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A Comparison of Head-Mounted Displays vs. Large-Screen Displays for an Interactive 

Pedestrian Simulator 

Sophia Mallaro 

Abstract  

This investigation compared how people performed a complex perception-action task – crossing traffic-

filled roadways – in a CAVE vs. an HMD virtual environment. Participants physically crossed a virtual 

roadway with continuous cross traffic in either a CAVE-like or an HTC Vive pedestrian simulator. The 

3D model and traffic scenario were identical in both simulators, allowing for a direct comparison between 

the two display systems. We found that participants in the Vive group accepted smaller gaps for crossing 

than participants in the CAVE group. They also timed their entry into the gap more precisely and tended 

to cross somewhat more quickly. As a result, participants in the Vive group had a somewhat larger margin 

of safety when they exited the roadway than those in the CAVE group. Participants in the CAVE group 

focused their gaze further down the road and had more variability in their gaze distances. The results 

provide a foundation for future studies of pedestrian behavior and other tasks involving full-body motion 

using HMD-based VR. 

Introduction 

Pedestrian injuries and fatalities in the U.S. have increased at an alarming rate over the last several years, 

with states reporting 2,660 pedestrian fatalities in the first six months of 2016 [Macek 2017]. This 

represents the steepest increase in pedestrian fatalities since record keeping began. Virtual environment 

technology offers tremendous potential for safely and systematically investigating risk factors associated 

with the interactions of pedestrians and vehicles, and to study interventions to mitigate these risks. Recent 

technological advances in displays, tracking systems, and simulation software platforms have 

dramatically reduced the cost and difficulty of creating highly immersive, interactive pedestrian 

simulators. 

In addition to the intrinsic interest in understanding risks associated with road crossing and the influence 

of strategies to mitigate risk, road crossing is a good model system for testing how different virtual 

environment technologies influence performance in complex perception-action tasks. This paper presents 

an experiment that leverages a pedestrian road-crossing task to compare the two primary VR display 

technologies, large-screen and head-mounted display (HMD) systems. 

Related Work 

A number of research labs have developed interactive pedestrian simulators built on virtual reality 

technology. One of the challenges in designing a pedestrian simulator is to create a realistic experience of 

road crossing in a confined space. Researchers have devised a variety of ways to enable participants to 

virtually cross a road in such systems. 

One way to expand the virtual travel distance in a large screen display system is to use a treadmill as an 

interface for locomotion. Banducci et al. [Banducci et al. 2016] placed a self-powered treadmill in a 

CAVE virtual reality system, which they used to study the influence of cell phone conversations and 

texting on pedestrian road crossing [Neider et al. 2011, 2010]. While this approach is effective in 

expanding travel distance, initiating and maintaining walking motion on a self-powered treadmill is 

somewhat effortful and unnatural. 



Another way to expand the virtual travel distance and 

allow natural walking motion in a CAVE is to extend 

length of the side displays. Taking advantage of wide-

screen display technology, our lab has constructed two 

CAVE-like display systems with side screens that are 

4.33m long and 2.44m tall. This makes it possible to 

render a one-lane road that crosses through the display 

volume that meets American Association of State 

Highway and Transportation Officials (AASHTO) 

design standards (2.74m - 3.66m for urban, local 

roads). In a series of experiments, we have examined 

how a variety of factors influence road crossing 

including age, texting, vehicle-to-pedestrian (V2P) 

communication systems, and crossing with a partner 

[Jiang et al. 2016; O’Neal et al. 2017; Rahimian et al. 

2016]. 

Researchers at the French Institute of Science and Technology for Transport (IFSTTAR) have also built a 

full-scale pedestrian simulator that allows participants to physically cross a virtual roadway. The display 

system consists of 10 rear-projection screens forming an elongated corridor [Dommés et al. 2015]. 

Participants can walk up to 7 m (23 ft), enough to cross a two-lane road. They have used this system to 

investigate how older adults cross roads with traffic. 

Recent advances in head-mounted display (HMD) technology with integrated tracking systems, such as 

the Oculus Rift and the HTC Vive, have led to dramatic improvements in both the quality and cost of 

virtual reality systems. These offer the potential for low-cost, portable pedestrian simulators [Deb et al. 

2017; Feldstein et al. 2016; Morrongiello and Corbett 2015; Morrongiello et al. 2015a,b]. The chief 

advantage of head-mounted systems as compared to large-screen systems is that they are highly 

immersive and much less costly to build. Potential disadvantages are that they typically have a restricted 

field of view and viewers cannot see their own body or objects in their hands (e.g., a cell phone). This, 

along with the encumbrance of a head-mounted display and the necessity of managing a cable that 

connects the display to a computer, may lead to unnatural movement. For example, Morrongiello et al. 

[Morrongiello et al. 2015b] found that children crossed (virtual) roads at a slower rate when wearing a 

head-mounted display system than they did when walking without wearing the display. 

A number of studies have examined the differences in perception between HMD vs. CAVE virtual 

environment display systems. This includes investigations of distance perception and user interaction 

[Bowman et al. 2002; Steed and Parker 2005]. One recent study examined how people perform a complex 

perception-action task that involved a virtual train boarding task [Grechkin et al. 2014]. Participants 

attempted to step from a train platform onto a moving flatcar as it passed by the platform. A gate at the 

front of the platform periodically opened and closed. Participants were required to synchronize their 

boarding to both the opening of the gate and the approach of the flatcar. Participants performed the task in 

either an nVIS nVisor ST HMD or a CAVE. The main influence of display type was on the timing of 

motions - those in the CAVE condition walked more slowly but synchronized their movement with the 

arrival of the flatcar more tightly than those in the HMD condition. 

Here, we present the results of an experiment comparing performance in the HTC Vive to a large-screen 

display system using the everyday task of crossing a traffic-filled roadway. The study differs from the 

train boarding study in both the task and the technology. Our CAVE improves on the previous study by 

using stereo imaging and head tracking to set the viewpoint for rendering. Importantly, the longer side 

screens of our CAVE allow participants to physically cross a one-lane road. The Vive represents the latest 

generation of consumer-level HMDs. It is much lighter than the nVIS system and packaged with a low-

Figure 1: The large-screen (CAVE) pedestrian simulator. 



latency tracking system that has a larger workspace than the electro-magnetic system used in the train 

boarding study. The low cost and portability of the Vive make it attractive for studies of pedestrian 

behavior and for training applications. 

Methods 

Virtual Environments 

CAVE. The CAVE-like virtual environment consisted of three screens at right angles to one another, 

forming a three-walled room that was 3.05m wide x 4.33m long x 2.44m tall (see Fig. 1). Three DPI 

MVision 400 Cine 3D high-resolution projectors were used to back-project stereo images on the three 

walls. A fourth projector front-projected stereo images on the floor. A stereo sound system was used to 

generate spatialized traffic sounds. 

An OptiTrack motion capture system tracked the movements of participants. The tracking system 

consisted of 17 Flex-13 infrared cameras mounted on the top and back of the CAVE. Participants wore a 

helmet with reflective markers to track their head position and orientation. The participant’s eye point 

was estimated from the head data and used to render the scene for the participant’s viewpoint. The 

OptiTrack system was also used to approximate gaze angle.  

Participants viewed stereo images rendered for the estimated position and orientation of their eyes. A 

fixed inter-pupillary distance of 6.5 cm was used to render images of the left and right eyes. Participants 

wore Volfoni ActiveEyes stereo shutter glasses that were synchronized with the displays. 

VIVE. The Vive virtual environment was based on the HTC Vive head-mounted display system using 

SteamVR. Participants wore stereo headphones to hear spatialized traffic sounds. The walking area was 

7m wide x 3.92m long. The Vive comes with two LED emitting lighthouse boxes. These boxes flash and 

allow receivers on the headset to calculate its position and orientation. We used this orientation data to 

approximate gaze angle.  

The virtual environment software for both systems was based on the Unity3D gaming platform. In-house 

code generated traffic and recorded the positions and orientations of vehicles and the participant during 

the experiment for later analysis. 

Design and Procedure 

We used a between-subjects design to compare road crossing behavior in the two types of virtual 

environments. Half of the participants were randomly assigned to the CAVE group and half to the Vive 

group. In both groups, participants physically crossed a one-lane virtual road with continuous traffic 

traveling from left to right. Cars travelled at the local, residential speed limit of 42.23 km/h (25 mph), 

with randomly ordered temporal gaps between cars ranging from 2.5-5 seconds with half-second 

intervals. 

After a brief introduction to the virtual neighborhood, participants performed a single practice road-

crossing trial with the experimenter. The experimenter instructed participants to watch the traffic and 

cross when they thought the gap between cars was large enough for them to reach the other side of the 

road without getting hit by a car. The traffic ceased to be generated after participants reached the other 

side of the road. Participants then walked back to the starting place and a new trial commenced. 

Participants then completed 20 road-crossing test trials on their own. The duration of the experiment was 

approximately 30 min. 

 



Measures 

We focused on three main aspects of road crossing: gap selection, movement timing, and gaze. Scores for 

each measure represented the average across the 20 test trials. 

Gap Selection 

Number of gaps seen represented how many gaps passed from the start of a trial before crossing, 

including the gap crossed.  

Gap size was the temporal size (in seconds) of the gap selected for crossing. 

Movement Timing 

Standing position was the distance (in meters) from the standing position of the participant to the center 

of the roadway.  

Timing of entry was the time (in seconds) between the pedestrian and the rear of the lead car in the gap at 

the moment the pedestrian entered the path of the traffic.  

Crossing time was the amount of time that the participant took to cross the road.  

Time to spare was the time (in seconds) between the participant and the front of tail car at the time the 

participant cleared the path of the traffic.  

Collisions occurred when time to spare was less than 0. These were extremely rare and were not analyzed 

further. 

Gaze 

Roadway focus distance was the distance down the roadway 

that the participant focused their gaze. Negative values 

represent the left side of the road and positive values 

represent the right side of the road.  

Distance variability was the variability in distance down the 

roadway that the participant gazed. 

Because participants in the Vive and Cave stood different 

distances from the roadway, gaze was measured in distance 

down the road instead of angle. The distance was calculated 

by multiplying the angle of the head by the standing 

distance. Figure 2 shows this calculation.   

Participants 

The participants were 32 undergraduate students. There 

were 16 participants (6 male, 10 female) in the CAVE 

group and 16 participants (10 male, 6 female) in the Vive 

group. Participants received course credit for their participation. 

Results 

Group differences were analyzed in one-way Analyses of Variance (ANOVAs) with condition (CAVE, 

Vive) as a between-subjects factor. As a complement to the ANOVAs, mixed-effects logistic regression 

Figure 2: Road distance calculation. Road distance, r, was 

calculated by multiplying tangent of angle x by distance to 

the center of the road, d.  



analyses were conducted to evaluate gap size and group as predictors of gap choices. Table 1 shows 

means and standard deviations for all performance measures. 

Gap Selection  

Number of Gaps Seen Before Crossing: There was 

a significant effect of condition for number of gaps 

seen, F (1, 30) = 5.31, p = 0.03, η2 = 0.15. Those in 

the CAVE group saw more gaps before crossing 

than did those in the Vive group. 

Gap Size There was a significant effect of condition 

for gap size, F (1, 30) = 4.49, p = 0.04, η2 = 0.13. 

Those in the CAVE condition took larger gaps on 

average than those in the Vive condition. 

Mixed-effects logistic regression analyses indicated 

that participants in both conditions were more likely 

to cross through larger than smaller gaps, z = 10.16, 

p < 0.001, with 121.56 increased odds of accepting a 

gap with each .5 second increase in gap size (Fig. 2). 

In addition, participants in CAVE condition had 

higher gap acceptance thresholds than participants in 

the Vive condition, z = 2.36, p < 0.001. The Vive 

group had 4.78 increased odds of accepting a gap of 

any size compared to those in the CAVE condition, 

indicating that those in the CAVE condition were 

more conservative in their gap acceptance. 

In addition to threshold differences, condition 

marginally moderated gap size selection, z = -1.82, 

p = 0.07. Those in the Vive condition had 42.89 

increased odds of gap acceptance with each .5 second 

increase in gap size, z = 7.93, p < 0.001, compared to 

those in the CAVE condition, who had 98.69 increased odds of accepting a gap with each .5 second 

increase in gap size, z = 11.29, p < 0.001. This indicates that participants in the CAVE condition were 

more discriminating in their gap choices, avoiding more of the smaller gaps and taking more of the larger 

gaps. 

Movement Timing 

Average standing position: There was a main effect of group for standing position, F (1, 30) = 8.36, p = 

0.01, η2 = 0.22, with those in the CAVE group standing closer to the virtual roadway before crossing than 

those in the Vive group. 

Timing of entry: There was also a significant effect of condition for timing of entry, F (1, 30) = 38.28, p < 

0.001, η2 = 0.56. Those in the Vive group timed their entry into the gap more tightly than those in the 

CAVE group. 

Road crossing time: There was no effect of condition for crossing time, F (1, 30) = 1.97, ns. 

Preformance Measures CAVE(N=16) Vive(N=16)

Standing Position (m) 1.85 (0.04) 1.94 (0.09)

Number of Gaps Seen 3.30 (1.22) 2.46 (0.80)

Mean Gap Size Taken (s) 4.63 (0.19) 4.44 (0.29)

Timing of Entry (s) 0.97 (0.14) 0.65 (0.14)

Road Crossing Time (s) 2.13 (0.21) 2.03 (0.19)

Time to Spare (s) 1.54 (0.29) 1.75 (0.37)

Roadway Focus Distance (m) -12.19 (9.58) -5.86 (4.33)

Distance Variability 12.53 (10.21) 6.73 (5.29)

Table 1: Means (and standard deviations) for all 

performance measures for participants in the CAVE and 

Vive conditions. 

Figure 3: Logistic regression curves depicting the likelihood 

of accepting gaps of different sizes in the CAVE and Vive 

conditions. 



Time to spare: A marginal effect of condition emerged for time to spare, F (1, 30) = 3.24, p = 0.08, η2 = 

0.10. Participants in the CAVE condition had less time to spare than participants in the Vive condition. 

 

Gaze 

Roadway focus distance. Results revealed a main effect of condition on where participants focused their 

attention on the roadway, t (32) = -2.49, p = .02, with those in the CAVE condition (M = -12.19, SD = 

9.58) looking further down the roadway on average compared to those in the Vive condition (M = -5.86, 

SD = 4.33). 

Distance variability. A significant main effect of condition emerged, t (32) = 2.02, p = .05, with those in 

CAVE condition (M = 12.35, SD = 10.21) being more variable in where they looked on the roadway than 

those in the Vive condition (M = 6.73, SD = 5.29). 

Discussion 

This study compared how people cross traffic-filled roadways in virtual environments using an HTC Vive 

HMD vs. a large-screen CAVE to display images. The results show small, but statistically significant 

differences in performance between the Vive and CAVE conditions. Participants in the Vive condition 

were less conservative and less discriminating in their gap choices and timed their entry into the roadway 

more tightly than those in the CAVE condition. Participants in the Vive condition had somewhat more 

time to spare when exiting the roadway, despite choosing smaller gaps and standing further from the 

roadway. This is likely due to the fact that they timed their entry into the gap more tightly and crossed the 

road slightly faster. Participants in the CAVE condition focused their gaze further down the roadway than 

participants in the Vive condition. The CAVE has a wider field of view than the Vive, leading us to 

hypothesize that those in the Vive would look further down the roadway and have more variability. 

Further experiments will help determine why this hypothesis was false.  

While the results do not reveal the underlying causes for these differences in performance, there are 

several factors that may have contributed to both more risky and more skilled behavior in the HTC Vive. 

One possibility is that the lack of a body representation may make the environment less threatening and 

led to a willingness to take greater risks, in this case a lower gap acceptance threshold. Another 

contributing factor may be that the HMD provided superior cues for time to arrival judgments, possibly 

related to greater pixel density per visual angle, leading to tighter timing of motion initiation. Additional 

research is needed to better understand how display modality influences performance in complex, whole-

body perception and action tasks. 

The results contrast with those of Grechkin et al. [Grechkin et al. 2014] who found better timing in a train 

boarding task for participants in a CAVE as compared to an NVIS nVisor ST HMD. Differences in the 

task and the technology make it difficult to determine what may have caused this difference in results 

between their study and ours. However, the NVIS HMD is considerably more unwieldy than the HTC 

Vive which may have contributed to the timing differences. 

Overall, both environments were effective in presenting a virtual road crossing task. We had no reports 

of simulator sickness in either the Vive or CAVE and no drop outs. This contrasts with an experiment 

conducted by Deb et al. [Deb et al. 2017] that also used an HTC Vive to study road crossing. They report 

an 11.5% rate of withdrawal due to simulator sickness. 



Overall, the results provide promising support for using consumer level hardware to conduct research on 

pedestrian road-crossing behavior. These HMDs also offer promise for developing widely deliverable 

interventions related to pedestrian road crossing behavior, as well as an inexpensive platform for research 

on pedestrian behavior that is portable, easy to use, and simple to maintain. 
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