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Abstract 

The origin of cryptography, the study of encoding and decoding messages, dates back to 

ancient times around 1900 BC. The ancient Egyptians enlisted the use of basic encryption 

techniques to conceal personal information. Eventually, the realm of cryptography grew 

to include the concealment of more important information, and cryptography quickly 

became the backbone of cyber security. Many companies today use encryption to protect 

online data, and the government even uses encryption to conceal confidential 

information. Mathematics played a huge role in advancing the methods of cryptography. 

By looking at the math behind the most basic methods to the newest methods of 

cryptography, one can learn how cryptography has advanced and will continue to 

advance.  
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Cryptography: Mathematical Advancements on Cyber Security 

How does the government keep its secrets from prying eyes? How do companies 

who promise to keep their customers’ personal information safe actually protect that 

information? In most cases, the answer is cryptography, the study of encoding and 

decoding information. Starting with rudimentary beginnings, cryptography evolved to 

include complex mathematical techniques. As mathematicians discovered new aspects of 

prime numbers and functions with unique properties, the government updated the 

standard practice for encoding and decoding information in order to keep up with the 

growing field of mathematics. Still today, researchers seek for new methods to add to 

cryptography, and as mathematics continues to advance so will the area of cyber security.  

History of Cryptography 

Cryptography, the study of encryption and decryption, stems from the basic desire 

for privacy. The most basic examples of the encryption and decryption process, though 

rudimentary compared to modern methods, involve the concept of sending information to 

a location without interception from an unintended source. The first known instance of 

cryptography occurred around 1900 BC in ancient Egypt. The tomb of Khnumhotep II, 

an Egyptian nobleman, contains several hieroglyphic symbols. However, the last sections 

of the hieroglyphics include abnormal symbols replacing the usual symbols (Dooley, 

2018). The unusual symbols obscure the meaning of the hieroglyphics by simply 

switching commonly used symbols with unknown symbols. Though simple in nature, the 

act of switching symbols to conceal a message is a basic form of encryption. Nonetheless, 

one cannot determine with absolute certainty why Khnumhotep II hides the true meaning 

of the inscriptions, so the reasoning behind the ambiguity remains unclear.  
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Assyrian merchants during 1500 BC introduced the idea of using intaglios for 

business transactions. An intaglio, an engraved figure in a stone or other hard material, 

allowed the merchants to create a unique signature, which ensures that trading occurs 

with the intended merchant (Dooley, 2018). The idea of using a unique signature foretells 

the idea of digital signatures, a more mathematically complex way to ensure the 

authenticity of a transaction.  

Meanwhile, during the 7th century BC, a Greek poet named Archilochus 

introduced the skytale, a cryptographic device consisting of a cylinder with a leather strip 

(Dooley, 2018). Suppose the skytale allows for four letters written around the cylinder 

and six letters written along the side, then skytale encrypts messages as follows: 

Step 1. Create the message: “Send help as soon as possible” 

Step 2. Write message along the side of  the cylinder like the example below. 

 

Step 3. Unwrap the leather strips to obtain the new encrypted message: “ 

slosepnsnaaidssbhspleooe ” 

Notice: In order to decrypt the message, one must simply rewrap the leather strip 

around the cylinder and read along the side. This method obviously presents several 

limitations regarding the length of the original message and the ease of deciphering the 

encrypted message but proves effective for the time period of the skytale’s use.  

One of the most famous examples of early cryptography, the Caesar cipher, 

emerged around 100 BC. Julius Caesar developed a shift cipher known as the Caesar 

https://en.wikipedia.org/wiki/Archilochus
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cipher in order to protect confidential military information (Dooley, 2018). The cipher 

takes the letters used in the message and shifts each letter of over three to the left, or 23 to 

the right, according to the order of the alphabet. For example, if one wants to encrypt the 

message “WE LEAVE AT SUNDOWN”, then by using the Caesar, he obtains the 

following: 

Original Message:     WE LEAVE AT SUNDOWN   

        Encrypted Message:  TB  IBXSB XQ PRKALTK 

Innovations to Cryptography 

The ancient examples of cryptography certainly paved the way for more advanced 

cryptographical techniques; however, several basic developments still needed 

improvement. Even though the encryption techniques introduced thus far concealed 

information, one could easily decrypt the message without much effort. In order to 

further protect hidden messages, cryptographic techniques needed more complexity.  

Leon Battista Alberti, an Italian Renaissance man, created the first polyalphabetic 

cipher, known as the Alberti cipher, around 1467. The Alberti cipher involves two 

concentric disks, one larger and one smaller, each divided into 24 sections. The stationary 

larger disk contains the uppercase letters of the Latin alphabet, which consists of the 

English alphabet minus J, U and W. In addition, Alberti also took out the letters H, K and 

Y as he personally regarded them unnecessary, and he added the numbers 1 through 4 to 

the outer disk, as well. The inner disk consists of the lowercase letters of the Latin 

alphabet, which also disregards j, u and w from the English alphabet, and also contains 

the symbol et, which most likely carries the meaning of the ‘&’ symbol (Dooley, 2018). 
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In order to encode a message, one must simply rotate the inner disk and replace the letter 

or number on the outer disk with the letter directly underneath on the inner disk.  

As encryption and decryption techniques advanced, these methods began to 

spread, especially with the invention of the printing press. Johannes Trithemius published 

posthumously the first printed work on cryptography in 1518. His work entitled 

Polygraphia is a composition of five books (Dooley, 2018). The books contain ancient 

alphabets, invented alphabets, and examples of encoding messages. The printing of 

cryptographical works allowed encryption and decryption techniques to spread farther 

than ever before.  

As the interest in creating cryptosystems grew, the interest in defeating 

cryptosystems also emerged. Thus, the birth of cryptanalysis, the science of breaking 

cryptographic algorithms, occurred during the 19th century. Edgar Allen Poe, the famous 

American poet, showcased his skills in a Pennsylvania paper by solving submitted 

ciphers. Poe’s efforts to break encryptions spread the interest of cracking encryption 

techniques for entertainment. However, the increased interest in cryptanalysis pushed the 

need for stronger encryption techniques (Dooley, 2018).  

Eventually, governments also began to pay attention to cryptanalysis. During 

World War I, the cryptanalysis section of the British Naval Intelligence decrypted about 

15,000 German messages. This allowed the British Navy to play an important role in 

defeating Germany during WWI. The realm of cryptography, now not only involved 

methods for hiding important messages, but also involved the practice of breaking 

encrypted messages. The ability to decrypt encoded messages allows one to gain an 

advantage over enemies without their knowledge (Budiansky, 2016).  
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Modern Advancements 

As the interest in cryptography grew, the need for more complex methods also 

arose. Thus, cryptographers sought to incorporate more difficult mathematical tactics in 

order to protect their encryption techniques from adversaries (Middleton, 2017). 

Whitfield Diffie and Martin Hellman, two prominent cryptographers of the 20th century, 

incorporated the use of prime numbers into their encryption method, utilizing the 

difficulty of factoring large prime numbers (Mollin, 2003). Diffie and Hellman created a 

method to exchange keys, vital information used in encoding and decoding, called the 

Diffie-Hellman key exchange. Essentially, the Diffie-Hellman key exchange involves the 

use of a public key, which is a prime number known by the general public, a nonzero 

integer agreed upon by the two parties exchanging information, and a unique secret key 

for each of the two parties. Surprisingly, when using the Diffie-Hellman key exchange, 

each party does not need to know the secret key of the other party in order perform the 

required calculations. The specifications of the key exchange will be discussed later in 

detail.  

The 20th century also introduced the first commercially established cipher, known 

by the name Lucifer. With the formation of the National Security Agency (NSA) during 

1952, the American government began to search for more ways to ensure the protection 

of domestic information (Yan, 2008). Several workers of the IBM, or International 

Business Machines Corporation, created Lucifer and submitted the cipher to the NSA as a 

possibility for the Data Encryption Standard (DES). After acceptance from the NSA, 

Lucifer served as the basis for the DES, which became the government standard for 

encryption (Yan, 2008).  
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Although the discovery of a special curve, known as the elliptic curve, dates back 

to the 18th century, the widespread implementation of elliptic curves into cryptography 

did not occur until the beginning of the 21st century. The unique properties of addition 

over an elliptic curve add important applications to cryptography. Elliptic curve 

cryptography also enables more security with a smaller key size than the Diffie-Hellman 

key exchange (Washington, 2003). The process of elliptic curve addition seems simple to 

compute, however given large enough prime numbers the process becomes increasingly 

more difficult. The NSA even accepted the use of elliptic curve cryptography as a 

national standard for the encryption of information. However, the NSA announced the 

plan to replace the use of elliptic curve cryptography with a newer cipher in 2015 due to 

the impending threat of quantum computing (National Security Agency, 2015).  

The Future of Cryptography  

The unpredictability of the quantum realm makes the idea of quantum 

cryptography a virtually unbreachable option for encoding important information. The 

beauty of encoded data within a quantum state is that the moment an outside force tries to 

intercept or read the encoded data, the data itself changes. Thus, eavesdropping is easily 

detected the moment of occurrence. Quantum cryptography involves the use of photons 

and a photon detector. Once the photon contains the hidden message, the photon detector 

uses the random rotations of the polarization of the photon to transfer the message into 

bits (Horodecki, 2010).  

Since quantum cryptography is practically safe from any interference, it seems 

completely infallible; yet, several complications make it hard to implement. One problem 

with quantum cryptography is the short distance limitation for sending the data. An 
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important aspect of quantum cryptography is the entanglement of photons, the idea that 

two photons are linked even though there is no physical attachment between the two 

photons (Horodecki, 2010). However, entanglement can only occur over a relatively short 

distance. In 2017, scientists in China created a new record for the longest distance for 

successfully transmitting entangled photons, 1203 kilometers, or approximately 760 

miles (Chen, 2017). This distance is an incredible breakthrough, but room for major 

improvement still exists.  

Another area of concern with quantum cryptography is cost. For practical and 

commercial uses of quantum cryptography, a reasonable cost and availability of the 

required resources is nonexistent. Since much of quantum cryptography is still in the 

developmental stages, many of the resources available to scientists and researchers are 

not available generally. The network and equipment required for the quantum key 

distribution, as well as the photon detector costs more than a business would typically 

want to pay to add more security to the company (Sergienko, 2006). Once the 

accessibility and the cost of the technology associated with quantum cryptography reach 

a more affordable level, then wide spread implementation of quantum cryptography is 

inevitable.  

Private and Public Key Cryptography 

In order to understand the role of mathematics in cryptography as a whole, one 

should first attempt to understand how mathematics is used in the individual methods. An 

important distinction to realize is the difference between private and public key 

cryptography, but first one must consider the nature of a key itself and its purpose.  
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A key is a piece of information that enables the sender of a message to encrypt the 

message and the receiver of a message to decrypt the message (Hoffstein, Pipher, & 

Silverman, 2008). For example, consider the Caesar cipher mentioned previously. This 

particular cipher shifts each letter to the right by 23. Thus, the encryption key is 23. 

However, the decryption key is less obvious than the encryption key in this example. 

Remember in the previous discussion that shifting each letter of the alphabet to the right 

by 23 is equivalent to shifting each letter over to the left by 3 taking in to consideration 

the fact that there are 26 letters in the English alphabet. In order to return to the original 

letters one can simply shift each letter in the encrypted message to the right 3 more times. 

Therefore, the decryption key is 3. In most situations, the receiver needs to know only the 

decryption key.  

Private key encryption involves the use of one key. This key is both the 

encryption and decryption key. Hence, the sender and receiver both need knowledge of 

the same key. Private key encryption is a relatively simple process as only one key is 

required for both encryption and decryption (Hoffstein, Pipher, & Silverman, 2008). In a 

perfect world, private key cryptography is sufficient to protect important information. 

However, most senders must worry about possible interference of their message. If the 

secret key landed in the hands of an adversary, then he or she could steal or alter 

confidential information with little effort. Even though private key encryption is simple 

in theory, in actuality it brings many security threats that make the method not secure.  

Public key encryption, a much safer alternative to private key encryption, 

incorporates the use of two keys: one public key and one private key. The public key 

functions as the encryption key which means that any individual can use the public key to 
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encrypt a message, but only the owner of the private key, or the decryption key, can 

decrypt the encoded messages (Wang, Xu, & Wang, 2016). Although public key 

cryptography is more secure than private key cryptography, the method still involves 

several weaknesses, so the process of storing the secret key must be secure.  

As in the case of public key cryptography, if an adversary discovers the private 

key, then he or she can also decrypt any encoded messages. As a result, many seek to 

improve the means in which they exchange the secret key using prime numbers, elliptic 

curves, and other more complex methods (Katz & Lindell, 2015). Another issue with 

public key cryptography involves the public key, itself. The public key does not need to 

be a secret key and will be published publicly. A third party, however, can intercept the 

releasing of the public key and alter it. This third party can also create a unique private 

key and decrypt any messages. In order to not raise any suspicions, the messages must 

also continually be intercepted, decrypted, and then encrypted once again using the fake 

public key.  

Although this interception process certainly is possible, the more difficult the 

encryption/decryption process, the harder for an adversary to pull off such a trick. Some 

common examples of public key cryptography are the Diffie-Hellman key exchange and 

the ElGamal key generator. Both encryption systems involve the use of prime numbers 

and use the difficulty of factoring large primes to ensure more security (Katz & Lindell, 

2015). Both processes will be discussed in detail later; however, one must first 

understand some fundamental mathematical concepts.  

Finite Fields 
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Let 𝑆 be a set and 𝑆 × 𝑆 be the set of ordered pairs (𝑠, 𝑡) such that 𝑠, 𝑡 are 

elements of 𝑆. A binary operation, ∗ , maps  𝑆 × 𝑆 → 𝑆. Note that the image of (𝑠, 𝑡) in 

𝑆 × 𝑆 must also be an element in 𝑆. A group is a set 𝐺 such that the following properties 

hold: 

1. Associativity: For any 𝑎, 𝑏, 𝑐 𝜖 𝐺, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. 

2. Identity: For any 𝑎 𝜖 𝐺, there exists an element e such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

3. Inverse: For any 𝑎 𝜖 𝐺, there exists an inverse element 𝑎−1 such that 𝑎 + 𝑎−1 =

𝑎−1 + 𝑎 = 𝑒. 

The group is called an abelian group if the following property also holds: 

4. Commutativity: For any 𝑎, 𝑏 𝜖 𝐺 , a ⁎ b = b ⁎ a.  

A ring is a set 𝑅 with two binary operations + and ∙ that satisfy the following: 

1. 𝑅 is an abelian group with respect to +. 

2. The binary operation ∙ is associative. 

3. The distributive property holds. Hence, for any 𝑎, 𝑏, 𝑐 𝜖 𝑅, 𝑎 ∙  ( 𝑏 +  𝑐 )  =  𝑎 ∙

 𝑏 +  𝑎 ∙  𝑐. 

A ring is called a field if in addition the following also hold: 

4. The binary operation ∙ is commutative. 

5. The non-zero elements of 𝑅 form a group under ∙ . 

A finite field is simply a field that contains finitely many elements. The finite field 𝔽𝑝 is 

the finite field containing all the elements mod 𝑝 (Mullen & Panario, 2013; Cohen, Frey, 

Avanzi, 2006).  

Key Exchanges over Finite Fields 
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The finite field 𝔽𝑝 provides many important applications to the realm of 

cryptography. Perhaps one of the most relevant is the discrete logarithm problem. Note 

that a primitive root is an element 𝑔 in 𝔽𝑝where the powers of 𝑔 generate the entire group 

of 𝔽𝑝. The discrete logarithm problem is the difficulty of finding some 𝑥𝜖𝔽𝑝 such that 

𝑔𝑥  =  ℎ (𝑚𝑜𝑑 𝑝), where 𝑔 is a primitive root and h is any non-zero integer in 𝔽𝑝. The 

discrete logarithm can be written as 𝑥 =  log𝑔 ℎ. Note that ℎ =  𝑔 ∙ 𝑔 ∙ … ∙ 𝑔 (𝑚𝑜𝑑 𝑝) 

for 𝑥 multiplications of 𝑔. Essentially, in order to find log𝑔 ℎ one must find how many 

times g must be multiplied by itself in order to get ℎ (Hoffstein, Pipher, & Silverman, 

2008).  

An obvious way to compute the discrete logarithm is by testing out powers of 𝑔 

one by one until some power 𝑖 such that 𝑔𝑖 = ℎ (𝑚𝑜𝑑 𝑝). For example, to find an 𝑎 such 

that 2𝑥 = 7(𝑚𝑜𝑑 11), test the powers of 2, 20, 21, . . . 27, and eventually find that 27 =

7 (𝑚𝑜𝑑 11). However, this method becomes extremely difficult for any large prime 

number. Both the Diffie-Hellman key exchange and the ElGamal key generator base their 

computations on the difficulties surrounding the discrete logarithm (Katz & Lindell, 

2015).  

The Diffie-Hellman Key Exchange 

Suppose two people, Alice and Bob, want to share a secret key, but Eve, an 

outside adversary, can intercept any exchange between the two. By using the difficulty of 

the discrete log problem to their advantage and the steps of the Diffie-Hellman key 

exchange, Alice and Bob can avoid Eve’s obtaining of their key.   
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Alice and Bob must first agree on some large prime p and a nonzero integer, g in 

𝔽𝑝 which is available to the public, even to Eve. However, Alice also secretly chooses an 

integer 𝑎 which she uses to calculate 𝐴 =  𝑔𝑎(𝑚𝑜𝑑 𝑝). Meanwhile, Bob also chooses a 

secret integer b and calculates 𝐵 =  𝑔𝑏(𝑚𝑜𝑑 𝑝). Alice then sends 𝐴 to Bob, while Bob 

sends 𝐵 to Alice. Alice takes 𝐵 and computes 𝐵𝑎, and Bob takes A and computes 𝐴𝑏. 

Since 𝐵𝑎 = 𝐴𝑏 = 𝑔𝑎𝑏(𝑚𝑜𝑑 𝑝), both Alice and Bob receive the key, 𝑔𝑎𝑏(𝑚𝑜𝑑 𝑝) 

without Eve also receiving the key (Katz & Lindell, 2015). 

For example, assume Alice and Bob pick the prime number 𝑝 = 167 and 𝑔 =  2. 

So, Alice takes 𝑝 and 𝑔 and computes 𝐴, using her secret number 𝑎 = 23 which only she 

knows. Bob also takes 𝑝 and 𝑔 and computes 𝐵, using his secret number 𝑏 = 55 which 

only Bob knows. So, 𝐴 = 223 ≡ 31(𝑚𝑜𝑑 167) and 𝐵 = 255 ≡ 50(𝑚𝑜𝑑 167). Alice 

then sends Bob 𝐴 = 31 and Bob sends Alice 𝐵 = 50. With this new information, Alice 

computes 𝐵𝑎 and Bob computes 𝐴𝑏  such that 𝐵𝑎 = 5021 ≡ 150 (𝑚𝑜𝑑 167) and 𝐴𝑏 =

3155 ≡ 150 (𝑚𝑜𝑑 167). Hence, both Alice and Bob obtain the key, 𝑘 = 150, without 

anyone else also receiving the key. Note that an adversary, Eve, can obtain the values of 

𝐴 and 𝐵, but neither Eve nor Bob knows the value of 𝑎, and neither Eve nor Alice knows 

the value of 𝑏. This mean Eve would have to solve 2𝑎 ≡ 31 (𝑚𝑜𝑑 167) and 2𝑏 ≡

50 (𝑚𝑜𝑑 167) in order to find the values of 𝑎 and 𝑏, which becomes extremely difficult, 

especially in a real life situation where the numbers are significantly larger. 

The ElGamal Key Generator 

ElGamal public key encryption closely resembles the Diffie-Hellman public key 

exchange and also involves the discrete logarithm problem. The differences between the 
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Diffie-Hellman and the ElGamal approach stem mostly from the calculation involved 

with producing the shared key.  

Say Alice chooses a prime number 𝑝 and a primitive root modulo 𝑝, 𝑔. She then 

computes her public key by raising g to her private key, 𝑎. So, 𝐴 = 𝑔𝑎(𝑚𝑜𝑑 𝑝). Alice 

then publishes this information so that anyone can encrypt a message using her public 

key, but only Alice can decrypt the message using her private key. If Bob wants to send a 

message 𝑚 to Alice, he must choose a random key 𝑘, which is called the ephemeral key, 

and compute 𝐵1 = 𝑔
𝑘(𝑚𝑜𝑑 𝑝) and 𝐵2 =  𝑚 ∙  𝐴𝑘 =  𝑚 ∙ 𝑔𝑎𝑘(𝑚𝑜𝑑 𝑝). Bob sends Alice 

both 𝐵1 and 𝐵2as a pair (𝐵1, 𝐵2) (Hoffstein, Pipher, & Silverman, 2008).    

In order for Alice to decrypt the message, she must use her private key, a. Alice 

begins by calculating 𝑥 = 𝐵1
𝑎 = 𝑔𝑎𝑘(𝑚𝑜𝑑 𝑝). Then, she finds 𝑥−1 = 𝑏 (𝑚𝑜𝑑 𝑝) and 

computes 𝐵2 ∙ 𝑥
−1 = 𝑚 ∙ 𝑥 ∙ 𝑥−1 = 𝑚. Hence, Alice decrypts the encrypted message to 

obtain the original message 𝑚 (Hoffstein. Pipher, & Silverman, 2008). 

As an example, let Alice choose 𝑝 = 179 and 𝑔 = 2. She then chooses her 

private key, 𝑎 = 63 and computes 𝐴 = 263 ≡ 63(𝑚𝑜𝑑 179). She then releases 𝑝, 𝑔, and 

𝐴 to the public. Now, suppose Bob wants to send Alice a message 𝑚 = 123, so he picks 

a random integer 𝑘 = 131 and computes 𝐵1 = 2
131 ≡ 35(𝑚𝑜𝑑 179) and 𝐵2 = 123 ∙

62131 = 74(𝑚𝑜𝑑 179). Bob then sends Alice the pair (35,74). Once Alice receives the 

pair, she calculates 𝑥 = 3563 ≡ 69(𝑚𝑜𝑑 179) and 𝑥−1 = 96(𝑚𝑜𝑑 179). By using 𝐵2 

Alice can decrypt the encrypted message to find the original message 𝑚. Alice computes 

𝐵2 ∙ 𝑥
−1 = 74 ∙ 96 ≡ 123(𝑚𝑜𝑑 179). Hence, Alice successfully decrypts the message, 

𝑚 = 123, sent to her by Bob.  
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Consider the issues with public key cryptography discussed earlier. Both the 

Diffie-Hellman key exchange and the ElGamal key generator help combat these issues; 

however, the issues do not disappear completely. In the case of the Diffie-Hellman key 

exchange, if Eve wants to obtain the private key shared by Alice and Bob, she needs both 

Alice’s secret integer 𝑎 and Bob’s secret integer 𝑏. Notice the difficulty in Eve obtaining 

both 𝑎 and 𝑏 since neither Alice nor Bob know both 𝑎 and 𝑏 (Katz & Lindell, 2015). 

Also, in the example for Diffie-Hellman, the prime number chosen is 167, but in real life 

examples, the prime number chosen are extremely large making the computations for Eve 

even more difficult. Nonetheless, large primes also make the computations difficult for 

Alice and Bob as well.  

Regarding the ElGamal key generator, for Eve to decipher a message m, she not 

only deals with the repercussions of the discrete logarithm problem but also with the 

difficulty of modular inverses. Alice may still have a difficult time computing the 

modular inverse of 𝑥 even though she also has her secret key, 𝑎. Eve, without both Alice 

and Bob’s secret keys, faces the daunting task of finding the correct exponent of 𝑔 in 

addition to then calculating the modular inverse of an exceedingly large number 

(Hoffstein. Pipher, & Silverman, 2008). Notice also that the message 𝑚 is a numerical 

value, so for longer messages the difficulty of the computations increases.  

Elliptic Curves 

The use of elliptic curves in cryptography greatly improved the security of 

encryption ciphers, but what exactly is an elliptic curve? An elliptic curve over 𝔽𝑝 is the 

set of solutions to an equation of the form 𝑥3 + 𝑎𝑥 + 𝑏 where 𝑎, 𝑏 are elements of 𝔽𝑝 and 

4𝑎3 + 27𝑏2 ≠ 0. The form 𝑥3 + 𝑎𝑥 + 𝑏 of an elliptic curve is known as the Weierstrass 
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form named after the German mathematician who discovered the form, Karl Weierstrass. 

The condition 4𝑎3 + 27𝑏2 ≠ 0 is also known as the discriminant of an elliptic curve 

(Silverman, 2009).  

An important attribute of elliptic curves is addition over the curve. The binary 

operation ⊕ is called elliptic curve addition. Graphically, given two points 𝑃 and 𝑄 on 

an elliptic curve 𝐸, we obtain 𝑃 ⊕𝑄  by connecting a line 𝐿 from 𝑃 to 𝑄 and finding the 

third intersection point labeled as 𝑅. By reflecting 𝑅 across the 𝑥-axis, one obtains −𝑅 

for which 𝑃 ⊕𝑄 = −𝑅. Also, call 𝑂 the point at infinity, the identity for 𝐸, and say it 

exists at every vertical line (Hoffstein, Pipher, & Silverman, 2008).  

 

Given an elliptic curve 𝐸 over 𝔽𝑝 the following properties are also true: 

1. Identity: 𝑃⊕𝑂 = 𝑂⊕  𝑃 = 𝑃 for all 𝑃 in 𝐸(𝔽𝑝). 

2. Inverse: 𝑃 ⊕ (−𝑃) = 𝑂 for all 𝑃 in 𝐸(𝔽𝑝). 

3. Associativity: (𝑃 ⊕ 𝑄)⊕𝑅 = 𝑃⊕ (𝑄 ⊕ 𝑅) for all 𝑃, 𝑄, 𝑅 in 𝐸(𝔽𝑝). 

4. Commutativity: 𝑃 ⊕𝑄 = 𝑄 ⊕𝑃 for all 𝑃, 𝑄 in 𝐸(𝔽𝑝). 

Based on the previous definition of an abelian group, one can see that 𝐸 is an 

abelian group under elliptic curve addition. However, computing ⊕ graphically becomes 

𝑃 
𝑄 

−𝑅 

𝑅 = 𝑃⊕𝑄 

Elliptic Curve Addition 
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difficult and impractical when dealing with many additions. Thus, one can also use an 

elliptic curve addition algorithm (Hoffstein, Pipher, & Silverman, 2008). 

Given an elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over 𝔽𝑝 and two points 𝑃1, 𝑃2 ϵ 

𝐸(𝔽𝑝),  

1. If 𝑃1 =  𝑂, then 𝑃1⊕𝑃2 = 𝑃2. 

2. If 𝑃2 = 𝑂, then 𝑃1⊕𝑃2 = 𝑃1. 

3. Else, let 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2). 

4. If 𝑥1 = 𝑥2and 𝑦1 = −𝑦2, then 𝑃1⊕𝑃2 =  𝑂. 

5. Else, define λ as 

𝜆 =  

{
 

 
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 𝑖𝑓 𝑃1 ≠ 𝑃2

3𝑥1+𝑎
2

2𝑦_1
 𝑖𝑓 𝑃1 = 𝑃2

 

where 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2 and 𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1. Thus, 𝑃1⊕𝑃2 = (𝑥3, 𝑦3). For 

example: Let 𝐸(𝔽23): 𝑦
2 = 𝑥3 + 𝑥 + 1, 𝑃1 = (1,16), and 𝑃2 = (11,20). Since 𝑃1 ≠ 𝑃2,

𝜆 =
20−16≡4

11−1≡10
 =  4 ∙  10−1 = 4 ∙ 7 ≡ 5(𝑚𝑜𝑑 23). Then use λ to compute 𝑥3 and 𝑦3  

where 𝑥3 = 52– 1– 11 = 13(𝑚𝑜𝑑 23) and 𝑦3 = 5(1 − 13) − 16 = 16(𝑚𝑜𝑑 23). Thus, 

𝑃1⊕𝑃2 = (13,16).  

Recall that a Weierstrass equation of an elliptic curve is an equation of the form 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. However, this form is not defined for 𝔽2 or 𝔽3, so one must also 

consider a more general form of the Weierstrass equation suitable for all 𝔽𝑝. The long 

Weierstrass form of an elliptic curve over 𝔽𝑝 is  

𝐸: 𝑦2 + 𝑎1𝑥𝑦 + 𝑎2 = 𝑥3 + 𝑎3
2 + 𝑎4𝑥 + 𝑎5 where  𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ϵ 𝔽𝑝. 
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The long Weiestrass form works over any 𝔽𝑝. Although, for the purposes of 

cryptography, the short Weierstrass equation is sufficient (Blake, Seroussi, & Smart, 

2005). In fact, there exists an isogeny between the long Weierstrass form and the short 

Weierstrass form, meaning that the short Weierstrass from preserves the structure of an 

long form of an elliptic curve and can be used for cryptography. Given E and E’ as two 

elliptic curves over 𝔽𝑝, 𝜙: 𝐸 → 𝐸′ is an isogeny if 1) 𝑥 = 𝑢2𝑥′ + 𝑟 and 2) 𝑦 = 𝑢3𝑦′ +

𝑢2𝑠𝑥′ + 𝑡 where (𝑥, 𝑦) ∈ 𝐸, (𝑥′, 𝑦′) ∈ 𝐸′, and 𝑢, 𝑠, 𝑡, 𝑟 ∈ 𝔽𝑝 (Silverman, 2009). 

Now, the fact that an elliptic curve with short Weierstrass form and an elliptic 

curve with long Weierstrass form an isogeny can be proven in the following manner: 

Proof. Let E’ be an elliptic curve with long Weiestrass form and E be an elliptic 

curve with short Weierstrass form over 𝔽𝑝 such that, 

𝐸′: (𝑦′)2 + 𝑎1𝑥′𝑦′ + 𝑎2′ = (𝑥
′)3 + (𝑎3

′ )2 + 𝑎4𝑥′ + 𝑎5 and 

𝐸: 𝑦2 = 𝑥3 + 𝑐1𝑥 + 𝑐2. 

Beginning with E’, the first goal is to manipulate E’ in such a way that y can replace 

𝑢3𝑦′ + 𝑢2𝑠𝑥′ + 𝑡 for some 𝑢, 𝑠, 𝑡 ∈ 𝔽𝑝. 

(𝑦′)2 + 𝑎1𝑥′𝑦′ + 𝑎2𝑦′ = (𝑥
′)3 + (𝑎3𝑥

′)2 + 𝑎4𝑥′ + 𝑎5   

(𝑦′)2 + (𝑎1𝑥
′ + 𝑎2)𝑦

′ +
(𝑎1𝑥+𝑎2)

2

4
= (𝑥′)3 + (𝑎3𝑥′)

2 + 𝑎4𝑥′ + 𝑎5  +
(𝑎1𝑥+𝑎2)

2

4
  

(𝑦′ +
𝑎1𝑥

′+𝑎2

2
)
2

= (𝑥′)3 + (𝑎3 +
𝑎1
2

4
) (𝑥′)2 + (𝑎4 +

2𝑎1𝑎2

4
) 𝑥′ + (

𝑎2
2

4
+ 𝑎5)  

By setting 𝑦 =  𝑦′ + 
𝑎1

2
𝑥′ +

𝑎3

2
, the equation becomes 

𝑦2 = (𝑥′)3 + (
4𝑎3+𝑎1

2

4
) (𝑥′)2 + (

2𝑎4+𝑎1𝑎2

2
) 𝑥′ +

4𝑎5+𝑎2
2

4
. 
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In order to simplify the equation for future calculations, set 4𝑎3 + 𝑎1
2  =  𝑏1, 2𝑎4 +

𝑎1𝑎2  =  𝑏2, and 4𝑎5 + 𝑎2
2  =  𝑏3. Thus, the equation is  

𝑦2 = (𝑥′)3 +
𝑏1

4
(𝑥′)2 +

𝑏2

2
𝑥′ +

𝑏3

4
. 

The next objective of the proof is to manipulate the equations further so that x can replace 

𝑢2𝑥′ + 𝑟 for some 𝑢, 𝑟 ∈ 𝔽𝑝. 

𝑦2 = ((𝑥′)3 +
𝑏1

4
(𝑥′)2 +

𝑏1

48
𝑥′ +

𝑏1

1728
) +

𝑏2

2
𝑥′ +

𝑏3

4
−

𝑏1

48
𝑥′ −

𝑏1

1728
  

𝑦2 = (𝑥′ +
𝑏1

12
)
3

− (
𝑏1
2

48
𝑥′ −

𝑏2

2
𝑥′ +

𝑏1
3

576
−
𝑏1𝑏2

24
) −

𝑏1
3

1728
+
𝑏3

4
+

𝑏1
3

576
−
𝑏1𝑏2

24
  

𝑦2 = (𝑥′ +
𝑏1

12
)
3

− (
𝑏1
2−24𝑏2

48
) (𝑥′ +

𝑏1

12
) −

𝑏1
3+3𝑏1

3+432𝑏3−72𝑏1𝑏2

1728
  

𝑦2 = (𝑥′ +
𝑏1

12
)
3

− (
𝑏1
2−24𝑏2

48
) (𝑥′ +

𝑏1

12
) −

𝑏1
3−36𝑏1𝑏2+216𝑏3

864
  

By letting 𝑥 = 𝑥′ +
𝑏1

12
,  

𝑦2 = 𝑥3 −
𝑏1
2−24𝑏2

48
𝑥 −

𝑏1
3−36𝑏1𝑏2+216𝑏3

864
 . 

Notice for 𝑐1 =
24𝑏2−𝑏1

2

48
 and 𝑐2 =

𝑏1
3−36𝑏1𝑏2+216𝑏3

864
, 

𝑦2 = 𝑥3 + 𝑐1𝑥 + 𝑐2 = 𝐸.   

The substitutions 𝑦 =  𝑦′ + 
𝑎1

2
𝑥′ +

𝑎3

2
 and 𝑥 = 𝑥′ +

𝑏1

12
 follow the definition of an 

isogeny where 𝑢 = 1, 𝑡 =
𝑎3

2
, 𝑠 =

𝑎1

2
, and 𝑟 =

𝑏1

12
. Thus, there exists an isogeny such that 

𝜙: 𝐸 → 𝐸′ and (𝑥, 𝑦) ↦ (𝑥′ +
𝑏1

12
, 𝑦′ + 

𝑎1

2
𝑥′ +

𝑎3

2
). Therefore, the structure of an elliptic 

curve is preserved when using the short Weierstrass form, and this form can be used for 

elliptic curve cryptography (Silverman, 2009).  
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An important attribute of elliptic curves is the fact that the curve is non-singular 

and smooth, which ensures that the curve contains unique solutions. Without the 

characteristic of being non-singular, elliptic curves could not be used for cryptography. 

Hence, the condition 4𝑎3 + 27𝑏2 ≠ 0, or the discriminant, assures that the curve is, in 

fact, non-singular (Cohen, Frey, & Avanzi, 2006). Essentially, the discriminant of an 

elliptic curve implies that there is a tangent line at every point, thus E is non-singular and 

smooth. One can prove that the discriminant is 4𝑎3 + 27𝑏2 ≠ 0  in the following 

manner: 

Proof. Let 𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥3– 𝑎𝑥 − 𝑏. Then,
𝜕𝑓

𝜕𝑥
 = −3𝑥2 − 𝑎 and  

𝜕𝑓

𝜕𝑦
= 2𝑦. 

Hence, 
𝜕𝑦

𝜕𝑥
=

3𝑥^2 + 𝑎

2𝑦
, and notice that ∇𝑓 = 〈3𝑥2 + 𝑎, 2𝑦〉. 𝐸 is smooth if ∇𝑓 exists and is 

nonzero at 〈
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
〉. So, find where 

𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 are both equal to zero. When 

𝜕𝑓

𝜕𝑥
= 0, 𝑎 =

−3𝑥2 and when 
𝜕𝑓

𝜕𝑦
=  0, 𝑦 = 0. Thus, when 𝑎 = −3𝑥2 and 𝑦 = 0, 

𝑓(𝑥, 0) = −𝑥3 − (−3𝑥2)𝑥 − 𝑏 =  2𝑥3– 𝑏. 

In order to ensure that 𝐸 is non-singular, set 𝑓 = 0 and then restrict the result. Hence, 

2𝑥3 − 𝑏 = 0 and thus 𝑥3 =
𝑏

2
. Notice that 𝑎 = 3𝑥2, so 𝑎3 = −27𝑥6 and 𝑥6 = −

𝑎3

27
. 

Therefore, 

(
𝑏

2
)
2

= 𝑥6 = −
𝑎3

27
 . 

So, – 27𝑏2 = 4𝑎3 and thus 4𝑎3 + 27𝑏2 = 0. 

Remember that in order for 𝐸 to be non-singular, one must restrict the values 𝑎 and 𝑏 

such that 4𝑎3 + 27𝑏2 ≠ 0. Therefore, since the restriction ensures that ∇𝑓 exists and is 

nonzero at every point of the curve, the discriminant of an elliptic curve implies that there 
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is a tangent line at every point; thus, E is non-singular and smooth. Now, one can 

properly understand the cryptographic applications of elliptic curves.  

A similar discrete logarithm problem occurs with elliptic curves. However, the 

discrete logarithm problem for elliptic curves involves elliptic curve addition instead of 

multiplication. Thus, the elliptic curve discrete logarithm problem is the problem of 

finding some 𝑛 such that 𝑄 = 𝑃 ⊕ 𝑃⊕. . .⊕ 𝑃 where 𝑃 is added to itself 𝑛 times 

(Cohen, Frey, & Avanzi, 2006). Formally, Given an elliptic curve over 𝔽𝑝 and points 𝑃, 

𝑄 in 𝔽𝑝, the elliptic curve discrete logarithm problem is the problem of finding an 𝑛 such 

that 𝑄 = 𝑛𝑃, where one writes 𝑛 = log𝑃 𝑄. Next, consider how the elliptic curve discrete 

logarithm problem changes the approach to the Diffie-Hellman key exchange and the 

ElGamal key generator.  

Diffie-Hellman Elliptic Curve Key Exchange 

Elliptic curves can also be used to exchange keys using the Diffie-Hellman key 

exchange. However, instead of choosing a prime number 𝑝 and a nonzero integer 𝑔 in 

𝔽𝑝, Alice and Bob must choose 𝑝, an elliptic curve over a finite field 𝐸(𝔽𝑝), and a point 

𝑃 in 𝐸(𝔽𝑝) (Cohen, Frey, & Avanzi, 2006). Note that the Diffie-Hellman key exchange 

with elliptic curves uses elliptic curve addition, not multiplication as in the key exchange 

for 𝔽𝑝.  

After Alice and Bob agree on 𝐸(𝔽𝑝) and 𝑃, Alice picks a secret integer 𝑎 and she 

computes 𝑄𝑎 = 𝑎𝑃. Meanwhile, Bob picks a secret integer 𝑏 and computes 𝑄𝑏 = 𝑏𝑃. 

Alice then sends 𝑄𝑎 to Bob, and Bob sends 𝑄𝑏 to Alice. Both Alice and Bob use their 
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respective secret integers 𝑎 and 𝑏 to compute 𝑎𝑄𝑏 = 𝑎𝑏𝑃 = 𝑏𝑄𝑎, which becomes a 

secret key shared by Alice and Bob (Cohen, Frey, & Avanzi, 2006). 

Specifically, say Alice and Bob agree on 𝐸(𝔽3023): 𝑦
2 = 𝑥3 + 𝑥 + 2547 and 𝑃 =

(2237,2480) where 𝑃𝜖𝐸(𝔽3023). Alice then chooses a secret integer 𝑎 = 2313 and 

calculates 𝑄𝑎 = 2313𝑃 = (934, 29). Meanwhile, Bob also chooses a secret integer 𝑏 =

1236 and calculates 𝑄𝑏 = 1236𝑃 = (1713,1709). Then, Alice sends 𝑄𝑎 to Bob, and 

Bob sends 𝑄𝑏 to Alice. By using their respective secret integers, 𝑎 = 2313 and 𝑏 =

1236, both Alice and Bob obtain the secret key 2313𝑄𝑏 = 1236𝑄𝑎 = (2537,1632).  

Even though both the Diffie-Hellman key exchange over 𝔽𝑝 and 𝐸(𝔽𝑝) involve 

similar processes, the recommended key size for the elliptic Diffie-Hellman key 

exchange is significantly smaller than that for the key exchange over 𝔽𝑝. According to 

NIST, a 3072-bit key or larger is recommended for the Diffie-Hellman key exchange 

over 𝔽𝑝, while only a 384-bit is recommended for the elliptic Diffie-Hellman key 

exchange (Barker, 2016). Thus, the Diffie-Hellman elliptic curve key exchange can 

provide sufficient security with a significantly smaller key than the Diffie-Hellman key 

exchange over finite fields.  

The ElGamal Elliptic Curve Key Generator 

Elliptic curves also provide application to ElGamal cryptosystems. Alice chooses 

a prime number 𝑝, an elliptic curve 𝐸(𝔽𝑝), and a point 𝑃 in 𝐸(𝔽𝑝). After she chooses a 

secret key 𝑎, she then computes 𝑄𝑎 = 𝑎𝑃 and publishes 𝑄𝑎, along with 𝑝, 𝐸(𝔽𝑝), and 𝑃. 

Now, if Bob wants to send a message 𝑀 in 𝐸(𝔽𝑝) to Alice, he chooses a random integer 
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𝑘 to be his ephemeral key and then computes 𝐵1 = 𝑘𝑃 and 𝐵2 = 𝑀⊕ 𝑘𝑄𝑎. Bob sends 

(𝐵1, 𝐵2) to Alice. Alice then takes the pair from Bob and using her secret key a computes 

𝐵2 − 𝑎𝐵1 = (𝑀⊕ 𝑘𝑄𝑎) − 𝑎𝑘𝑃 = 𝑀⊕ 𝑎𝑘𝑃⊕−𝑎𝑘𝑃 = 𝑀.  

Thus, Alice receives the original message 𝑀 (Hoffstein, Pipher, & Silverman, 2008). 

Now, suppose Alice chose 𝑝 =  3023, 𝐸(𝔽3023): 𝑦
2 = 𝑥^3 + 𝑥 + 2547, and 

𝑃 =  (2237,2430). Alice chooses a secret key 𝑎 = 2313, and computes 𝑄𝑎 = 2313𝑃 =

(934,29) which Alice makes available to the public along with 𝑝,𝐸(𝔽3023), and 𝑃. Bob 

decides that he wants to send Alice a message 𝑀 = (2181,4000) in 𝐸(𝔽3023), so he 

chooses a random integer 𝑘 = 1236 and calculates 𝐵1 = 1236𝑝 = (1713,1709) and 

𝐵2 = (2181,400) ⊕ 1236𝑄𝑎 = (2181,400)⊕ (2537,1632) = (2720, 452). Bob 

sends Alice (𝐵1, 𝐵2) where 𝐵1 = (1713, 1709) and 𝐵2 = (2720, 452). Alice receives 

(𝐵1, 𝐵2) and uses her secret key a to obtain the original message 𝑀.  

𝐵2 − 𝑎𝐵1 = (2720, 452) ⊕ −2313𝐵1 = (2720, 452)⊕ (2537,−16) = (2181, 400)                                                                            

Since (2181, 400) = 𝑀, Alice obtains the original message. 

Advantages and Disadvantages of Elliptic Curve Cryptography 

After looking at the application of elliptic curves to the Diffie-Hellman key 

exchange and the ElGamal key exchange, the efficiency of elliptic curves in securing 

private information is apparent. Elliptic curves add a unique layer to cryptography and 

elliptic curve addition provides a way to apply methods in 𝔽𝑝  to 𝐸(𝔽𝑝) instead (Xiong, 

Qin, & Vasilakos, 2017). Though the general public may be unaware of elliptic curves 

and their applications, their importance to cryptography is apparent just with their 

addition to public key exchanges. 



CRYPTOGRAPHY  26 

However, even elliptic curve cryptography faces several disadvantages. First of 

all, the computations with elliptic curve cryptography involve more complex 

mathematics. While the computations surrounding public key cryptography over finite 

fields make sense even without a full understanding of the mathematics behind the 

system, understanding the process of elliptic curve cryptography and the addition process 

comes less from common knowledge and more from extensive research (Silverman, 

2009). Elliptic curve addition adds multiple steps to the encryption and decryption 

process, so the likelihood of implementation errors increases. Also, elliptic curve addition 

significantly increases the key size compared to basic multiplication making the 

computations even more difficult.  

Quantum Mechanics 

Even with the mathematical advancements thus far, security breaches still exist as 

none of the cryptographical methods are unbreakable. However, the quantum realm 

offers a unique perspective on cryptography and multiple other areas of study (Sergienko, 

2006). Before diving into the complexities of quantum cryptography, one should seek 

understanding of the laws associated with the quantum realm.  

Quantum mechanics describes the actions of atoms and subatomic particles. 

When looking at the nature of the quantum realm, one must understand that particles act 

according to a completely different set of rules than the visible world (Griffiths, 2006). 

Consider a car driving down a road; one can easily find the position of the car at a certain 

time, as well as the velocity and mass by taking basic measurements. Quantum particles, 

however, do not act according to classic physics.  
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German physicist, Werner Heisenberg, studied the nature of particles and 

discovered a key component of quantum particles: the momentum and position of a 

particle cannot be known with full certainty. The uncertainty principle states that the 

inaccuracy of the position of a particle multiplied by the inaccuracy of the momentum of 

a particle must be larger than 
ℎ

4𝜋
, where ℎ is Planck’s constant (Griffiths, 2006). 

Essentially, the uncertainty principle says the more one knows about the position of a 

particle, the less he or she knows about the momentum and vice versa. Even the very act 

measuring a quantum system disturbs the system, itself. Thus, one cannot know the 

precision of the position and momentum of a particle with absolute certainty. 

Mathematically, the uncertainty principle says 𝛥𝑥𝛥𝑝 >
ℎ

4𝜋
 where 𝑥 is the position and 𝑝 

is the momentum of a particle (Griffiths, 2006).  

Think of electrons circling a nucleus. Knowing that opposite charges attract, one 

might think that the electrons would be attracted all the way to the positively charged 

nucleus. However, the certainty of the electrons’ location close to the nucleus implies that 

the uncertainty of the electrons’ momentum would be enormous. Thus, the electrons may 

be moving so fast that they leave the atom entirely (Griffiths, 2006; Horodecki, 2010). 

Remember the example of the car driving down a road. The observability of the position 

and momentum of the car makes it hard to believe that the particles which make up the 

car are acting in a manner contrary to the observable car.  

Particles at the subatomic level move similar to waves. An important property of 

waves is that waves can be added together to produce another wave. This property can 

also be applied to quantum states. Two quantum states can be added together to produce 
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another quantum state. This idea that particles can be in two states at the same time id 

called superposition. One practical example of superposition in motion is the qubit. A 

classical bit, or binary digit, can only appear as one of two states, usually either 1 or 0. In 

contrast, qubits can also appear as the superposition of 1 and 0 thereby existing as two 

states at the same time (Sergienko, 2006).  

An interesting aspect of the quantum realm is the phenomenon known as 

entanglement. Entanglement occurs when the quantum state of a pair or group of particles 

exist dependently upon one another (Griffiths, 2006). Entangled particles essentially 

cannot be described without each other, and a correlation exists between the particles 

even over a physical distance.  

To understand the idea of entangled particles, picture a pair of gloves, one right-

handed glove and one left-handed glove. Now, suppose that an individual places each 

glove in a box and ships them to two different locations where Person 1 waits at one 

location and Person 2 waits at the other location. Once both individuals receive their 

boxes, Person 1 opens his boxes to reveal a left-handed glove, so Person 2’s box must 

contain a right-handed glove. Notice that the moment that Person 1 opened his box and a 

left-handed glove was revealed, Person 2 could only have a right-handed glove. 

Entangled particles act in the same manner, once a certain physical attribute of one 

particle is revealed, the other particle(s) act in accordance (Griffiths, 2006; Horodecki, 

2010). The idea of entanglement and superposition plays a crucial role in quantum 

cryptography.  

Quantum Cryptography 
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Several features of quantum mechanics provide useful applications to 

cryptography. A well-known application of quantum mechanics to cryptography is with 

quantum key distributions. The ability to send information through quantum particles 

eliminates many of the issues with the usual key distribution methods (Horodecki, 2010). 

Remember the very act of measuring particles disturbs the systems leading to even more 

uncertainty about the position or momentum of a particle. Hence, the moment that an 

adversary attempts to eavesdrop or intercept the key exchange between two parties, they 

can immediately detect a disturbance.  

Most quantum key distributions use the polarization of photons in order to 

exchange information. Light emitting diodes, or LEDs, enable an individual to control the 

creation of the photons by making one single photon at a time. Also, a polarization filter 

allows for only photons with a certain polarization to pass through the filter while 

blocking all other photons from coming through (Sergienko, 2006). The difficulty with 

measuring polarization is that once the photons are polarized, they cannot be measured 

again without disrupting the polarization of the photons, itself, in the process. Quantum 

key exchanges rely on attaching information to a photon and knowing the original 

polarization of the photon (Sergienko, 2006).  How can one know the original 

polarization of the photon when the very act of measuring the polarization disturbs the 

polarization itself? 

First, one must determine which types of polarizations to use. The two most well-

known polarization bases are rectilinear and diagonal polarization, and it is important to 

note that a polarization base must consist of two orthogonal states. The rectilinear basis 

includes a vertical polarization of 0°, meaning the photons move in an up and down 
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oscillating motion, and a horizontal polarization of 90°, meaning the photons move in a 

side to side oscillating motion. The diagonal basis uses a polarization of 45° and 135°. 

Notice that these angles are also orthogonal, so a polarization of 45° correlates to a wave-

like motion at 45°, and a polarization of 135° correlates to a wake-like motion at 135° 

(Sergienko, 2006).  

Rectilinear Basis: Vertical vs. Horizontal Polarization 

 

 

 

 

 

Diagonal Basis: 45° vs. 135° Polarization 

 

 

 

 

 

 

 

The first quantum cryptography protocol, known as BB84, uses two orthogonal 

states, usually the rectilinear basis and the diagonal basis. The protocol then assigns a 0 

bit to both 0° and 45° and a 1 bit to both 90° and 135° (Sergienko, 2006). Also, the 

rectilinear basis is labeled by the symbol + and the diagonal basis is labeled by the  
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symbol ×. 

 

 

 

 

To better understand the steps of the quantum key exchange, suppose Alice and 

Bob want to share a message through some quantum communication channel, likely an 

optical fibre or a vacuum, and any adversary, Eve, can try any approach to mess up the 

communication within the quantum channel. Also, Alice decides to use the rectilinear 

basis and the diagonal basis as her orthogonal bases. She starts by randomly choosing a 0 

or 1 bit and then randomly choosing a basis as well. Say Alice randomly chooses a 1 bit 

and the diagonal basis. She then transmits a photon to Bob in the horizontal state 

according to the diagonal basis at 135° (Horodecki, 2010).  

Bob receives the photon and randomly chooses either a rectilinear or diagonal 

filter to measure the photon assuming that Bob is unaware of what basis Alice used to 

polarize the photons. When Bob finishes measuring the photons sent by Alice, he 

communicates to Alice. Alice and Bob then discuss over the channel where Bob says the 

basis he used to measure each photon and Alice says whether Bob is correct or incorrect 

in lining up with how she polarized the photons. They both discard the bits where Bob 

used a different basis and thus, the key is the remaining bits (Horodecki, 2010). 

Specifically, say Alice and Bob decide to use the quantum key exchange with the 

rectilinear and diagonal bases. Alice sends eight photons randomly using the method 

 0 1 

+   

×   
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described above, and Bob measures the photons he receives randomly. They receive the 

following information after discussing through a quantum communication channel. 

Alice’s Bit 0 0 1 0 1 1 1 0 

Alice’s Random 

Basis 

+ × × + + + × + 

Alice’s Angle 0° 45° 135° 0° 90° 90° 135° 0° 

Bob’s Random 

Measurement 

+ + × × + × + + 

Bob’s Angle 0° 90° 135° 45° 90° 135° 90° 0° 

Matches X  X  X   X 

Shared Key 0  1  1   0 

 

So, Alice and Bob both receive the shared secret key 0110. Also, notice that for the 

photon polarizations where the basis does not line up, the photon detector randomly 

chooses between vertical and horizontal polarization (Sergienko, 2006).  

Conclusion 

After looking through the different techniques of cryptography, one clearly sees 

how mathematics has impacted the realm of cryptography. However, as mathematics 

evolves and the level of security grows with each newly implemented cryptographical 

method, adversaries also grow in knowledge and understanding of the underlying process 

of security. Thus, just as mathematics is always evolving, the application of mathematics 

to cyber security must also be growing. Each cryptographical method discussed, contains 

advantages and disadvantages concerning its respective encoding and decoding 

processes. Public key cryptography of a finite field proves the simplest to calculate and 

understand but requires a larger key size in order to reach the level of security of elliptic 

curve cryptography. Although elliptic curve cryptography allows for a smaller key size, 

the complex mathematical techniques leave room for calculation errors and confusion. 
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Quantum cryptography seems to excel in many areas where the other methods fail. 

However, the distance over which quantum cryptography can take place is still lacking. 

Considering that researchers have only just scratched the surface of the quantum realm, 

as time goes on and knowledge progresses, cryptographical techniques will continue to 

advance.  
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