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RESUMO/ABSTRACT

A Regret Model applied to the Maximum Capture Locat

ion Problem

This article addresses issues related to location and allocation problems.
Herein, we intend to demonstrate the influence of congestion, through the
random number generation, of such systems in final solutions. An algorithm is
presented which, in addition to the GRASP, incorporates the Regret with the p-
minmax method to evaluate the heuristic solution obtained with regard to its
robustness for different scenarios. Taking as our point of departure the
Maximum Capture Location Problem proposed by Church and Revelle [1, 26],
an alternative perspective is added in which the choice behavior of the server
does not depend only on the elapsed time from the demand point looking to the
center, but includes also the service waiting time.
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Abstract

This article addresses issues related to locatimhadlocation problems. Herein, we intend to
demonstrate the influence of congestion, through rdndom number generation, of such
systems in final solutions. An algorithm is presehtwhich, in addition to the GRASP,

incorporates the Regret with tlpeminmaxmethod to evaluate the heuristic solution obtained
with regard to its robustness for different scemmriTaking as our point of departure the
Maximum Capture Location Problem proposed by Chumett Revelle [1, 26], an alternative

perspective is added in which the choice behavidh® server does not depend only on the
elapsed time from the demand point looking to teter, but includes also the service waiting

time.

Key-words: location, allocation, coverage, heuristic, regsegnarios.

1. Introduction

Given the vital importance of providing servicescontexts of ever increasing demand and the
costs of setting up such allocation systems, longtroblems are of utmost importance both in
our daily lives as well as in scientific circlesypically, the performance of such services is
evaluated by the number of customers and the wditime ensuing from the arrival of a request
at the center. Overall, what can be concludeddsttiese indicators are highly correlated with
the number of centers providing services and thgécific location. Examples of such services
are medical systems, police operations, firefightepadside assistance services, amongst

others.

The problem that researchers strive to resolveligad to the location of service centers and the

respective allocation of demand to these centerattémpting to characterize such systems and



approximate them to reality, the location modelgehlaecome so complex that obtaining results
by complete enumeration has become more difficulgjreat part as a result of the exponential

growth of computing time.

The various models heretofore developed have biéected by the problem of complexity that
hampers the process of finding a solution. Fornwiathave been constrained by simplifying
assumptions, yet planners are often faced withatiewis from reality that occur both in the
public and private sectors. Technological advariage allowed the gradual development of
more realistic formulations, given the possibilifyfinding solutions to complex models within

acceptable computing times.

Despite the different formulations that have bemppsed over time for the various problems
related to location and allocation, it is commoulysumed that regions are represented by

networks, a continuous space or a set of disciedalpoints.

This paper presents an algorithm which, besideskitmevn GRASP - Greedy Randomized
Adaptive Search Procedure - incorporatesptmeinmaxRegret method to evaluate the heuristic
solution obtained with regard to its robustnesdiftierent scenarios. The use of these processes
is undertaken in accordance with previous semiraksy such as that of Daskin et al [2]. It
aims to integrate these new findings in order fol@e new methodologies that improve or are

better adapted to the circumstances of the cased®dt

We found that by varying the limits imposed on wajttimes, maximum distance, demand
processing capacity and size of network, it is jibsg0 ascertain significant changes in the
final solutions. The problem under study is the Iwebwn Maximum Capture Location

Problem developed by Church and Revelle [1, 26] theorporates an alternative model in
which the server choice behavior does not only déma the elapsed time from the node to the

center, but includes also the waiting time fordbevice.



Our model and its various examples were testedyubim random number generation model. In
most cases different results were obtained by ngakipossible to confirm that the proposed
formulation produces significant differences inmerof results. In general, the "tighter" the
systems are, i.e., when the related distance betiveen demand and center values are lower,
the number of service centers to locate or tHata® waiting time limit, location decisions are

generally more sensitive to pre-defined paramdterthe model.

The classification of the location problems thabhagrn us may be undertaken in accordance
with the grouping suggested by Current et al. [Bximum distance models, "p-dispersion”
problems and average or overall distance models. cAfe characterize this model as a
maximum distance model given that maximum distaaceexplicitly considered as a pertinent
factor as well as considerations relating to th&imam distance within which a facility must
be located to provide the relevant service as agthe time limit within which the service can
be provided. This is usually the case of schootsplhtals or police station locations where
people generally expect to have access to a faailithin acceptable limits outside of the

original demand area.

A consumer is considered to be covered by a serwehich is considered fixed and presents
unlimited capacity concerning the possibility obpessing the relevant service needs - if you
have an installation within the pre-establishedaglise limit. Where a service is provided by a

facility located below this maximum, the service@sidered appropriate or acceptable.

The formulation used in this work is based on esistudies, such as the works of Marianov
and Serra [4] and those of Silva and Serra [S]tiqdarly those relating to "Maximum

Coverage Models" and the additional incorporatibresults from the Queuing Theory.

The complexity associated with the model requiggshistication in our attempts to represent

more elements or aspects of reality and the uskedfistic procedures in the search for



solutions. Thus, in addition to GRASP, the algarnithontains a Regret component, based on
the work of Daskin [2] that has produced acceptabtults, both in terms of computing speed

and, perhaps more importantly, in terms of apprexiom to the optimal solution.

This work highlights the importance, corroboratgdéal-life events, of considering the various

forms of system congestion as a vital factor imgepf location and allocation decision-making.

2. Related Literature

Location Models have been studied for decades and produced implementation solutions
for the public and private sectors. Classic examme such problems are those that were
explored and pioneered by Hakimi [6, 7]. He posadaa network without imposed direction on

arcs, where consumers are located only at the n@tedemand point). Each demand point
presents a certain percentage of demand or neexhfer The 1-median problem that is herein
considered is based on the location of a facilityaanetwork. Its goal is that helping consumers
minimize the average travel distance between ttiétjaand the demand node. Hakimi showed
that, among all of the nodes, there was at leasptimal location for the server, in this manner
reducing a continuous search by a finite one. Ailainresult is also applied to (p-median)

multi-median problem, in which various facilitie®uwd be located so as to minimize the

average distance from the nearest facility to thresamers.

The types of problems addressed by Discrete Latdflodels are generally formulated with
integer linear programming and can be solved usirgy algorithm known as "branch and
bound". However, when applying heuristic processesn the most basic location problems are
classified as "NP-Hard" and require unacceptablmpegation times to find patterns of

employment associated with more realistic situation



The maximum capture model proposed by Church andellRe[l, 26] seeks to set a
predetermined number of fixed serves, in order sximize the population covered by its
service, knowing before the location of a set aficorent stores. The goal then becomes to
locate a predetermined or budgeted number of fi@silso that the requests directed to a certain

server installation are maximized. This model dogtsrequire that all demand is covered.

However, problems of location have been studiedstone time and the uncertainty that such
allocation systems may exhibit lead researcheexpdore alternative positions with regard to
modeling demand, travel time or even costs assatiaith the chosen locations. Four basic
approaches were formulated: approximations throaghbeterministic replacement, finding

deterministic equivalents, probabilistic models hwitestraints, queuing systems spatially

distributed and scenario planning.

Concerning this approach and its inclusion of atmmn scenarios we highlight the seminal
contribution of Sheppard [8] in 1974. His work demtated the importance of taking into
account uncertain environments in location andcation decision-making. These uncertain
contexts are the object of this study inasmuchhay take into account randomness in the
frequency of demand for certain services as a restaifion of uncertainty, the most important

source of congestion of the systems in question.

Other researchers, such as Hogan and Revelle [9ydring within a deterministic paradigm
are addressing system congestion with alternatvedlations for models that address the
location and coverage with redundant coverage. kiDgd.1, 12] suggest that probabilistic
extensions can be added to the "Maximal Coveririgblem, assuming that servers are busy
according to a given probability. In this case gloal is to maximize the demand covered by the

other servers that are not busy.



In such studies, an attempt is made to incorpans&eeactions occurring in queues with location
models. There have been some interesting advanaesent decades, particularly with regard
to emergency services. The pioneering work in flékl of research was Larson’s [13] —
“hypercube queuing” model. Its author proposes stesy of stochastic service spatially
distributed, with mobile servers scattered. Battald14] used this model to demonstrate that
the implicit assumption of independence of the seras assumed by Daskin [11], [12], is often

erroneous.

Fixed servers can "face" congestion. This is thee a# health services and, in general, public

services of any kind availing servers fixed. Sessiain example Marianov and Serra [15].

Berman, Larson and Chiu [16] produced the firstknbrat synthesized location theories and
queuing theories. This work was expanded by Hakiifi] 1-median problem, incorporating it

in the context of research on queuing. In ordedd¢oide where to locate service centers due
consideration must be granted to service timeselttames and delays resulting from queuing.

Larson’s work [13] Hypercube Queuing Model has akswed as a basis for such explorations.

In this context, the following objectives are prepd. Batta [17] considers the problem of
locating a single service center in a network thagrates as an M/G/1 queue where waiting
calls are answered according to a class of quealigujplines that rely solely on the information

about the expected service time.

Brandeau and Chiu [18], also dedicated to congestsitms, developed the model "Stochastic
Queue Center Location" that aims to minimize thexiimam response time to any consumer.
For these authors the expected response time itatkeaccount not only the waiting time until

the server is on but also the travel time to th#act center.



In turn, the Revelle and Hogan [9] model previoushentioned, deals with congestion
presenting a probabilistic version of the locafmwablem. It is also in this line of reasoning that
Marianov and ReVelle [19] presented the “Probatidli€overing Problem with Queues”. With
an identical formulation as the one adopted in“Br@babilistic Covering Problem”, a simple
modification of Maximum Coverage Location ProblemGhurch and ReVelle [1], Marianov
and Serra [4] introduce the “Maximum Coverage Laorafllocation Model with Queues”
where the goal is to locate p service centers dfettathese users so that the maximum

population is covered.

3. Maximum Capture Problem

This section seeks to present an employed noté3idn and a proposed formulation (3.2), the
Maximum Capture Problem and the application and sonesment of a heuristic model is

applied in order to produce the desired outcome.

3.1. Notation.

The following notation is defined:
* i, index | and set of demand nodes;
* ], index J and set of possible locations;
* &, demand at node i;
* d;, distance between node i to j;
* b server from firm B closer to demand node i,

* dpi, distance from demand node i to the closest filBa's



Sets and Decision Variables:

VA = 1, cascaempresaé captureondédeprocura
i 0, casccontrario

> = 1, casoonodeprocurai sejadivididoentreA eB
! 0, casccontrario

XA =

{l casoaempresa localizeumservidomono |
J

0, casacontrario

3.2. Formulation

The MAXCAP model assumes that, for a product withilar characteristics, the consumer’s
decision by choosing a particular store (or seri®hased on the distance traveled. It is also
assumed that the unitary costs of each of the sstordéocate is identical. This model initially
considers a firm A, which is going to compete witm B, knowing the pre location of firm B’s

stores.

When solving this kind of problems, we seek to lota a fixed number of servers (stores)
owned by a certain company in a market place whereompeting stores already exist and will
cause the division of such client$e entering firm’s objective is to maximize it®fis using,

in this casean approximation by the number of total sales.



A certain consumer reveals a specific attraction dating each of the competing stores,

being this behavior described by the use of an “athction function” (or utility function).

In this MAXCAP model the consumers will patroniza of the stores if the traveled time

measured in terms of distangdigis lower when compared to the competing stores.

A possible formulation for the MAXCAP problem is:

Max Z* =3 a YA +Z%‘Zi

idl idl (3'2'1
s t. )
YAis XA 0i 01
jON; (b))
z,< XA oi ol (3.2.2
o) )
YA+Z <1 0i ol (
3.2.3
X =p \

i0J

YAz, xro{od  OionLOiod

4. Heuristic Procedure

We proceed to formulate, with Reeves [22], a héarisiethod that attempts to find good
solutions (i.e. near-optimal) in reasonable cormuutime. Therefore it is assumed that the
solutions found by these heuristics methods daalvedys ensure an optimal outcome and may

not present possible solutions.

The implemented algorithm adopts, at some poid,"Breedy Randomized Adaptive Search
Procedure" (GRASP) developed by Feo and ResendeM#8h comes up as an unfolding of
one of the heuristics used to solve the 1st lonatiodels designed by Teitz and Bart [24]. This
is interpreted as an approach through "exchangetemlacement”, moving the servers from

their current positions to other non-used positiaéist keeping this new position whenever



the objective value is improved. For additionalommfiation on the subject see Festa and
Resende [25].

This methodology is also used in the proposed #lgorthe heuristip-minmaxRegret that was
developed by Daskin et al [2]. To understand thpartance of this method and the issue it
addresses in the attempt to deal with the unpiagliity of demand, the problem is solved for
different scenarios by random generation (whersahepresent different population levels) and

different frequencies of demand for service.

The term Regret is associated with the notion efaden or difference and it provides us with

an "opportunity cost" when implementing the chokmration. Given the design of the service
delivery system that we considered optimal for &egi scenario, the Regret, based on
population characteristics of the remaining sc@sadgnd respective objective function value

(covered population), returns the difference iredae locations were kept.

According to the author, there may be many objestifor this indicator. What is intended in

the present work is to select the lowest from thmdst differences and, by successive
adaptations, minimize it. We can interpret thisgess as finding a location solution that, in the
worst possible scenario (the one that presentgtbatest Regret given the optimal solution)

presents the lower deviation or "opportunity cost”.

We now present the algorithm implemented in C + which we introduce the two heuristics

discussed above - GRASP gmaninmaxRegret. Beforehand, we indicate the notation used:

e jindex of possible locations;
* iindex of demand nodes;
« D list of potential location points for services ered according to the total population;

¢ Ssolution



. S complementary solution

e Ccandidate set of points

e pnumber of services to locate
¢ nnumber of demand nodes

e inc_joverall rate of calls to potential service locatip

Thus, the allocation process starts by readingligtance file identifying and recognizing at this
early stage the network of demand (nodal) poimti of which are potential locations — and the

distances between them - our associated cost neghisuterms of time units.

For each node representative of a population cettiee respective population is generated
according to a Uniform distribution. Since thisaisiser-defined parameter, in order to subject
the model to different conditions, the demand entlestimated based on a percentage of the
population previously determined. These values pufadion and demand- are generated for
each one of the (ns) scenarios and will be as maanhe number of scenarios with which we

intend to work.

When the network is characterized, i.e., the nunalberodes, the distance between each node
and the respective populations and demand, ussn@BLEX optimization software, the model

begins by solving the maximum coverage locatiorblenm for each scenario.

The optimal value of our objective function for Bazenario is thus obtained, acting as a future
reference when compared to the results obtainedotioer levels of population and when
maintaining the optimum locations obtained. Thituon includes: which nodes are located
service centers, the allocation of demand pointhéorespective centers and the value for the

objective function concerning the covered popufatio



Having simulated the scenarios, a matrix entitlegiet 1 (ns, ns) is activated. The diagonal of
the matrices Regret 1 indicate the optimal valuggined in each of the simulated scenarios.
Values outside this diagonal, i.e., adjacent to apémal solution values, are obtained by
calculating the objective function considering tbbaracteristics of the other scenarios
(populations and demands) but maintaining the lopatllocation patterns given to us by the

CPLEX optimization software.

197182 201432 198357 196556 195265 194325 198562 196663 197701 194003
161050 190007 181250 182356 192123 179125 183459 168971 179157 189457
170892 167845 157853 164887 169741 190187 178112 156746 192454 189451
171313 175949 194848 164073 169787 199454 185464 177989 184188 188774
169787 191717 188772 169745 180869 183556 197010 191141 186311 188745
196787 192776 193741 183797 181579 171896 181235 182454 192478 179878
197121 195798 177131 193457 189743 172656 164681 165888 178432 182747
177336 181656 189743 187141 191778 194331 184556 175624 185655 189774
179487 173998 167131 189477 183454 199466 193473 195471 164635 167979
189741 185731 159887 169741 200874 190157 182486 189478 168635 182916

Figure 1. 10 scenarios Regret 1 matrix.

A note of caution since the calculation of the esliadjacent to the "optimality diagonal”
requires a possibility test so that, in the cordtian of the algorithm, a necessarily workable
initial solution is obtained. The possibility tedta value adjacent to the optimal solution should

take into account:

. The distance limit (Idist) from demand nddallocated to service center
in j é is taken into account;

. The limit for the waiting time (wlim) ifis respected; and

. Whenever negative valued waiting times are asssmtto a solution, in

the matrix Regret 1 a zero will be shown.




When the objective value calculated with the stashdacations and allocations for the other
scenarios is not possible, under the conditiongassibility described above, the value in the
Regret 1 matrix will be zero. Thus the associatddt®n is omitted of the rest of the process as
an initial starting solution for GRASP since thesa value will not be considered in the choice

of maximum deviation that is performed in {r@ninmaxprocess.

After the possibility test, based on Regret 1 mathe Regret 2 and Regret 3 matrixes are build

up, where each one being a transformation of tieepoaceding, as described below:

Regret 2: each value of this matrix will be obtairey the difference between the goal
of a given scenario and its respective optimaligrecated by CPLEX and contained in
the diagonal of the Regret 1 matrix). This way, emgiively the diagonal of matrix of

Regret 2 will contain only zeros. This procedureves us to obtain the values of an

"Absolute Regret".

0 4250 1175 -626 -1917 -2857 1380 -519 519 -3179
-28957 O -8757 -7651 2116 -10882  -6548 -21036  -10850  -550
13039 9992 0 7034 11888 32334 20259 -1107 34601 31598
7240 11876 30775 0 5714 35381 21391 13916 20115 24701
-11082 10848 7903 -11124 O 2687 16141 10272 5442 7876
24891 20880 21845 11901 9683 0 9339 10558 20582 7982
32440 31117 12450 28776 25062 7975 0 1207 13751 18066
1712 6032 14119 11517 16154 18707 8932 0 10031 14150
14852 9363 2496 24842 18819 34831 28838 30836 0 3344
6825 2815 -23029  -13175 17958 7241 -430 6562 -14281 O

Figure 2. 10 scenarios Regret 2 matrix

Regret 3: the difference obtained according tactideulations of the Regret 2 matrix are
now divided by the optimal value of reference foe scenario in question. Hence, we

ascertain the value of "Relative Regret" associafiteach scenario.




0,00000 0,02155 0,00596 0,00317 0,00972 0,01449 0,00700 0,00263 0,00263 0,01612
0,15240 0,00000 0,04609 0,04027 0,01114 0,05727 0,03446 0,11071 0,05710 0,00289
0,08260 0,06330 0,00000 0,04456 0,07531 0,20484 0,12834 0,00701 0,21920 0,20017
0,04413 0,07238 0,18757 0,00000 0,03483 0,21564 0,13037 0,08482 0,12260 0,15055
0,06127 0,05998 0,04369 0,06150 0,00000 0,01486 0,08924 0,05679 0,03009 0,04355
0,14480 0,12147 0,12708 0,06923 0,05633 0,00000 0,05433 0,06142 0,11974 0,04644
0,19699 0,18895 0,07560 0,17474 0,15219 0,04843 0,00000 0,00733 0,08350 0,10970
0,00975 0,03435 0,08039 0,06558 0,09198 0,10652 0,05086 0,00000 0,05712 0,08057
0,09021 0,05687 0,01516 0,15089 0,11431 0,21156 0,17516 0,18730 0,00000 0,02031
0,03731 0,01539 0,12590 0,07203 0,09818 0,03959 0,00235 0,03587 0,07807 0,00000

Figure 3. 10 scenarios Regret 3 matrix.

Basing our judgments on the Regret 3 matrix, weioaa the application of our algorithm i.e.,
p-minmaxheuristic as suggested by Daskin et al. [2]. Befboe application of the latter matrix,

the procedures are as follows:

. From the Regret 3 matrix, observing the valuetinie, we choose the
one that presents the higher relative regret, rerotvords, the possible solution that
departs furthest in percentage terms from the aptincontrol solution contained in

Regret 1 diagonal obtained using the CPLEX;

. Subsequently, within all these maximum percemi@deyiations (relative
Regrets) the minor is picked up with the intentidrusing it as an initial solution in the

local search that follows on the GRASP heuristic.

The GRASP consists of two phases — constructioselaad local search phase — and is an
iterative process with reliable solution built ipéedently at each iteration. Described below is

a pseudo-code for the GRASP.




Procedure GRASP (Max_iterations, Seed)
For k = 1 to Max_iterations do

S<&Greedy_Randomized_Construction(Seed, y);
S¢Local_Search(Solution);
Update_Solution(Solution, Best_Solution)
enddo
end GRASP
Pseudo-Code 1: Pseudo-Code GRASP
From a general point of view, the process develapdtlis heuristic, after the selected initial

solution as described above, follows like this:

. From the locations contained in the initial $imo previously obtained,
randomly one is chosen to be removed and replageanother which, necessarily,
must be on the RCL Restricted Candidate List

. The potential locations belonging to the RCL museet the
requirements of acceptability with regard, not oty distance limits imposed but
presenting a priori a demand frequency greater tinaagual togammapercent of the
search node with the highest demand frequency;

. If part of the RCL it is temporarily accepted lte considered in the
iterative process and, when replacing the previlmgstion, switches its position
regarding its allocation to demand points;

. When the initial solution is improved, new Idoat and allocation
patterns are accepted,

. Otherwise, the initial solution persists.

These are again activated in the Regret 1, RegaedZRegret 3 matrixes based on the values
obtained in the local search now held. In this pss¢ the first matrix goes again through the

possibility test already described. This processpeated for a predefined number of iterations.



We now explain the use of pseudo-code for the tlWasps of that process, the GRASP
heuristic. The construction phase, which will ratan initial solution at each iteration, is

invoked and is a function from the root in the ramdnumber generator and of the gamma
parameter that defines what solutions will be ideldi in RCL -Restricted Candidate Listhe

list containing the best solutions.

The development of tl@eedy Randomized Constructon(Seed is now described:

procedure Greedy Randomized Construction (Seed,y)
{sort candidate sites by decreasing order of population}
D, « Sort_Candidate_Siteg population);
{initialize solution set}
s:={}
S =C;
{while solution is not a complete solution}
while H # pdo
{loop over all candidate sites not in the solution list}
For j=1to ‘g‘ do
{initialize parameters}
{restrict demand points list to the standard covering distance to site j}
D, - {ioDd, <d}
{sort demand points by increasing distance to site j}
D; ~ Sort_Demand_Point §( distance);

{loop over demand points in set Dij}
For i=1to ‘Dij ‘ do
{sum frequencies at each demand point if waiting time limit is not reached}
If (W_j <7and p_j<1) do
inc_j:=inc_j+fi;
actualize w_j;
actualize p j;

Endif
Enddo

{construct the restricted candidate list}
¢ : = maxinc_j};
RCL — {j OsS,inc_j= yc"‘ax};

{select randomly one site from the RCL}
j* — Random SeledfRCL);
s:=sof{j*}
s =s\{j*}
{take the demand points allocated to j* out of the demand points list}
Fori=1to ‘Dij*‘ do

D:=0\{i 0D, f;

Enddo
Enddo



end Greedy Randomized Construction

Pseudo-Code 2: Construction Phase Pseudo-Code

The proposed algorithm starts by choosing candidai#ges according to their respective
demands/populationdVe postulated in our example that all demand n@desalso potential

service location points.

Thus, starting with the first node from the cantlkdiist, the closest demand nodes are affected
to it until de coverage limit is reached. Here toeerage limit can be determined through the

utilization coefficient or the imposed limit fordtwaiting time.

Total demand affected to each of the potentiak §ite calledincoming call rate Theincoming
call rate works as agreedy function of the algorithm and can be defined agegghing of the

demand nodes no yet covered but that will do iatmnj was chosen to have a server facility.

It is included on the RCL - Restricted Candidatst l(sub-set of best solutions) the candidate
nodes with a totahcoming call rategreater to or equal gammaper cent of théncoming call

rate indexed to the potential location with higher alu

In the GRASP, thgammaparameter is established beforehand (for instahggmmaequals
0.8, we therefore mean that we include on theclsttaining the best solutionsRestricted
Candidate List- all the potential locations with a total incompioall rate greater than 80% of

the highest value between all incoming call rates).

Note that in the greedy heuristic, as suggested by Marianov and Serrathg choice would

always be to locate a center at the node with igfieelst sum of incoming call rates, i.g51.



At each iteration, we choose randomly from amorgy ¢andidate locations with the highest
incoming call rate (i.e., the ones included Rastricted Candidate Ljsthe p locations for

servers.

procedure Local_Search (Solution, Best_Solution)
obj_best : = obj(S);
{loop over sites in the solution}

for all j1 USdo
s:=s\{j,};
{loop over sites not in the solution}
for all j2 USdo
evaluate obj(SO{j,});
if obj_best<0bj(S[1{],}) do
s:=s0{j,}:
obj_best : = obj (S D{jz});
else
s:=s0{j,}:
endif
enddo

Enddo
end Local_Search

Pseudo-Code 3: Local Search Phase Pseudo-Code

At the local search phase, for each centre, welonade its assigned demand and move it to all
the potential locations not yet used, repeatingaah time the steps 9 to 20 from Becedy
Randomized Constructioprocedure, aiming to evaluate the objective atdhdihany of the
locations reciprocate a better objective value, maintain the service centre at that node;
otherwise, we keep it in the original location (§&seudo-Code 3). We repeat the procedure

until it is not possible to improve the initial s@bn or the limit of iterations is reached.

In a user-defined environment, the algorithm reszgiimodification, both in its construction
phase and in the local search in order to insugectbsest possible allocation. The proposed
algorithm penalizes the final objective wheneveruameliable solution is obtained. When a

reliable solution is obtained, this set of locasi@re considered potential sites for the placement



of service centers. Otherwise, we consider thisofdbcations an initial solution and not a
potential service location penalizing the objectiveh a large negative value M. This will

match the following objective evaluation procedure:

procedure evaluate_objective (S)

Allocate each demand point to its closest center location;
Evaluate W_j and p_j;

obj(S):=0;

If (W_j<rand p j<1)do

For j=1to pdo
For i=1to n do
If (i is allocated to j) do
obj(S):=obj(S) + f_i;
endif;
enddo;

enddo;

Else
obj(S):=M;

end evaluate_objective;

Pseudo-Code 4: Objective Evaluation Pseudo-Code

During the Local Search phase, for each centertiateg we un-allocate assigned demands and
move them to unused potential locations. We alwaysct a demand node to the nearest
potential location and check the possible waitiimget limit. If a solution is not possible, the
objective is penalized with a very high negativiugaM. Whenever new allocations are found
and a more efficient objective is identified we ntain that center in that location. Otherwise,
the starting location is kept. This procedure meated until, when comparing with the previous,

no better solution is found.



5. Computational Experience.

We now randomly generate different situations ideorto compare the results obtained when
using the heuristic solution with the ones inigialbtained, the starting point for the local search

phase of our heuristic.

For this purpose, networks of 25, 40, 50 nodesgarerated and to each of those a demand
frequency is associated. For each node it's gestkraccording to an Uniform Distribution
[800;1800], a population number that will be useddata to compute the demand frequency.

Given the population, 1% is considered the demeagliency or need of attendance.

Note that, in each of the generated scenario aadifgpnetwork, the distance between nodes
will be constant. Only the size of the network al®iand associated to nodes is altered. The
distance among the nodes is obtained according distance matrix common to all of the
scenarios and studied networks. The same goedéodistance information concerning the

competing firm, known before our location solution.

The following table presents a close-up on the attaristics and parameters of the set of data

studied.

Number Number
Cases | Nodes Centers Iterations Scenarios
1 50 5,10 and 500, 1000 10
20 and 2000
2 40 5,10 and 500, 1000 10
20 and 2000




3 25 5,10 and 500, 1000 10
20 and 2000

Table 1. Characteristics and parameters of theegsad data

The analyzed algorithm was implemented on a commith Dual 2.50 GHz Pentium Dual-

Core processer with 1920 MB of memory and using@he Microsoft Visual Studio 2005

compiler where, for the resolution of the propopeablem, the optimization software CPLEX

Optimization Studid.2.2 was integrated.

Our goal is to see to what extent the pattern @dtions obtained by the heuristic is significantly

different from the optimum obtained and used asstading point of the heuristic.

5.1. Changing the Network size and the Number of @¢ers to

Locate

We now present the data collected on the followate:

25 Nodes Network 40 Nodes Network 50 Nodes Network
Number of Centers to
L 5 10 20 5 10 20 5 10 20
ocate
o | Average Processing Time | 4.955 20.73 84.01 12.11 511 20835 | 19.06 81.84 34562
§ 5y  HoMatching 100% 95% 81% 100% 9% 99% 100%  100%  100%
K] Locations
= Average Regret 018213  0.16835 0.18075 | 0.14728  0.1164  0.13884 | 0.13837 0.13418 0.12164
o | Average Processing Time | 10.14 4135 18317 | 24.08 1019 43269 | 3725 15929 67045
o 8 ! .
S8y  %ofMatching 95% 99% 73% 100% 99% 99% 71% 100% 80%
S 8 Locations
= Average Regret 018373 015902 017961 | 012047  0.17 012721 | 011058 0.12614 0.11036
o | Average Processing Time | 20.12 8247 33736 | 4783 20239 83034 | 8196 32531 12917
o 8 ! .
S8y  %ofMatching 100% 87% 81% 100% 100% 98% 95% 100% 55%
N g Locations
= Average Regret 0.18284 018278 0.18304 | 0.16338 0.14242 011598 | 013074 0.14418  0.11701

Table 2. Simulation results for 100 examples andgcdharios; average processing time

measured in seconds.




The average CPU processing time (in seconds), perbae of the more sensitive indicators
here on this work, exponentially increases givenhilgher value of the network size, i.e., the
number of demand nodes considered. This indicatesemts the same behavior towards the
number of iterations and the number of centersotate. In any of these cases, before the
network size growth, the number of centers to leatd the number iterations, the processing

time shows the indicated pattern.

As for the percentage of final and initial matchiogations, the values increase as the number
of network nodes and number of centers to locateease. On the other hand, considering the
increasing number of iterations, we can generatigctude that the percentage of matching
locations decreases. The highest values for thlisator are revealed for the smaller networks

and with the smallest iterations number.

Despite the irregular behavior, it is possible ¢éovify that with the increase of the network size

proposed the value of the Minimum Relative Regestrdases.

5.3. Conclusions.

When solving the Maximum Capture problem with tleeeloped heuristic procedure described
before, it is possible to see that as the systerstody becomes freer (less constrained) the
method proposed allows us to improve the initidlitton. We can state that for higher solution

spaces, despite the processing time’s increasdyetiéstic procedure produces solutions that
differ from the initial. In this generalization weclude the increase of the number of centers to
locate. Less strong is the relation mentioned ihpared with the increase in the size of the

network used.



6. General Conclusions.

When analyzing the literature that addresses lmeadind allocation problems we found that
when considering a certain demand for a servieg@pears that this demand is random and is

one of the sources of system congestion.

This type of problem can arise both in the publipuvate sector, involving different types of
formulations as maximum distance models and totltge distance models. The methodology
associated with each specific problem should befelly examined and the results that are

obtained should be compared with others produceathr testing models.

In addition to the Greedy Randomized Adaptive Search Proce€diseGRASP), we also used
the heuristic method developed freninmaxRegret (Minimum Relative Regret) proposed by
Daskin [2]. The use of these models processes dertaken in accordance with previous
research and aims at its integration into the otirpgaradigm in order to explore new
methodologies that enhance or better adapt toitbenestances of the cases studied. Thus, the
developed models can be considered adequate tesadthe type of issue proposed in the
current work. Varying limits, in terms of waitingmtes and maximum distance, limits of
demand processing capabilities and network sizexjuges significant changes in the final

solutions.

There are numerous real-life situations in which #miting time is an important, oftentimes

vital, factor when considering the duration of segwendered (time or distance traveled plus



the waiting time). In such cases, taking into actdhe determination of a location pattern, the
waiting time is to be regarded as absolutely essantthe respective modeling of the system. It
may also interfere with the processing time of thenber of centers to locate at a certain

network scale, as well as the capacity of facsiiie providing the sought service.

The proposed meta-heuristic reciprocates near aptiesults demonstrating significant savings
in computation time. Given the initial data, washahe use of simulation that in the present

study the demand levels associated with each piguildata were obtained.

Regarding the application of Greedy heuristicshiesé formulations, these show acceptable
behavior to the extent that the near-optimal sohgiare sensitive to the worked examples and
problematic situations proposed in each case.

On the other hand, the theory and the numericainples obtained suggest that the solutions
become less sensitive to the model parameterseasy/gtem becomes less busy. In the case that,
for instance, the distance limit between the demawik and the service facility is smaller or
when there are less service centers to locate,caneassume that henceforth there will be
greater congestion associated with the model. Thesecases where the heuristic has given

results not identical to the initial solutions usedinput in our algorithmic formulation.

Regarding the computational experiment conductivafinal remarks. The tested models and
their various examples were obtained using randomb@r generation. In many cases, different
results were obtained, but there are others whereptoposed formulation does not produce
significant differences in the results. As alreadgntioned, generally speaking, the "tightest"
systems are those wherein the distance limit idlsmand the number of service centers to be
located is smaller. In such cases where there rdsgidr processing capabilities, location

decisions are more sensitive to pre-defined pamemsé&r the model.



Concluding, in this paper we simulated populatiansg their respective demand frequencies.

Furthermore, we demonstrated the real-life paramouportance of system congestion in its

various forms as a determining factor in locatiod allocation decisions.
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