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Abstract—This work presents a new compressive sensing (CS) 

measurement method for image sensors, which limits pixel 

summation within neighbor pixels and follows regular summation 

patterns. Simulations with a large set of benchmark images show 

that the proposed method leads to improved image quality. Circuit 

implementation for the proposed CS measurement method is 

presented with the use of current mode pixel cells; and the 

resultant CS image sensor circuit is significantly simpler than 

existing designs. With compression rates of 4 and 8, the developed 

CS image sensors can achieve 34.2 dB and 29.6 dB PSNR values 

with energy consumption of 1.4 J and 0.73 J per frame, 

respectively.   

 
Index Terms— Active Pixel Sensors, Compressive Sensing, 

CMOS Image Sensors  

 

I. INTRODUCTION 

MAGE sensors have been used in a wide range of 

applications, including consumer electronics, medical 

diagnosis instruments, robotics, defense and reconnaissance 

equipment, etc. Recently, there are increasing demands for low-

power and high-resolution image sensors. For example, such 

sensors are extremely desirable for Internet of Things (IoT), 

hand-held or wearable gadgets, and might be mandatory for 

swallowable medical devices due to power and heat dissipation 

constraints. However, with the continuous improvement on 

image sensor resolutions, the number of pixels that needs to be 

read out, digitized, and transmitted is growing rapidly, which 

makes it increasingly challenging to further reduce image sensor 

power consumption.  

Recently, compressive sensing (CS) techniques emerged as a 

promising paradigm to address this challenge [3, 6]. Unlike 

conventional CMOS image sensors that read and digitize each 

pixel output individually, a CS image sensor only digitizes a 

small set of random pixel summations [5, 11, 12, 14, 18], which 

not only reduces analog to digital conversion (ADC) operations 

and hence the sensor power consumption, but also cuts down the 

size of raw data produced by the sensor. The small set of data, 

which is also referred to as CS measurements, can be directly 

used for information analysis with less data storage and 

transmitting burden [2, 17, 26]. Also, the original image can be 

recovered from the CS measurements with high fidelity via CS 
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techniques. 

For purposes of explanation, assume that vector x denotes the 

pixel data. The aforementioned random pixel summation can be 

expressed by matrix operation 𝜙 ⋅ 𝑥, where ϕ is called CS 

measurement matrix. At present, existing CS image sensor 

designs use random measurement matrices to guide how pixel 

outputs are summed [5, 11, 12, 14, 18]. The randomness is for 

satisfying the incoherence requirement or restricted isometry 

property (RIP) suggested by CS theories [3, 6]. However, both 

generating large sets of random bits on-chip and conducting CS 

measurements following the random patterns lead to 

complicated CS image sensor circuits, degrading sensor fill 

factors and power efficiencies. It is also not easy to apply these 

techniques to large pixel arrays. 

This work proposes a new CS measurement method that 

avoids the use of random measurement matrices, which 

simplifies CS image sensor circuits, and makes them more 

scalable to large pixel arrays. The proposed method targets 

image sensors capturing natural images. Statistical data show 

that the vast majority of the signal power of natural images is 

described by low frequency (or low index) coefficients in their 

sparse representations [25]. Taking advantage of this property, 

the proposed method performs signal summations only for a 

small number of neighboring pixels following regular patterns. 

A preliminary version of this proposed CS measurement 

method is presented in [13]. In this work, the validity of the 

proposed method is more thoroughly justified and examined 

with a large set of benchmark images. In addition, new circuit 

techniques, when compared to [13], are presented for 

implementing the proposed CS measurement method on image 

sensors. The developed CS image sensors have dramatically 

simplified structures, attain better image quality compared to 

existing designs, and exhibit significant reduction on power 

dissipation compared to a conventional image sensor that is 

based on the same CMOS technology. 

The rest of the paper is organized as follows. Section 2 first 

briefly explains the CS theory and then reviews existing CS 

image sensor designs. The proposed CS measurement method 

is discussed in Section 3. CS image sensor circuits to implement 

the proposed method are presented in Section 4. Circuit 

simulation results are provided in Section 5 and the paper is 

concluded in Section 6. 
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II. RELATED WORK  

A. Compressive Sensing Theory and Operation 

The CS theory is sparked from an interesting mathematical 

question. If an 𝑁-element vector c is sparse, is it possible to 

recover vector c from 𝑀 (𝑀< 𝑁) linear observations? A vector 

is k-sparse if it has k non-zero (or significant) elements and the 

remaining 𝑁 − 𝑘 elements are zero (or insignificant). The linear 

observation, also called measurement, can be expressed by 

matrix operation 𝑦 = 𝐴 ⋅ 𝑐, where A has a size of 𝑀 × 𝑁. In 

general, solving for 𝑁 unknown variables from 𝑀 (𝑀< 𝑁) 

equations is not well-posed and there is no unique solution. 

However, if c is sparse and A satisfies certain properties, the CS 

theory shows that c can be recovered from measurement y with 

high confidence [3, 6]. Properties that guarantee the recovery of 

c include spark, null-space, restricted isometry property (RIP), 

etc. In CS applications, the incoherence requirement and RIP 

are often used as the criteria for selecting matrix A. RIP was 

originally introduced in [3] and later generalized in [1]. Matrix 

A obeys RIP with constant 𝛿𝑘 if 

(1 − 𝛿𝑘)||𝑐||
𝑝

2
≤ ||𝐴 ⋅ 𝑐||

𝑝

2
≤ (1 + 𝛿𝑘)||𝑐||

𝑝

2
 (1) 

for all k-sparse vectors 𝑐, ||  ||𝑝 denoting the standard 𝑙𝑝-norm. 

𝛿𝑘 must be small in order to guarantee the recovery of c. In 

general, it must hold that 0 < 𝛿𝑘 < 1. Intuitively, 𝛿𝑘 indicates 

how well measurement y preserves the energy (norm) of vector 

𝑐.  

Signals in many applications may not be sparse in their 

original forms, but their transformations may be sparse. For 

example, a sinusoidal signal is not sparse in time domain but its 

Fourier coefficient vector is very sparse, containing only one 

non-zero element. The transformation that projects signal x to 

its sparse representation can be described by 𝑥 = 𝜓 ⋅ 𝑐, where 

𝜓 is the sparse basis and 𝑐 is the transformation coefficient 

vector. For these types of signals, CS techniques recover vector 

𝑐 from measurement y and, subsequently, signal x can be easily 

constructed by the transformation relation. The linear 

observation or CS measurement of x can be expressed as 𝑦 =
ϕ ⋅ 𝑥.This leads to 𝑦 = ϕ ⋅ 𝑥 = ϕ ⋅ 𝜓 ⋅ 𝑐. Note that the product 

of 𝜙 ∙ 𝜓 is the aforementioned matrix A. Often, a random 

matrix is used as measurement matrix 𝜙, since it leads to high 

probability for 𝜙 ∙ 𝜓 to satisfy the RIP requirement. Also, from 

the incoherence perspective, random measurement matrices are 

largely incoherent to many sparse bases used in CS operations 

[4]. Thus, they likely satisfy the incoherence requirement, 

which demands the coherence measure 𝜇 to be small. It is 

defined as: 

𝜇(𝛷, 𝛹) = √𝑁 ∙ max
1≤𝑖≤𝑚;1≤𝑗≤𝑛

|〈𝜙𝑖 , 𝜓𝑗〉| (2) 

where 𝜙𝑖 and 𝜓𝑗 represent the ith row of measurement matrix 𝜙 

and the jth column of sparse matrix 𝜓, respectively. Finally, a 

number of methods, including adaptive binary search, l1 

minimization (or basis pursuit), greedy pursuits, etc., can be 

used to recover vector c from CS measurement y. Among them, 

the l1 minimization method, which is formulated below, is often 

used to recover c in CS applications. 

𝑚𝑖𝑛||𝑐||
1

, 𝑠𝑢𝑏𝑗. 𝑡𝑜 𝑦 = 𝜙 ∙ 𝜓 ∙ 𝑐 (3) 

Although the mathematical theory of CS is developed purely 

based on signal sparsity, many practical CS applications also 

consider additional constraints or take advantage of other signal 

properties to achieve improved performance. The approaches in 

[15, 16] take into consideration that the energy of many real 

signals mainly concentrates in localized regions, e.g. in the low 

frequency region. The method introduces an additional criterion 

in the design of CS measurement matrices in order for the CS 

measurement operation to rake the most signal energy. Based 

on this premise, an alternative optimization problem is 

proposed to find a tradeoff between projections satisfying the 

RIP property and taking advantage of localized signal spectrum 

to boost signal quality.  

For CS image applications, sophisticated reconstruction 

models are developed in [9, 22], among many others. These 

techniques exploit the tree structures and associated specific 

properties of the transform coefficients of natural images in CS 

image reconstruction processes to improve accuracy. These 

approaches still use conventional random based measurement 

matrices in CS measurement operations. In [21], relations 

among the sparse transform coefficients are exploited in the 

design of measurement matrices and CS image recovery 

systems. The resulting matrices have a high probability to 

capture the significant transform coefficients of the image and 

hence lead to better image quality. 

B. Previously Proposed Compressive Sensing Image Sensors 

A number of CS image sensors have been reported in 

literature. Some of them perform CS measurement operations 

in the optical domain with the aim of using reduced number of 

pixels to capture high resolution images [23]. These approaches 

are appealing in applications that require expensive pixel cells, 

e.g. infrared cameras. Other CS image sensors perform CS 

measurements during pixel readout operation in order to reduce 

image sensor power consumption. They commonly require 

summing the outputs of randomly selected pixels; but differ by 

the mechanisms on how to use random bit streams to guide the 

pixel summation as well as how the pixel summation circuits 

are implemented. 

The CS measurement circuit in [20] produces weighted sums 

of pixel outputs and the weight is controlled by the differential 

row drive voltage 𝑉𝑟
+, 𝑉𝑟

−, as well as the parameters stored in 

the analog vector matrix multiplier as shown in Fig. 1 (a). This 

circuit is also capable to perform other types of transformations 

but at the price of quite complicated implementation. Unlike the 

design in [20] that supports fractional weighting values, most 

CS image sensors use binary weighting values, 1 and -1, or 1 

and 0. The designs in [11, 14] limit the weighting values to 1 

and -1, and use a dual bit-line structure as illustrated in Fig. 1 

(b).  It relies on linear feedback shift registers (LFSR) to 

generate pseudo random bit streams, which are then shifted to 

the pixel cells via embedded shift registers. If the register bit in 
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Fig. 1.  Previously proposed CS image sensor circuits 

 

a pixel cell is 1, the current output of the pixel is directed to the 

positive bit-line 𝐼𝑗+; otherwise, it is connected to the negative 

bit-line 𝐼𝑗−. At the end of the column, currents from the two bit-

lines are subtracted to generate CS measurements. The 

drawbacks of this circuit include complicated pixel cell design 

and signal swing challenges due to summing a large number of 

pixels. 

The design in [12] also uses a dual bit-line structure to 

accommodate weighting values of 1 and -1. Its pixel outputs are 

in the form of charge and hence pixel summations are carried 

out by charge amplifiers. To support random summation, a 

large and complex pixel cell design, shown in Fig. 1 (d), is used. 

A charge amplifier is also used to conduct pixel summation in 

[5], which supports weighting values 1 and 0. A conventional 

compact 3-transistor (3T) pixel cell is used. However, to 

accommodate random pixel summations, each pixel has its own 

read line as shown in Fig. 1 (c). This negatively affects the 

scalability of the design and CS measurements have to be 

implemented within small blocks partitioned from the pixel 

array. The design in [18] uses conventional pinned 4T active 

pixel cells and integrates the pixel summation function into ΔΣ 

ADC circuits as shown in Fig. 1 (e). Depending on the pseudo 

random bits generated by LFSRs, either a pixel cell output or a 

reference voltage is fed to the ADC input in each ΔΣ 

modulation cycle. This approach also has to be implemented in 

a block by block manner. The number of pixels within a block 

is equal to the over sampling rate of the ADC. To support 

multiple ADCs simultaneously generating CS measurements 

for the same block as well as to share the ADCs among different 

blocks, fairly complicated multiplexer trees have to be 

implemented.   

In summary, existing CS image sensor designs performing 

compressive acquisition in the analog domain use either large 

complicated pixel cells or complex pixel access schemes, such 

as large number of read lines or massive multiplexer trees, to 

support random pixel summation. Some of them also require to 

partition the pixel array into small blocks. These factors 

adversely affect CS image sensor fill factor and power 

efficiency. Thus, more scalable and hardware efficient CS 

measurement methods are highly desirable for the development 

of future CS image sensors. 

III. PROPOSED CS MEASUREMENT METHOD 

This section first explains the proposed CS measurement 

method. A generalized formula for the measurement matrix 

associated with the proposed method is derived. Then, the 

validity of the proposed method is justified in subsection B.   

A. Proposed CS Measurement Operation  

Unlike existing CS image sensor circuits that perform 

random summations for variable sets of pixels, the proposed 

method follows regular patterns to sum neighboring pixels 

within the same column or row. Thus, it eliminates the need of 

several complex circuit blocks that are commonly used in 

existing CS image sensors, leading to more scalable and 

hardware-efficient CS image sensor circuits. 

The operation of the proposed method is explained with the 

following example. Without losing generality, assume that the 

CS measurement is conducted for a pixel column containing 

256 pixels and the compression rate R is 4. R is defined as the 

ratio of the number of pixels over the number of CS 

measurements. Thus, 64 CS measurements are to be generated, 



 IEEE SENSORS JOURNAL 

 

4 

which are denoted by 𝔖1, 𝔖2, ⋯ 𝔖64. To generate a single CS 

measurement, six neighboring pixels are added together and 

there is an overlap of two pixels between two neighboring 

summation groups. The CS measurement operations are 

illustrated in Fig. 2. Note that the vertical bars in the figure 

represent the same pixel column and the groups of six pixels in 

the shaded regions are summed together to produce the 64 CS 

measurements. The starting and ending pixel positions of each 

summation group are listed on the left side of the shaded regions. 

For example, in the first CS measurement, the outputs of pixels 

1 ∼ 3 and 254 ∼ 256 are added together; in the second CS 

measurement, the outputs of pixels 2 ∼ 7 are added. Thereafter, 

the position of the measurement group is moved by 4 pixels to 

start the next CS measurement. The first measurement group 𝔖1 

contains pixels from both ends of the column, which is to cope 

with the fact that the number of pixels in a column is not evenly 

divided by the number of pixels in a measurement group. 

Grouping pixels from both ends of the column in 𝔖1 enables that 

every summation group has the same number of pixels.     

For the convenience of discussion, let 𝑥 be an 𝑁 × 1 vector 

formed by stringing together the pixel signals from an 𝐿 × 𝐿 

pixel array in a column after column manner and 𝑁 = 𝐿 × 𝐿. 

Then, the pixel summations can be described by the following 

equations: 

𝔖1
𝑚 = ∑ x(i) + ∑ x(i)

(m+1)⋅L

i=(m+1)⋅L−2

m⋅L+3

i=m⋅L+1

 

𝔖𝑘
𝑚 = ∑ x(i)

m⋅ L+4∙k−1

i=m⋅L+4∙k−6

, 𝑓𝑜𝑟 𝑘 > 1 

 

(4) 

where, letter 𝑚 indicates for which pixel column the CS 

measurement is performed and 0 ≤ 𝑚 ≤ 𝐿 − 1.  

In general, to generate M CS measurements for a pixel array 

containing N pixels, the size of summation groups should be 
𝑁

𝑀
+

𝑂𝐿, where 𝑂𝐿 represents the number of overlapping pixels 

between two neighboring summation groups. As a guideline, 𝑂𝐿 

is preferred to be 
𝑅

2
, if possible. For given N, M, and OL values, 

the entries of measurement matrix 𝜙 can be determined using: 

𝜙(𝑖, 𝑗) = {1 𝑖𝑓 1 +
(𝑖 − 1) ∙ 𝑁

𝑀
≤ 𝑗 ≤

𝑖 ∙ 𝑁

𝑀
+ 𝑂𝐿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

for 1 < 𝑖 < 𝑀. For 𝑖 = 1, 𝑀 (the first and last row 

respectively), the pattern needs to be slightly adjusted to meet 

the image size constraint, since the dimension of the frame may 

not be a multiple of 
𝑁

𝑀
.  

B. Justification of Proposed CS Measurement Method  

As discussed earlier, signals must be sparse with respect to a 

sparse basis to be able to take advantage of CS techniques. 

Image signals are generally sparse with respect to inverse 

discrete cosine transform (IDCT) basis. The vectors in IDCT 

correspond to samples of the cosine function with variable 

frequency starting from DC, which are given as: 

𝜓(𝑘, 𝑗) = ∑ 𝛼(𝑖) [𝐼(𝑖, 𝑗) ∙ 𝑐𝑜𝑠 (
𝜋(2𝑘 + 1)(𝑖 − 1)

2𝑁
)]

𝑁

𝑖=1

 (6) 

where 𝐼 is the 𝑁 × 𝑁 dimensional identity matrix, 𝛼(𝑖) =

√1/𝑁 when 𝑖 = 1, and 𝛼(𝑖) = √2/𝑁  when 𝑖 > 1. This sparse 

basis is used in the following discussion as well as later image 

reconstruction.  

The coherence measure 𝜇(𝛷, 𝛹) defined in Equation 2 is 

evaluated for the pair of the proposed measurement matrix 𝜙 and 

the IDCT sparse basis 𝜓. Matrix 𝜙 is normalized before the 

evaluation in accordance to Equation 2. The obtained coherence 

value is 3.46. For comparison purposes, a random matrix 

generated by Matlab rand function is also examined in the study. 

The coherence between the random matrix and the IDCT sparse 

bases is 5.2. The proposed measurement matrix achieves about 

the same level of incoherence as random measurement matrices, 

confirming the suitability of the proposed measurement method 

in CS image applications. 

The proposed measurement matrix does not satisfy RIP 

requirements. Note that RIP requirements are sufficient but not 

necessary conditions for recovering the original signal from CS 

measurements. For example, both RIP-2 and RIP-1, defined in 

Equation 1 with 𝑝 = 2 and 𝑝 = 1 respectively, guarantee signal 

recovery. A matrix that satisfies RIP-1 may not satisfy RIP-2, 

and vice versa. Further, RIP is a very strong condition 

guaranteeing the recovery of any signal, providing it is 

sufficiently sparse with respect to a properly chosen basis.  

It has been shown that natural images generally have 

dominating low frequency components, and insignificant high 

frequency components. According to [25], the frequency 

spectrum of natural images along the frequency axis decays 

following the relation: 

𝐴(𝑓) =
𝐴𝐷𝐶

𝑓𝛼
 (7) 

where 𝐴𝐷𝐶 and 𝛼 represent the magnitude of the image DC 

component (average pixel power) and decay rate along the 

frequency 𝑓 axis, respectively. Statistical data from a large 

number of images show that, on average, 𝛼 is about 2.08, with 

1
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Fig. 2. Pixel access pattern in CS measurement operation 
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an average standard deviation of 0.53 [25]. Thus, if a natural 

image is projected to the IDCT domain, the significant 

coefficients will be mainly distributed in the low frequency or 

low index region.  Our study indicates that this is the key factor 

resulting in the improved performance of the proposed CS 

measurement method.  

To exemplify our finding, we used the proposed 

measurement matrix and a random measurement matrix, which 

satisfies RIP conditions, to conduct CS operations for two 

images. One is a common benchmark image Cameraman and 

the other is an artificially created image by alternately assigning 

one pixel to black, the next pixel to gray and the third pixel to 

white. Clearly, the artificial image does not exist in the real 

world since no natural images can exhibit such dramatic 

changes from one pixel to another. Both images are sparse with 

respect to the IDCT basis and their IDCT coefficients are 

plotted in the left panel of Fig. 3. For image Cameraman, its 

significant coefficients concentrate in the low frequency region. 

However, the significant coefficients of the artificial image are 

scattered in a wide range. Despite this difference, the two 

images approximately have the same level of sparsity. This 

becomes evident after the coefficients are sorted in a 

descending order and plotted in the middle panel of the figure. 

For image Cameraman, both the proposed and random 

measurement matrices lead to successful image reconstruction. 

For the artificial image, it can be satisfyingly recovered from 

the CS measurements using the random matrix; but the 

proposed CS measurement method does not lead to successful 

image recovery. These observations support the earlier 

statements about the proposed and random measurement 

matrices. Nevertheless, the failure of recovering the artificial 

image from the proposed CS measurements should not be 

alarmed, since such an image is unlikely to be seen in the real 

world. 

An extensive performance comparison with a set of 1000 

images from database [28] has been conducted. The database 

contains eight image categories, covering different types of 

scenery. The study examined the first 125 images from each of 

the eight scenery categories. The PSNR values of the 

reconstructed images with the proposed measurement 

techniques are plotted in descending order in Fig. 4. The 

corresponding data obtained using the random measurement 

method is plotted directly below the reordered data using × 

markers. The advantage of using the proposed measurement 

technique is evident, as it outperforms the conventional 

approach on all but three images. For the 1000 images, the 

proposed approach outperforms the conventional approach on 

average by about 3.7dB, with a standard deviation of about 

0.9dB. The improvement is due to the fact that the proposed 

method can more accurately capture the low-frequency energy 

and the signal energy of natural images concentrates in the low 

frequency region. 

Additional studies were also conducted via Matlab 

simulations. Without losing generality, sparse signals with a 

length of 2560 samples were used in the study. The sparsity of 

the signals is selected as 200. Thus, among the 2560 IDCT 

coefficients, 200 are significant and the remaining 2360 

coefficients are negligible, which are at least 75 times smaller 

than the largest magnitude of the significant coefficients. A 

large set of such sparse signals was generated by randomly 

varying the magnitudes and positions of the 200 significant 

coefficient terms. Then, the proposed and random measurement 

matrices were used to generate CS measurements of these 

signals and later 𝑙1 minimization techniques were used to 

recover the signals from their CS measurements. The PSNRs of 

the recovered signals with using the proposed and random 

matrices are compared in Fig. 5. The horizontal axis indicates 

the highest index or frequency of the significant coefficients for 

a given signal. For example, if a data point in the figure has 

horizontal axis value of 500, then the significant coefficients of 

the corresponding signal are distributed in the region with 

indexes ranging from 1 to 500. The plot shows that if the 

significant coefficients are distributed in the region with 

indexes smaller than 720, the position marked by the dotted line 

in the figure, the proposed method outperforms the 

conventional random matrix based CS measurement method. 

Equation 7 indicates that signal energy drops to about 1/75 of 

its DC value at the frequency corresponding to index 720, when 

α is chosen approximately 0.67. This value is off from the 

average value of α by 2.66 times the standard deviation. This 

leads to the conclusion that the proposed method results in 

better image quality for about 99.6% of all natural images. If 

the significant coefficients are distributed in the region with 

index smaller 600, which corresponds to 99.4% of natural 

images according to Equation 7, the proposed CS measurement 

method results in significantly better image quality. 

Simulations were also conducted to compare the image 

reconstruction time from CS measurement results obtained with 

the proposed and random measurement matrices. Benchmark 

images Lenna and Cameraman were used in the study with 

compression rates of 4 and 8. Simulations were performed on a 

 

Fig. 3. IDCT coefficients of Cameraman (top) and black-gray-white 
pattern (bottom) 
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desktop computer with Core i7 CPU, 3.4GHz clock, and 8GB 

memory. Matlab l1 magic package was used to solve the l1 

minimization problem during image reconstruction. The image 

reconstruction time and the number of iterations are compared 

in Table 1. In the study, the 256×256 sized benchmark images 

are partitioned into 16 256×16 blocks for CS measurement and 

image reconstruction. Thus, the reported image reconstruction 

time and number of iterations are accumulated numbers for the 

16 blocks. It shows the proposed measurement matrices also 

lead to slightly reduced image reconstruction time. 

 

IV. CS IMAGE SENSOR IMPLEMENTATION 

CS image sensors using the proposed measurement method 

can be implemented with conventional compact pixel cells and 

simple pixel summation circuits. This is a significant advantage 

compared to existing designs, which require either complicated 

pixel cells or complex pixel summation circuits. This section 

discusses circuit implementation techniques for such CS image 

sensors with using current-mode active pixel cells [8, 19, 27]. 

The decision of using current-mode pixel cells is mainly due to 

the convenience of performing current summation at the inputs 

of current conveyors as well as sampling circuits. Note that the 

proposed CS measurement method can also be easily 

implemented with voltage-mode pixel cells, in which the pixel 

summations are carried out in terms of voltage or charge 

summations.  

Fig. 6 shows the block diagram of a CS image sensor that 

implements the CS measurement operation illustrated in Fig. 2. 

It assumes the pixel array is 256 × 256 and the compression 

rate is 4. The proposed method can conduct CS measurements 

in a row-by-row or column-by-column manner. To be 

consistent with the example in Fig. 2, the sensor circuit in Fig. 

6 also conducts CS measurements in a column-by-column 

manner. As a result, the pixel read lines or bit-lines are routed 

horizontally (the horizontal lines within the pixel array) and the 

column select lines are routed vertically (labeled by 

𝐶𝑆1, ⋯ 𝐶𝑆255, 𝐶𝑆256 outside the pixel array). The sensor 

performs row read operations in parallel and hence there is no 

row selection circuit. The horizontal bit-line structure is not a 

significant deviation from the conventional or existing CS 

image sensors which route bit-lines vertically, since the pixel 

array in Fig. 6 can be simply rotated by 90 to achieve vertical 

bit-lines. The above block diagram indicates that the outputs of 

 

Fig. 5. PSNR of recovered signals with variable signal spectrum 

bandwidth from the proposed and random CS measurements  

 

Fig. 4. Performance comparison of proposed vs. random CS techniques 

on a large set of natural images 

 

TABLE I 
COMPARISON OF IMAGE RECONSTRUCTION TIME 

Images R 
Meas. 

Matrices 

PSNR 

(dB) 

Image recon. 

time (s) 

Number of 

iterations 

Lenna 

4 
Proposed 37.8 134.5 322 

Random 30.4 142.6 347 

8 
Proposed 32.5 78.0 314 

Random 25.6 87.0 375 

Camera

man 

4 
Proposed 28.0 133.5 316 

Random 21.8 145.1 353 

8 
Proposed 24.1 77.1 309 

Random 18.6 87.5 383 
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pixel cells in rows 2 & 3, 4 & 5, …, 254 & 255, in the same 

column are connected. These pixel pairs are not combined into 

single pixel cells, because the area of the photo diode of a 

merged pixel cell should be twice of the original photo diode 

size. Since the area of a pixel cell is dominated by its photo 

diode size, merging pixels does not yield any significant area 

advantage. Furthermore, not all pixels can be merged, thus 

merging pixels will result in non-uniform pixel sizes. 

During pixel read operation, the ith column is selected by 

asserting CSi to 1, all the pixels within this column are accessed. 

The output currents of the pixel cells that share the same bit-

line are added together at the bit-line and then are fed to the 

inputs of current conveyors which are labeled by 

𝐶𝐶1, 𝐶𝐶2, ⋯ 𝐶𝐶128 in the figure. There are two types of current 

conveyors: One has single current output and the other has dual 

output ports. The latter is to accommodate the overlaps between 

adjacent CS measurement patterns as illustrated in Fig. 2. The 

current conveyor outputs are further summed according to the 

measurement patterns before being fed to the inputs of delta 

double sampling (DDS) circuits, which are denoted by 

𝐷𝐷𝑆1, 𝐷𝐷𝑆2, ⋯ 𝐷𝐷𝑆64 in the figure. The current outputs of the 

DDS circuits are then amplified and converted to voltage 

signals by trans-impedance amplifiers (TIAs). 

A conventional image sensor with column-parallel read 

operation reads the pixels of a single row at the same time. 

Hence, the number of amplifiers as well as ADCs at the end of 

the bit-lines equals the number of columns. In the proposed 

design, the outputs of multiple pixels at different rows are 

combined together while being read out. As a result, the number 

of amplifiers and ADCs that are needed to support row-parallel 

read operation in the proposed design is R times smaller than 

that required in the conventional image sensor with the same 

array size. This improves sensor fill factor and reduces power 

consumption. 

Thanks to its regularity, the CS measurement pattern is 

hardwired in the proposed design. Thus, it neither requires 

LFSR for random bit generation nor uses complex pixel cells or 

complicated pixel signal routing circuits that support pixel 

random summation. As shown in Fig. 7, a 3T current-mode 

active pixel cell is selected for the design. Other current-mode 

pixel cells [8, 27] can be used as well. The schematic of the 

current conveyor is given in the top portion of Fig. 7. It includes 

cascode current mirrors consisting of M5-M10 and amplifier A1, 

which forms a negative feedback with M6 to keep the bit-line 

voltage at Vb1. The second output branch of the current mirror, 

implemented by M9 and M10, is only needed for the current 

conveyors that have two outputs and hence are drawn in dotted 

lines. To keep transistor M1 of the pixel cells in linear region, 

the bit-line voltage should be low. Meanwhile, the voltage at 

the current mirror output is preferred to be relatively high due 

to the consideration of signal swing headroom at TIA outputs. 

If pixel output ports are directly connected to the drain of M5 in 

the current mirror input branch, it potentially results in a 

relatively large voltage difference between its input and output 

ports, which negatively affects current mirror accuracy. To 

mitigate this problem, diode connected transistor M4 is inserted 

between pixel bit-line and the drain of M5 for level shifting 

purposes. 

M1

rsti

CSi

M2

M3

Vrst

3T pixel cell

Current conveyor

DDS & TIA

M5

M6

M7

M8

M9

M10

M4

Vb1

Vb2

Amp A1

bit-line

Opamp A2

Vb3

Vb4

Vout

ICC,i

ICC,i-1 ICC,i-2

M12

M11
M14

M13

M16

M15

R1

Read

Read

Sample

Sample

C1

+

 

Fig. 7. CS image sensor schematic 

Column Select

cs1 cs255 cs256

256 X 256 pixel array
IR1

IR256

IR2,3

IR4,5

IR6,7

IR256 to CC1

Current 
Conveyors

CC1

CC2

CC3

CC4

IR254,255

CC128

IR2,3

IR2,3

IR1,256

IR4,5

IR6,7

IR254,255

IR254,255 to DDS1

IR6,7 to DDS3

IR250,251

IR252,253

IR254,255

DDS1

DDS2

DDS64

TIA1

TIA2

TIA64

Vout1

Vout2

Vout64

 

Fig. 6. CS image sensor block diagram 
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To cope with transistor threshold variations across the pixel 

array, delta double sampling [7] is implemented in the design. 

Unlike conventional image sensors that conduct DDS for each 

pixel individually, the proposed design collectively performs 

DDS for the group of pixels to be summed in a single CS 

measurement. This does not diminish the benefit of DDS, since 

the current errors caused by threshold variations are linear terms 

added to the actual pixel signals. As illustrated inside the DDS 

& TIA block of Fig. 7, transistors M11-M14 and capacitor C1 

form a current memory circuit that samples the summed pixel 

cell outputs after the pixel integration period. Transistor M12 is 

the sampling switch and M11, half the size of M12, is to 

compensate for the channel charge injection of M12. The 

cascode structure of M13 and M14 keeps VDS13 at a constant 

level, helping improve the accuracy of the sampling circuit. 

Immediately after finishing the above read operation, the pixel 

cells are reset and remain accessed. Then, the input of the DDS 

circuit is the sum of the pixel output currents in reset phase, 

which is the second sampled value of the DDS operation. The 

two sampled values are naturally subtracted before being fed to 

the TIA via the transmission gate consisting of M15 and M16. 

The control signals for reading out the first two pixel columns 

are depicted in Fig. 8. It shows that the design takes two clock 

cycles to read a column and hence 512 cycles for the entire 

array. 

In addition to its simple structure, the proposed design also 

possesses several advantages in its pixel read operation 

compared to existing CS image sensors. The designs in [11, 14] 

use current-mode pixels and perform pixel summation in 

current format as well. However, these designs sum a large 

number of pixel outputs to generate CS measurements, which 

significantly increases signal dynamic range and requires high 

resolution ADCs. In the proposed design, the number of pixels 

being summed in a single CS measurement is small and thus it 

has relaxed dynamic range and ADC resolution requirements. 

Excluding the pixel integration time, a CS measurement can be 

generated within two pixel read cycles in the proposed design. 

This is much faster than the scheme used in [18], whose ΔΣ 

ADC speed is limited by the pixel read cycle. For an 8-bit ADC 

resolution, it takes 512 pixel read cycles to generate a CS 

measurement. Finally, the circuit block diagram and schematic 

provided in this section are based on the compression rate of 4. 

For other compression rates, the bit-line sharing scheme as well 

as the connections between current conveyors and DDS circuits 

can be easily modified according to the measurement matrix 

described by Equation 5. 

V. CIRCUIT SIMULATION RESULTS 

To demonstrate the proposed CS image sensor techniques, 

two CS image sensors with compression rates of 4 and 8 are 

designed along with a conventional image sensor. The pixel 

arrays of the three sensors have the same size of 256 × 256 and 

use the same 3T pixel cell design shown in Fig. 7. The circuit 

implementation of the CS image sensor with compression rate 

4 is discussed in the previous section. The sensor with 

compression rate 8 is implemented similarly with the following 

modifications. It sums 12 pixels in a single CS measurement 

and there are overlaps of 4 pixels between neighboring 

summation groups. Thus, four pixel rows share a bit-line. There 

are 64 current conveyors to copy current signals from bit-lines 

and 32 DDS & TIA blocks to generate CS measurements. In the 

conventional image sensor, every pixel row has its own bit-line; 

it uses 256 current conveyors, all with single output port, and 

256 DDS & TIA blocks. The conventional image sensor design 

is mainly used for the comparison of power consumption in this 

study. 

The three image sensors are designed using a 0.13 m CMOS 

technology and 1.5V power supply voltage. The gate leakage as 

well as the drain to source leakage in transistor off state of the 

thin silicon dioxide transistors are too large for such devices to 

be used in pixel cells [24]. Thick silicon dioxide devices with 

large feature sizes and higher threshold voltage are used for 

transistors M1 and M2. This leads to a slightly larger pixel size 

and does not affect the evaluation of the proposed CS image 

sensor techniques. The remaining transistors are thin silicon 

transistors to fully take advantage of technology scaling. Low 

power devices, which have reduced IDS leakage in off state, are 

used for transistors that function as switches, including M3, M11, 

M12, M15 and M16 of Fig. 7. The transistor sizes and other 

component values are listed in Table II. Amplifier A1 in the 

current conveyor circuit is implemented using a single stage 

folded-cascode amplifier, which provides a gain of 100. As a 

result, the input resistance, estimated by 1/(𝐴1 ⋅ 𝑔𝑚6), of the 

current conveyor is about 170 , which is much smaller than 

the on-resistance of the pixel access device M3. Operational 

amplifier (Opamp) A2 in the TIA is a two-stage amplifier with 

a cascode first stage. Miller compensation is used to achieve a 

phase margin of about 65 degree. The gains, bandwidths, and 

current dissipations of the two amplifiers are summarized in 

Table III.  

The clock frequency of the image sensors is 1MHz and the 

three sensors share the same design for their digital control, 

which is based on a “token-pass” shift register consisting of 512 

D Flip-Flops (DFF). During pixel read operation, a token, logic 

1, is passed along the DFF chain and a group of two consecutive 

CLK

CS1

CS2

rst1

rst2

Sample

Read

Column 1 Column 2
Pixels 

readout Column 3

Sample

 

Fig. 8. Control signals during CS image sensor readout operation  
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DFFs correspond to a pixel column. Column select signal CSi 

is the logic OR of the outputs of the two DFFs corresponding to 

column i; reset signal rsti is the output of the second DFF in the 

pair. Signals Sample and Read have opposite phases and their 

frequency is half of the clock frequency. Necessary buffers and 

delay elements are inserted into the signal paths to achieve 

adequate driving strength, avoid overlaps between control 

signals, and attain desirable signal phase arrangement. For 

example, Signal Sample should switch to 0 slightly ahead of the 

rising edge of reset signals as well as its complementary signal 

𝑠𝑎𝑚𝑝𝑙𝑒 as shown in Fig. 8. 

Circuit simulations have been conducted to obtain CS image 

sensor outputs for benchmark images Lena and Cameraman. 

The photocurrents in pixel cells are emulated by current sources 

in circuit simulation. The Lenna and Cameraman images were 

first read into Matlab, which converts the gray tone of every 

pixel into an integer value between 0 and 255. These values 

were then downscaled proportionally into the pico range (range 

of photocurrents in Amperes), and individually assigned to 

256x256 current sources. The netlist of the current sources with 

assigned current values was generated in Matlab, and copied 

into the netlist of the CS circuit. After circuit simulation, Matlab 

l1 magic package was used to reconstruct the images from the 

sensor outputs. Fig. 9 shows the originals and the reconstructed 

images. The original images are placed on the left side of the 

figure. For comparison purposes, Matlab programs were also 

used to emulate the CS measurement operations implemented 

on the CS image sensors. The reconstructed images from 

Matlab emulations are given in the middle panel of the figure. 

The images reconstructed from CS image sensor outputs are on 

the right side of the figure. The PSNRs of the reconstructed 

images are listed underneath the pictures. Images Lena and 

Cameraman were used in the simulation. It shows that the 

PSNR values of the reconstructed images from circuit 

simulation are reasonably close to those obtained from Matlab 

simulation, validating the functionality of the proposed CS 

image sensor circuits. 

The power consumptions of the proposed CS image sensors 

are also compared with the conventional image sensor via 

circuit simulation. The power consumption and energy per 

frame of the three sensors are listed in Table IV, along with the 

numbers of key functional blocks in the sensors. Compared to 

the conventional design, CS image sensors approximately 

reduce energy dissipation by R times, which is mainly 

attributed to the reduced number of pixel readout circuits. 

The double sampling method used in the above sensor design 

only removes additive errors and cannot eliminate 

multiplicative errors caused by variations and mismatches [19]. 

Simulations were conducted to study the impact of such 

multiplicative errors on CS image sensor performance. Monte 

Carlo simulations were first conducted to find out the statistic 

distribution of the multiplicative errors and then variations 

following the same distribution were introduced to pixel cell 

output values in Matlab simulations to examine the PSNRs of 

the obtained images. For the conventional image sensor, the 

PSNR values for both Lenna and Cameraman images are 

degraded to 26.2 dB. Without a calibration, the PSNRs of the 

images reconstructed from CS measurements are listed in the 

fourth column of Table V. For comparison purposes, the third 

column of the Table lists the image PSNR values when 

variations and mismatches are not considered in simulation, 

hence labeled as Ideal PSNR. It shows that the multiplicative 

 

Originals
Reconstructed from 
Matlab simulation

Reconstructed from 
circuit simulation

PSNR=37.8dB PSNR=34.2dB

R=4

R=8

PSNR=26.1dBPSNR=28.0dB

R=4

PSNR=32.5dB PSNR=29.6dB

R=8

PSNR=24.1dB PSNR=23.1dB  

Fig. 9. Reconstructed images from CS measurements 

TABLE II 

COMPONENT VALUES USED IN THE DESIGN 

Component Values 

M1, M2
* 360nm/240nm 

M3
** 160nm/120nm 

M4, M5, M6, M7, M8, M9, M10 6400nm/360nm 
M11

** 320nm/120nm 

M12
** 640nm/120nm 

M13 160nm/1um 

M14 160nm/360nm 

M15, M16
** 1.6um/120nm 

C1 100 fF 

R1 100 kΩ 

* Thick silicon oxide transistors 
** Low power transistors 

TABLE III 

AMPLIFIER PERFORMANCE PARAMETERS 

Amplifier Gain fT (MHz) Current dissipation (µA) 

Amp. A1 100 1 0.5 

Opamp A2 7000 100 23 
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TABLE VI 

COMPARISON BETWEEN PROPOSED WORK AND EXISTING DESIGNS 

 [18] [14] [12] [5] Our work 

Pixel cell design 4T conventional 

3T cell & local 

memory (DFF) & 
logic (3 NAND) 

10T custom 

 
3T conventional 3T conventional 

Bit lines per column 1 2 2 One line per pixel 1/2 

Meas. vector generation  LFSR LFSR LFSR LFSR N/A 

Additional circuits for 
supporting rand. Sum. 

 Multiplexer tree None None Multiplexer tree None 

Pixel summation circuit 
Voltage summation 

by 𝞢∆ modulator 
Current summation Charge summation Charge summation Current summation 

Comp. ratios 
4, 8, 16 

(Programmable) 
3.3 4 

1.33, 2, 4, 8 

(Programmable) 

4, 8 

(Not programmable) 

Simulated PSNR (dB) 
35 (R=4) 

31.5 (R=8) 

28.5 (R=16) 

NA NA NA 
37.8 (R=4) 
32.5(R=8) 

 

Energy/frame (uJ) 
195 (R=4) 

98.4 (R=8) 
1278 3.27-5.8 NA 

1.4 (R=4) 

0.73 (R=8) 

TABLE V 
IMAGE PSNR VALUES WITH AND WITHOUT CALIBRATIONS 

images R 
Ideal 

PSNR 

PSNR w/o 

calibr. 

PSNR with 

calibr. 1 

PSNR with 

calibr. 2  

Lenna 
4 37.8 30.4 34.6 37.8 

8 32.5 30.3 31.8 32.5 

Camera

man 

4 28.0 26.4 27.5 28.0 

8 24.1 23.8 24.0 24.1 

errors can cause significant image quality degradation for CS 

image sensors, especially when the compression rate is not very 

high. For Lenna image, the CS measurement and image 

reconstruction process also exhibits a de-noise function, noting 

that the PSNRs of the reconstructed image are higher than that 

obtained from the conventional image sensor. This is because 

the image reconstruction process only recovers the significant 

coefficients of the images and the noise may be represented by 

less significant coefficients in this case. For Cameraman image, 

the de-noise effect is not manifested 

In the conventional image sensor, every pixel cell can be 

individually read out and hence the multiplicative errors can be 

calibrated using 2-point correction or uniform illumination 

methods [19]. In the proposed CS image sensors, pixels are 

grouped together to be read out, which prohibits calibrating 

each pixel cell individually. Two possible calibration schemes 

were examined in simulation. One is to perform calibration 

based on CS measurement groups. It requires no hardware 

modification and can be done in a similar way as that for the 

conventional image sensors. The drawback is that the same 

correction parameter will be applied to all the cells in the same 

CS measurement group. The image PSNR values with this 

calibration method are listed in the fifth column of Table V. For 

compression rate of 8, this method achieves satisfactory results. 

The second calibration method involves adding programmable 

switches at the input branches of the DDS circuits such that 

every current conveyor output can be individually read out 

during the calibration process. This reduces the number of 

pixels sharing the same correction parameters to one third of 

that in the first calibration method. The simulation results, listed 

in the sixth column of Table V, indicate that this calibration 

adequately mitigates image quality degradations caused by the 

multiplicative errors. 

Finally, Table VI compares the proposed image sensors with 

existing designs from various aspects. It can be seen that the 

proposed CS image sensors are the only designs that use 

conventional compact pixels and meanwhile don’t require 

complex CS measurement circuits. The simplicity of the 

proposed CS image sensor structure helps it reduce power 

consumption and achieve high scalability for large pixel arrays. 

Also, the proposed CS image sensors outperform other designs 

in terms of reconstructed image quality. 

VI. CONCLUSIONS 

This paper presented a simple and effective CS measurement 

method for image sensors as well as circuit implementation 

techniques with using current-mode pixel cells. The developed 

CS image sensors have dramatically simplified structures and 

achieved better image quality compared to existing designs. 

Circuit simulation showed significant power reduction by the 

developed CS image sensor techniques. The developed CS 

image sensor techniques are highly suitable for a wide range of 

applications, including IoT, wearable devices, medical devices, 

etc. 
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