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RESUMO/ABSTRACT 
 

A Regret Model applied to the Maximum Capture Locat ion Problem 
 
 

This article addresses issues related to location and allocation problems. 
Herein, we intend to demonstrate the influence of congestion, through the 
random number generation, of such systems in final solutions. An algorithm is 
presented which, in addition to the GRASP, incorporates the Regret with the p-
minmax method to evaluate the heuristic solution obtained with regard to its 
robustness for different scenarios. Taking as our point of departure the 
Maximum Capture Location Problem proposed by Church and Revelle [1, 26], 
an alternative perspective is added in which the choice behavior of the server 
does not depend only on the elapsed time from the demand point looking to the 
center, but includes also the service waiting time. 
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Abstract 
 
 

This article addresses issues related to location and allocation problems. Herein, we intend to 

demonstrate the influence of congestion, through the random number generation, of such 

systems in final solutions. An algorithm is presented which, in addition to the GRASP, 

incorporates the Regret with the p-minmax method to evaluate the heuristic solution obtained 

with regard to its robustness for different scenarios. Taking as our point of departure the 

Maximum Capture Location Problem proposed by Church and Revelle [1, 26], an alternative 

perspective is added in which the choice behavior of the server does not depend only on the 

elapsed time from the demand point looking to the center, but includes also the service waiting 

time. 

 
Key-words: location, allocation, coverage, heuristic, regret, scenarios. 

 

 

1. Introduction 

 

Given the vital importance of providing services in contexts of ever increasing demand and the 

costs of setting up such allocation systems, location problems are of utmost importance both in 

our daily lives as well as in scientific circles. Typically, the performance of such services is 

evaluated by the number of customers and the waiting time ensuing from the arrival of a request 

at the center. Overall, what can be concluded is that these indicators are highly correlated with 

the number of centers providing services and their specific location. Examples of such services 

are medical systems, police operations, firefighters, roadside assistance services, amongst 

others.  

 

The problem that researchers strive to resolve is related to the location of service centers and the 

respective allocation of demand to these centers. In attempting to characterize such systems and 



approximate them to reality, the location models have become so complex that obtaining results 

by complete enumeration has become more difficult, in great part as a result of the exponential 

growth of computing time.  

 

The various models heretofore developed have been affected by the problem of complexity that 

hampers the process of finding a solution. Formulations have been constrained by simplifying 

assumptions, yet planners are often faced with deviations from reality that occur both in the 

public and private sectors. Technological advances have allowed the gradual development of 

more realistic formulations, given the possibility of finding solutions to complex models within 

acceptable computing times. 

 

Despite the different formulations that have been proposed over time for the various problems 

related to location and allocation, it is commonly assumed that regions are represented by 

networks, a continuous space or a set of discrete nodal points.  

 

This paper presents an algorithm which, besides the known GRASP - Greedy Randomized 

Adaptive Search Procedure - incorporates the p-minmax Regret method to evaluate the heuristic 

solution obtained with regard to its robustness for different scenarios. The use of these processes 

is undertaken in accordance with previous seminal works, such as that of Daskin et al [2]. It 

aims to integrate these new findings in order to explore new methodologies that improve or are 

better adapted to the circumstances of the cases studied. 

 

We found that by varying the limits imposed on waiting times, maximum distance, demand 

processing capacity and size of network, it is possible to ascertain significant changes in the 

final solutions. The problem under study is the well-known Maximum Capture Location 

Problem developed by Church and Revelle [1, 26] that incorporates an alternative model in 

which the server choice behavior does not only depend on the elapsed time from the node to the 

center, but includes also the waiting time for the service.  



Our model and its various examples were tested using the random number generation model. In 

most cases different results were obtained by making it possible to confirm that the proposed 

formulation produces significant differences in terms of results. In general, the "tighter" the 

systems are, i.e., when the related distance limit between demand and center values are lower, 

the number of service centers to locate or  the  related waiting time limit, location decisions are 

generally more sensitive to pre-defined parameters for the model.   

 

The classification of the location problems that concern us may be undertaken in accordance 

with the grouping suggested by Current et al. [3]: maximum distance models, "p-dispersion" 

problems and average or overall distance models. We can characterize this model as a 

maximum distance model given that maximum distances are explicitly considered as a pertinent 

factor as well as considerations relating to the maximum distance within which a facility must 

be located to provide the relevant service as well as the time limit within which the service can 

be provided. This is usually the case of schools, hospitals or police station locations where 

people generally expect to have access to a facility within acceptable limits outside of the 

original demand area. 

  

A consumer is considered to be covered by a server – which is considered fixed and presents 

unlimited capacity concerning the possibility of processing the relevant service needs - if you 

have an installation within the pre-established distance limit. Where a service is provided by a 

facility located below this maximum, the service is considered appropriate or acceptable. 

 

The formulation used in this work is based on previous studies, such as the works of Marianov 

and Serra [4] and those of Silva and Serra [5], particularly those relating to "Maximum 

Coverage Models" and the additional incorporation of results from the Queuing Theory.  

 

The complexity associated with the model requires sophistication in our attempts to represent 

more elements or aspects of reality and the use of heuristic procedures in the search for 



solutions. Thus, in addition to GRASP, the algorithm contains a Regret component, based on 

the work of Daskin [2] that has  produced acceptable results, both in terms of computing speed 

and, perhaps more importantly, in terms of approximation to the optimal solution.  

 

This work highlights the importance, corroborated by real-life events, of considering the various 

forms of system congestion as a vital factor in terms of location and allocation decision-making. 

 

2. Related Literature 

 

Location Models have been studied for decades and have produced implementation solutions 

for the public and private sectors. Classic examples of such problems are those that were 

explored and pioneered by Hakimi [6, 7]. He postulated a network without imposed direction on 

arcs, where consumers are located only at the nodes (or demand point). Each demand point 

presents a certain percentage of demand or need for care. The 1-median problem that is herein 

considered is based on the location of a facility on a network. Its goal is that helping consumers 

minimize the average travel distance between the facility and the demand node. Hakimi showed 

that, among all of the nodes, there was at least an optimal location for the server, in this manner 

reducing a continuous search by a finite one. A similar result is also applied to (p-median) 

multi-median problem, in which various facilities could be located so as to minimize the 

average distance from the nearest facility to the consumers. 

   

The types of problems addressed by Discrete Location Models are generally formulated with 

integer linear programming and can be solved using the algorithm known as "branch and 

bound". However, when applying heuristic processes, even the most basic location problems are 

classified as "NP-Hard" and require unacceptable computation times to find patterns of 

employment associated with more realistic situations. 

 



The maximum capture model proposed by Church and Revelle [1, 26] seeks to set a 

predetermined number of fixed serves, in order to maximize the population covered by its 

service, knowing before the location of a set of concurrent stores. The goal then becomes to 

locate a predetermined or budgeted number of facilities so that the requests directed to a certain 

server installation are maximized. This model does not require that all demand is covered. 

 

However, problems of location have been studied for some time and the uncertainty that such 

allocation systems may exhibit lead researchers to explore alternative positions with regard to 

modeling demand, travel time or even costs associated with the chosen locations. Four basic 

approaches were formulated: approximations through a deterministic replacement, finding 

deterministic equivalents, probabilistic models with restraints, queuing systems spatially 

distributed and scenario planning. 

 

Concerning this approach and its inclusion of allocation scenarios we highlight the seminal 

contribution of Sheppard [8] in 1974. His work demonstrated the importance of taking into 

account uncertain environments in location and allocation decision-making. These uncertain 

contexts are the object of this study inasmuch as they take into account randomness in the 

frequency of demand for certain services as a manifestation of uncertainty, the most important 

source of congestion of the systems in question. 

 

Other researchers, such as Hogan and Revelle [9, 10] working within a deterministic paradigm 

are addressing system congestion with alternative formulations for models that address the 

location and coverage with redundant coverage.  Daskin [11, 12] suggest that probabilistic 

extensions can be added to the "Maximal Covering" problem, assuming that servers are busy 

according to a given probability. In this case the goal is to maximize the demand covered by the 

other servers that are not busy.  

 



In such studies, an attempt is made to incorporate interactions occurring in queues with location 

models. There have been some interesting advances in recent decades, particularly with regard 

to emergency services. The pioneering work in this field of research was Larson´s [13] –

“hypercube queuing” model. Its author proposes a system of stochastic service spatially 

distributed, with mobile servers scattered. Batta et al [14] used this model to demonstrate that 

the implicit assumption of independence of the server, as assumed by Daskin [11], [12], is often 

erroneous. 

 

Fixed servers can "face" congestion. This is the case of health services and, in general, public 

services of any kind availing servers fixed. See it as an example Marianov and Serra [15].  

 

Berman, Larson and Chiu [16] produced the first work that synthesized location theories and 

queuing theories. This work was expanded by Hakimi´s [6] 1-median problem, incorporating it 

in the context of research on queuing. In order to decide where to locate service centers due 

consideration must be granted to service times, travel times and delays resulting from queuing. 

Larson´s work [13] Hypercube Queuing Model has also served as a basis for such explorations.  

 

In this context, the following objectives are proposed. Batta [17] considers the problem of 

locating a single service center in a network that operates as an M/G/1 queue where waiting 

calls are answered according to a class of queuing disciplines that rely solely on the information 

about the expected service time. 

 

Brandeau and Chiu [18], also dedicated to congested systems, developed the model "Stochastic 

Queue Center Location" that aims to minimize the maximum response time to any consumer. 

For these authors the expected response time takes into account not only the waiting time until 

the server is on but also the travel time to the contact center. 

 



In turn, the Revelle and Hogan [9] model previously mentioned, deals with congestion 

presenting a probabilistic version of the location problem. It is also in this line of reasoning that 

Marianov and ReVelle [19] presented the “Probabilistic Covering Problem with Queues”. With 

an identical formulation as the one adopted in the “Probabilistic Covering Problem”, a simple 

modification of Maximum Coverage Location Problem of Church and ReVelle [1], Marianov 

and Serra [4] introduce the “Maximum Coverage Location-Allocation Model with Queues” 

where the goal is to locate p service centers and affect these users so that the maximum 

population is covered.  

 

3. Maximum Capture Problem 

 

This section seeks to present an employed notation (3.1) and a proposed formulation (3.2), the 

Maximum Capture Problem and the application and measurement of a heuristic model is 

applied in order to produce the desired outcome. 

 

3.1. Notation. 

 

The following notation is defined: 

• i, index I and set of demand nodes; 

• j, index J and set of possible locations; 

• ai , demand at node i; 

• dij , distance between node i to j; 

• bi , server from firm B closer to demand node i; 

• dibi , distance from demand node i to the closest firm´s B. 



Sets and Decision Variables: 
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3.2. Formulation 

 

The MAXCAP model assumes that, for a product with similar characteristics, the consumer´s 

decision by choosing a particular store (or server) is based on the distance traveled. It is also 

assumed that the unitary costs of each of the stores to locate is identical. This model initially 

considers a firm A, which is going to compete with firm B, knowing the pre location of firm B´s 

stores.  

 

When solving this kind of problems, we seek to locate a fixed number of servers (stores) 

owned by a certain company in a market place where competing stores already exist and will 

cause the division of such clients. The entering firm´s objective is to maximize its profits using, 

in th is case, an approximation by the number of total sales. 

 



A certain consumer reveals a specific attraction relating each of the competing stores, 

being this behavior described by the use of an “attraction function” (or utility function). 

In this MAXCAP model the consumers will patronize on of the stores if the traveled time 

measured in terms of distance dij is lower when compared to the competing stores.  

 

A possible formulation for the MAXCAP problem is: 
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4. Heuristic Procedure 

 

We proceed to formulate, with Reeves [22], a heuristic method that attempts to find good 

solutions (i.e. near-optimal) in reasonable computing time. Therefore it is assumed that the 

solutions found by these heuristics methods do not always ensure an optimal outcome and may 

not present possible solutions. 

 

The implemented algorithm adopts, at some point, the "Greedy Randomized Adaptive Search 

Procedure" (GRASP) developed by Feo and Resende [23] which comes up as an unfolding of 

one of the heuristics used to solve the 1st location models designed by Teitz and Bart [24]. This 

is interpreted as an approach through "exchange" or "replacement", moving the servers from 

their current positions to other non-used positions whilst keeping this new position whenever 

(3.2.1
) 
 
 
(3.2.2
) 
 
(3.2.3
) 



the objective value is improved. For additional information on the subject see Festa and 

Resende [25]. 

This methodology is also used in the proposed algorithm the heuristic p-minmax Regret that was 

developed by Daskin et al [2]. To understand the importance of this method and the issue it 

addresses in the attempt to deal with the unpredictability of demand, the problem is solved for 

different scenarios by random generation (where these represent different population levels) and 

different frequencies of demand for service.  

 

The term Regret is associated with the notion of deviation or difference and it provides us with 

an "opportunity cost" when implementing the chosen location. Given the design of the service 

delivery system that we considered optimal for a given scenario, the Regret, based on 

population characteristics of the remaining scenarios and respective objective function value 

(covered population), returns the difference in case the locations were kept.  

 

According to the author, there may be many objectives for this indicator. What is intended in 

the present work is to select the lowest from the largest differences and, by successive 

adaptations, minimize it. We can interpret this process as finding a location solution that, in the 

worst possible scenario (the one that presents the greatest Regret given the optimal solution) 

presents the lower deviation or "opportunity cost”. 

 

We now present the algorithm implemented in C + + in which we introduce the two heuristics 

discussed above - GRASP and p-minmax Regret. Beforehand, we indicate the notation used: 

 

•  j index of possible locations; 

•  i index of demand nodes; 

•  Dj list of potential location points for services ordered according to the total population; 

•  S solution 



•  S complementary solution 

•  C candidate set of points 

•  p number of services to locate 

•  n number of demand nodes 

•  inc_j overall rate of calls to potential service location j 

 

Thus, the allocation process starts by reading the distance file identifying and recognizing at this 

early stage the network of demand (nodal) points - all of which are potential locations – and the 

distances between them - our associated cost measured in terms of time units. 

 

For each node representative of a population centre, the respective population is generated 

according to a Uniform distribution. Since this is a user-defined parameter, in order to subject 

the model to different conditions, the demand is then estimated based on a percentage of the 

population previously determined. These values – population and demand- are generated for 

each one of the (ns) scenarios and will be as many as the number of scenarios with which we 

intend to work. 

 

When the network is characterized, i.e., the number of nodes, the distance between each node 

and the respective populations and demand, using the CPLEX optimization software, the model 

begins by solving the maximum coverage location problem for each scenario.  

 

The optimal value of our objective function for each scenario is thus obtained, acting as a future 

reference when compared to the results obtained for other levels of population and when 

maintaining the optimum locations obtained. This solution includes: which nodes are located 

service centers, the allocation of demand points to the respective centers and the value for the 

objective function concerning the covered population. 



 

Having simulated the scenarios, a matrix entitled Regret 1 (ns, ns) is activated. The diagonal of 

the matrices Regret 1 indicate the optimal values obtained in each of the simulated scenarios. 

Values outside this diagonal, i.e., adjacent to the optimal solution values, are obtained by 

calculating the objective function considering the characteristics of the other scenarios 

(populations and demands) but maintaining the location allocation patterns given to us by the 

CPLEX optimization software.  

 

197182 201432 198357 196556 195265 194325 198562 196663 197701 194003 

161050 190007 181250 182356 192123 179125 183459 168971 179157 189457 

170892 167845 157853 164887 169741 190187 178112 156746 192454 189451 

171313 175949 194848 164073 169787 199454 185464 177989 184188 188774 

169787 191717 188772 169745 180869 183556 197010 191141 186311 188745 

196787 192776 193741 183797 181579 171896 181235 182454 192478 179878 

197121 195798 177131 193457 189743 172656 164681 165888 178432 182747 

177336 181656 189743 187141 191778 194331 184556 175624 185655 189774 

179487 173998 167131 189477 183454 199466 193473 195471 164635 167979 

189741 185731 159887 169741 200874 190157 182486 189478 168635 182916 
Figure 1. 10 scenarios Regret 1 matrix. 

 

A note of caution since the calculation of the values adjacent to the "optimality diagonal" 

requires a possibility test so that, in the continuation of the algorithm, a necessarily workable 

initial solution is obtained. The possibility test of a value adjacent to the optimal solution should 

take into account: 

 

 • The distance limit (ldist) from demand node i allocated to service center 

in j é is taken into account; 

 • The limit for the waiting time (wlim) in j is respected; and 

 • Whenever negative valued waiting times are associated to a solution, in 

the matrix Regret 1 a zero will be shown. 

 



When the objective value calculated with the standard locations and allocations for the other 

scenarios is not possible, under the conditions of possibility described above, the value in the 

Regret 1 matrix will be zero. Thus the associated solution is omitted of the rest of the process as 

an initial starting solution for GRASP since this zero value will not be considered in the choice 

of maximum deviation that is performed in the p-minmax process. 

 

After the possibility test, based on Regret 1 matrix, the Regret 2 and Regret 3 matrixes are build 

up, where each one being a transformation of the one preceding, as described below: 

 

Regret 2: each value of this matrix will be obtained by the difference between the goal 

of a given scenario and its respective optimal (reciprocated by CPLEX and contained in 

the diagonal of the Regret 1 matrix). This way, imperatively the diagonal of matrix of 

Regret 2 will contain only zeros. This procedure allows us to obtain the values of an 

"Absolute Regret". 

 

0 4250 1175 -626 -1917 -2857 1380 -519 519 -3179 

-28957 0 -8757 -7651 2116 -10882 -6548 -21036 -10850 -550 

13039 9992 0 7034 11888 32334 20259 -1107 34601 31598 

7240 11876 30775 0 5714 35381 21391 13916 20115 24701 

-11082 10848 7903 -11124 0 2687 16141 10272 5442 7876 

24891 20880 21845 11901 9683 0 9339 10558 20582 7982 

32440 31117 12450 28776 25062 7975 0 1207 13751 18066 

1712 6032 14119 11517 16154 18707 8932 0 10031 14150 

14852 9363 2496 24842 18819 34831 28838 30836 0 3344 

6825 2815 -23029 -13175 17958 7241 -430 6562 -14281 0 
Figure 2. 10 scenarios Regret 2 matrix 

 

Regret 3: the difference obtained according to the calculations of the Regret 2 matrix are 

now divided by the optimal value of reference for the scenario in question. Hence, we 

ascertain the value of "Relative Regret" associated with each scenario. 

 

 



 

 

 
0,00000 0,02155 0,00596 0,00317 0,00972 0,01449 0,00700 0,00263 0,00263 0,01612 

0,15240 0,00000 0,04609 0,04027 0,01114 0,05727 0,03446 0,11071 0,05710 0,00289 

0,08260 0,06330 0,00000 0,04456 0,07531 0,20484 0,12834 0,00701 0,21920 0,20017 

0,04413 0,07238 0,18757 0,00000 0,03483 0,21564 0,13037 0,08482 0,12260 0,15055 

0,06127 0,05998 0,04369 0,06150 0,00000 0,01486 0,08924 0,05679 0,03009 0,04355 

0,14480 0,12147 0,12708 0,06923 0,05633 0,00000 0,05433 0,06142 0,11974 0,04644 

0,19699 0,18895 0,07560 0,17474 0,15219 0,04843 0,00000 0,00733 0,08350 0,10970 

0,00975 0,03435 0,08039 0,06558 0,09198 0,10652 0,05086 0,00000 0,05712 0,08057 

0,09021 0,05687 0,01516 0,15089 0,11431 0,21156 0,17516 0,18730 0,00000 0,02031 

0,03731 0,01539 0,12590 0,07203 0,09818 0,03959 0,00235 0,03587 0,07807 0,00000 
Figure 3. 10 scenarios Regret 3 matrix. 

 

Basing our judgments on the Regret 3 matrix, we continue the application of our algorithm i.e., 

p-minmax heuristic as suggested by Daskin et al. [2]. Before the application of the latter matrix, 

the procedures are as follows: 

 

 • From the Regret 3 matrix, observing the values in line, we choose the 

one that presents the higher relative regret, in other words, the possible solution that 

departs furthest in percentage terms from the optimum control solution contained in 

Regret 1 diagonal obtained using the CPLEX; 

 

 • Subsequently, within all these maximum percentage deviations (relative 

Regrets) the minor is picked up with the intention of using it as an initial solution in the 

local search that follows on the GRASP heuristic. 

 

The GRASP consists of two phases – construction phase and local search phase – and is an 

iterative process with reliable solution built independently at each iteration. Described below is 

a pseudo-code for the GRASP. 

 

 



 

Procedure GRASP (Max_iterations, Seed) 

 For k = 1 to Max_iterations do 

  S←Greedy_Randomized_Construc�on(Seed, γ); 

  S←Local_Search(Solu�on); 

  Update_Solution(Solution, Best_Solution) 

 enddo  

 end GRASP  

Pseudo-Code 1: Pseudo-Code GRASP  
 

From a general point of view, the process developed in this heuristic, after the selected initial 

solution as described above, follows like this: 

 

 • From the locations contained in the initial solution previously obtained, 

randomly one is chosen to be removed and  replaced by another which, necessarily, 

must be on the RCL – Restricted Candidate List; 

 • The potential locations belonging to the RCL must meet the 

requirements of acceptability with regard, not only the distance limits imposed but 

presenting a priori a demand frequency greater than or equal to gamma percent of the 

search node with the highest demand frequency; 

 • If part of the RCL it is temporarily accepted to be considered in the 

iterative process and, when replacing the previous location, switches its position 

regarding its allocation to demand points; 

 • When the initial solution is improved, new location and allocation 

patterns are accepted; 

 • Otherwise, the initial solution persists. 

 

These are again activated in the Regret 1, Regret 2 and Regret 3 matrixes based on the values 

obtained in the local search now held. In this process, the first matrix goes again through the 

possibility test already described. This process is repeated for a predefined number of iterations. 

 



We now explain the use of pseudo-code for the two phases of that process, the GRASP 

heuristic. The construction phase, which will return an initial solution at each iteration, is 

invoked and is a function from the root in the random number generator and of the gamma 

parameter that defines what solutions will be included in RCL - Restricted Candidate List, the 

list containing the best solutions. 

 

The development of the )(__ SeedonConstructiRandomizedGreedy  is now described: 

 

procedure Greedy Randomized Construction (Seed,γ) 

{sort candidate sites by decreasing order of population}  

 );population(Sites_Candidate_SortD j ←  

{initialize solution set} 

 }{ ;S:=  

 ;C:S =  

{while solution is not a complete solution} 

 while pS ≠ do 

 {loop over all candidate sites not in the solution list} 

 For j=1 to S  do 

  {initialize parameters} 

   {restrict demand points list to the standard covering distance to site j} 

 { }dd,DiD ijij ≤∈←  

  {sort demand points by increasing distance to site j} 

 );cetandis(sintPo_Demand_SortDij ←  

 

                                 {loop over demand points in set Dij} 

 For i=1 to ijD  do 

   {sum frequencies at each demand point if waiting time limit is not reached}   

 If (W_j <τ]
and ρ_j<1) do 

 inc_ j : = inc_ j+ f_i ; 

 actualize w_j; 

 actualize ρ_j; 

 Endif 

 Enddo 

  

{construct the restricted candidate list} 

 { };j_incmax :cmax =  

 { }maxc j_inc,SjRCL γ≥∈← ; 

 {select randomly one site from the RCL} 

 ( )RCLSelect_Random*j ← ; 

 }{ ;*jSS: ∪=  

 }{ ;*jS:S \=  

{take the demand points allocated to j* out of the demand points list} 

 For i=1 to 
*ijD  do 

                                  D := D\ }{ ;Di *ij∈  

 Enddo 

 Enddo 



 end Greedy Randomized Construction 

  

Pseudo-Code 2: Construction Phase Pseudo-Code  

 
 

The proposed algorithm starts by choosing candidate nodes according to their respective 

demands/populations. We postulated in our example that all demand nodes are also potential 

service location points.  

 

Thus, starting with the first node from the candidate list, the closest demand nodes are affected 

to it until de coverage limit is reached. Here the coverage limit can be determined through the 

utilization coefficient or the imposed limit for the waiting time.  

 

Total demand affected to each of the potential sites j is called incoming call rate. The incoming 

call rate works as a “greedy” function of the algorithm and can be defined as a weighing of the 

demand nodes no yet covered but that will do if location j was chosen to have a server facility. 

 

It is included on the RCL - Restricted Candidate List (sub-set of best solutions) the candidate 

nodes with a total incoming call rate greater to or equal to gamma per cent of the incoming call 

rate indexed to the potential location with higher value.  

 

In the GRASP, the gamma parameter is established beforehand (for instance, if gamma equals 

0.8, we therefore mean that we include on the list containing the best solutions - Restricted 

Candidate List – all the potential locations with a total incoming call rate greater than 80% of 

the highest value between all incoming call rates).  

 

Note that in the “greedy” heuristic, as suggested by Marianov and Serra [4], the choice would 

always be to locate a center at the node with the highest sum of incoming call rates, i.e., γ =1. 

 



At each iteration, we choose randomly from among the candidate locations with the highest 

incoming call rate (i.e., the ones included on Restricted Candidate List) the p locations for 

servers. 

 

procedure Local_Search (Solution, Best_Solution) 

 obj_best : = obj(S); 

 {loop over sites in the solution} 

 

 for all Sj1 ∈ do 

 { }1j\S :S = ; 

 {loop over sites not in the solution} 

 
for all Sj 2 ∈ do 

                      evaluate { }( )2jSobj ∪ ; 

                      if obj_best< { }( )2jSobj ∪  do 

                                               { }2jS :S ∪= : 

                                               obj_best : = obj { }( )2jS∪ ; 

                                   else 

                                             { }1jS :S ∪= : 

                                  endif 

                                  enddo 

 Enddo 

 end Local_Search 

 
Pseudo-Code 3: Local Search Phase Pseudo-Code  
 

 

At the local search phase, for each centre, we un-allocate its assigned demand and move it to all 

the potential locations not yet used, repeating at each time the steps 9 to 20 from the Greedy 

Randomized Construction procedure, aiming to evaluate the objective at hand. If any of the 

locations reciprocate a better objective value, we maintain the service centre at that node; 

otherwise, we keep it in the original location (see Pseudo-Code 3). We repeat the procedure 

until it is not possible to improve the initial solution or the limit of iterations is reached. 

 

In a user-defined environment, the algorithm requires modification, both in its construction 

phase and in the local search in order to insure the closest possible allocation. The proposed 

algorithm penalizes the final objective whenever an unreliable solution is obtained. When a 

reliable solution is obtained, this set of locations are considered potential sites for the placement 



of service centers. Otherwise, we consider this set of locations an initial solution and not a 

potential service location penalizing the objective with a large negative value M. This will 

match the following objective evaluation procedure: 

 

procedure evaluate_objective (S) 

 

 Allocate each demand point to its closest center location; 

 Evaluate W_j and ρ_j; 

 obj(S):=0; 

 If (W_j <τ and ρ_j<1) do   

  

                         For j=1 to p do 

                                For i=1 to n do 

                                      If (i is allocated to j) do 

                                              obj(S):=obj(S) + f_i; 

                                      endif; 

                                 enddo; 

                          enddo; 

  

 Else 

            obj(S):=M; 

 end evaluate_objective; 

 
Pseudo-Code 4: Objective Evaluation Pseudo-Code 

 
 
 

During the Local Search phase, for each center at a time, we un-allocate assigned demands and 

move them to unused potential locations. We always affect a demand node to the nearest 

potential location and check the possible waiting time limit. If a solution is not possible, the 

objective is penalized with a very high negative value M. Whenever new allocations are found 

and a more efficient objective is identified we maintain that center in that location. Otherwise, 

the starting location is kept. This procedure is repeated until, when comparing with the previous, 

no better solution is found. 

 

 

 



 

 

 

5. Computational Experience. 
 

 

We now randomly generate different situations in order to compare the results obtained when 

using the heuristic solution with the ones initially obtained, the starting point for the local search 

phase of our heuristic. 

 

For this purpose, networks of 25, 40, 50 nodes are generated and to each of those a demand 

frequency is associated. For each node it´s generated, according to an Uniform Distribution 

[800;1800], a population number that will be used as data to compute the demand frequency. 

Given the population, 1% is considered the demand frequency or need of attendance. 

 

Note that, in each of the generated scenario and specific network, the distance between nodes 

will be constant. Only the size of the network and demand associated to nodes is altered. The 

distance among the nodes is obtained according to a distance matrix common to all of the 

scenarios and studied networks. The same goes for the distance information concerning the 

competing firm, known before our location solution. 

 

The following table presents a close-up on the characteristics and parameters of the set of data 

studied. 

 

 Number Number 

Cases Nodes Centers Iterations  Scenarios 

1 50 5, 10 and 

20 

500, 1000 

and 2000 

10 

2 40 5, 10 and 

20 

500, 1000 

and 2000 

10 



3 25 5, 10 and 

20 

500, 1000 

and 2000 

10 

Table 1. Characteristics and parameters of the processed data 
 
 

The analyzed algorithm was implemented on a computer with Dual 2.50 GHz Pentium Dual-

Core processer with 1920 MB of memory and using the C++ Microsoft Visual Studio 2005 

compiler where, for the resolution of the proposed problem, the optimization software CPLEX 

Optimization Studio 12.2 was integrated. 

 

Our goal is to see to what extent the pattern of locations obtained by the heuristic is significantly 

different from the optimum obtained and used as the starting point of the heuristic.  

 

5.1. Changing the Network size and the Number of Centers to 

Locate 

 

 
We now present the data collected on the following table: 

 

  25 Nodes Network 40 Nodes Network 50 Nodes Network 

 Number of Centers to 

Locate 5 10 20 5 10 20 5 10 20 

5
0

0
 

it
e

r
a

t
io

n
s
 

Average Processing Time 4.955 20.73 84.01 12.11 51.1 208.35 19.06 81.84 345.62 

% of Matching 

 Locations 100% 95% 81% 100% 99% 99% 100% 100% 100% 

Average Regret 0.18213 0.16835 0.18075 0.14728 0.1164 0.13884 0.13837 0.13418 0.12164 

1
0

0
0

 

it
e

r
a

t
io

n
s
 

Average Processing Time 10.14 41.35 183.17 24.08 101.9 432.69 37.25 159.29 670.45 

% of Matching 

 Locations 95% 99% 73% 100% 99% 99% 71% 100% 80% 

Average Regret 0.18373 0.15902 0.17961 0.12047 0.117 0.12721 0.11058 0.12614 0.11036 

2
0

0
0

 

it
e

r
a

t
io

n
s
 

Average Processing Time 20.12 82.47 337.36 47.83 202.39 830.34 81.96 325.31 1291.7 

% of Matching 

 Locations 100% 87% 81% 100% 100% 98% 95% 100% 55% 

Average Regret 0.18284 0.18278 0.18304 0.16338 0.14242 0.11598 0.13074 0.14418 0.11701 

Table 2. Simulation results for 100 examples and 10 scenarios; average processing time 
measured in seconds. 

 



The average CPU processing time (in seconds), perhaps one of the more sensitive indicators 

here on this work, exponentially increases given the higher value of the network size, i.e., the 

number of demand nodes considered. This indicator presents the same behavior towards the 

number of iterations and the number of centers to locate. In any of these cases, before the 

network size growth, the number of centers to locate and the number iterations, the processing 

time shows the indicated pattern. 

 

As for the percentage of final and initial matching locations, the values increase as the number 

of network nodes and number of centers to locate increase. On the other hand, considering the 

increasing number of iterations, we can generally conclude that the percentage of matching 

locations decreases. The highest values for this indicator are revealed for the smaller networks 

and with the smallest iterations number. 

 

Despite the irregular behavior, it is possible to verify that with the increase of the network size 

proposed the value of the Minimum Relative Regret decreases. 

 

 

5.3. Conclusions. 

 

 
When solving the Maximum Capture problem with the developed heuristic procedure described 

before, it is possible to see that as the system on study becomes freer (less constrained) the 

method proposed allows us to improve the initial solution. We can state that for higher solution 

spaces, despite the processing time´s increase, the heuristic procedure produces solutions that 

differ from the initial. In this generalization we include the increase of the number of centers to 

locate. Less strong is the relation mentioned if compared with the increase in the size of the 

network used. 



 

 

 

 

6. General Conclusions. 

 
When analyzing the literature that addresses location and allocation problems we found that 

when considering a certain demand for a service it appears that this demand is random and is 

one of the sources of system congestion. 

 

This type of problem can arise both in the public or private sector, involving different types of 

formulations as maximum distance models and total/average distance models. The methodology 

associated with each specific problem should be carefully examined and the results that are 

obtained should be compared with others produced by other testing models. 

 

In addition to the “Greedy Randomized Adaptive Search Procedure” (or GRASP), we also used 

the heuristic method developed the p-minmax Regret (Minimum Relative Regret) proposed by 

Daskin [2]. The use of these models processes is undertaken in accordance with previous 

research and aims at its integration into the current paradigm in order to explore new 

methodologies that enhance or better adapt to the circumstances of the cases studied. Thus, the 

developed models can be considered adequate to address the type of issue proposed in the 

current work. Varying limits, in terms of waiting times and maximum distance, limits of 

demand processing capabilities and network sizes, produces significant changes in the final 

solutions. 

 

There are numerous real-life situations in which the waiting time is an important, oftentimes 

vital, factor when considering the duration of service rendered (time or distance traveled plus 



the waiting time). In such cases, taking into account the determination of a location pattern, the 

waiting time is to be regarded as absolutely essential in the respective modeling of the system. It 

may also interfere with the processing time of the number of centers to locate at a certain 

network scale, as well as the capacity of facilities in providing the sought service. 

 

The proposed meta-heuristic reciprocates near optimal results demonstrating significant savings 

in computation time. Given the initial data, was with the use of simulation that in the present 

study the demand levels associated with each population data were obtained.  

 

Regarding the application of Greedy heuristics to these formulations, these show acceptable 

behavior to the extent that the near-optimal solutions are sensitive to the worked examples and 

problematic situations proposed in each case. 

On the other hand, the theory and the numerical examples obtained suggest that the solutions 

become less sensitive to the model parameters as the system becomes less busy. In the case that, 

for instance, the distance limit between the demand node and the service facility is smaller or 

when there are less service centers to locate, one can assume that henceforth there will be 

greater congestion associated with the model. These are cases where the heuristic has given 

results not identical to the initial solutions used as input in our algorithmic formulation.  

 

Regarding the computational experiment conducted a few final remarks. The tested models and 

their various examples were obtained using random number generation. In many cases, different 

results were obtained, but there are others where the proposed formulation does not produce 

significant differences in the results. As already mentioned, generally speaking, the "tightest" 

systems are those wherein the distance limit is smaller and the number of service centers to be 

located is smaller. In such cases where there are inferior processing capabilities, location 

decisions are more sensitive to pre-defined parameters for the model.    

 



Concluding, in this paper we simulated populations and their respective demand frequencies. 

Furthermore, we demonstrated the real-life paramount importance of system congestion in its 

various forms as a determining factor in location and allocation decisions.  
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