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RESUMO/ABSTRACT

A regret model applied to the maximum coverage loca  tion problem with
gueue discipline

This article discusses issues related to the location and allocation problems
where is intended to demonstrate, through the random number generation, the
influence of congestion of such systems in the final solutions. It is presented an
algorithm that, in addition to the GRASP, incorporates the Regret with the p-
minmax method to evaluate the heuristic solution obtained in regard to its
robustness for different scenarios. To the well know Maximum Coverage
Location Problem from Church and Revelle [1] an alternative perspective is
added in which the choice behavior of the server does not only depend on the
elapsed time from the demand point looking to the center, but also includes the
waiting time for service conditioned by a waiting queue.
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Abstract

This article discusses issues related to the loeathd allocation problems where is intended to
demonstrate, through the random number generatien,influence of congestion of such
systems in the final solutions. It is presentedadgorithm that, in addition to the GRASP,
incorporates the Regret with theminmaxmethod to evaluate the heuristic solution obtained
regard to its robustness for different scenariasthe well know Maximum Coverage Location
Problem from Church and Revelle [1] an alternapieespective is added in which the choice
behavior of the server does not only depend orlidgesed time from the demand point looking

to the center, but also includes the waiting tioreservice conditioned by a waiting queue.

Key-words: location, allocation, coverage, heuristic, regrgtieue, scenarios



1. Introduction

Given the increasing relevance concerning the prowi of services compared to existing
demand and the costs of setting up such a systaenlocation problems are of utmost
importance both in our daily lives as well as irentfic circles. Typically, the performance of
such services is evaluated by the number of cus®mehe queue and the waiting time expect
since the arrival at the center. Overall, what loartoncluded is that these indicators are highly
correlated with the number of centers providing/isess and their specific location. Examples
of such services are medical systems, police dpest firefighters, roadside assistance

services, among others.

The problem that researchers intend to resolveléded to the location of service centers and
the respective allocation of demand to these cenlieran attempt to capture the characteristics
of these systems and make an approximation totyedtie location models have become so
complex that obtaining results by complete enunmrdiecame more difficult, essentially as a

result of the exponential growth of computing time.

The various models developed have in common thatitherent complexity hampers the
process of finding a solution. Thus, the formulasiowere constrained by simplifying
assumptions, sometimes occurring deviations froaréality faced by planners, whether in the
public or private sector. Technological advancegehallowed a gradual development of more
realistic formulations, given the possibility ofnfing a solution to complex models with

acceptable computing times.



Despite the different proposed formulations ovemetifor the various problems related to
location and allocation, it is common that the oegiare represented by networks, a continuous

space or a set of discrete points.

This paper presents an algorithm that, besidesktttsvn GRASP - Greedy Randomized
Adaptive Search Procedure incorporates thmipmaxRegret method to evaluate the heuristic
solution obtained in regard to its robustness ftfeidnt scenarios. The use of these processes is
in line with previous researches, like the worlDafskin et al [2], and aims at their integration
in order to explore new methodologies that improvéetter adapt to the circumstances of the

cases studied.

By varying the limits imposed in terms of waitingés, maximum distance, demand processing
capacity and size of the network, it is possiblentiice significant changes in the final
solutions. The problem under study is the well-knoklaximum Cover Location Problem
developed by Church and Revelle [1] incorporatingatternative model in which the server
choice behavior does not only depend on the elajpsedfrom the node to the center, but also

includes the waiting time for the service.

The model and its various examples were testedyubm random number generation. In most
cases different results show up making it possibleonfirm that the proposed formulation

produces significant differences in the resultsggéneral, the more "tighter" the systems are, ie,
when the related distance limit between demandcamder values are lower, the number of
service centers to locate or the waiting timetlingcation decisions are more sensitive to pre-

defined parameters for the model.

As regards the classification of the location peablin focus, this may be done according to the
grouping suggested by Current et al. [3]: maximustathce models, "p-dispersion” problems

and average or overall distance models. Thus isactexized by being a maximum distance



model when is explicitly considered a maximum dista within which a facility must be
located to provide service as well as a time Iwithin which the service should be provided.
This is usually the case of schools, hospitalsadice stations location where people expect to

have an available facility within acceptable limaisay from the original demand area.

A consumer is considered to be covered by a serwehich is considered fixed and presents
unlimited capacity concerning the possibility obpessing the service needs - if you have an
installation within the pre-established distaneritli Where a service is provided by a facility

located below this maximum, then the service isc®red appropriate or acceptable.

The formulation used in this work is inherited frggrevious studies, such as the works of
Marianov and Serra [4] and the one of Silva and&Sg], mainly in relation to the "Maximum

Coverage Models" and the additional incorporatibresults from the Queuing Theory.

The complexity associated with the model, assunggrhistication in an attempt to capture
more elements of reality under study, requiresues of heuristic procedures in the search for
solutions. Thus, in addition to GRASP, the alganthontains a Regret component, based on
the work of Daskin [2], which demonstrates to progllacceptable results both in terms of
computing speed as, and perhaps more importantlierms of approximation to the optimal

solution.
This work aims to highlight the importance, as fiedi in real life decisions, of considering the

congestion of the systems in its various forms dstarmining factor of location and allocation

decisions.

2. Related Literature



Location Models have been studied for some decades with submitted proposals that fit
both the public and private sectors. Classic exampf such problems are the ones that were
carried out and pioneered by Hakimi [6, 7]. Thishau considered a network without imposed
direction on arcs, where consumers are located ahlthe nodes (or demand point). Each
demand point presents a certain percentage of deorameed for care. The 1-median problem
explored is based on the location of a facility @metwork with the goal of serving the
consumer minimizing the average travel distancesden the facility and demand node. Hakimi
showed that, among all the nodes, there was dtdeasptimal location for the server, this way
reducing a continuous search by a finite one. Ailainresult is also applied to (p-median)
multi-median problem, in which various facilitieboalld be located so as to minimize the

average distance from the nearest facility to thesamers.

These types of problems addressed, Discrete LocMiadels, are generally formulated with
integer linear programming and can be solved usimgalgorithm known asbtanch and
bound. However, somehow justifying the use of heurighocesses, even the most basic
location problem is classified as "NP-Hard" anduisgp an unacceptable computation time to

find patterns of employment associated with moadisc situations.

In this category, the maximum coverage model olir€i and Revelle [1], pretends to limit the
number of facilities to be located. The goal becerte locate a predetermined or budgeted
number of facilities so that the requests affe¢ted certain server installation are maximized.

This model does not require that all demand is e

However, it has already been studied for some timthin the problems of location, the

uncertainty that such systems may exhibit leadsareters to assume alternative positions in



regard to demand modeling, travel time or evenscassociated with the chosen locations. Four
basic approaches were formulated: approximatiomagh a deterministic replacement, finding
deterministic equivalent, probabilistic models witlkstraints, queuing systems spatially

distributed and scenario planning.

Regarding this approach with the inclusion of scesasuch as developed in the present work,
we highlight the introduction to the topic held Bheppard [8] in 1974. This shows the
importance of making location and allocation dexisitaking account environments which are
uncertain as it is these that dominate our objéattdy. This way we take into account the
randomness in the frequency of demand for cer@ivice as a perspective on uncertainty, the

source of congestion of the systems in question.

Still under a deterministic point of view, otherse aaddressing congestion with alternative
formulations as models for the location and covenadh redundant coverage, like Hogan and
Revelle [9, 10] suggest. Daskin [11, 12] suggestation models with probability in one of its

known extensions to the problem "Maximal Coveriag8uming that servers are busy according
to a given probability. In this case the goal isaximize the demand covered by the other

servers that are not occupied.

The study area that intends to incorporate intemastoccurring in queues with location models
shows some interesting advances that have been madeent decades in particular with
respect to emergency services. The pioneering weghkrding this topic was Larson’s [13] —
“hypercube queuirigmodel, which already considers a system of ststibiaservice spatially
distributed, but also with mobile servers scatterBdtta et al [14] used this model to
demonstrate that the implicit assumption of indejesmce of the server, as assumed by Daskin

[11],[12], is often violated.



To consider, as in the present work, fixed seritassalso possible to verify that they can "face"
congestion. This is the case of health services sngeneral, public services of any kind

availing servers fixed. See it as an example Maxand Serra [15].

Berman, Larson and Chiu [16] effected the work @bered the beginning of the "marriage”
between the location theories and queuing theofiesse expanded the Hakimi's [6] 1-median
problem incorporating it in the context of queulsdeciding the location of service centers is
explicit their dependence in relation to serviomes, travel times and delays arising from
queues themselves. As a basis for this work is #isoLarson’s [13] Hypercube Queuing

Model, opportunely mentioned.

In this context, many are the objectives propoBeadta [17] considers the problem of locating a
single service center in a network that operateara$//G/1 queue where waiting calls are
answered according to a class of queuing disciplthat rely solely on the information about

the expected service time.

Brandeau and Chiu [18], also dedicated to congesgstems, develop the modé&tbchastic
Queue Center Locatidrthat aim to minimize the maximum response timartg consumer. For
these authors the expected response time takeadntmnt not only the waiting time until the

server is on but also the travel time to the cdrntanter.

In turn, the Revelle and Hogan [9] model opportyneientioned, deal with congestion
presenting a probabilistic version of the locatwablem. It is also in this line of development,
that Marianov and ReVelle [19] present the “Prolistic Covering Problem with Queues”.
With an identical formulation as the one followedib the “Probabilistic Covering Problem”, a

simple modification of Maximum Coverage Locatiorolflem of Church and ReVelle [1],



Marianov and Serra [4] introduce the “Maximum Cage Location-Allocation Model with
Queues” where the goal is to locatservice centers and affect these users so thatakenum

population is covered.

3. The Maximum Coverage Problem with Queues

This section seeks to present, as regards emplogtdion (3.1) and proposed formulation
(3.2), the Maximum Coverage Problem studied to tvlicheuristic is applied and measured to

assure the respective quality.

3.1. Notation

The following notation is defined as:

« listhe set of all demand nodes, indexed with
« Jis the set of all potential location nodes, indewéth j;

e N;is the set of centers located at a distance lower to or equal to a distance lower to or

equal the distance limit (/dist) from the demand node i.

Parameters:

. Wj is the average waiting time at center j (see equation 3.1.1), where P = L and

A, =Z:a1-)(ij ;



T is the parameter that represents the limits imposed for the waiting times;

e pisthe number of centers to be located;
* & isthe population in the demand paint

* djis the distance from the center i looking to the service center located in j;

* J is the rate that represents the process of service calls for each node i according to a
Poisson process;

* Jis therate defined as the sum of the rates of calls from all demand points affected to
a service center in j;

e Sisthe average service time according to the distribution function;

e uisthe average rate service per time unit;

. fi is the demand call rate for service on demand point i;

s P :Sj/h :szfi Xij is the utilization factor defined as the product of the
i

average service time and arrival rate;

e nsrepresents the number of scenarios for the problem development.

Decision Variables:

. Xij is 1 if demand node i is affected to a center and 0 otherwise;

e Y. is1ifacenterislocated atjand O otherwise.

J

According to the Queues Theory, taking into accabetwork of Kleinrock [20], the waiting

time and the occupation factor are obtained, reés@dy, using the expressions




wherey represents the service rate.

3.2. Formulation

The Location Coverage Problem with Queues assuta#e allocation of customers to service
centers. This is a typical assumption in the cdseiwers with fixed locations where consumers

move to the center for treatment [21].

We will assume a Direct Choice Environment in whizhcentral decision maker sets the

allocation of a client to a center:

ij

s. t.

Xij <Y O iel 0j€EN; (3.2.1)
injsl 0 ie; (3.2.2)
JEN;
ny . (3.2.3)

i

W<t O j (3.2.4)

Xij; ¥; € {0,1} 0O iel Oj€N,
___Pj (3.2.6)
W, [
7 u(1-p))

The objective function maximizes the populationemage. Restriction (3.2.1) states that if the
populationi is allocated to a centgrthen there must be a centejj;if3.2.2) requires that each
search point is not to affect more than one celi82.3) defines the number of centers to be
located; (3.2.4) forces that the average waitingetiis less than a pre defined limit.
Additionally, j necessarily has to be in the ramgeThe same is to say that if demand point is

covered, then there should be a center locatednnatdistance limitdist.



4. Heuristic Procedure

It will be shown now, as defined by Reeves [22hearristic method that seeks to find good
solutions (ie near-optimal) in reasonable computiimge. Therefore it is assumed that the
solutions found by these heuristics methods areahwtiys able to ensure an optimal and

possibly may not present possible solutions.

The implemented algorithm uses, at some point,"Greedy Randomized Adaptive Search
Procedure" (GRASP) developed by Feo and ResendeM#8h comes up as an unfolding of
one of the heuristics used to solve the 1st lonatiodels designed by Teitz and Bart [24]. This
is seen as an approach through "exchange" or templent" moving the servers from their
current positions to other non used positions aeeplkg this new position whenever the
objective value is improved. For additional infotina on the subject see Festa andResende

[25].

It is also used in the proposed algorithm the B@igrpminmaxRegret developed by Daskin et
al [2]. To understand the importance of this methoefore we take into account the issue
addressed, in an attempt to deal with the unpradgilty of demand, the problem is solved for
different scenarios by random generation (whersehepresent different population levels) and

different frequencies of demand for service.

The term Regret is thus associated with the naitfodeviation or difference thus giving us an
"opportunity cost" when implementing the chosenat@mn. Given the design of the service

delivery system that we considered optimal for &egi scenario, the Regret, based on



population characteristics of the remaining sc@&sadnd respective objective function value

(covered population), returns the difference ireda® locations were kept.

According to the author, many may be the objectieeghis indicator. This work intends to,

from the largest differences select the lowest #ydsuccessive adaptations, minimize it. We
can interpret this process as finding a locatidotem that, in the worst possible scenario (the
one that presents the greatest Regret given thmalptolution) presents the lower deviation or

"opportunity cost”.

We now presented the algorithm implemented in Cis which is introduce the two heuristics

discussed above - GRASP gmaninmaxRegret. Before that, we indicate the notation used

j index of possible locations;
* iindex of demand nodes;
« D list of potential location points for services ered according to the total population;

¢ Ssolution

. S complementary solution

¢ Ccandidate set of points

e pnumber of services to locate
* nnumber of demand nodes

e inc_joverall rate of calls to potential service locatio

D; list of demand nodes within the distance limit dmgfrom the potential location

for service



Thus, the system starts by reading the distaneerditognizing at this stage the network of
demand points - all of them potential locations re ahe distances between them - our

associated cost measured in terms of time units.

For each node representative of a population cettier respective population is generated
according to a Uniform distribution. Since thisaisiser-defined parameter, in order to subject
the model to different conditions, the demand entlestimated based on a percentage of the
population previously obtained. These values — [atjmn and demand- are generated for each
one of the (ns) scenarios and will be as many esitimber of scenarios with which we intend

to work.

In possession of the characterization of the ndtwas regards the number of nodes and
distance between these and respective populatimhsl@mand, using the CPLEX optimization
software, the model begins by solving the maximumwecage location problem for each

scenario.

The optimal value of our objective function for eascenario is thus obtained, acting as a future
reference when compared to the results obtainedotfoer levels of population and when
maintaining the optimum locations obtained. Thikgon includes: in which nodes are located
service centers, the allocation of demand pointhéorespective centers and the value for the

objective function concerning the covered popafati

Having simulated the scenarios, a matrix titled leed (ns, ns) is built. The diagonal of the
matrices Regret 1 indicates the optimal valuesiobtain each of the simulated scenarios.
Values outside this diagonal, ie, adjacent to tp&nml solution values, are obtained by
calculating the objective function considering thbaracteristics of the other scenarios
(populations and demands) but maintaining the logadllocation patterns given to us by the

CPLEX optimization software.



197182
161050
170892
171313
169787
196787
197121
177336
179487
189741

201432
190007
167845
175949
191717
192776
195798
181656
173998
185731

198357
181250
157853
194848
188772
193741
177131
189743
167131
159887

196556
182356
164887
164073
169745
183797
193457
187141
189477
169741

195265
192123
169741
169787
180869
181579
189743
191778
183454
200874

194325
179125
190187
199454
183556
171896
172656
194331
199466
190157

198562
183459
178112
185464
197010
181235
164681
184556
193473
182486

196663
168971
156746
177989
191141
182454
165888
175624
195471
189478

197701
179157
192454
184188
186311
192478
178432
185655
164635
168635

194003
189457
189451
188774
188745
179878
182747
189774
167979
182916

Figure 1. 10 scenarios Regret 1 matrix.

A caution since the calculation of the values aslj@do the "optimality diagonal” requires a

possibility test so that, in the continuation ok thlgorithm, a necessarily workable initial

solution is obtained. The possibility test of aueahdjacent to the optimal solution should take

into account:

The distance limit (ldist) from demand node i allocated to service center in j é is taken

into account;

The limit for the waiting time (wlim) in j is respected; and

Whenever negative valued waiting times are associated to a solution, in the matrix

Regret 1 a zero will be shown.

When the objective value calculated with the stashdecations and allocations for the other

scenarios is not possible, under the conditionpoafibility described above, the value in the

Regret 1 matrix will be zero. Thus the associat#dt®n is omitted of the rest of the process as

an initial starting solution for GRASP since thexa value will not be considered in the choice

of maximum deviation that is performed in {r@ninmaxprocess.

After the possibility test, based on Regret 1 mattie Regret 2 and Regret 3 matrixes are build

up, where each one being a transformation of tleepoaceding, as described below:




Regret 2: each value of this matrix will be obtairey the difference between the goal

of a given scenario and its respective optimaligrecated by CPLEX and contained in

the diagonal of the Regret 1 matrix). This way, emgiively the diagonal of matrix of

Regret 2 will contain only zeros. This procedutevas us thus obtain the values of an

"Absolute Regret".

0

-28957
13039

7240
-11082
24891
32440

1712
14852

6825

4250
0
9992
11876
10848
20880
31117
6032
9363
2815

1175
-8757
0
30775
7903
21845
12450
14119
2496
-23029

-626
-7651

7034

0

-11124
11901
28776
11517
24842
-13175

-1917
2116
11888
5714
0
9683
25062
16154
18819
17958

-2857
-10882
32334
35381
2687
0
7975
18707
34831
7241

1380
-6548
20259
21391
16141
9339
0
8932
28838
-430

-519
-21036
-1107
13916
10272
10558
1207
0
30836
6562

519
-10850
34601
20115
5442
20582
13751
10031
0
-14281

-3179
-550
31598
24701
7876
7982
18066
14150
3344

Figure 2. 10 scenarios Regret 2 matrix

Regret 3: the difference obtained according toutations made in Regret 2 matrix is

now divided by the optimal value of reference foe scenario in question. So we get to

know the value of "Relative Regret" associatedachescenario.

0,00000
0,15240
0,08260
0,04413
0,06127
0,14480
0,19699
0,00975
0,09021
0,03731

0,02155
0,00000
0,06330
0,07238
0,05998
0,12147
0,18895
0,03435
0,05687
0,01539

0,00596
0,04609
0,00000
0,18757
0,04369
0,12708
0,07560
0,08039
0,01516
0,12590

0,00317
0,04027
0,04456
0,00000
0,06150
0,06923
0,17474
0,06558
0,15089
0,07203

0,00972
0,01114
0,07531
0,03483
0,00000
0,05633
0,15219
0,09198
0,11431
0,09818

0,01449
0,05727
0,20484
0,21564
0,01486
0,00000
0,04843
0,10652
0,21156
0,03959

0,00700
0,03446
0,12834
0,13037
0,08924
0,05433
0,00000
0,05086
0,17516
0,00235

0,00263
0,11071
0,00701
0,08482
0,05679
0,06142
0,00733
0,00000
0,18730
0,03587

0,00263
0,05710
0,21920
0,12260
0,03009
0,11974
0,08350
0,05712
0,00000
0,07807

0,01612
0,00289
0,20017
0,15055
0,04355
0,04644
0,10970
0,08057
0,02031
0,00000

Figure 3. 10 scenarios Regret 3 matrix.




It is precisely based on Regret 3 matrix that watiooe our algorithm applying theminmax
heuristic as suggested by Daskin et al. [2]. Befine latter matrix, the procedures are as

follows:

i From the Regret 3 matrix, observing the values in line, we choose the one that
presents the higher relative regret, in other words, the possible solution that departs
furthest in percentage terms from the optimum control solution contained in Regret 1

diagonal obtained using the CPLEX;

ii.  Subsequently, all these maximum percentage deviations (relative Regrets) the minor is
picked up with the intention of using it an initial solution in the local search that

follows on the GRASP heuristic.

The GRASP consists of two phases — constructioselaad local search phase — and is an
iterative process with reliable solution built ipéedently at each iteration. Described below is

a pseudo-code for the GRASP.

Procedure GRASP (Max_iterations, Seed)
For k = 1 to Max_iterations do

S&Greedy_Randomized_Construction(Seed, y);

S&Local_Search(Solution);

Update_Solution(Solution, Best_Solution)
enddo

end GRASP
Pseudo-Code 1: Pseudo-Code GRASP

From a general point of view, the process develdpetiis heuristic, after the selected initial

solution as described above, follows like this:



1. From the locations contained in the initial solution previously obtained, randomly one
is chosen to be removed and replaced by another which, necessarily, must be on the
RCL — Restricted Candidate List;

2. The potential locations belonging to the RCL must meet the requirements of
acceptability with regard, not only the distance limits imposed but presenting a priori a
demand frequency greater than or equal to gamma percent of the search node with
the highest demand frequency;

3. |If part of the RCL it is temporarily accepted to be considered in the iterative process
and, when replacing the previous location, switches its position regarding its allocation
to demand points;

4. When the initial solution is improved, this new locations and allocations pattern is
accepted;

5. Otherwise, the initial solution remains.

Are then built again the Regretl, Regret 2 andr&e®ymatrixes based on the values obtained
in the local search now held. In this process fitlse€ matrix goes again through the possibility

test once described. This process is repeateddedefined number of iterations.

Now it is explained in detail, with the use of pdetcode for the two phases of that process, the
GRASP heuristic. The construction phase, which retilirn an initial solution at each iteration,
is called Greedy_Randomized Construction(Seedy) and is a function from the root in the
random number generator and of the gamma parartteerdefines what solutions will be

included in RCL Restricted Candidate Listhe list containing the best solutions.

The development of thereedy Randomized Constructon(Seed is now described:

procedure Greedy Randomized Construction (Seed,y)
{sort candidate sites by decreasing order of population}



D, ~ Sort_Candidate_Siteg population);
{initialize solution set}
s={}
S =C;
{while solution is not a complete solution}
while ‘3 # pdo
{loop over all candidate sites not in the solution list}
Forj=1to ‘§‘ do

{initialize parameters}

{restrict demand points list to the standard covering distance to site j}
D, - oD, <d}

{sort demand points by increasing distance to site j}
D; — Sort_Demand_Point §( distance);

{loop over demand points in set Dij}
Fori=1to ‘Dij ‘ do
{sum frequencies at each demand point if waiting time limit is not reached}
If (W_j <7and p_j<1) do
inc_j:=inc_j+fi;
actualize w_j;
actualize p j;

Endif
Enddo

{construct the restricted candidate list}
¢ : = maxinc_j};
RCL {j gSinc_j= ycm"‘x};

{select randomly one site from the RCL}
j* « Random SeledfRCL);
s:=so{j*}
s =s\{j*}
{take the demand points allocated to j* out of the demand points list}
Fori=1to ‘Dij*‘ do

p:=o\{i0D,.}

Enddo

Enddo
end Greedy Randomized Construction

Pseudo-Code 2: Construction Phadeseudo-Code

The proposed algorithm starts by choosing the clteinodes according to their respective
demands/population®Ve considered in our example that all demand nadesalso potential
service location points. Another possibility wowdly consider a subset of demand nodes from

theD; list.



This way, starting with the first node from the dafate list, it is affected to it the closest
demand nodes until de coverage limit is attainesteHthe coverage limit can be seen whether

by the utilization coefficient or the imposed linfdtr the waiting time.

Total demand affected to each of the potentias §ite calledincoming call rate Theincoming
call rate works as agreedy function of the algorithm and can be defined agegghing of the

demand nodes no yet covered but that will do iatmnj was chosen to have a server facility.

It is included on the RCL - Restricted Candidatst I(sub-set of best solutions) the candidate
nodes with a totahcoming call rategreater to or equal gammaper cent of théncoming call

rate indexed to the potential location with higher \alu

In the GRASP, thgammaparameter is established before. (for instancganfimaequals 0.8,
we therefore mean that we include on the list doimg the best solutions Restricted
Candidate List- all the potential locations with a total incoipioall rate greater then 80% of

the highest value between all incoming call rates).

Note that in the greedy heuristic, as suggested by Marianov and Serrg fdg¢ choice would

always be to locate a center at the node with igfieelst sum of incoming call rates, i.g51.

At each iteration, we choose randomly from amorg ¢andidate locations with the highest
incoming call rate (i.e., the ones included Rastricted Candidate Ljsthe p locations for

servers.

procedure Local_Search (Solution, Best_Solution)
obj_best : = obj(S);
{loop over sites in the solution}

for all jl [0 Sdo
s:=s\{j,};

{loop over sites not in the solution}



for all j2 Dédo
evaluate obj(S0{],});
if obj_best< Obj(S O { ] 2}) do
s:=s0{j,}:
obj_best : = obj (S O { jz});
else
s:=s0{j,}:
endif
enddo

Enddo
end Local_Search

Pseudo-Code 3: Local Search Phageseudo-Code

At the local search phase, for each ceptar se we un-allocate its assigned demand and
move it to all the potential locations not yet usegpeating at each time the steps 9 to 20 from
the Greedy Randomized Constructiprocedure, aiming to evaluate the objective. if ah

the locations reciprocate a better objective value maintain the service center at that node;
otherwise, we keep it in the original location ($§&eudo-Cod&). We repeat the procedure

until it is not possible to improve the initial atibn or the limit of iterations is reached.

In a user defined environment, the algorithm wonded to be modified, both in construction
phase and in the local search, in order to stremgéhclosest allocation. The proposed algorithm
penalizes the final objective whenever an unrediabblution is obtained. In the case of
obtaining a reliable solution, this set of locatois considered as potential site for the
placement of service centers. Otherwise, we conglde set of locations only as an initial
solution and not as a potential service locationapging the objective with a large negative

value M. This will match the following objective @&wuation procedure:

procedure evaluate_objective (S)

Allocate each demand point to its closest center location;
Evaluate W_jand p j;

obj(S):=0;

If (W_j<rand p j<1)do



For j=1to pdo
For i=1to ndo
If (i is allocated to j) do
obj(S):=obj(S) + f_i;
endif;
enddo;

enddo;

Else
obj(S):=M;

end evaluate_objective;

Pseudo-Codoo 4: Objective Evaluatio®Pseudo-Code

During the Local Search phase, for each centettiateg we un-allocate their assigned demands
and mode them to all the un-used potential locatidde always affect a demand node to the
nearest potential location e check the possihiliigerving the waiting time limit. If the solution

is not possible, the objective is penalized withieay high negative value M. Whenever new
allocations result in a better objective we mamtidiat center in that location. Otherwise, the
starting location is kept. This procedure is repéaitntil, when comparing with the previous, no

better solution is found.

5. Computational Experience

In order to observe the difference between theltesid the heuristic solution and the initial
results obtained, which will serve as a startinghnpand comparison) for the GRASP Local
Search, were randomly generated problematic suoustin the demand network model
proposed. The size of this network will be variabled each center is assigned a particular
demand frequency (need for service / care). Further, the characteristics of this will also be

amended concerning the number of nodes and denesers.



Were also set alternative values for both Waitingellimit as to Distance limit, as can be seen
in Table 5.1. As regards the recursive proceskeatgorithm, programs were tested sometimes

for different number of iterations and for diffeterumber of scenarios.

In each generated scenario and for each specitfivorie the distance between nodes is constant
since it is only changed the size of the netwodarding the number of nodes and the demand
recorded at each respective point. The distancedeet demand points is achieved by using a

distances matrix common to all scenarios and siuggdworks.

A summary of the characteristics and parameterth@fworked data are presented below in

Table 5.1.
Number Limits Number
Cases | Nodes Centers Distance Waiting Time Scenarios Iterations

1 55 5,10 and 10 0.02 10, 100 and 100
20 1000

2 55 5,10 and 10 2 10, 100 and 100
20 1000

3 55 5,10 and 10 20 10, 100 and 100
20 1000

4 55 5,10 and 1 20 10, 100 and 100
20 1000

5 55 5,10 and 10 20 10, 100 and 100
20 1000

6 55 5,10 and 20 20 10, 100 and 100
20 1000

7 25 5,10 and 10 0.02 10 500, 1000 and
20 2000

8 40 5,10 and 10 0.02 10 500, 1000 and
20 2000

9 50 5,10 and 10 0.02 10 500, 1000 and
20 2000

Table 5.1 Characteristics and parameters of the worked data

The algorithm in study was implemented on a compwi¢h 2.50 GHz Pentium Dual-Core

processor with 1920 MB of memory and using the d@angC++ Microsoft Visual Studio 2005



which integrates, for the resolution of the proldgpnoposed the optimization software CPLEX

Optimization Studid 2.2

In general, we aim to analyze the results checkitite location-allocation patterns, given to us
by the heuristics method, show any differences wt@mmparing with the location-allocation

pattern from the initial solution in the GRASP Lb&earch phase. It is also obtained the
average value of the percentage deviation assdordath the solution obtained which, also in a

greedy fashioywe tried to low it as possible.

5.1. Changing the Waiting Time Limits and Distances

A 55 demand nodes network was used for a totalO6f ifierations. Varies, in this case, the
number of service centers to locate as well asitimber of scenarios studied. Additionally, in
order to generate different situations for the exystboth the waiting time limit on the server

(wlim) as the distance limit between the server lseddemand node (ldist) are amended.

The tested values for the waiting time limit on gegver were wlim = 0.02, wlim = 2 and wlim
= 20. In all these cases the distance limit betwtberserver and the demand node was fixed at

Idist = 10.

For wlim = 0.02, regardless of the number of sdesaand number centers lo locate, the
heuristic always reciprocate an identical finalusioin to the starting solution (initial solution)

thus matching the initial and final locations.

When wlim = 2, it was obtained the greatest nundierases where the final locations differed

from the initial locations. It turns out as desedbin 3 of 9 cases tested, especially when



considering the location of 10 service centers simdilating 100 scenarios like when trying to

locate 20 service centers, for any of the 10 arffidsb@narios simulations.

By using the waiting time limit on the server ofimvl= 20, only in 2 of the 9 cases studied the
final locations differed from the initial location§hese are the cases where it is wished to locate

20 service centers, both for 10 and 100 scenarios.

While continuing to review the presented heuristioasing on the same 55 demand points
network with a total of 100 iterations, fixing theaiting time limit on the server (wlim), now

were changed the distance limit values betweesdher and demand center (Idist).

The rested values for the distance limit betweeneseand demand center were ldist = 1, Idist =

10 and Idist = 20. In all those cases the waitimg timit on the server was fixed at wlim = 20.

It is precisely in the observation of Idist = 1y fthe proposed location problem, that the
heuristic analysis always shows final locationgedént from the initial location solution used

as a starting point.

By increasing the distance limit between the seavel the demand center for Idist = 10, in 2 of
the 9 cases worked show differences regarding rittiali locations and the final locations
obtained through the heuristic procedure. This bappvhen trying to locate 20 service centers

for the cases when 10 and 100 scenarios were sedula

In turn, when it is intended to use Ildist = 20, possiblectasions are the same, including in
terms of the number of scenarios, with the diffeethat the non-coincidence of locations

arises when pretending to locate 5 centers.



Taking into account all the waiting time limit valsitested (wlim = 0.02; 2; and 20 for Idist =
10) and the distance limit between the server amdathd center (Idist = 1; 10; and 20 for wlim
= 20), when comparing the Minimum Relative Regretaoed for all of them it’s possible to

see its positive tendency towards the increaseeimtumber of scenarios tested.

Regarding this late indicator, the heuristic resolttained, related to the increase in the number
of centers to locate, don’t show a trusty behap@attern that allow a generalization. It is

possible to observe this both in the variationdidtland in the variation of wlim.

5.2. Changing the Size of the Network and Number of

Centersto Locate

Subsequently a study was conducted where it wasepsed data obtained simulating 100
samples and considering for each of these a 1@&sosrgeneration. This way, the used network
size varies in terms of the number of nodes repti#ggall points of demand. So we chose to
analyze networks with 25, 40 and 50 nodes andadh ene of these cases, varying the number

of iterations. Are considered results obtainedsfa®, 1000 and 2000 iterations.

As regards the average CPU processing time (mehsarseconds), it can be seen that this
increases due to three factors: network size, niember of demand nodes utilized; iterations
number; and, for last, number of service centetedate during the problem solving. However,
this pattern is not as straightforward when assgd$ie 25 nodes network. In this case, for any
number of iterations considered, when going fromto510 centers to locate, the average
processing time follows the pattern described abblesvever, changing from 10 to 20 service

centers to locate, the average processing timedses.



Analyzing the percentage of initial and final laoas matching, these values are increasing

over the number of network nodes and compared dontimber of centers to find. In turn,

considering an increasing number of iterationss inhoted, generally, that the percentage of

matching locations decreases. Higher values farititiicator are found in smaller networks and

with less number of iterations.

25 Nodes Network

40 Nodes Network

50 Nodes Network

Number of Centers to

Locate 5 10 20 5 10 20 5 10 20
o Average Processing Time 1,207 1,268 1,141 2,598 3,449 4,704 3,967 4,96 8,809
S § y % Matching Locations 5% 37% 95% 10% 24% 82% 14% 24% 92%
wn
P Average Regret 0,11866 0.15134 0,16351 | 0,08012 0,10989 0,12178 | 0,04482 0,08237  0.08504
o | Average Processing Time 1,661 2,227 1,806 3,645 5,661 8,242 5,742 8,015 13,88
§ § y % Matching Locations 1% 21% 88% 5% 15% 77% 12% 22% 90%
N
=8 Average Regret 0,1149 0,14312 0,16052 | 0,07705 0,10031 0,11625 | 0,06552  0,07983  0,08349
o | Average Processing Time 2,886 3,733 31 5,446 10,535 14,612 8,356 13,939 23,258
§ B y % Matching Locations 5% 14% 84% 6% 7% 66% 18% 11% 64%
b
N8 Average Regret 0.10729  0,13702 0,15885 | 0,06570 0,10122  0,12052 | 0,03293 0,06982  0,08623

Table 4.2. Simulations Results for 100 examples Ehdcenarios; average processing
time measured in seconds

5.3. Conclusions

Increasing the limit for the waiting time (wlim),el as increasing the distance limit (Idist)

between demand node and service center, lead umlieve that this heuristic produces

solutions that improve the solutions defined ordjin

Under the perspective of system congestion, feweters locate and a larger network, lead the

heuristic to find different solutions from thosetaibed initially by the Regret method.

It is important here to analyze not only the petage of matching locations, but also the values

of Minimum Relative Regret. By decreasing theseaciaig that possible solutions were found,




and these, in the case of problems for freer systeeviate less from the starting solution for

the heuristic given by the Regret method for the sEsimulated scenarios.

The same conclusion can be drawn if you equatecéises in which the number of service
centers to locate were increased, allowing thigetsip generalize the behavior of the heuristics

developed.

6. General Conclusions

By analyzing the literature related with the looatand allocation problems, it’s easy to realize
the trend of including in this type of models tliseets of queues. This might happen because,
considering a certain demand for service, in ngalitappears that this is random and one of the
sources of systems congestion. It is for this nedbat this study associates to the Maximum

Coverage Location Model formulations related todqbeues theory.

This type of problems, that can arise both in tloatext of the public or private sector,
involving different types of formulation as maximudistance modelos or total/average distance
models. The methodology associated with each spgmibblem should be carefully proposed

and one should compare the results obtained whitkeretreciprocated by traditional models.

Additionally to the ‘Greedy Randomized Adaptive Search Proceéd(oe GRASP), was also
used in the heuristic method developed fiminmax Regret (Minimum Relative Regret)
proposed by Daskin [2]. The use of these procassedine with previous research and aims its
integrate in order to explore new methodologiest taahance or better adapt to the
circumstances of the cases studied. Thus, the @geeImodels can be considered adequate to

address the type of issue proposed in the currerk.\By varying the limits in terms of waiting



times and maximum distance, limits of demand prsiogscapabilities and network sizes, one

can notice significant changes in the final soluio

There are numerous real situations where the wgaitime is an important factor when
considering the length of service (time or distatreeeled plus the waiting time). In those
cases, taking into account the determination obcatlon pattern, the waiting time is to be
regarded as essential in the respective systemlimgd®lay also interfere with the processing
time the number of centers to locate at a certaiwork scale, as well as the capacity of

facilities in providing the sought service.

The proposed meta-heuristic reciprocates near aptsults demonstrating significant savings
in computation time. Given the initial data, washnaihe use of simulation that in the present

study the demand levels associated with each piguildata were obtained.

Regarding the application of Greedy heuristicshiese formulations, these show acceptable
behavior to the extent that the near-optimal sohgiare sensitive to the worked examples and

problematic situations proposed in each case.

On the other hand, according to the theory andthmerical examples obtained, suggest that
the solutions become less sensitive to the modahpeters as the system becomes less busy. In
the case that, for instance, the distance limivbeh the demand node and the service facility is
smaller or when there are less service centersdatd, one can assume that now there is a
greater congestion associated with the model. atterlare precisely those cases where the

heuristic has given results not identical to thgahsolutions used as input to our algorithm.

As for generalizing conclusions regarding the cot@aonal experiment conducted, special care

should be taken. The tested models and their vargamples were obtained using random



number generation. In many cases, it is worth gatiifferent results but there are others where
the proposed formulation does not produce signifiadifferences in the results. As already
mentioned, in general, the most "tight" systemsptiner words, when the distance limit is
smaller, the number of service centers to locagessmaller or for inferior processing

capabilities, location decisions are more sensttivere-defined parameters for the model.

In conclusion, having simulated populations and rispective demand frequencies, with this
work it is possible to highlight the paramount impace, as in real life, of consider systems

congestion in its various forms as a determinirgoiain location and allocation decisions.
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