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Abstract 

This paper documents the design and subsequent construction of a low-cost, flexible 

robotic platform for swarm robotics research, and the selection of appropriate swarm 

algorithms for the implementation of a swarm focused predominantly on target location. 

The design described herein is intended to allow for the construction of robots large 

enough to meaningfully interact with their environment while maintaining a low per-

robot cost of materials and a low assembly time. The design process is separated into 

three stages: mechanical design, electrical design, and software design. All major design 

components are described in detail under the appropriate design section. The BOM for a 

single robot is also included, along with relevant testing information. 
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Designing a Robotic Platform for Investigating Swarm Robotics  

Introduction 

Introduction to Swarm Intelligence 

Swarm intelligence is decentralized intelligence – a collective intelligence that 

arises in a group of similar organisms. Unlike a standard hierarchical control structure, a 

swarm has no ranks or concepts of authority. All agents of a swarm are of equal 

importance and possess equivalent capabilities.  Agents composing a swarm are not 

required to possess great intellectual capabilities, as the strength of a swarm is very much 

in its numbers. Upon the gathering of a significant enough number of similar organisms 

following the same basic rules into a swarm, a group intelligence arises that governs the 

swarm’s actions, guiding the swarm with an intelligence much greater than the individual 

members of the swarm could offer. This apparent group organism allows swarms to 

accomplish remarkable tasks that should not be possible for organisms of the swarm 

members’ complexity (or lack thereof). 

There are many examples of swarm intelligence in the natural world, some more 

effective than others. Both colonies of ants and swarms of bees exhibit a swarm 

intelligence adept at finding the most efficient ways to collect food and return it to their 

colonies, though both use different methods to accomplish the same goals. Other insects, 

such as termites and wasps, can construct complicated and enormous nests for their 

colonies, even though none of the participating members of the swarm have any kind of 

master plan or higher intelligence. Individually, these organisms are more or less 

helpless, but together they can accomplish significant tasks (Blum & Merkle, 2008).  
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Due to the ability of swarm intelligence to allow a group of simple agents to 

complete complex tasks, it has many possible applications for humans. In order for this 

intelligence to be utilized effectively, algorithms must be created that mimic the actions 

of a biological swarm. These swarm algorithms are based on the swarm behavior of many 

different organisms, including ants (Ant Colony Optimization, ACO), fish and birds 

(Particle Swarm Optimization, PSO), bees (Artificial Bee Colony, ABC), and glowworms 

(Glowworm Swarm Optimization, GSO) (Ab Wahab, Nefti-Meziani, & Atyabi, 2015). 

These algorithms, in their most basic form, are a set of simple rules that every agent in 

the swarm follows. Due to the ability of swarm intelligence to allow a group of simple 

organisms to function with a much higher level of intelligence than they are individually 

capable of, swarm algorithms have many technological applications, including the 

interesting world of swarm robotics. 

Introduction to Swarm Robotics 

 Swarm robotics is the application of swarm intelligence to robotic systems. Like 

biological swarms, robotic swarms are composed of many agents with equivalent abilities 

and significantly lower complexity than what should be required to complete the 

allocated task. This allows swarms of simple robots governed by swarm algorithms to 

complete complicated tasks efficiently. Robotic swarms also mimic biological swarms’ 

ability to share information across the swarm; unlike biological swarms, however, robotic 

swarms can make use of wireless communication technology to instantly exchange 

information with every other agent in the swarm, allowing for much greater flexibility in 

swarm implementations. The method of communication, types of sensors, swarm 
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algorithms used, and other functional aspects of the swarm members can be adjusted to 

allow for an optimized swarm implementation for the given task. 

Purpose of Project 

 Swarm robotics is a relatively new area of research, and as such there is still 

plenty to learn about applying swarm algorithms to robotic systems. One limiting factor 

to such research is the fact that to research swarm robotics, one should ideally have a 

physical swarm, as simulations do not always address some areas of interest. Creating a 

swarm can be an expensive and time-consuming endeavor, which limits the research that 

can be conducted. One example of swarm robotics research is Harvard’s Kilobot project, 

a swarm of a thousand simple robots for investigating swarm behavior in large groups 

(Perry, 2014). To reduce the price and time required to construct their swarm, the 

researchers involved in the project reduced the abilities of each robot to the point that 

each robot has no practical purpose individually. While this approach is functional when 

one is investigating swarm algorithms, it is not practical for experimenting with a swarm 

that is intended to be capable of interacting with its environment in any notable way (e.g., 

traveling long distances, moving objects, gathering multiple kinds of sensory data).  

This project is intended to address this issue by creating a reliable, functional 

platform for swarm robotics research, with a focus on target acquisition. In order to 

successfully accomplish this, each robot should be able to be constructed for a reasonable 

price and with minimal time requirements. Additionally, each robot should have the 

features and functionalities listed below: 



INVESTIGATING SWARM ROBOTICS 
 

7 

• Basic navigation capabilities: Each robot should have the ability to know its 

approximate location in relation to the point it started from, including distance 

traveled. This data should be accurate enough that other robots in the swarm can 

use it to travel to the first robot’s position. 

• Ranged communication abilities: Each robot should possess a wireless 

communication method that enables communication with other swarm members 

out of line of sight (i.e., around obstacles, not necessarily long distances). 

Additionally, a secondary line of sight method for short-range communication 

would be ideal. 

• Obstacle detection: Each robot should have the ability to detect obstacles in its 

path and be able to measure the distance to the object.  

• Target detection: As the focus of this swarm is target acquisition, each robot 

should have the ability to detect a target and distinguish it from other obstacles in 

some way. This could be implemented using the short-range communication 

listed above. 

• Reasonably long battery charge: Each robot should be able to operate at full 

capacity on a fully charged battery for a reasonable amount of time (at least 20 

minutes). This allows for meaningful swarm investigations to be carried out with 

minimal interference.  

• Ability to accept modifications: Each robot should be able to carry a reasonable 

amount of extra weight (at least 250 g). This allows for the addition of customized 
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sensors or other modifications, increasing the capabilities and versatility of the 

swarm. 

• Ability to run swarm algorithms: Each robot must possess the ability to execute 

swarm algorithms to govern its behavior and interactions with other members of 

the swarm. To accomplish this, each robot must be controlled by a 

microcontroller with a sufficiently high clock speed, enough RAM, and enough 

EEPROM. 

 In addition to the physical requirements for the swarm, there are requirements that 

must be met by the selected algorithms. As noted, the focus of this swarm is intended to 

be target acquisition. The selected algorithm must therefore provide the following 

abilities: 

• Swarm convergence: The selected algorithm should cause the swarm to converge 

on the target, allowing each robot to alter its course based on data gathered by 

other robots in the swarm. 

• Route optimization: The selected algorithm should select the most optimized 

route from each member of the swarm to the target, once it has been discovered. 

A robot that can meet all the above hardware and software requirements, while 

maintaining a low required investment of time and money, has the potential to be a 

powerful tool for investigating applications of swarm robotics to real-world problems. 

Building a Swarm 

 The design of the swarm consists of three main stages: mechanical design, 

electrical design, and software design. The functionality of the swarm will be dependent 
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upon the quality of each of these design stages. The mechanical design stage occurred 

first, as it determines what options are and are not feasible with respect to electrical and 

software design. 

Mechanical Design  

The mechanical design stage covers the design of the skeleton of the swarm 

robots and was the starting point in the design process. This section addresses the 

selection of the method of locomotion, type of motors used, size and shape of the swarm 

robots, and the type of material used to construct the bodies of the robots. 

Methods of locomotion. The first design issue considered was locomotion. There 

are three main options for locomotion when it comes to a ground-based swarm: wheels, 

continuous track (tank treads), or legs. Legs were quickly ruled out for this swarm 

implementation since their increased complexity and cost outweigh their increased 

maneuverability over rough terrain. Continuous track was considered as a viable option, 

as it increases the ability of a robot to handle rough terrain while also reducing the chance 

of slippage. Unfortunately, using continuous track for each robot in the swarm would 

either require enough money or increased assembly time as to render the idea impractical. 

The remaining option, wheels, was the selected option, due to wheels being low cost 

enough to be practical while also having a high grip to reduce slippage. 

 Physical dimensions. The second issue considered was the desired size and shape 

of the swarm robots. As discussed earlier, one of the goals of this project was to create a 

design that was both large enough to meaningfully interact with the environment while 

still requiring a relatively small investment of time and money to construct. Each robot 
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should also be small enough that storing a swarm can be easily achieved. As such, the 

diameter of each robot was limited to eight inches or less, with a six-inch diameter being 

the final selected value. Two main general shapes were considered for the base of the 

robots: a circular base and a rectangular base. In testing, the rectangular base was shown 

to have trouble navigating in tight areas, due to its corners becoming snagged on 

obstacles when maneuvering. The circular base performed much better in navigation 

tests, as it could rotate fully without moving in any direction, thus allowing it to navigate 

through more difficult terrain than the rectangular base. Due to this notable advantage, 

the circular base was selected for the swarm robot platform. 

 Selection of motors. Motors are often one of the most expensive parts of a robot, 

but at the same time high maneuverability and velocity are important factors for a swarm 

focused on target location, so effective motors must be used. For a small robotic 

platform, there are four main options: continuous rotation servos, stepper motors, 

brushless DC, and brushed DC. Continuous rotation servos have a built-in gearbox that 

reduces speed in exchange for torque, which is a necessary function for small motors. 

Additionally, continuous rotation servos provide feedback to the microcontroller driving 

them, allowing the microcontroller to control how many degrees the servo rotates. This is 

a very useful feature for a motor to possess, as keeping track of the distance a robot has 

traveled is essential to the operation of the swarm. As a downside, however, continuous 

rotation servos are significantly more expensive than many other types of motors, and as 

such were not suitable for this project. Stepper motors are another type of motor that 

allows for precise rotation control, but also have a high enough price tag that using them 
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for swarm applications is not practical. Additionally, stepper motors require extra control 

circuitry to drive each of the motor’s phases properly. Brushless DC motors were the 

third option considered: they are all-around more efficient than brushed DC motors, 

packing more power into a smaller package, but again, the increased cost and extra 

control circuitry prevented BLDC motors from being a viable option. The final option, 

brushed DC motors, was selected due to their low price, ease of use, and minimal 

external control circuitry. To increase the torque of the motor, an external gearbox was 

fastened to each motor. Even with this addition, the price of the motor setup for the 

swarm robots still came to a much lower price than a comparable configuration utilizing 

any of the other available options would have cost. One issue that must be considered in 

this choice is that the selected motors have no means of tracking the distance traveled, so 

that must be addressed in electrical design. 

 Selection of material. The final mechanical design consideration was the 

material from which to create the base of the swarm robots. The selected material must be 

low-cost, rigid, and light enough that it does not strain the motors. For this design phase, 

there were three considered materials: plywood, 3D printed ABS, and hardboard (HDF). 

All three options are sturdy, rigid materials, and none of them have a high price tag. The 

3D printed ABS was the first option eliminated, simply due to the large amount of time 

that would be required to print any significant number of the required base pieces. The 

plywood was more durable than an equivalent thickness of HDF, but also somewhat more 

expensive. The hardboard was eventually selected over the plywood, as it was determined 

to be sturdy enough to fulfill its intended purpose at a lower cost. 
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Overall mechanical design. Based on these design decisions, an overall mechanical 

design was drafted. The body of the swarm robot is composed of two layers, each a six-

inch diameter circular shape cut from HDF. The designs of the top and bottom layers, 

designed in Adobe Illustrator CC, are shown in Figures 1 and 2. 

 

             Figure 1. Swarm robot upper layer 

 
 

 
                Figure 2. Swarm robot lower layer 
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The DC brushed motors and gearboxes are sandwiched between the hardboard layers, 

with the wheels being mounted to the gearboxes in cutouts on each side of the base. Since 

a circular body design was used, only two wheels could realistically be mounted, so a 

flange-mounted ball bearing was used as a third point of contact to stabilize the robot (see 

Figure 4). Pictures of a prototype swarm robot body are shown in Figures 3, 4, 5, and 6. 

                                                                                        

Figure 3. Top view                     Figure 4. Bottom view 

 

Figure 5. Profile view with wheel 
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Figure 6. Profile view without wheel 

Electrical Design 

 The electrical design phase covered all the sensor circuitry, control circuitry, 

communications circuitry and power supply, and was based in part upon the mechanical 

design phase (i.e., all circuitry must properly fit in or on the body of the swarm robot). 

Selection of sensors. The base sensors required for a functional target-location-

oriented swarm implementation are some form of range finding sensor and a sensor that 

can distinguish between obstacles, other members of the swarm, and the desired target. 

Unless powerful microcontrollers and machine vision are used, range-finding and target 

detection sensors are limited to those which transmit a signal and detect the reflected 

signal to determine if an object is in the path of the swarm robot. Realistically, there are 

two main options for these types of sensors: infrared (IR) and ultrasonic. Due to the speed 

of sound through air being very slow in relation to a microcontroller’s clock speed, 

ultrasonic sensors allow the delay in signal reflection to be used to determine the distance 

to the obstacle, while IR sensors must simply use the amplitude of the reflected signal to 

provide a rough estimate of range. This fact makes ultrasonic sensors more accurate for 

range finding and obstacle detection, although they can be augmented with IR sensors for 

improved performance, as ultrasonic sensors sometimes have issues detecting soft 
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materials and sharp corners. IR sensors, on the other hand, allow for relatively 

straightforward data transmission to line of sight targets, making them ideal for 

differentiating another swarm robot or swarm target from an environmental obstacle. 

Each robot in the swarm (and the target) can be configured to transmit a unique 

identification code via their IR transmitters; whenever another swarm robot detects that 

code propagating from a detected obstacle, it knows that the obstacle is another robot in 

the swarm. Additionally, the robot will know exactly which member of the swarm it has 

encountered, which will allow it to check its own recorded position against the detected 

robot’s recorded position and correct for any errors that may have accumulated over time. 

This method could also be used to perform a rough triangulation, allowing swarm robots 

to more accurately calculate the position of other robots in relation to themselves. Due to 

these factors, an ultrasonic range finder was selected for obstacle detection and an 

assortment of IR emitters and detectors were selected for obstacle discrimination and line 

of sight communications. 

 In addition to these two necessary sensors, an assortment of other non-necessary 

sensors was considered, including sonic (microphone), thermal, color, and light intensity 

sensors. The microphones would be accompanied by basic audio processing circuitry 

such as filters, amplifiers, and decoupling capacitors, which would then pass the 

processed audio signal to the microcontroller. The microcontroller could measure the 

frequency and amplitude of the audio signal, which would allow swarm experiments to 

introduce audio as an environmental variable. This could be used experimentally to test 
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the application of swarm robotics to identifying the source of a particular signal, which 

would be quite practical in a swarm intended for experimenting with target location.  

Simple thermal sensors, such as thermistors, provide two benefits to the swarm 

robot: first, they provide another experimental variable, similar to audio as discussed 

above; and secondly, they provide a means to continuously stabilize the accuracy of the 

ultrasonic range finder, as the speed of sound through air is based on the temperature of 

the air. Having access to a thermal sensor allows the swarm robot to constantly ensure 

that the most accurate value for the speed of sound is being used in range finding 

calculations, increasing the swarm’s performance. Additionally, having an on-board 

thermal sensor allows the swarm to create thermal maps of an area, which could be useful 

experimental data. If a thermistor is used as the thermal sensor, the only necessary 

support circuitry would be a single resistor to form a voltage divider, the output of which 

could be sent to the microcontroller through an ADC.  

Another optional sensor considered was a color sensor. In its simplest form, a 

reliable color sensor would consist of a red-green-blue (RGB) LED and a phototransistor. 

To detect the color of a surface, the microcontroller would record the output of the 

phototransistor while alternately flashing the RGB LED red, green, and blue. Based on 

the phototransistor outputs at each color, the robot could determine the approximate color 

of the surface the sensor is pointed at. To increase the accuracy of the results, light from 

other sources should be minimized at the sensor. To achieve this, the sensor can be 

placed on the underside of the robot, facing directly at the ground. This arrangement 

allows the swarm robot to detect the color of the surface it is traveling over, providing yet 
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another test variable for swarm experiments. Just like in the case of the thermal sensor, a 

swarm equipped with color sensors could create a colormap of the area they cover, which 

could provide a secondary comparison value to allow swarm members to fine-tune their 

estimated positions.  

Light intensity sensors, such as photoresistors, would provide the swarm with a 

way to detect changes in intensity of visible light. This could be recorded by each robot 

in the swarm and used to create a shared map of light intensities across the area covered 

by the swarm. A light intensity map would effectively be a map of shadows across the 

area of investigation and could be an additional positional verification tool to allow 

swarm robots to corroborate their locations. If combined with an LED, an on-board 

photoresistor could also be used for frequency modulated VLC experiments. The support 

circuitry for a photoresistor would consist of only a single resistor to form a voltage 

divider, the output of which would be passed to the microcontroller through an ADC. If 

desired, a pair of photoresistors could be used, one placed on each side of the front of the 

swarm robot. This would allow the robot to immediately determine from which direction 

the light was coming, which could be a helpful ability, depending on the experiment 

being carried out.  

As noted in the introduction, two of the objectives of this project are to design a 

swarm that is both low-cost and able to accept modifications. In the interest of keeping 

the cost low, the sensors which will be included in the basic design will be the ultrasonic 

range finding sensor, an IR emitter/detector pair, and a thermistor to allow for more 

accurate distance measurements from the ultrasonic sensor. To allow for easy 
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modification and interfacing of additional sensors, the microcontroller and required 

support circuitry will be placed in an easy to access manner.  

Selection of wireless communications. For a group of robots to function as a 

swarm, they must be able to communicate. For a swarm focused on target location, each 

robot should be able to communicate with any other robot in the swarm, even if the two 

robots are not within line of sight of each other. These requirements mean that an RF 

communications method must be selected. The two main RF communications options 

considered were a Bluetooth module (HC-06 specifically) and an ISM band transceiver 

(nRF24L01+). Both have relatively similar performance, but the nRF24L01+ was the 

cheaper option, so it was selected for this project. As noted above, the nRF24L01+ is an 

ISM band transceiver operating at 2.4 GHz. It supports an SPI connection for data 

transfer between the radio and a microcontroller, making it easy to use. GFSK 

modulation is used, and the transceiver supports the use of addresses, so each robot in the 

swarm can have a unique address assigned to it. Additionally, the nRF24L01+ supports 

up to 2 Mbps data transfer rates, allowing robots in the swarm to transfer relatively large 

amounts of data between themselves (Nordic Semiconductor, 2008).  

 Selection of microcontroller. In the interests of reducing assembly time, 

reducing project cost, and supporting selected sensors, it was decided that a pre-

assembled microcontroller board (as opposed to an independent IC) would be used. Since 

several of the sensors for the swarm robots require an ADC, the selected microcontroller 

board should have an ADC built in. The selected board should also have the required 

RAM, EEPROM, and clock speed to successfully handle the required processing for 
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executing the swarm algorithms and all subroutines. After researching qualifying options, 

an Arduino Nano clone was selected, mostly due to the price. The selected board 

provides a 16 MHz clock, 32 KB flash memory, 2 KB SRAM, an eight channel 10b 

ADC, and is based on the ATmega328 microcontroller (“Arduino”, n.d.). Based on these 

features, it should be capable of performing well in the scope of this project. 

Selection of power supply. The power supply selection is governed by several 

constraints: first, it must be rechargeable in order for it to be a feasible option; secondly, 

it must fit in the space between the upper and lower sections of the robot body, to leave 

the upper layer clear for circuitry; thirdly, it must supply at least seven volts under load; 

and finally, it must be able to supply up to one amp constantly, with spikes up to 1.5 

amps. Based on these limitations, the three considered options were lithium-ion batteries, 

a rechargeable 9V battery, and rechargeable AAA batteries. For the purposes of this 

project, 9V batteries were used to power the swarm robots due to their small size and 

standard terminal. Since the selected microcontroller board has an on-board voltage 

regulator, the battery could be replaced with any other battery that meets the size 

requirements, provided it supplies between seven and twelve volts.  

 Design of wheel rotation tracking system. Since the selected motors do not 

include any form of rotation tracking, some external solution must be implemented in 

order to keep track of the distance traveled by the robot for position calculations. Due to 

the limited space, rotary encoders are not really practical, so a simple IR solution was 

selected: black and white striped disks can be glued to the inside rim of the wheels, while 

an IR emitter and receiver pair face the disk. The IR LED illuminates the surface of the 
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disk, reflecting off the white stripes and being absorbed by the black stripes. The IR 

receiver detects the reflected light and passes the signal through a Schmitt trigger to clean 

it up and convert it to a square wave. The output of the Schmitt trigger is passed to the 

microcontroller, which can then count the number of rotations or fractions of rotations 

and store the data for position calculations. This circuit would be implemented for both 

wheels, so the robot would also know approximately how many degrees it rotates while 

turning. Of course, errors in measurement will stack up, throwing off the accuracy of 

such a system, but the intended purpose of this system is simply to allow the robot to 

navigate close enough to its target, whereupon its other sensors, especially the IR short 

range communication, will allow it to locate its target.  

Design of motor control circuitry. Since the mechanical design for the swarm 

robots allows a robot to rotate in place, the ability to drive in reverse is not absolutely 

necessary, but it does allow for greater maneuverability for the swarm. Since two brushed 

DC motors are used, two H-bridge circuits will be needed to allow for 

forwards/backwards drive capability. To simplify construction, a dual channel H-bridge 

IC (L293D) was selected for motor control. The L293D does not require any support 

circuitry, so it makes for a simple and cost-effective solution to the motor control issue. 

 Overall electrical design. The overall electrical design of a swarm robot consists 

of an Arduino Nano clone as the microcontroller, with an nRF24L01+ 2.4 GHz ISM 

transceiver for communication, IR emitter/detector pairs for line of sight communication, 

an ultrasonic sensor paired with a thermistor for range finding and distance calculation 

correction, an IR wheel rotation tracker, and an L293D motor driver, with power supplied 
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by a 9V battery. Schematics and PCB designs (ground planes not shown for clarity) for 

the IR wheel rotation sensor and motor control are shown in Figures 7 through 10. 

 

       Figure 7. motor control schematic 
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Figure 8. motor control PCB 

 
   Figure 9. IR sensor schematic. 
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   Figure 10. IR sensor PCB 

In a future revision, the IR and motor control boards will be combined into a single PCB, 

which will further reduce the cost per robot and required assembly time. 

Software Design 

 The software for the swarm ties the mechanical hardware and the electronics 

together to create the swarm. The software for the swarm was written in C and developed 

in the Visual Studios IDE, which was selected because of the large number of 

development tools it provides. The software design for this project was broken up into 

two main sections: subroutines and swarm algorithms.  

Subroutines. Subroutines are the code to execute background processes that 

allow the swarm to function, such as obstacle detection, navigation, and communications. 

There are several other minor functions that must be handled in software, but these 

subroutines are the most important. 
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Swarm communications are achieved using the nRF24L01+ module. As noted 

previously, this transceiver supports an SPI link with a microcontroller, allowing it to be 

easily interfaced with. To use the transceiver, the microcontroller must first establish an 

SPI link to allow data to be sent to and from the radio. After the link is established, the 

microcontroller sends a set of addresses to the radio: one address is allocated as that 

radio’s address, and the remaining addresses are those of the rest of the swarm. The 

microcontroller then indicates to the radio whether it should be transmitting or receiving 

and sends data to or receives data from the radio, depending on the selected mode. The 

microcontroller can also set the transmit power and Baud rate of the radio, depending on 

what is currently required. Implementing this in code is relatively straightforward. Short 

range IR communication is also simple to implement: the microcontroller broadcasts its 

unique address using pulse width modulation (PWM) and decodes the output of the IR 

detector using the same scheme. If it detects its own code, the signal is reflecting, 

indicating an obstacle is in the path of the robot. If it detects the address of a different 

robot in the swarm, it knows it is near that robot, and can update its estimated position 

accordingly. 

The code required to implement obstacle detection is also quite simple. The main 

obstacle sensor is the ultrasonic sensor, which interfaces directly with the 

microcontroller’s GPIO pins. To operate the sensor, the microcontroller would pulse the 

trigger pin of the sensor to generate an ultrasonic pulse and would then record the time it 

takes before the reflected pulse is detected. The recorded time would then be divided by 

two and multiplied by the speed of sound to calculate a distance to the object. Since the 
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swarm robots can rotate in place, the robot could rotate while operating the sensor in 

order to generate a rough map of its surroundings. 

Navigation is important for a swarm focused on target location. The code to 

implement basic navigation for the swarm robots relies on a mix of obstacle detection, 

communication with other swarm members, and the output from the IR wheel rotation 

sensor. By counting the frequency of the IR wheel sensor output, the microcontroller can 

determine the speed at which it is moving. By multiplying this speed by the time it travels 

at that speed, the microcontroller can determine the approximate distance traveled. A 

similar method can be used to generate an approximation of angle after making a turn. By 

communicating with other swarm members, a robot can figure out approximately which 

direction they traveled in and can move in their general direction using the obstacle 

detection code to avoid obstacles. The purpose of the navigation code is not to guide the 

robot to an exact location, but to bring it close enough to the target that the robot can 

home in on the target using short range IR communications. A flowchart of obstacle 

detection applied to navigation is shown in Figure 11. 

Swarm algorithms. As noted in the introduction, the primary purpose of this 

swarm is target location, with the swarm congregating at the target after it has been 

located. Based on this, the utilized algorithm must cause robots to move in the direction 

of sensor readings indicating a possible target, and once the target is located, the 

algorithm must cause the swarm to travel to the target location quickly and efficiently. 

Based on these requirements, particle swarm optimization (PSO) was selected as the 

primary algorithm, with components of ant colony optimization (ACO) utilized to 
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                Figure 11. Obstacle detection flowchart 

increase the efficiency of assembling the swarm at the target once it has been identified.  

PSO algorithms are governed by each robot’s individual best search result area 

and the entire swarm’s best search result area in such a way that robots will move toward 

areas that match the given target parameters. One weakness of PSO algorithms is their 

tendency to cause a swarm to converge on a location that meets more of the target 
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requirements than other identified locations but is still not the target location. This 

tendency can be lessened by selecting a proper inertial coefficient to encourage greater 

exploration of the search area before convergence (Ab Wahab et al., 2015).  

ACO algorithms can be used to find the most efficient routes between two points 

and as such can be used to direct robots to the target once it has been identified. On a 

basic level, ACO works by directing robots down paths that have been taken by other 

robots previously. The more robots that have traveled down the path and the more 

recently this travel occurred, the greater the odds that the robot in question will follow 

that path (Ab Wahab et al., 2015). This characteristic of ACO can be applied to this 

project to direct robots toward the target once another robot in the swarm has located it.  

Based on this information, the selected algorithm will be a PSO implementation 

with a high inertial coefficient for target location, with a simplified ACO implementation 

for routing swarm members to the discovered target. 

Mathematical model. A PSO implementation for target location is modeled 

mathematically as follows: 

 

𝑉𝐼𝑅(𝑡 + 1) = 𝑤 × 𝑉𝐼𝑅(𝑡) +  𝐶1 × 𝑟1 × [𝑋𝐼𝑅best
(𝑡) − 𝑋𝐼𝑅(𝑡)]  + 𝐶2 × 𝑟2 × [𝑋𝑆best(𝑡) − 𝑋𝐼𝑅(𝑡)]  

(1) 

 

In the above equation, w is the inertial coefficient, which governs the relative weight of 

an individual robot’s current velocity (VIR) in determining its future velocity. Higher 

values of w result in more exploration and decrease the chances of a false convergence. 

C1, the cognitive coefficient, and r1, a randomly generated number, collectively 
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determine the weight of the personal best position of each robot (XSbest(t)) in determining 

the future velocity of the robot. The last term of the equation contributes to the robot’s 

velocity based on the best position located by the swarm as a whole. The magnitude of 

the step toward this best location is scaled by C2 (the social coefficient) and r2 (a 

randomly generated number). Both r1 and r2 are randomly generated numbers between 0 

and 1, while C1 and C2 are set close to 2, and altered as needed to improve the behavior 

of the swarm (Ab Wahab et al., 2015). A flowchart of the algorithm is shown in Figure 

12. 

 

Figure 12. PSO flowchart 
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Budget 

Table 1 shows the Bill of Materials (BOM) for the construction of a single robot 

following the design laid out in earlier sections of this paper: 

Table 1 

Bill of Materials for a Single Swarm Robot 

 

As shown, the total materials cost for a single robot comes out to $13.73, not including 

the HDF for the body (HDF can be cheaply obtained at various hardware stores). This 

price can be decreased if components are purchased in larger amounts, as would be 

required if one were trying to create a swarm following this design. The DIP sockets are 

not necessary for functionality but using them decreases the risk of damaging the ICs 

during assembly. As expected, the majority of the cost comes from the microcontroller, 

the motors/gearboxes, and the wheels. Finding an equivalent microcontroller for a lower 
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cost is unlikely, as is finding an equivalent motor/gearbox combo, so the best choice for 

reducing costs would be to find a replacement for the wheels, either the side-mounted 

wheels or the base-mounted ball bearing. 3D printing could be an option for replacing the 

side wheels as long as a suitable grip could be created. The ball bearing could be replaced 

with an acorn nut or similar smooth metal object, with a slight decrease in efficiency.  

Testing 

 During testing, the first version of the IR wheel rotation sensor was found to be 

unsatisfactory. It utilized fewer components in its design than the current model in an 

attempt to reduce costs, but was unable to provide the desired accuracy, leading to its 

replacement by the current model.  

 A bug was also encountered with the object detection response code. When an 

obstacle was detected in front of a robot within approximately 3” of the sensor, the robot 

would stop and begin shaking rapidly. This was determined to be a timing issue between 

the obstacle detection and navigation code and was resolved quickly. 

Conclusion 

 The robots created following this design are relatively low cost (<$15.00 apiece) 

and do not require significant assembly time. During testing, robots following this design 

demonstrated great maneuverability and obstacle detection, and RF communications 

proved to be reliable. As noted in the section discussing budget, the materials cost per 

robot could likely be reduced, which would make this swarm implementation even more 

feasible.  
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Next Steps 

Going forwards, there are several steps to continue this project. First, more 

research must be performed investigating practical applications of swarm technology. 

Once possible applications are determined, research can be tailored to customize swarm 

development to best fit the selected application. A second step is continued research into 

developing and customizing swarm algorithms to best fit the selected application, in 

order to increase the intelligence of the swarm. A final step to continuing this research is 

to work toward a functional short-range navigation system that does not rely on GPS. 

This is important, since GPS is not functional in many locations (i.e., underground, 

underwater, inside certain buildings, etc.), and is also not accurate to very small 

distances, which may be required in certain circumstances.  

Applications of Research 

 The purpose of this project was twofold: design a low-cost swarm robot that is 

able to interact with its environment on a larger scale than other swarm projects have 

done for financial reasons, and experiment with using swarm robotics for target location. 

The information learned from this project could be applied toward developing more 

rugged swarm robots and better swarm algorithm implementations for applications in the 

real world. Several real-world applications of this updated technology could include 

search and rescue operations, exploration and mapping, and surveillance. Robots have the 

advantage of being able to operate in hostile environments where people cannot, and a 

robotic swarm would be able to apply swarm intelligence toward solving problems that 

more traditional programming could not address as easily, giving this technology great 
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potential. Swarm intelligence is a very powerful tool and offers great potential for 

application to robotic systems. There are many possible applications of swarm algorithms 

and swarm robotics to modern problems, and with more research and experimentation, 

there are endless possibilities.   
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