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Abstract 

Electron-beam (EB) polymerization is a fast, solvent-free, low-energy means of 

polymerizing inks, thin films, and coatings such as those used in food packaging. During EB 

polymerization, accelerated electrons interact with liquid monomer molecules to form radicals, 

which continue to react with other monomer molecules and form long chain, solid polymers. The 

final polymer properties are dependent on the monomer chemistry, as well as processing 

conditions such as dose (i.e., the amount of energy that is absorbed by the sample), belt speed 

(i.e., the rate at which the sample travels through the electron-beam unit), and dose rate (i.e., the 

rate at which energy is delivered to the system). Unfortunately, the relationships among 

formulation chemistry, processing conditions, and final polymer properties are not well 

understood, thereby limiting the growth of EB polymerization in industry. One reason these 

relationships are not well characterized is the unpredictable nature of radical formation during 

EB polymerization. Determination of apparent radiation yield (i.e., number of measurable 

radicals created per 100 eV of energy absorbed by the system) can facilitate understanding of 

how radicals are formed during EB reactions, which will fill in the knowledge gaps and allow for 

better prediction of final polymer properties. Limited research has been conducted to determine 

the apparent radiation yield of EB-cured polymers, and the work that has been done relies on 

multiple assumptions.  The goal of this research project was to develop a method for determining 

the apparent radiation yield.  

Apparent radiation yield is proportional to the apparent rate of initiation (i.e., the change 

in radical concentration with respect to time). The radical concentration could not be measured 

directly because the concentration of radicals in the system is so small and because radicals are 

not easily detected with spectroscopy or other analytical techniques. Instead, a highly reactive 
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inhibitor molecule was added to the formulation, which reacted with the radicals formed by the 

EB. Each inhibitor molecule reacts with one radical, thus the concentration of radicals is equal to 

the concentration of inhibitor. Raman Spectroscopy was used to find the delay in conversion 

caused by the added inhibitor. The inhibitor concentration was plotted versus that conversion 

delay, and the slope of the resulting best-fit line was the apparent rate of radical formation, which 

was used to calculate the apparent radiation yield. Using this method, the apparent radiation yield 

of benzyl acrylate was determined to be 60±40, which is consistent with the theoretical number 

of radicals that could be produced by 100 eV of energy.   
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Introduction 

 Electron-beam (EB) polymerization has many benefits over thermal and photo-

polymerization. It is a fast, solvent-free, low-energy means of polymerizing inks, thin films, and 

coatings such as those used in the food packaging and medical devices industries. Initiators, 

which can migrate out of the packaging, are not required to begin the reaction, making this 

technology well-suited for use in food packaging and medical industries where contaminants are 

heavily regulated by governmental agencies. Unlike photopolymerization, EB polymerization 

can cure thick and pigmented samples because accelerated electrons are not hindered by 

pigments, fillers, and thick depths. Benefits over thermal polymerization include better spatial 

and temporal control, allowing for more targeted polymerization of samples.  

Despite these advantages, use of EB polymerization is limited due to lack of fundamental 

understanding of the curing process. The final properties of the polymers created during EB 

polymerizations are dependent on the monomer chemistry, as well as processing conditions such 

as dose (i.e., the amount of energy that is absorbed by the sample), belt speed (i.e., the rate at 

which the sample travels through the electron beam unit), and dose rate (i.e., the rate at which 

energy is delivered to the system). Unfortunately, the relationships among formulation 

chemistry, processing conditions, and final polymer properties are not well understood. 

  One reason these relationships are poorly characterized is the unpredictable nature of 

radical formation during EB polymerization. EB polymerization cannot be monitored in real 

time, as the reactions occur too quickly, and the accelerated electrons create a harsh 

environment, which would damage equipment used for real-time reaction monitoring. These 

issues make characterization of the reactions difficult. Furthermore, EB initiation is a complex 
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process. Once a radical forms, it can go on to react with a monomer, creating an activated 

monomer, which can then propagate and form a long chain polymer. Radicals can also form 

along a polymer chain and then interact with a radical from a nearby polymer chain, forming a 

cross-link. These are just a few examples of the many complex reactions that can take place after 

radical formation.  

Radiation yield, GR, is defined as the number of primary radicals created per 100 eV of 

energy absorbed by the system (Chapiro, 1962).  This property can facilitate understanding of 

how radicals are formed during EB reactions. Radiation yield is described using Equation 1: 

 
𝑅𝑅 = 𝐺𝑅𝜌

𝑑𝐷

𝑑𝑡
 

(1) 

where RR is the rate of radical formation, ρ is the density, and dD/dt is the dose rate to which the 

system is exposed.  

Limited studies have been conducted to determine the radiation yield in EB systems; 

however, they have several shortcomings. In one study, rate of initiation (Ri) was determined 

through derivation of the kinetic scheme and was then used to calculate GR values. However, this 

method relies on assumptions such as initiation takes place randomly in the sol and gel phases, 

random polymerization takes place in the network swollen with monomer, no chain transfer, and 

termination is unimolecular, all of which may or may not be true (Labana, 1968). Other research 

has focused on calculating radiation yield for styrene and methyl methacrylate monomers; 

however, these studies frequently interchanged Gi, GR, and G(-m) values, which are not 

explicitly defined, in their calculations without explanation (Squire, et al., 1972), (Allen, et al., 

1974). Each of these values has a different technical definition, and therefore using these values 
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interchangeably is inaccurate. Careful definition of these terms would allow for more direct 

comparisons among G values.  

In this study, a protocol using a free-radical inhibitor was developed to calculate the 

radiation yield in EB polymerizations.  This method was adapted from a previous study focused 

on determination of radiation yield in gamma-initiated polymerizations (Chapiro, 1962). The 

dose rates used during gamma-irradiation are several orders of magnitude smaller than those 

used in EB polymerization. The total energy delivered by gamma-irradiation is also much lower 

than that delivered in EB systems. Due to these differences in the two initiation methods, the 

resulting radiation yields may not be comparable to one another. It is expected that the radiation 

yield values for monomers initiated with EB will be much larger than those initiated with 

gamma-rays because of the higher dose rates.  

An important distinction must be made when adapting the inhibition method used in the 

1962 Chapiro study for determination of radiation yield. As previously stated, GR is the number 

of primary radicals that are created per 100 eV of energy. GR encompasses all measurable 

radicals, as well as those that are non-reactive or otherwise inert (Equation 2): 

 𝐺𝑅 = 𝐺𝑅′ + 𝐺𝑛 (2) 

where 𝐺𝑅′ is the apparent radiation yield (i.e., number of measurable radicals created by 100 eV 

of energy absorbed by the system) and 𝐺𝑛 encompasses all non-reactive and otherwise inert 

species that cannot be measured using this inhibitor method. The reactivity of a species is 

dependent on how the bonds are broken. An excited-state monomer may cleave into two radicals, 

with one relatively stable radical and another that is reactive. Some radicals may also get trapped 
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and be unable to react. Both situations lead to radicals that will not react with the added inhibitor, 

and therefore, will not be counted by the experimental method.   

 Since the non-reactive species cannot be measured, the protocol developed in this study 

specifically determines the apparent radiation yield, GR’. GR’ can be directly substituted into 

Equation 1, and the equation can be rearranged to solve for apparent radiation yield as follows: 

 
𝐺𝑅′ =

𝑅𝑅′

𝜌
𝑑𝐷
𝑑𝑡

 
(3) 

where 𝑅𝑅′ is the apparent rate of radical formation. 

The goal of this research project was to develop a new method for determining radiation 

yield. Understanding how many radicals are formed and how many of them go on to initiate 

polymerization is the first step in building the relationship among monomer chemistry, 

processing conditions, and the final polymer properties. Determination of radiation yield will 

allow for development of a relationship between radical formation and final polymer properties, 

as well as help expand EB polymerization – both for use in its current fields and for use in new 

fields such as the automotive and architectural industries, where more advanced polymer 

properties are required. 

Experimental 

 Materials 

Benzyl acrylate (BA, TCI America) was the monomer used in this study. BA was chosen 

because acrylates are commonly used in industry, and it contains a phenyl ring, which is required 

to ensure reliable analysis using Raman spectroscopy (Schissel, Lapin, & Jessop, 2014). 

Hydroquinone (HQ, TCI America) was the free-radical inhibitor used in conjunction with BA to 
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obtain rate of initiation for this study. Both chemicals were used as received and are shown in 

Figure 1.  

 

Figure 1. Structures of the monomer benzyl acrylate (left) and the inhibitor hydroquinone (right). 

Methods 

Sample Preparation 

Formulations were prepared by varying the amount of HQ in BA: 0.0%, 0.25%, 0.5%, 

1.0%, 1.5%, and 2.0% by weight HQ. Ten sets of Q-panels were prepared with six aluminum 

weigh boats attached to each panel. Each weigh boat on a panel contained one of the six 

formulations in the HQ concentration series.  To create a 200 µm film, 63 µL of formulation was 

pipetted into a weigh boat. With a film thickness of 200 µm, it is a reasonable to assume full 

penetration of the accelerated electrons at a voltage of 200 kV. 

Electron-beam Exposure 

EB polymerization was used to cure the samples. The polymerization took place on an 

EBLab unit (Comet Technologies, Inc.). The voltage of the lab unit was set to 200 kV. Nitrogen 

gas was used to reduce the concentration of oxygen to below 200 ppm. A combination of 10 belt 

speeds and doses were used to maintain a constant dose rate of 197 kGy/s for each trial. Each Q-

panel was exposed to a different combination of dose (ranging from 20-200 kGy) and belt speed 

(ranging from 3-30 m/min); specific combinations for each trial are given in Table 1. 
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Table 1. Dose and belt speed combinations for each trial 

Dose (kGy) 20 22 25 29 33 40 50 67 100 200 

Belt Speed (ft/min) 30 27 24 21 18 15 12 9 6 3 

 

Raman Spectroscopy 

Raman Spectroscopy was used to determine monomer conversion. After EB exposure, 

the samples were pipetted into quartz capillary tubes.  Raman spectra of the samples (both 

formulations containing inhibitor and neat monomer) were collected using a holographic probe 

head (Mark II, Kaiser Optical Systems Inc.) via a 100 μm collection fiber. A single-mode 

excitation fiber carried an incident beam of 785 nm near-infrared laser to the quartz capillary 

tube. Laser power at the sample was approximately 180 mW. Spectra were collected with an 

exposure time of 250 ms and 5 accumulations. For each sample, 10 spectra were collected and 

averaged to provide accurate values to use when calculating monomer conversion.  

Data analysis was completed using Holoreact software, Revision: 2.4.4, to gather peak 

height data for reaction and reference peaks of polymerized sample (P) and unreacted monomer 

(M). An example Raman spectrum is shown in Figure 2. The reference peak was measured at 

1595-1618 cm-1 (indicative of the -C=C- bonds in the phenyl ring) and the reaction peak at 1623-

1650 cm-1 (indicative of the -C=C- vinyl bond of the acrylate). The reference peak is needed to 

eliminate error caused by variations in the instrument. With this information, conversion, , can 

be calculated (Equation 4): 

 
𝛼 = (1 −

𝐼𝑟𝑥𝑛(𝑃)/𝐼𝑟𝑒𝑓(𝑃)

𝐼𝑟𝑥𝑛(𝑀)/𝐼𝑟𝑒𝑓(𝑀)
) × 100  (4) 
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where Irxn(P) and Iref(P) are the peak intensities of the reaction and reference peak of the 

polymerized sample, respectively; Irxn(M) and Iref(M) are the peak intensities of the reaction and 

reference peak of the unreacted monomer, respectively (Schissel, Lapin, & Jessop, 2014).  

 

Figure 2: Representative Raman spectra used to calculate conversion. The portion of the chemical 

structure circled with the solid line represents the phenyl ring in the acrylate, and its representative peak at 

1610 cm-1 remains at a constant height throughout the reaction. The portion of the structure circled with 

the dotted line refers to the double bond in the acrylate, and its representative peak at 1640 cm-1 decreases 

in height as the monomer is converted to polymer.   

Results 

A protocol was developed to determine apparent radiation yield for monomers 

undergoing free-radical polymerization via EB irradiation (see Figure 3).  Formulations 

containing monomer and inhibitor were polymerized under the EB, and the conversion of 

monomer was calculated using Raman spectroscopy.  With these conversion values, a kinetic 

profile was created to determine the conversion delay for each inhibitor concentration (see 

Figure 4 as an example). Time was calculated using the following equation:  
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𝑡 =

𝐵𝑒𝑎𝑚 𝑤𝑖𝑑𝑡ℎ (𝑚)

𝑏𝑒𝑙𝑡 𝑠𝑝𝑒𝑒𝑑 (𝑚/𝑚𝑖𝑛)
  (5) 

where the beam width is a fixed, known value and belt speed is one of the known variables. The 

conversion delay is obtained by identifying the point at which all inhibitor is consumed and the 

conversion begins to increase.  

 

Figure 3. Overview of method used for determination of apparent radiation yield in EB polymerized 

samples. 

  To calculate conversion delay, a linear best-fit line was drawn through all points that 

were consistently above 5% conversion (polymerization regime). The cut-off at 5% conversion 

was chosen because the Raman spectrometer has an error of ± 5%. A second linear best-fit line 

was drawn through all points that were not consistently above 5% conversion (inhibition 

regime). The intersection of the two best-fit lines identified the conversion delay for the sample. 

The goodness of fit, reported in R2 values, was above 0.9855 for the polymerization regime 

trendlines; however, the trendlines for the inhibition regime had significantly lower R2 values, 

ranging between 0.058 and 0.9801. The low R2 values can be attributed to the large amount of 

Raman error at low conversions. Because the conversion is not yet increasing, the large, random 

variation in Raman measurements drastically reduces the goodness of fit.  
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Figure 4. Representative kinetic profile resulting from piecing together dose-belt speed trials.  The 

formulation presented contains 1.5wt% HQ inhibitor in BA. The trendline for the square data points 

covers the inhibition regime, and the trendline for the triangular data points spans the polymerization 

regime. Linear best fit lines were drawn through each regime, and the intersection was taken to be the 

conversion delay. 

A conversion delay also occurs in the pure monomer sample, which does not contain any 

HQ. This delay stems from dissolved oxygen in the sample, which reacts with the free radicals to 

produce inactive peroxy radicals, as well as from the small amount of inhibitor added by the 

manufacturer to increase the shelf-life stability of the monomer. For this reason, the inherent 

inhibition delay observed in the neat BA sample was subtracted from the total conversion delay 

for each of the formulations containing inhibitor to obtain the inhibition time that was 

specifically due to the HQ inhibitor molecules (Equation 6).  

 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 − 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦  (6) 

These inhibition times were then plotted with respect to the inhibitor concentration, and a linear 

best-fit line was drawn (see Figure 5 as an example). The slope of the resulting trendline 

represents the change in inhibitor concentration with respect to time. Since it is assumed that 

each inhibitor molecule reacts with one radical, this value is equivalent to the change in radical 
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concentration with respect to time, which is equivalent to the apparent rate of radical formation, 

RR’ (Equation 7). 

 𝑑[𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟]

𝑑𝑡
=

𝑑[𝑅 ∗]

𝑑𝑡
= 𝑅𝑅′  (7) 

 

 

Figure 5. Representative profile used to determine the apparent rate of radical formation, RR’.  The slope 

of the resulting best-fit line was equal to RR’; the goodness of fit, reported as R2 values, was above 0.7449 

for all three trials of BA formulations containing HQ inhibitor.  

 Using the calculated value for RR’, the known density of BA, and set dose rate, the 

apparent radiation was calculated using Equation 3. A sample calculation of apparent radiation 

yield is shown below: 

𝐺𝑅
′ =

0.9664 𝑚𝑜𝑙 𝐿−1𝑠−1

1.06 𝑔 𝑚𝐿−1(196.8 𝐽 𝑔−1𝑠−1)
×

𝐽

2.242 × 1018𝑒𝑉
×

𝐿

1000𝑚𝐿
×

6.022 × 1023

𝑚𝑜𝑙
× 100𝑒𝑉 

In this calculation, several unit conversions must be completed so that the results are reported in 

number of initiating radicals created per 100 eV of energy absorbed by the system. These 

included conversions from J to eV, mL to L, and moles to radicals (using Avogadro’s number). 

Finally, the result was multiplied by 100 eV to be consistent with the definition of apparent 
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radiation yield. The apparent radiation yield was calculated for three trials, and the results are 

given in Table 2. 

Table 2. Apparent radiation yield (GR’) for BA 

 Trial 1 Trial 2 Trial 3 Average 

GR’ 30 45 99 6040 

Discussion 

 The apparent radiation yield of BA was calculated to be 6040 using the newly 

developed protocol.  This average is based on three trials and had a large standard deviation. 

However, the values obtained are physically reasonable. GR’ is defined per 100 eV of energy 

absorbed by the system. Based on the bond dissociation energies of C-H bonds, it takes roughly 

3.5-4.5 eV of energy to break the bond, which creates two radicals. The exact bond dissociation 

energy depends on the groups adjacent to the C-H bond. Selected examples of bond dissociation 

energies are given in Table 3.  

Table 3. Select common bond dissociation energies for C-H bonds. 

Bond Dissociation Energy (eV) 

H-CH2CH3 4.25 

H-CH2CH2CH3 4.25 

H-COCH2CH3 3.78 

 

 Assuming a dissociation energy of 3.78 eV, the maximum number of radicals that 100 eV 

of energy can produce can be calculated as follows:  

100 𝑒𝑉 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

3.78 𝑒𝑉/𝑏𝑜𝑛𝑑
× 2

𝑟𝑎𝑑𝑖𝑐𝑎𝑙𝑠

𝑏𝑜𝑛𝑑
= 52.91 𝑟𝑎𝑑𝑖𝑐𝑎𝑙𝑠 

The calculation shows the theoretical maximum number of radicals that can be produced by 100 

eV of energy is just under 53.  
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In comparison to this maximum theoretical value of radicals, the mean GR’ value of 

6040 calculated seems reasonable. This value is within the same order of magnitude of the 

maximum amount that can be formed. It is expected that the GR’ value would be lower than the 

maximum number of radicals produced, as not all radicals that are produced can be measured. 

There is confidence that the values obtained are in the right range, but further work must be 

completed to reduce the standard deviation of the measurements. One major reason for the large 

standard deviation is due to the error in Raman measurements. Each measurement has a ~5% 

error associated with it, and this error continues to propagate through the analysis because those 

measurements are used to determine inhibition times and to create plots from which the slope is 

used to obtain the apparent rate of radical formation. Small errors in initial measurements can 

quickly result in large deviations in the final value. Future work will focus on reduction of these 

errors in the conversion measurements.  

 Error in the values for apparent radiation yield can be reduced by using an alternative 

method to obtain the apparent rate of radical formation of each sample. Use of a different 

inhibitor (DPPH), which is colored, allows the disappearance of inhibitor to be directly 

monitored using a UV-Vis spectrophotometer. As the reaction progresses, a color change occurs, 

and the amount of color change in the sample signifies the amount of inhibitor that has reacted. 

From this analysis, change in inhibitor concentration with respect to time is directly obtained, 

and therefore apparent rate of radical formation can also be directly obtained. Because this 

method directly measures the apparent rate of radical formation, the data analysis is simplified, 

and the error is greatly reduced.   
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 Another reason for the large standard deviation is that EB is random. Radicals interact 

with the monomer and polymer samples and can lead to many different complex reactions. These 

radicals can go on to propagate and form long chain polymers, cross-links between polymer 

chains, or react in many other ways. The exact reactions that take place are different every time, 

and as such, the number of measurable radicals created may vary significantly each time. 

Conclusions 

A promising protocol was developed to determine the apparent radiation yield of EB-

polymerized samples. The resulting values were physically reasonable, with an average value of 

6040. Future work will focus on reduction of error in the sample measurements. Once error has 

been effectively reduced, the apparent radiation yield of other monomers will be compared.   
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Appendix A: Graphs of conversion versus time for each concentration of inhibitor  

 

The following figures were used in the data analysis for this research. These contain 

representative kinetic profiles resulting from piecing together dose-belt speed trials. The 

formulations presented contain differing amounts of HQ inhibitor in BA, which is signified in 

the subheadings. The trendline for the square data points covers the inhibition regime, and the 

trendline for the triangular data points spans the polymerization regime. Linear best fit lines were 

drawn through each regime, and the intersection was taken to be the conversion delay. 
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0.25% HQ  
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0.5% HQ 
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1% HQ 
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1.5% HQ 
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2% HQ 
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Appendix B: Graphs of inhibitor concentration versus inhibition time  

 

The following figures are the profiles for the three trials used to determine the apparent 

rate of radical formation, RR’.  The slope of the resulting best-fit line was equal to RR’. 
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Trial 3 
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