it is. Consider the R2 value of 0.393 which suggests that

almost 40% of the variability of Test is explained by the other three covariates in the linear

regression model. This is not enough to cause alarm. However, these results as well as the

ones from the bivariate correlation coefficients suggest that Pretest and Test are likely the

greatest cause of any potential collinearity.
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CHAPTER 3

THE MODEL

BINOMIAL DISTRIBUTION

To make accurate statistical inferences we need to make certain assumptions about the

distribution of the binary response variable. If we assume that each student is independent1,

that is one student′s success does not affect another, then we can assign a probability

distribution to our response variable. In terms of our data on BIO200A, there were 234

students and 165 of those earned a grade of C or above. We let this proportion, 0.705

be a point estimate for the proportion of success of this class. Assume next semester

BIO200A enrolls 250 students. We present the approximate normal distribution of Z in

Figure 3.1. The distribution′s peak 2 represents the most likely outcome. In order to predict

how many students will succeed in the next semester you may calculate the mean of the

binomial distribution as µ = πn ≈ 176. This gives an estimate for the number of students

to succeed, but which ones? To address this we consider the use of given covariates to

construct a model.

LOGISTIC REGRESSION

Whether or not a student succeeds is the binary response variable we are trying to

predict. Mathematically, we let Y represent the response as

Y =


1 if student earns a grade of A, B or C

0 otherwise

1. . . and identically distributed (a strong assumption for a student body). . .
2If π is left fixed, as n becomes large the binomial distribution approximates the normal curve.
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Figure 3.1. Approximate Normal Distribution of Z

The logistic regression function is in terms of success

logit[P (Y = 1)] = log

(
π(x)

1− π(x)

)
= α + βx (3.1)

where π(x) is equivalent to the probability of success, P(Y=1). Note that the right hand

side (RHS) of (3.1) is linear in x and the LHS is a logarithmic scale of the odds of success.

Although odds are commonly used and interpreted, the natural log function is not. With

exponentiation and algebraic manipulation we yield

π(x) =
exp(α + βx)

1 + exp(α + βx)
(3.2)

to obtain a form that outputs only values between 0 and 1 which then are interpreted as

probabilities. The equations (3.1) and (3.2) are simple in the fact that they only use one

explanatory variable x. Using the method of maximum likelihood estimation we will build

several different models of increasing complexity and choose one based on best fit criterion.
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Figure 3.2. Logistic Regression Curve

Model Interpretation

Let us consider the following model.

logit[P (Y = 1)] = −5 + 0.1x

The coefficient of 0.1 is sometimes referred to as the weight of the predictor. Avoiding log

interpretations, e0.1 ≈ 1.11 translates to a 11% increase in the odds of success given one

unit increase in x. We plot the function in Figure 3.2 and mark the point π(50) = 0.5. Note

the nonlinear S-shaped curve that is monotonically increasing, which is typical in practice

[1]. The slope of the curve is steepest at this point, which means volatility for a binary

variable. There is a fifty percent chance of success which also means the same chance for

failure.
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METHOD OF MAXIMUM LIKELIHOOD

R uses the Newton-Raphson algorithm to find the maximum likelihood estimates

(MLE) for each parameter in a model. It is an iterative method that involves an initial

guess from a polynomial function, followed by successive iterates that rapidly converge to

the maximum likelihood estimates [1]. This process determines the MLE′s for the weights

in the model, but we need a way to determine what predictors should be in the model. We

want a model that sufficiently describes the real life phenomenon. Any model is a simplifi-

cation of reality but we must balance between too simple and over complex. Simple models

are easier to interpret, but a more complex model may fit the data better. To assess this,

we require that a model have statistical significance as well as conform to several goodness

of fit tests.

STEPWISE VARIABLE SELECTION

We now build models with a single covariate first and check which produces the best

fit. The covariate that provides the best fit to the data is selected and used in the next

step. We then increase the complexity of the selected model by choosing one more predictor

from the remaining and comparing fit. This process continues until increasingly complex

models fail to produce a better fit. This is known as forward variable selection.

There are five measures of fitness that we will consider at each step: Akaike Informa-

tion Criterion (AIC), deviance, concordance, McFadden′s pseudo R2, and the significance

of model parameters. AIC provides a measure of the information that a model provides.

The calculation involves a penalty term which acts to preserve parsimony of parameters.

We want to minimize

AICk = −2[log likelihood− 2k] (3.3)

where k is the number of parameters in the model. A similar statistic is deviance. Whereas

AIC is measuring the tested model against the theoretically true model, deviance measures

against the most complex model possible, a saturated model with an individual parameter
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for each observation. If we let LT be the log likelihood of the tested model and LS be the

log likelihood of the saturated model, deviance is calculated as

Deviance = −2[LT − LS] (3.4)

The deviance likelihood ratio statistic tests the hypothesis that all parameters not used

in the tested model are zero. Deviance follows an approximately chi-squared distribution

where the degrees of freedom are the number of observations minus the number of parame-

ters used. Models can also be compared using the deviance statistic. If the parameters in a

model are a subset of those in a more complex model, the difference in their deviances can

be calculated and interpreted as a chi-square test for the hypothesis that the more complex

model provides a better fit. A sufficiently high statistic would be evidence to suggest that

the complex model is necessary.

Our third statistic measures predictive power. A receiver operating characteristic

(ROC) curve is a plot of model sensitivity versus (1−specificity). The sensitivity of a

model can be defined as the probability that the model predicts success given the student

actually succeeded and specificity is the probability the model predicts failure given they

failed.3 Figure 3.3 displays the ROC curve for the model with ‘Test’ as the only explanatory

variable.

The diagonal line represents the intercept model which is equivalent to guessing, essen-

tially flipping a coin to decide. The desired shape is a high parabolic arch filling the upper

left portion of the plot. Total area under the curve is equivalent to concordance. Pairing

up the observed successes with observed failures, concordance checks that the model is

assigning a higher probability to the successes and not the failures. A value of c = 0.5 is

equivalent to guessing.4

3Failure here is defined as not succeeding in earning a grade of C or higher.
4It is possible to build a model that predicts worse than c = 0.5.
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Figure 3.3. ROC Curve

McFadden′s pseudo R2 is so-named because it does not compare variances as does R2

but it does range over similar values: from 0 to 1. It is defined by subtracting the ratio

of the log likelihood of the fitted model to the log likelihood of the intercept model from

1. General impression is that a higher value is more desirable with ′good′ fitting models in

the 0.2 − 0.4 range.[7]

Lastly, one can always test the statistical significance of the individual parameters

used in the model. Along with the MLE for the parameters are standard errors (SE)

which can be used to calculate confidence intervals about the estimates as well as test their

significance, similar to what we saw in Section 2. The null hypothesis for logistic regression

parameter significance states that the response is independent of the explanatory variable.

To test this we calculate

z2 =
(
β̂/SEβ̂

)2
(3.5)
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which has a chi-squared null distribution. Large values provide evidence that the predictor

is affecting the response.

With these measures of model fit as a guide we proceed through a stepwise forward

variable selection. We exhibit an instance of the process for week three BIO200A.

An Example

Table 3.1. Model Diagnostic Measures for Biology 200A Week 3

Predictors

Intercept Pretest Attendance Homework Test

MLE 0.87 5.30 3.75 3.56 8.32
SE 0.14 1.06 1.02 0.56 1.27
χ2 36.96 24.80 13.59 40.54 42.81

P value < 0.0001 0.0001 0.0001 0.0001 0.0001
AIC 285.82 256.04 271.22 237.40 207.06

Deviance 283.82 252.04 267.22 233.40 203.06
Concordance 0.5 0.74 0.62 0.80 0.88
McFadden′s R2 0 0.11 0.05 0.18 0.28

Statistical software calculates the estimates and measures of fit for BIO200A for week

three which we summarize in Table 3.1. We omit the intercepts from one predictor models

for the sake of clarity. The Test predictor is showing the best fit across multiple measures.

Therefore ‘Test’ will be added to the logistic regression model and we proceed to the next

step in variable selection. Table 4.5 shows all models considered. Adding ‘Homework’

substantially improves model fit compared to ‘Pretest’ and ‘Attendance’. In the third

step we see that ’Pretest’ should be chosen over ‘Attendance’ however, both variables are

not statistically significant. This could be a sign of multicollinearity. Notice that in the

previous step, those predictors were also found to be not statistically significant. Perhaps

’Test’ predictor is already explaining the contribution they could provide. With this and

the principle of parsimony in mind, we choose ‘Test’ and ‘Homework’ as the predictors in

the final model.
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CHAPTER 4

RESULTS

MODEL CHOICE

Tables 4.5 through 4.12 contain model candidates for each course and are subdivided

by week. Unsurprisingly, ‘Test’ is by far the most influential predictor in all instances.

Models with just ‘Test’ as a predictor fit well but adding either ‘Homework’ or ‘Quiz’

predictors, when applicable, always increases the fit. Any models that have three terms

are comprised only of the aforementioned predictors. ‘Pretest’ or ‘Attendance’ models only

outperform an intercept model. As other terms are added the model fit marginally improves

along with an undesired increase in parameter errors which lead to insignificant predictors.

We conclude that ‘Pretest’ and ‘Attendance’ have little predictive power compared to the

other covariates.

The final model choice for BIO200A at week three includes ‘Test’ and ‘Homework’

whereas the week eight model differs by the addition of ‘Quiz’. This suggests that if data

were available in week three it could potentially improve model fit. MATH101 model uses

all three predictors whereas MATH106 and MATH108 use ‘Test’ and ‘Homework’ only. In

Table 4.1 we present the final models complete with parameter estimates, predictors are

abbreviated to their first letter. The weight of each coefficient alone is not telling, rather the

weight relative to others is what lends insight. Notice for example that Test in week three

for BIO200A is weighted over twice as much as ‘Homework’. As the semester progresses,

‘Test’ in week eight is weighted over three times as much as ‘Homework’.

In Figure 4.1 we illustrate the influence of each predictor by plotting the logistic

regression curve for final models of week three and week eight. Each curve holds the other

covariates fixed at their medians. We see that in week eight the probability of success is very

volatile inside the 0.4 to 0.5 percent range. Students earning above 50% as their average

test percent have a very high probability of earning a C grade or higher, assuming they have
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Table 4.1. Final Models

Course Week Model

BIO200A
3 logit[π(x)] = − 5.74 + 7.49 * T + 3.01 * H
8 logit[π(x)] = − 55.46 + 47.90 * T + 14.96 * H + 28.68 * Q

MATH101
5 logit[π(x)] = − 6.28 + 4.55 * T + 3.58 * H + 0.97 * Q
8 logit[π(x)] = − 9.78 + 7.55 * T + 4.47 * H + 2.75 * Q

MATH106
3 logit[π(x)] = − 4.21 + 0.04 * T + 0.04 * H
8 logit[π(x)] = − 13.98 + 0.13 * T + 0.08 * H

MATH108
3 logit[π(x)] = − 4.58 + 0.05 * T + 0.03 * H
8 logit[π(x)] = − 9.57 + 0.10 * T + 0.05 * H
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Figure 4.1. Between Week Comparisons for BIO200A Predictors

median homework and quiz scores. ‘Homework’ on the other hand has an almost linear

relationship early semester whereas the mid-semester plot rapidly approaches a success

probability of 1. This is due in part by the fixing of ‘Quiz’ and ‘Test’ at their median

values of .76 and .66 respectively.

COMPARISON

Having selected the ‘best’ fitting model for each course we measure how well they

perform compared to current predicting functions. Table 4.4 displays the current functions

used for each course. Current functions predict a final course score out of one hundred. We
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Table 4.2. Early Semester Classification by Function

Course
Predicting Observed Correct
Function Success Failure Classifications

BIO200A
Linear

Success 139 15
82.48%

Failure 26 54

Logistic
Success 146 16

85.04%

Failure 19 53

MATH101
Linear

Success 452 162
74.97%

Failure 34 138

Logistic
Success 371 76

75.60%

Failure 115 224

MATH106
Linear

Success 60 32
70.63%

Failure 5 29

Logistic
Success 74 18

76.98%

Failure 11 23

MATH108
Linear

Success 236 95
75.72%

Failure 23 132

Logistic
Success 248 83

76.95%

Failure 29 126

Table 4.3. Mid-Semester Classification by Function

Course
Predicting Observed Correct
Function Success Failure Classifications

BIO200A
Linear

Success 144 3
89.74%

Failure 21 66

Logistic
Success 162 3

97.44%

Failure 3 66

MATH101
Linear

Success 440 91
82.47%

Failure 46 209

Logistic
Success 390 48

81.58%

Failure 96 252

MATH106
Linear

Success 74 18
80.95%

Failure 6 28

Logistic
Success 80 12

85.71%

Failure 6 28

MATH108
Linear

Success 262 69
82.72%

Failure 15 140

Logistic
Success 270 61

83.33%

Failure 20 135
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change this to a binary outcome by consulting the corresponding syllabus which determines

the cutoff point for earning a C or higher. Then predicted outcomes are compared with

actual observed data. There are four potential cases when predicting behavior. Correct

classification is when the observed success or failure matches prediction. Tables 4.2 and 4.3

detail the results for all courses.

Table 4.4. Current Predictive Functions

Course Function

BIO200A 0.15*P + 0.35*(A + H) + 0.50*T
MATH101 0.25*Q + 0.25*H + 0.50*T
MATH106/108 Max (0.25*P + 0.25 *H + 0.50*T, 0.25*H + 0.75*T)

Overall, with logistic regression the correct prediction rate improves for early week

and mid-semester predictions except for MATH101. Improvements are more pronounced

in mid-semester than in early week for BIO200A and MATH106. In MATH101, current

functions and logistic models use the same predictors but with different weights. Since

MATH101 is a modular course composed of four disjoint topics and a cumulative final,

trends seen early semester may not be indicative of late semester performance. This is a

possible explanation for the lack of improvement for the logistic model in week eight.
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Table 4.5. Biology 200A Week 3 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 285.8 283.8 0.500 N/A None
T 207.1 203.1 0.883 0.285 None
H 237.4 233.4 0.803 0.178 None
A 271.2 267.2 0.622 0.058 None
P 256.0 252.0 0.739 0.112 None

T + H 187.0 181.0 0.909 0.362 None
T + A 205.4 199.4 0.892 0.298 A
T + P 205.9 199.9 0.876 0.296 P

T + H + A 186.5 178.5 0.916 0.371 A
T + H + P 185.3 177.3 0.901 0.375 P

T + H + A + P 221.1 174.5 0.907 0.385 A

Table 4.6. Biology 200A Week 8 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 285.8 283.8 0.500 N/A None
T 123.7 119.7 0.949 0.578 None
H 203.1 199.1 0.859 0.298 None
A 245.2 241.2 0.752 0.150 None
P 256.0 252.0 0.739 0.112 None
Q 133.2 129.2 0.940 0.545 None

T + H 75.6 69.6 0.983 0.755 None
T + A 105.9 99.9 0.964 0.648 None
T + P 123.8 117.8 0.951 0.585 P
T + Q 56.2 50.2 0.991 0.823 None

T + Q + H 35.8 27.8 0.997 0.902 None
T + Q + A 44.0 36.0 0.997 0.873 None
T + Q + P 58.0 50.0 0.992 0.824 P

T + Q + H + A 10.0 0.0 1.000 1.000 All
T + Q + H + P 36.5 26.5 0.998 0.907 P
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Table 4.7. Math 101 Week 5 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 1046.2 1044.2 0.500 N/A None
T 859.6 855.6 0.789 0.181 None
H 864.2 860.2 0.780 0.176 None
Q 930.7 926.7 0.725 0.113 None

T + H 796.5 790.5 0.829 0.243 None
T + Q 833.2 827.2 0.807 0.208 None

T + H + Q 794.2 786.2 0.830 0.247 None
T + H + T*H 782.9 774.9 0.828 0.258 T & H

T + H + Q + T*H 780.2 770.2 0.830 0.262 T & H

Table 4.8. Math 101 Week 8 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 1046.2 1044.2 0.500 N/A None
T 745.1 741.1 0.849 0.290 None
H 778.3 774.3 0.830 0.258 None
Q 792.2 788.2 0.825 0.245 None

T + H 656.9 650.9 0.886 0.377 None
T + Q 692.1 686.1 0.872 0.343 None

T + H + Q 644.1 636.1 0.891 0.391 None
T + H + Q + T*Q 642.9 632.9 0.872 0.394 T & Q

Table 4.9. Math 106 Week 3 Models
Predictors AIC Deviance Concordance R2 P val > 0.05

None 148.9 146.9 0.500 N/A None
T 130.5 126.5 0.800 0.139 None
H 132.3 128.3 0.750 0.127 None
P 146.5 142.5 0.665 0.030 Intercept

T + H 124.8 118.8 0.843 0.191 None
T + P 131.7 125.7 0.792 0.144 P

T + H + P 124.5 116.5 0.822 0.207 P
T + H + T*H 114.0 106.0 0.861 0.279 Intercept & H

T + H + P + T*H 115.4 105.4 0.860 0.283 Intercept, T, H, P
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Table 4.10. Math 106 Week 8 Models
Predictors AIC Deviance Concordance R2 P val > 0.05

None 148.9 146.9 0.500 N/A None
T 93.7 89.7 0.880 0.389 None
H 123.3 119.3 0.797 0.188 None
Q 104.4 100.4 0.879 0.317 None
P 146.5 142.5 0.665 0.030 Intercept

T + H 76.2 70.2 0.930 0.522 None
T + Q 83.5 77.5 0.913 0.473 None

T + H + Q 76.2 68.2 0.937 0.536 Q
T + H + T*H 78.2 70.2 0.930 0.522 All

Table 4.11. Math 108 Week 3 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 610.5 608.5 0.500 N/A None
T 476.8 472.8 0.829 0.223 None
H 534.6 530.6 0.748 0.128 None
P 565.2 561.2 0.707 0.078 None

T + H 453.9 447.9 0.855 0.264 None
T + P 475.1 469.1 0.830 0.229 None

T + H + P 453.5 445.5 0.858 0.268 P
T + H + T*H 438.9 430.9 0.855 0.292 Intercept, T & H

T + H + P + T*H 437.5 427.5 0.856 0.298 Intercept, T & P

Table 4.12. Math 108 Week 8 Models

Predictors AIC Deviance Concordance R2 P val > 0.05

None 610.5 608.5 0.500 N/A None
T 381.4 377.4 0.899 0.380 None
H 492.2 488.2 0.815 0.198 None
Q 450.1 446.1 0.845 0.267 None
P 565.2 561.2 0.707 0.078 None

T + H 348.2 342.2 0.926 0.438 None
T + Q 366.6 360.6 0.912 0.407 None
T + P 383.4 377.4 0.900 0.380 P

T + H + Q 345.5 337.5 0.928 0.445 None
T + H + P 350.2 342.2 0.926 0.438 P

T + H + T*H 322.9 314.9 0.927 0.483 Intercept
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