On the submultiplicative constant of an algebra

Khang V. Nguyen*

July 16, 2018

Abstract

If \mathbb{A} is a finite dimensional commutative associative real algebra and $\|\|\|$ denotes a given norm on \mathbb{A} then it was shown in [1] that there exists a constant m such that $\|xy\| \leq m\|x\|\|y\|$. However, the m given in [1] is not sharp. We prove there exists an optimal smallest choice for m which we denote as $m_{\mathbb{A}}$. Furthermore, we prove if \mathbb{A} is the real group algebra of the cyclic group of order n given the usual Euclidean norm then $m_{\mathbb{A}} = \sqrt{n}$. We also find the submulticative constant for the complicated numbers $\mathbb{A} = \{x_o + \cdots + x_{n-1}i^{n-1} \mid x_i \in \mathbb{R}, i^n = -1\}$ with the Euclidean 2-norm. Additional results concerning numbers generated from nilpotent elements are also discussed. Applications of our theorem to the study of power series in \mathbb{A} -variables are briefly discussed.

References

[1] J. S. COOK, Introduction to A-Calculus, https://arxiv.org/abs/1708.04135.

^{*}Liberty University