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Abstract 

This thesis details an analytical approach to an innovative suspension system design for 

implementation to the Formula SAE collegiate competition. It focuses specifically on 

design relating to geometry, mathematical modeling, energy element relationships, and 

computer analysis and simulation to visualize system behavior. The bond graph approach 

is utilized for a quarter car model to facilitate understanding of the analytical process, 

then applied to a comparative analysis between two transverse half car models. The 

second half car model contains an additional transverse linkage with a third damper, and 

is compared against the baseline of the first half car model without the additional linkage. 

The transverse third damper is an innovative design said to improve straight-line tire 

contact during single-sided disturbance, help mitigate the adverse effects of squat and 

dive, while not inhibiting the function of the anti-roll bar in cornering capability. 

Additional work is done investigating an optimization of suspension geometry through 

mathematical modeling in MATLAB of a four-bar linkage system. This code helps 

visualize the complex motion of the upright and calculates the wheel camber rate and 

variation to compare against tire data analysis to match maximum tire performance 

characteristics with camber angle.  
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Innovative Formula SAE Suspension Design 

Chapter 1: Introduction/Background 

Undoubtedly, suspension systems are critical to the dynamic performance of a 

race car. From the word’s roots, it means literally to “suspend,” or keep something raised 

from the ground. This is exactly what vehicle suspension systems do; the body and 

chassis of a vehicle is kept suspended from the ground through a series of linkages and 

connections to energy storage and dissipative elements, which control the contact 

between the tires and the ground. In other words, springs (energy storage) and dampers 

(energy dissipation) are mounted between the vehicle’s frame and control arms to 

translate the weight of the vehicle through these elements and into the wheels, which 

push down against the ground and by Newton’s 3rd law push back up against the wheels 

to keep the car suspended. However, there is more to a suspension system than simply 

keeping something raised above the ground – if this were the case then we could simply 

use fixed non-compliant connections between the wheels and the frame to keep the frame 

from dragging on the ground. The disadvantage of such a system comes when the wheels 

hit a bump or pothole, and the entirety of that force is translated directly into the frame, 

likely causing fracture and failure. To avoid this, springs were placed in the connection 

between wheels and chassis so that when hitting a bump, some of that impact energy goes 

into compressing and extending the springs which minimizes the energy absorption 

required by the frame. Still, this caused another issue of riding discomfort as the springs 

freely oscillate up and down until enough energy is naturally dissipated to return back to 

a steady-state equilibrium position (which can take quite a while). Thus, another element 
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was added to quickly dissipate the energy that causes prolonged oscillation – the damper. 

However, not just any configuration of these elements will suffice; there are specific 

ratios and combinations of mass, spring stiffness, and damping coefficients that yield a 

comfortable riding experience and maintain the optimal contact patch between each of 

the tires and the road. 

In researching how to design a racing vehicle’s suspension system, nearly every 

source has something different to say about how and where to begin. A vehicle’s 

suspension system is the most important subsystem of a dynamic performance racing 

vehicle. To narrow the scope of this investigation, this research is focused on ways in 

which the suspension system of a FSAE racing vehicle can be optimized. Thus, the 

results of this investigation may be directly applied to the design of Liberty University’s 

Formula SAE team. The suspension system is where the rubber meets the road, so the 

design is focused on best controlling that physical interface across a range of loading 

conditions. In dynamic racing applications, as the sprung mass of the vehicle chassis and 

driver are being accelerated they produce a reactive force that must be balanced and 

utilized to both maintain and increase traction and contact with the road, to maximize the 

ability of the wheels to keep a secure grip and maintain as high a speed as possible 

without sliding off the track.  

As such, a suspension system is designed with two primary purposes in mind; first 

to accelerate from a stop to top speed and decelerate to a stop as quickly as possible in a 

straight line, and second to maintain the highest speed possible through a turn. In the first 

of these, the goal is to allow the vehicle’s inertia to cause a controlled “squat” on the 
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power producing wheels as the effective center of mass is shifted towards the rear wheels 

producing a greater normal force over the rear wheels to increase the possible force of 

friction before slipping. For the second of these, the goal is similar, in that the inertia and 

momentum of the sprung mass must be controlled from excessive roll when changing 

yaw as the vehicle travels through a turn (See Figure 1). 

 

Figure 1: Axis definition and nomenclature of rotational movements about each axis. 

When turning, the center of mass is effectively shifted towards the outside of the 

turn, putting more normal force on those outside wheels (called load transfer). If 

excessive this can be dangerous, and potentially cause the vehicle to either slip from the 

track or roll completely if the center of mass is displaced beyond the limits of the outer 

wheels from too much side loading. The degree of body roll is controlled by the stiffness 

of the springs and anti-roll bar (essentially a torsional spring) in the suspension, while the 

dampers are designed to control a rapid and hard-hitting force like a bump or pothole in 

the road, to dissipate the energy of the oscillatory result of a wheel displacement due to 

the nature of springs. Both of these energy components (the springs and dampers) in a 
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vehicle’s suspension system are of critical importance to control the vehicle’s dynamic 

behavior. Frequency response analysis may be done with a variety of input parameters to 

find coefficients that are best optimized for the vehicle’s performance. Such analysis is 

demonstrated in the latter sections of this investigation. However, another important 

component of suspension design is the system geometry, providing the lengths and 

connection angles of the linkages between wheels and chassis. The conventional 

suspension system referenced here is the common double wishbone suspension, pictured 

in Figure 2, as found in most performance vehicles. It is acknowledged that there is a 

plethora of various types of suspension such as MacPherson Strut, leaf spring, and 

trailing arm to name a few, but within the field of racing the double wishbone is the most 

widely implemented design.   

 

Figure 2: Double wishbone suspension system, partial car model. 
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Figure 3: Exploded view of wheel assembly for component nomenclature. 

The movement of a double wishbone suspension system can be mathematically 

reduced to an analysis of a double-rocker four-bar linkage. Consider the chassis to be the 

inertial frame of reference from which other movement is analyzed, despite normally 

thinking of things moving relative to the ground. The stationary link is the straight line 

between the wishbone connection points on the chassis. In other words, two points on the 

chassis should never move relative to one another because it is a rigid structure. (Any 

compliance or deformations of the chassis members shall be negligible.) The two 

wishbone arms both function as rockers, simply pivoting from their pinned (single axis 

rotation) connections to the chassis as their ends move up and down with the movement 

of the wheel. The component of interest is the wheel assembly. The upright is in fixed 

connection to the wheel hub, which is connected to the wheel by the lug bolts. Therefore, 

these will all be effectively considered the same assembly, called the “wheel.” The 

movement of the wheel under load determines how the driver inputs of power and turning 
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connect to the road to provide feedback and give direction to the driver’s movements. 

Unless a double wishbone suspension geometry is designed to be a perfect parallelogram, 

the wheel must change its angle as it translates up and down, as demonstrated by the 

four-bar linkage analysis. Therefore, the wheel is in complex movement, both translating 

and rotating relative to the chassis. This has a direct effect on camber angle (See Figure 

4), which is a key parameter within the calculations of a wheel’s contact patch. The 

contact patch ultimately determines the maximum friction force capable of being 

transmitted between the tire and road before slipping.  

 

Figure 4: Visual depiction of camber angle. 

Generally, it is most desirable for a vehicle to have neutral camber in wheel 

alignment for even tread wear and maximum contact patch area during normal driving. 

However, given that racing is not normal driving, a perfectly neutral camber is not always 

desirable because it does not yield a maximum contact patch area when the driver takes 

very hard turns and the wheels are displaced according to their suspension geometry path. 

In fact, it is better to create negative camber on the wheels on the outside of a turn, as the 

wheel is forced upward by the increased effective load it is supporting through its springs 

causing them to compress. The precise desired angle of negative camber is more difficult 
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to calculate, but it is important to visualize the path of the wheel and camber angle 

throughout projected wheel displacement (See Figure 5). 

 

Figure 5: Depiction of jounce and rebound relative to spring compression and extension. 

Therefore, I created a program in MATLAB (see Four-bar Linkage Motion 

Analysis Section) that could plot the movement of a four-bar linkage through a range of 

movement, inputting custom lengths of all the links. In this way, with the design of the 

FSAE vehicle in mind, dimensions directly relating to desired variables of the vehicle 

could be tested and manipulated. These included track width, ride height, and chassis 

frame members to design where the suspension components could be mounted, and what 

their corresponding lengths should be to have a desired complex path demonstrated by 

the wheel through jounce primarily, but also in rebound of the wheel.  

With all the interacting factors that need to be considered during suspension 

design, it makes suspension optimization a challenging and rewarding field when done 

right. Further, given the many interdependent variables that may be altered, it leaves 
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room for seemingly infinite design possibilities, always leaving room for improvement 

and development.  

Literature Review 

Transverse 3rd damper integration. Certainly the most ambitious innovation to 

racing vehicle design discussed here is the implementation of a third damper mounted 

transversely between both the front and rear pairs of wheels. This design was pioneered 

by Koenigsegg; a company whose mission is to take areas of compromise in vehicle 

design and find ways to minimize or eliminate such compromise. In suspension design, 

nearly everything is a tradeoff. Koenigsegg saw one of these areas, in which superior 

cornering capability came at the cost of driver comfort and straight-line traction – and 

decided to do something about it.  

There are many types of vehicle racing. As a result, the racing vehicle is designed 

very differently to optimize the conditions it is subjected to. For example, a drag racer 

and a Formula 1 vehicle are each very successful in straight-line and dynamic circuit 

tracks respectively, but put one in the other’s race, and it will fail miserably against the 

competition. An engineer’s job is to utilize physics and mathematics, with a scientific 

approach, to understand as much as possible about the materials and forces at play to 

make the greatest use of the strengths and minimize the weaknesses in a design. The 

incorporation of a third damper is most effective in the design of a suspension intended 

for a more dynamic circuit – like those raced by Formula 1 vehicles. This racing setting 

demands that a vehicle be able to corner exceptionally well, but it cannot come at the cost 

of general traction and driver comfort, which is critical in endurance events.  
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 A traditional approach to this trade-off dilemma is to tune the stiffness of the anti-

roll bar, finding a sweet spot based on mathematical modeling and on-track testing so that 

it is as stiff as allowable without too much compromise in traction. This traction 

compromise comes from the fact that the anti-roll bar is the only direct connection 

between two otherwise independently suspended wheels, serving to force both wheels to 

move in the same direction to reduce the body roll generated by one wheel being forcibly 

compressed on the outside of a turn when cornering from lateral load transfer. As this 

outside wheel is compressed under greater load, a torsion is generated in the anti-roll bar, 

which is then applied to the inside wheel, compressing it as well and therefore allowing 

the chassis to come back closer to the road on the inside and balance out the roll.  

 However, as useful as it is to balance out roll in a corner as one wheel imparts a 

force on the other through the torsion of the anti-roll bar, this same tendency is 

detrimental to traction in a straight line when bumps on the track surface cause wheel 

displacements on one side of the vehicle that are then also imparted to the other side. 

When this happens, a wheel is being unnecessarily “lifted” from the road when the 

opposite wheel hits a bump. (More realistically the wheel is not fully lifted from the 

pavement, there is only a reduction in the vertical load applied to the wheel.) Such a 

reduction in vertical load means that the maximum possible friction force between the 

tire and road is significantly reduced, because 𝑓𝑓 = 𝜇𝑁 and 𝑁 is directly proportional to 

𝑓𝑓 (where 𝑓𝑓 is the friction force, 𝜇 is the friction coefficient, and 𝑁 is the normal force). 

 A third damper, however, mounted transversely across the width of the vehicle 

similarly to the anti-roll bar establishes a second connection between the two otherwise 
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independently suspended wheels. This time, there is an energy dissipating effect from the 

damper, as a force imparted on either wheel is translated by a pushrod into a 

displacement of the piston within the damper cylinder, effectively converting the kinetic 

energy from the motion of the wheel into heat as the viscous damping fluid is forced 

through the capillary holes of the piston head creating viscous friction within the fluid. 

The damping coefficient of energy dissipation is controllable by the viscosity of the 

damping fluid, either by filling the chamber with different fluids, or utilizing a fluid 

whose viscosity can be altered. Magnetorheological fluids are capable of this by the 

introduction of a magnetic field within the fluid to change viscosity, and will be 

discussed in the following section.  

With an energy dissipating element, the disturbances felt from one wheel to 

another are greatly reduced, while cornering capability is not impeded. The damper 

responds effectively to rapid displacements as the damping force is proportional to the 

velocity of the internal piston, and permits the anti-roll bar to accomplish its purpose in 

more sustained displacements such as those of cornering. Therefore, a stiff anti-roll bar 

may be implemented to improve cornering capability, while the negative effects of 

opposite wheel displacements and loss of traction are mitigated by the dissipation of 

those forces through the transversely mounted third damper, and driver comfort and road-

feel are also improved. Further, with the implementation of magnetorheological fluid and 

sensor feedback for automated and calculated control of the damping coefficient, the 

control of the entire suspension system is taken to a new level, and vehicle handling is 

more capable than ever before.  
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Magnetorheological damper integration. Conventional dampers are constructed with 

two basic components, the piston and cylinder. (See Figure 6) Though there are many 

variations of form, including monotube, twin tube, internal bypass and more, it serves the 

same purpose. The damper’s function is to dissipate energy, as a displacement force 

either in tension or compression from the kinetic energy of wheel movement displaces 

the piston, and is converted into heat within the hydraulic fluid by way of viscous 

friction. That heat then slowly moves out into the environment by conduction to 

connected parts or is carried away into the air as forced convection removes heat energy.  

 

Figure 6: Cutaway view of conventional damper, twin-tube model. 

 As the piston is displaced within the hydraulic fluid, it increases pressure within 

the hydraulic fluid on the compression side. This pressure is allowed to reach equilibrium 

with the side opposite the piston by designing tight passages for the hydraulic fluid to 

flow either around the sides of the piston at the walls of the cylinder, or through small 
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holes in the piston head. It takes significant energy to force a viscous fluid through these 

tight passages, and the viscous shearing happening within the fluid heats it up.  

 Dampers exist to control the repeated oscillations that would otherwise be present 

from suspending the chassis on springs. Engineers tune the damping coefficient to a 

specific value to establish an underdamped, critically damped, or overdamped system. A 

simplified model of the system behavior can be easily interpreted from the plots of a 

second order differential equation of the following form: 

𝐹(𝑥) =  𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 (1) 

In which 𝑚 represents the sprung mass, 𝑏 is the damping coefficient, and 𝑘 is the spring 

constant. A derivation of this mass-spring-damper model is given in Appendix A for 

further exploration, but the plot shown by Figure 7 reveals the behaviors possible by 

tuning these three coefficients. The parameter zeta taken from that derivation is the 

damping ratio, defined such that the system is critically damped when zeta equals one. 

𝜁 =
𝑏

𝑏𝑐
=

𝑏

2𝑚𝜔𝑛
=

𝑏

2𝑚√𝑘
𝑚

 (2)
 

 

Figure 7: Oscillatory behavior control of mass-spring-damper system by tuning of zeta parameter. 
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Realistically however, this tuning process can be very laborious and time consuming to 

make even small changes. Damping coefficients may be changed either by altering the 

viscosity of the hydraulic fluid or altering the passages through which it must travel when 

under pressure from the piston. This means disassembling the damper to either drain and 

replace the hydraulic fluid for one with a different viscosity, or exchanging washers on 

the piston head to change fluid flow through the passages. With sufficient data from field 

testing we are able to very precisely predict and measure these damping coefficients. 

However, there exists a much more versatile means of changing the behavior of a 

damper. 

 Magnetorheological fluid is a fluid with iron particles in it that responds to a 

magnetic stimulus, changing shape and/or viscosity. Engineers have implemented the use 

of magnetorheological fluid within dampers by adding iron particles to hydraulic fluid, 

such that when a magnetic field is induced within the fluid, it causes these iron particles 

to align themselves. This particle alignment increases the viscosity of the fluid by making 

it more resistant to deformation by shear stress. The magnetic field is generated by a coil 

of wire running perpendicular to the length of the cylinder that has electric current sent 

through it. Ampere’s Law dictates that the magnitude of the magnetic field generated 

around a current carrying wire is proportional to the current in the wire. In this way, as 

magnetorheological fluid viscosity is proportional to the strength of the magnetic field, so 

it is also proportional to the magnitude of the current sent through the wires. This kind of 

damper is pictured in Figure 8.  
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Figure 8: Cutaway view of magnetorheological damper functionality. 

 Each year more sensors are being placed on various components within a vehicle 

to have their data fed through the vehicle’s ECU for automatic adjustments based on 

programmed code. The capacity for rapid tuning and real-time adjustment has 

revolutionized the racing industry. With magnetorheological dampers, the effective 

damping coefficient can be changed a fraction of a second after hitting a bump, or as the 

brakes are being pressed to work against vehicle dive. In fact, Koenigsegg has their 

dampers networked so as to be able to make remote adjustments to any of their cars at 

any time wherever they are in the world, quickly enough to aid the vehicle as it races 

along a track. Hydraulic fluid viscosity adjustments as rapid as current may be sent 

through a wire is changing the way the racetrack is approached to optimize every second 

of tire contact with the road through accelerations, corners, banks, and more.  
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 Further, to demonstrate the superior adjustability of magnetorheological dampers, 

magnetorheological dampers have been designed with current carrying wires wound in 

opposite directions and timed such that the residual coil inductance from the magnetic 

field generated by the first coil is negated by the second. For example, the first coil 

carrying electric current induces a magnetic field, aligning iron particles in the fluid. 

When the viscosity is desired to be lower however, power is decreased or shut off to the 

first coil, but it takes a fraction of a second for the magnetic field to dissipate due to 

residual eddy currents caused by inductance, meaning that those aligned iron particles are 

not yet released from their positions in the fluid so the viscosity takes time to drop down 

to a lesser value. These eddy currents are counteracted by adding a second coil to the 

damper so that as the first is being shut off, the second set activates and produces a 

magnetic field in the opposite direction working to immediately disrupt the field that 

existed and scatter the aligned ferrous particles, only activating long enough to disrupt the 

effects of inductance from the first coil and then shutting off before realigning the 

particles within a new magnetic field orientation. 

Chapter 2: Geometry Considerations 

Tire Data Analysis 

 A racing vehicle’s suspension system was stated as the subsystem where the 

rubber meets the road, and that is exactly the location where the definition of suspension 

geometry must begin. Professional racing teams spend substantial money on tire testing 

with carefully calibrated machines. The data from tire testing can be analyzed to 

determine the optimum orientation of the tire for given loading scenarios, which then 
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determine how the wheel path should be constrained by the placement of suspension 

linkages. For example, in a cornering scenario if the outside front wheel is considered, it 

experiences a greater vertical load (due to load transfer from centripetal acceleration), as 

well as a significant lateral load which directly correlates to the friction force that keeps 

the wheel from sliding on the pavement. Many racing tires can increase their lateral load 

capacity in a corner if there is some negative camber gain to angle the tire against the 

pavement. However, too much camber can be even worse than none at all. A number of 

years ago the Tire Test Consortium (TTC) was founded to provide a database for 

Formula SAE students to access and retrieve this data to analyze for suspension design. 

This database details exactly the test procedures that govern each set of data for proper 

interpretation, and includes more than a dozen variables. It is the student’s job to select a 

tire compound and dimensions, and get to work analyzing hundreds of thousands of lines 

of data to make useful plots that will tell how the tire can best perform in the expected 

racing conditions. The first of these plots is Slip Angle vs. Lateral Load. Slip angle is 

understood according to Figure 9 as the angle difference between the steered intended 

angle, and the actual traveled angle due to tire deformation at the contact patch.  

 

Figure 9: Definition of slip angle; a result of applied lateral load deforming the tire at the contact patch. 
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By holding all other variables constant while only manipulating one variable at a 

time, the Slip Angle vs. Lateral Load was plotted across the range of tested inclination 

angles (which simulate camber) to visualize how the lateral load capacity of the tire 

changes with camber. This was done for a number of vertical loads because the normal 

force acting on the tire changes due to load transfer when cornering, so the outside 

wheels will experience a greater normal force than the inside wheels.  

 

Figure 10: Slip Angle vs. Lateral Load for a Hoosier 16x7.5-10 R25B compound tire at 8psi, with a normal force of 

200lb, across three camber angles (IA) of 0, 2, and 4 degrees. 

The curve shown in Figure 10 demonstrates the effectiveness of the tire at 

resisting a lateral load with the friction contact between the tire and road surface over a 

range of slip angles. This is important because when cornering, Newton’s 1st law says 
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that the vehicle will tend to continue going straight, unless accelerated towards the center 

of curvature dictated by turning the steering wheel. The centripetal force generated that 

pushes the car towards the center of curvature is the friction force acting between the tires 

and road surface. The greater the friction capacity at this contact patch, the more 

centripetal force can be generated to take turns at higher speeds. The negatively sloped 

linear portion in the middle means that the tire is effectively resisting lateral loads; for 

small slip angles the tire linearly increases in lateral load capacity. However, when the 

curve begins to plateau at either end, this shows that the lateral load capacity of the tire is 

tapering to its limit at high slip angles, so when the curve goes flat the tire has lost grip on 

the road and will begin to slide across the pavement because the frictional force is not 

enough to resist the lateral load from centripetal acceleration. In Figure 10 one can 

clearly see that with different camber angles, the curve changes slightly and lateral load 

capacity changes. In fact, it appears in this plot that the camber angle of zero (refer to 

Figure 4) has the greatest peak lateral load capacity, but in the linear range the higher 

camber angles have a greater lateral load.  However, the answer is far from being 

reached; these tires must be tested for various compounds, pressures, and normal forces 

at the very least before being able to determine the desired camber change with wheel 

travel for the suspension geometry. Figure 11 shows the comparison between two 

different tire compounds, R25B and LCO, of the same tire dimensions. 
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Figure 11: Comparison of R25B and LCO tire compounds at 8psi, camber of 2 degrees, and 200lb normal force. 

 According to Figure 11, it would appear that the LCO compound is the clear 

winner with the higher peak lateral load capacity in the same conditions. However, 

Figure 12 plots the same two tires with the same pressure and normal force, simply at a 

camber of zero degrees, and the R25B compound takes the lead with a higher peak lateral 

load capacity and a longer stretch of linear behavior in the curve.  
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Figure 12: R25B vs LCO tire compounds compared at 8psi, 200lb normal force, and camber of 0 degrees. 

Further still, changes in tire pressure also change this curve behavior significantly. 

Figure 13 shows the same tire and conditions other than the tire pressure changing 

between 8psi and 12psi, and it is clear that the higher pressure has a higher peak lateral 

load capacity and longer stretch of linear behavior between slip angle and lateral load. 

 

Figure 13: Slip Angle vs Lateral Load plot comparing two different tire pressures for R25B tire compound at 2 degrees 

of camber and a normal force of 200lb. 
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 Therefore, without detailing the entirety of the tire analysis process, the previous 

few plots should be sufficient to demonstrate the complexity in objectively defining the 

desired camber rate in relation to vertical and lateral loads. Once sufficient analysis has 

been done to make an argument for a specific camber rate limitation based on expected 

wheel travel, the control arms in a double-wishbone system must then be designed 

accordingly to yield such a camber rate with the expected wheel travel occurring during 

lateral load transfer of cornering. The resulting camber at the maximum jounce position 

during a cornering scenario must be a summation of both the ideal camber from slip 

angle vs lateral load curves to maximize lateral load capacity, as well as the angle of 

body roll resulting from the difference in spring compression on opposite sides of the car. 

In this way, if the tire data shows peak lateral load capacity at 1.5 degrees of camber, and 

the body rolls 1 degree in cornering from load transfer, the suspension geometry should 

provide a total camber of 2.5 degrees at the wheel deflection expected in the same 

cornering scenario.  

Roll center. The roll center is the location about which the sprung mass will 

rotate when experiencing body roll when cornering, and is one of the first things that 

must be defined when designing suspension geometry. The ratio of the height of the roll 

center relative to the height of the vehicle’s center of gravity determines the percentage of 

anti-roll. Anti-roll is a measure of how much of the roll forces are reacted by the control 

arms rather than the springs and dampers. Figure 14 shows a SolidWorks sketch of a 

front view cross-section of the vehicle to place dimensions on things that would not 

change, with extended lines to find the location of the instantaneous center of rotation of 
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a wheel (IC). Then a line from the center of the tire contact with the road to the IC 

location is drawn. The point where this line crosses the vertical line passing through the 

center of gravity (assuming a laterally symmetric vehicle mass distribution) yields the 

location of the roll center (RC). The distance between the center of gravity and the roll 

center is the leverage of the roll moment. The closer they are together, the less body roll 

is experienced with the same force, thus increasing anti-roll geometry by putting a greater 

proportion of force into the control arms. However, while less body roll is generally a 

good thing, it also leaves less room for control of the movement of the sprung mass 

through the springs and dampers. A general range within the racing industry is about 15 

to 30% anti-roll. 

 

Figure 14: SolidWorks sketch to plan out roll center (RC) calculations. IC = instantaneous center, CG = center of 

gravity. 

RC 

IC CG 
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Figure 15: SolidWorks model front view of suspension system shown to match the geometry of the sketch in Figure 14. 

The horizontal location of the instantaneous center along the line generated by the 

center of the tire contact and the roll center is still variable at this point. Moving the IC 

will adjust the mounting locations of the control arms to the frame, and therefore change 

the relative lengths of the control arms. Both these adjustments have direct effects on the 

path that the wheel travels in jounce and rebound. Not only are the arcs that each rocker 

linkage makes changed, but the equilibrium position of the system relative to the angle 

from the horizontal of the control arms is also changed with a new IC location. Therefore, 

a means of visualizing the direct effects of these changes on camber rate was necessary, 

and led to the creation of a code in MATLAB to solve the four-bar linkage equations and 

make helpful plots. 
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Four-bar linkage motion analysis. Concurrently with the RC calculations, when 

mounting positions for the control arms were found that gave the desired percentage of 

anti-roll, the suspension geometry then had to pass the camber variation test. A 

MATLAB program was generated to yield the changes in camber angle over a length of 

wheel travel of a double-wishbone suspension system, analyzing the system as a four-bar 

linkage. Figure 16 represents the vector analysis notation to locate the points in the 

linkage system as they move from a changing 𝜃2 input. The following Figures Figure 16 

through Figure 20 demonstrate the final decided geometry for the rear suspension, having 

determined an IC location that yields a desired camber change through wheel travel. 

 

Figure 16: Four-bar linkage system defined by vectors and variables from which MATLAB variables were generated 

for suspension camber analysis. 

The mathematical analysis required to solve this system is not highly relevant to 

suspension design, but can be found within the code for the MATLAB program in 

Appendix B. The first plot shown by Figure 17 shows a shape very similar to the one 

seen in Figure 16, but also shows the instantaneous placement of all the linkages over a 

𝜃2 variation of 10 degrees. This 10-degree change simulates the maximum desired wheel 

travel (and minimum required travel) starting from one inch in rebound, passing the 

equilibrium position, and extending to 1 inch in jounce. Table 1 gives important 
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dimensions relevant to this system. The plots are rotated 90 degrees counter-clockwise 

from their natural orientation on the ground because that made writing the code and 

solving for the locations of each linkage easiest, so keep in mind that for these plots the 

ground is actually the right side of the plot. 

Table 1: Dimensions of rear suspension system 

Linkage Location in Figure 9 Length (inches) 

Upper control arm Left side 12.029 

Lower control arm Right side 14.739 

Chassis  Bottom 5.540 

Upright Top 7.026 

 

 

Figure 17: Overall plot of suspension geometry modeled as a four-bar linkage through a 10 degree variation in 𝜃2. 

Note that in Figure 17 the upright appears to be more steeply angled than it should be, 

because this linkage merely connects the control arm mounting points, which must 
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account for the Kingpin inclination angle. The resultant angle of the wheel is 8.3 degrees 

different than that of the inclination angle, such that at the equilibrium ride height 

position the wheel is perpendicular to the ground. When this system is pushed farthest to 

the right, that simulates the maximum wheel travel in rebound, while pushing it farthest 

to the left simulates maximum wheel travel in jounce. One can see slight variations in the 

rotation of the upright linkage as it translates, so an additional plot in Figure 18 was made 

to view this up close.  

 

Figure 18: Close-up of the camber variation of the upright through full span of wheel travel jounce and rebound. 

 This plot isolates the upright linkage motion with unequal scaling in the x and y 

axes to exaggerate the effects of camber variation causing rotation of the upright. 

Additionally, this plot has corrected for the difference in inclination angle versus the 

actual angle of the wheel relative to the ground, so these angles demonstrate the switch 

between positive and negative camber in wheel travel. One can see clearly the fact that in 



 
INNOVATIVE FORMULA SAE SUSPENSION DESIGN 32 

 
 

jounce the wheel is being forced towards increasingly negative camber. When cornering, 

the lateral load applied to the tires causes them to deform as friction between the road and 

tire pushes the tire towards the center of curvature. However, this friction force causes 

deformation of the tire and changes the shape of the contact patch. A negative camber on 

the outside wheel when cornering helps to counteract the loss of contact patch area, such 

that tire deformations create a fuller contact patch. The full effects of this concept are 

investigated through empirical testing of tires and plotting the collected data to visualize 

such relationships. Though Figure 18 helps to show that there exists camber variation 

with wheel travel, and that it makes a switch by becoming more negatively cambered 

with jounce travel, we need to know just how much camber there is. With some more 

calculations in MATLAB, Figure 19 shows exactly that.  

 

Figure 19: Calculated camber angle of the wheel versus the theta 2 input to the four-bar linkage system, causing wheel 

travel. 
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 It is evident from this graph that despite the exaggerated visual in Figure 18, there 

is in fact very little camber variation with wheel travel. This is desired, because more 

than just a few degrees of camber change can drastically change the way that the tire 

interacts with the road and responds to various loads. At the equilibrium ride height 

position, which the wheels will be at when driving in a straight line (without intense 

launch and braking forces) the best contact patch is made when the tires are perpendicular 

to the road surface. This is evident here by the camber angle of zero degrees at the middle 

of wheel travel (when 𝜃2 is about 95 degrees). During cornering or launch when the 

wheels are pushed up into jounce, the camber increases to about 1.25 degrees of negative 

camber, and similarly in rebound.  

 

Figure 20: Horizontal displacement of wheel center through vertical wheel travel. 
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 One final consideration is the amount of scrub the tire experiences through wheel 

travel. Plotted in Figure 20 is the wheel center as it moves horizontally while translating 

vertically during wheel travel. Scrub is a measure of the lateral distance that the center of 

the tire translates laterally due to its wheel travel path. More scrub causes more drag and 

resistance on the tires which takes energy away from the vehicle that could be forward 

velocity. As shown in Figure 20 there is very little scrub, with maximum displacement 

less than 0.10 inches, further proving the success of this geometry. 
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Chapter 3: Energy and Behavioral Considerations 

The following three sections utilize the bond graph approach (Karnopp, 2012) to 

investigate the behavior of a dynamic system. More specifically, the behavior of interest 

is the motion of certain masses within the system in relation to an input velocity over a 

wide range of frequencies. This allows the engineer to calculate the range of frequencies 

which have significant impacts on the desired functionality of the system due to the 

effects of resonance and damping. A system should be designed to dampen out possible 

resonance within the frequency range of expected operation. The first section details an 

introductory analysis to the familiar quarter car model, a system whose behavior is well 

known within the automotive industry. The second section goes a step further to develop 

an analysis of a transverse half car model responding to a single-sided velocity input, 

something not well investigated before. The third section goes even beyond that to 

investigate the behaviors of the transverse half car model but with an additional third 

damper mounted transversely as seen in the Swedish Koenigsegg hypercars as a means of 

improved suspension control and vehicle handling. Such a three-damper half-car system 

is touted to have better traction and control along straights and resist excessive squat on 

launch and dive in braking, all while not hindering the functionality of the anti-roll bar in 

cornering. The developed plots from this mathematical analysis will test this hypothesis 

for potential applications to an FSAE competition vehicle.  



 
INNOVATIVE FORMULA SAE SUSPENSION DESIGN 36 

 
 

Conventional Quarter Car Model Analysis 

Schematic. 

 

Figure 21: Schematic of quarter car model showing idealized model connected by familiar energy components. 

List of Variables and Their Meaning: 

𝑉𝑠 = sprung mass velocity 

𝑚𝑠 = sprung mass, representing the portion of mass of the body/chassis of the car 

distributed to this wheel 

𝑘 = spring stiffness of the physical helical springs present in the suspension system 

𝑏 = damping coefficient of the physical damper present in the suspension system 

𝑚𝑢𝑠 = un-sprung mass, includes mass of the wheel, tire, wheel hub, brake rotors and 

calipers, and control arms. 

𝑉𝑢𝑠 = un-sprung mass velocity 

𝑘𝑡 = stiffness coefficient of the tire; the pressurized rubber tire has compliant properties 
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Bond Graph. 

 

Figure 22: Fully augmented and numbered bond graph of quarter car model. 

Derivation of state space equations and matrix. Given that the applied causality 

to the bond graph of the simple quarter car model is all in integral form (the causal stroke 

indicating that effort is flowing into the inertial elements and out of the capacitive 

elements) the derivation of the system’s state equations is very straight forward. In this 

system there exist 4 state variables, (𝑞2̇, 𝑝5̇, 𝑞8̇, 𝑝12̇ ) and 3 input variables, 

(𝑉𝑖𝑛,𝑚𝑢𝑠𝑔,𝑚𝑠𝑔). It shall be noted that the primary input to this system is 𝑉𝑖𝑛 which 

represents the change in velocity caused by the movement of the wheel against a variable 

road surface which may have bumps, holes, drops, etc. The other input variables come 

from an analysis including the effect of gravity on both the sprung and un-sprung masses 

and are in fact not particularly necessary if the assumption is made that the springs in the 
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system are already at their equilibrium position. However, for ease of intuition in this first 

quarter car model, they will be kept in the analysis to avoid confusion as these effort 

sources will be included in the analyses of the following half car models.  

𝑞2̇ = 𝑉𝑖𝑛(𝑡) −
𝑝5

𝑚𝑢𝑠
 (3) 

𝑝5̇ = 𝑞2𝑘𝑡 − 𝑚𝑢𝑠𝑔 − 𝑞8𝑘 − 𝑏 (
𝑝5

𝑚𝑢𝑠
−

𝑝12

𝑚𝑠
) (4) 

𝑞8̇ =
𝑝5

𝑚𝑢𝑠
−

𝑝12

𝑚𝑠
 (5) 

𝑝12̇ = 𝑞8𝑘 + 𝑏 (
𝑝5

𝑚𝑢𝑠
−

𝑝12

𝑚𝑠
) − 𝑚𝑠𝑔 (6) 

These state variable equations can then be put into state space matrix form, 𝑌 = [𝐴]𝑥̅ +

[𝐵]𝑢̅,  shown as follows: 

[

𝑞2̇

𝑞8̇

𝑝5̇

𝑝12̇  

] =

[
 
 
 
 
 
 
 
 0 0 −

1

𝑚𝑢𝑠
0

0 0
1

𝑚𝑢𝑠
−

1

𝑚𝑠

𝑘 −𝑘 −
𝑏

𝑚𝑢𝑠

𝑏

𝑚𝑠

0 𝑘
𝑏

𝑚𝑢𝑠
−

𝑏

𝑚𝑠]
 
 
 
 
 
 
 
 

[

𝑞2

𝑞8

𝑝5

𝑝12 

] + [

1 0 0
0 0 0
0 −1 0
0 0 1

] [
𝑉𝑖𝑛

𝑚𝑢𝑠𝑔
𝑚𝑠𝑔

] (7) 

With the state space equations in matrix form, manipulation can be done to put 

the system into the Laplace domain, to effectively solve the system of first order 

differential equations by algebraic manipulation. This is done by operating on the A 

matrix, subtracting each element from a 4x4 matrix made by multiplying the Laplacian 

operator S by the identity matrix of equal size to the A matrix. Essentially, [𝐴] becomes 

[𝑆𝐼 − 𝐴], and the rest of the system is put into the Laplace domain, shown by equation 8. 
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[

𝑆𝑄2(𝑆)

𝑆𝑄8(𝑆)
𝑆𝑃5(𝑆)

𝑆𝑃12(𝑆)

] =

[
 
 
 
 
 
 
 
 𝑆 0

1

𝑚𝑢𝑠

0

0 𝑆 −
1

𝑚𝑢𝑠

1

𝑚𝑠

−𝑘 𝑘 𝑆 +
𝑏

𝑚𝑢𝑠

−
𝑏

𝑚𝑠

0 −𝑘 −
𝑏

𝑚𝑢𝑠

𝑆 +
𝑏

𝑚𝑠]
 
 
 
 
 
 
 
 

[

𝑞2(𝑆)

𝑞8(𝑆)
𝑝5(𝑆)

𝑝12 (𝑆)

] + [

1 0 0
0 0 0
0 −1 0
0 0 1

] [

𝑉𝑖𝑛(𝑆)

𝑚𝑢𝑠𝑔(𝑆)

𝑚𝑠𝑔(𝑆)
] (8) 

From this point, various transfer functions may be found. A transfer function 

relates a ratio of an output to an input of the system, to see how the behavior is affected. 

The most insightful transfer function of the quarter car system is the relationship between 

the velocity of the sprung mass of the vehicle and the input velocity as the wheel receives 

bumps from the road. This relationship relates directly to driver comfort, making it a 

desirable system behavior to know. The transfer function is solved by Cramer’s rule, 

taking the quotient of two determinants. The numerator replaces the output variable 

vector with the input variable vector before solving the determinants. In this case the 

output variable is the velocity of the sprung mass, which may be solved with the state 

variable of 𝑝12, the momentum of the sprung mass. It is known 𝑝 = 𝑚𝑉, so solving by 

simple algebra the velocity may be found by 𝑉 =
𝑝

𝑚
.  

𝑉𝑚𝑠

𝑉𝑖𝑛

(𝑆) =
1

𝑚𝑠

∗

|

|

|

𝑆 0
1

𝑚𝑢𝑠
1

0 𝑆 −
1

𝑚𝑢𝑠
0

−𝑘 𝑘 𝑆 +
𝑏

𝑚𝑢𝑠
0

0 −𝑘 −
𝑏

𝑚𝑢𝑠
0

|

|

|

|

|

|

𝑆 0
1

𝑚𝑢𝑠
0

0 𝑆 −
1

𝑚𝑢𝑠

1
𝑚𝑠

−𝑘 𝑘 𝑆 +
𝑏

𝑚𝑢𝑠
−

𝑏
𝑚𝑠

0 −𝑘 −
𝑏

𝑚𝑢𝑠
𝑆 +

𝑏
𝑚𝑠

|

|

|

 (9) 
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𝑉𝑚𝑠

𝑉𝑖𝑛

(𝑆) =
𝑘2 + 𝑆 𝑏 𝑘

(𝑚𝑢𝑠𝑆
4 + 𝑏 𝑆3 + 2 𝑘 𝑆2)𝑚𝑠 + 𝑏 𝑚𝑢𝑠𝑆

3 + 𝑚𝑢𝑠𝑆
2𝑘 + 𝑏 𝑆 𝑘 + 𝑘2

 (10) 

With a transfer function between the input velocity and the velocity of the sprung 

mass, various analyses may be done on the system to see how it behaves with specific 

given parameters. Results of such an analyses are demonstrated by Figure 23 with plots 

for the amplitude ratio of the sprung mass to the input velocity and the phase angle 

plotted along an increasing frequency. However, it is necessary first to list the values 

assigned to the parameters in the equation to give context and meaning to the plots. These 

are found in Table 2. 

Table 2: Values assigned to parameters in quarter car equations used to create plots of frequency response behavior. 

Parameter Value Units 

𝑚𝑢𝑠 8.0 kg 

𝑘 4000 Nm/deg 

𝑘𝑡 123464 N/m 

𝑚𝑠 182/4 *for 400lb vehicle kg 

𝑏 

0.6(2)𝑚𝑠√
𝑘

𝑚𝑠
 

Ns/m 
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Figure 23: Quarter car model frequency response plots of amplitude ratio and phase angle. 

The goal of the quarter car model is to essentially isolate the input velocity from 

the sprung mass velocity with a damped system, such that the sprung mass returns to a 

condition of steady state with a comfortable number of oscillations, as energy is 

dissipated by the dampers. It was originally thought that the system should be critically 

damped, as there is a very specific relationship between the mass, spring constant, and 

damping coefficient that will permit the system to be critically damped of 𝑏𝑐 = 2𝑚√
𝑘

𝑚
 . 

However, upon further research, it is determined that for FSAE applications, and even in 

most racing applications the goal is not to control oscillations such that only one 

complete oscillation is made before the sprung mass returns to steady state. In fact, it is 
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more desired that the damping ratio 
𝑏

𝑏𝑐
 be somewhere around 0.5 to 0.7 for the best road 

feel and vehicle control. With a damping ratio in this range, there is not such drastic 

lateral load transfer in cornering, so the inside wheel on the turn is allowed to keep more 

vertical load on it which helps to increase grip and overall cornering capacity. This was 

taken into consideration when applying values to the MATLAB calculations for the plots 

in this report. It shall be acknowledged that most performance dampers are designed to 

have different damping coefficients in compression and rebound. However, for the 

purposes of analysis one can simply consider multiple plots of various damping ratios 

and evaluate the curves correspondingly. 

Despite all this, the quarter car model is very well known as automotive 

companies seek to outfit their vehicles with the best possible comfort to increase sales 

and satisfaction. What is less well known, and has not been analyzed much before with 

the bond graph approach is the relationship between the two lateral halves of the 

vehicle’s suspension, meaning the right and left side of the car, as opposed to front to 

back half. Longitudinal models have been studied to investigate the behaviors of dive and 

squat. Lateral suspension behavior was investigated here in the conventional and 

Koenigsegg half car models in the following sections.  

Though the primary focus of this investigation is on lateral behavior in a half car 

model, it is necessary to also introduce the effects of dive and squat, as a third damper 

system serves to counteract the negative effects of these behaviors. Dive pulls the nose of 

the car down when braking as load transfer due to negative acceleration (slowing down) 

causes spring compression in the front end, requiring the front wheels to handle the 
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majority of the braking power. This is never a beneficial quality; maximum braking 

power is obtained when all four wheels are loaded equally. Squat pulls the rear of the car 

down when accelerating, as load transfer due to positive acceleration (launch, or 

increasing speed) causes additional spring compression in the rear. This is sometimes a 

desired behavior as rear-wheel drive vehicles can transmit more power during launch 

with a greater normal force.  

 

Figure 24: Anti-Squat control arm geometry (top) versus no anti-squat geometry with parallel control arms (bottom). 𝑙 
is the length of the wheelbase, and h is the height of the center of gravity (CG). 

Both dive and squat are not particularly desired in racing applications, as they 

tend to have negative effects on the contact patch between the tire and the road due to 

changes in camber angle in straight-line driving, as well as changes in aerodynamic 
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influence and ride height. Changes in the orientation of the control arms can alter the 

percent of anti-dive or anti-squat geometry the vehicle has, by putting longitudinal load 

transfer more into tensile and compressive forces acting on the control arms and linkages 

rather than entirely into the springs and dampers. Figure 24 helps to visualize the 

suspension orientation changes made to counteract squat. The percentage of anti-squat 

made by the angle of the control arms can be calculated as follows with reference to 

Figure 24.  

%𝐴𝑛𝑡𝑖 − 𝑆𝑞𝑢𝑎𝑡 =
tan(𝜃𝑅)

ℎ
𝑙

∗ 100 (11)  

The top vehicle depicts anti-squat geometry of about 52%, assuming 𝜃𝑅 = 5𝑑𝑒𝑔, 

ℎ = 11.0𝑖𝑛, and 𝑙 = 65.0𝑖𝑛. The bottom vehicle in the Figure demonstrates 0% anti-

squat with both control arms made parallel to the ground. This effectively puts the 

instantaneous center (IC) infinitely far away so 𝜃𝑅 goes to zero, and the numerator of 

equation 11 is then zero.  

However, though it is beneficial to distribute some of the load out of the springs 

to reduce spring compression and therefore total squat/dive, the distribution of these 

loads demand that the control arms be made stronger to withstand greater stresses. 

Assuming the same material is used for the control arms, greater strength requires more 

material, resulting in more un-sprung mass.  

Everything not directly contained by the chassis is considered “sprung mass,” 

(because it is suspended by the springs). Everything else, including the wheels, tires, 

wheel hubs, brake rotors, calipers, and control arms are considered “un-sprung mass.” It 
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is imperative for the benefits of a vehicle’s frequency response and overall dynamics to 

have the least possible un-sprung mass; this means there is less inertia and momentum 

related to wheel movements with irregularities of the road surface, resulting in less 

influence of residual motion into the sprung mass. When the control arms are forced to be 

more massive to handle increased stresses by directing squat and dive forces into them, it 

increases the un-sprung mass and makes the system more difficult to control.  

A third damper system serves to minimize the magnitude of squat and dive 

experienced during longitudinal load transfer by dissipating some of this energy into the 

hydraulic fluid of the damper. When two wheels both move up at the same time very 

rapidly (as in the case of hard braking from high speed) and a damper is connected 

transversely between them, it is compressed from both sides. This movement forces the 

piston to move rapidly within its hydraulic fluid, transferring energy into heat that would 

otherwise go into compression or extension of the springs.  

Conventional Transverse Half Car Model Analysis 

The transverse half car model investigates the concepts of what happens to body 

roll when a single wheel experiences a velocity change input. Traditionally, a component 

known as the “sway bar” or “anti-roll bar” is installed that connects two wheels 

transversely by way of a U-shaped bar that elastically deforms in torsion to act as a 

spring. This is done such that when the body experiences roll, and the outer wheels travel 

up as their springs and dampers compress, it will cause torsion on the sway bar that will 

also pull up on the other wheel, effectively working to help balance out the effects of roll 

in a turn to maintain the best contact patch possible between the tires and the road. 
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Schematic. 

 

Figure 25: Schematic of conventional half car model showing idealized model connected by familiar energy 

components. 

Bond Graph. 

 

Figure 26: Bond graph of conventional half car model fully augmented and numbered. 
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Derivation of state space equations and matrix. The following 8 equations list 

the final equations derived from following the analysis of the bond graph given the 

assigned augmentation with compression considered positive. The hand calculations for 

these equations may be found in Appendix D. 

𝑞2̇ = 𝑉𝑖𝑛(𝑡) −
𝑝4

𝑚𝑢𝑠1

 (12) 

𝑞8̇ =
𝑝4

𝑚𝑢𝑠1

−
𝑝12

𝑚𝑠

 (13) 

𝑞15̇ =
𝑝19

𝑚𝑢𝑠2

−
𝑝12

𝑚𝑠

 (14) 

𝑞20̇ =
𝑝19

𝑚𝑢𝑠2

 (15) 

𝑞22̇ =
𝑝4

𝑚𝑢𝑠1

−
𝑝19

𝑚𝑢𝑠2

 (16) 

𝑝4̇ = 𝑞2𝑘𝑡1 + 𝑚𝑢𝑠1𝑔 − 𝑞8𝑘1 − 𝑏1 (
𝑝4

𝑚𝑢𝑠1

−
𝑝12

𝑚𝑠

) − 𝑞22𝑘 (17) 

𝑝12̇ =  −𝑚𝑠𝑔 + 𝑞8𝑘1 + 𝑏1 (
𝑝4

𝑚𝑢𝑠1

−
𝑝12

𝑚𝑠

) + 𝑞15𝑘2 + 𝑏2 (
𝑝19

𝑚𝑢𝑠2

−
𝑝12

𝑚𝑠

) (18) 

𝑝19̇ =  𝑞22𝑘 + 𝑚𝑢𝑠2𝑔 − 𝑞15𝑘2 − 𝑏2 (
𝑝19

𝑚𝑢𝑠2

−
𝑝12

𝑚𝑠

) − 𝑞20𝑘𝑡2 (19) 

To work with these equations requires that they be put into state-space matrix form. They 

are listed in the order that they are to be arranged in the matrix shown by equation 20. 

[
 
 
 
 
 
 
 
𝑞2̇

𝑞8̇

𝑞15̇
𝑞20̇
𝑞22̇
𝑝4̇

𝑝12̇
𝑝19̇  ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 −

1

𝑚𝑢𝑠1
0 0

0 0 0 0 0
1

𝑚𝑢𝑠1
−

1

𝑚𝑠
−

1

𝑚𝑠

0 0 0 0 0 0 −
1

𝑚𝑠

1

𝑚𝑢𝑠2

0 0 0 0 0 0 0
1

𝑚𝑢𝑠2

0 0 0 0 0
1

𝑚𝑢𝑠1
0 −

1

𝑚𝑢𝑠2

𝑘𝑡1 −𝑘1 0 0 −𝑘 −
𝑏1

𝑚𝑢𝑠1

𝑏1

𝑚𝑠
0

0 𝑘1 𝑘2 0 0
𝑏1

𝑚𝑢𝑠1
(−

𝑏1 − 𝑏2

𝑚𝑠
)

𝑏2

𝑚𝑢𝑠2

0 0 −𝑘2 −𝑘𝑡2 𝑘 0
𝑏2

𝑚𝑠
−

𝑏2

𝑚𝑢𝑠2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑞2

𝑞8

𝑞15

𝑞20

𝑞22

𝑝4

𝑝12

𝑝19]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0 ]

 
 
 
 
 
 
 

[

𝑉𝑖𝑛

𝑚𝑢𝑠1𝑔
𝑚𝑢𝑠2𝑔
𝑚𝑠𝑔

] (20) 
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Though this matrix in equation 20 is substantially larger than the example demonstrated 

by the quarter car model, the method of analysis is the same. We then converted to the 

Laplacian domain, so [𝐴] becomes [𝑆𝐼 − 𝐴]. 

[
 
 
 
 
 
 
 
 
𝑆𝑄2(𝑆)
𝑆𝑄8(𝑆)

𝑆𝑄15(𝑆)
𝑆𝑄20(𝑆)
𝑆𝑄22(𝑆)
𝑆𝑃4(𝑆)
𝑆𝑃12(𝑆)

𝑆𝑃19(𝑆) ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑆 0 0 0 0

1

𝑚𝑢𝑠1
0 0

0 𝑆 0 0 0 −
1

𝑚𝑢𝑠1

1

𝑚𝑠

1

𝑚𝑠

0 0 𝑆 0 0 0
1

𝑚𝑠
−

1

𝑚𝑢𝑠2

0 0 0 𝑆 0 0 0 −
1

𝑚𝑢𝑠2

0 0 0 0 𝑆 𝑆 −
1

𝑚𝑢𝑠1
0

1

𝑚𝑢𝑠2

−𝑘𝑡1 𝑘1 0 0 𝑘
𝑏1

𝑚𝑢𝑠1
𝑆 −

𝑏1

𝑚𝑠
0

0 −𝑘1 −𝑘2 0 0 −
𝑏1

𝑚𝑢𝑠1
𝑆 + (

𝑏1 − 𝑏2

𝑚𝑠
) −

𝑏2

𝑚𝑢𝑠2

0 0 𝑘2 𝑘𝑡2 −𝑘 0 −
𝑏2

𝑚𝑠
𝑆 +

𝑏2

𝑚𝑢𝑠2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑄2(𝑆)
𝑄8(𝑆)

𝑄15(𝑆)
𝑄20(𝑆)
𝑄22(𝑆)
𝑃4(𝑆)
𝑃12(𝑆)

𝑃19(𝑆) ]
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0 ]

 
 
 
 
 
 
 

[

𝑉𝑖𝑛(𝑆)
𝑚𝑢𝑠1𝑔(𝑆)
𝑚𝑢𝑠2𝑔(𝑆)
𝑚𝑠𝑔(𝑆)

] (21) 

From this point, the transfer functions of interest may be derived. The interest 

here was in determining the relationships between the input velocity and each wheel in 

the system, as one wheel is directly affected by the input velocity to its tire, while the 

other feels the input velocity only as it relates through the sprung mass and anti-roll bar. 

This way, we can viably compare the behavior of each wheel responding to the same 

input, with the only difference being the addition of the third damper. Therefore, I will 

derive the transfer functions of 
𝑉𝑚𝑢𝑠1

𝑉𝑖𝑛
(𝑆) and 

𝑉𝑚𝑢𝑠2

𝑉𝑖𝑛
(𝑆), utilizing the Cramer’s rule 

replacement and knowing fundamentally momentum is equal to mass times volume  (𝑝 =

𝑚𝑉) as demonstrated by the quarter car model example.  

The first of these transfer functions was set up as shown in equation 22, however 

for conservation of space the writing out of this step for subsequent transfer functions 

was omitted, skipping directly to the result of the quotient of the determinants stated by 
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Cramer’s rule. However, it shall be noticed in this instance that the 6th column of the 

matrix in the numerator corresponding to the momentum of 𝑚𝑢𝑠1 is replaced by the 

vector corresponding to the input variable 𝑉𝑖𝑛 as dictated by the method of Cramer’s rule. 

Then the quotient was divided by 
1

𝑚𝑢𝑠1
 to effectively convert the momentum of the first 

un-sprung mass to its velocity to match the need of the transfer function.  

𝑇𝐹1 =
𝑉𝑚𝑢𝑠1

𝑉𝑖𝑛

(𝑆) =
1

𝑚𝑢𝑠1
∗

|

|

|

|

𝑆 0 0 0 0 1 0 0

0 𝑆 0 0 0 0
1
𝑚𝑠

1
𝑚𝑠

0 0 𝑆 0 0 0
1
𝑚𝑠

−
1

𝑚𝑢𝑠2

0 0 0 𝑆 0 0 0 −
1

𝑚𝑢𝑠2

0 0 0 0 𝑆 0 0
1

𝑚𝑢𝑠2

−𝑘𝑡1 𝑘1 0 0 𝑘 0 𝑆 −
𝑏1
𝑚𝑠

0

0 −𝑘1 −𝑘2 0 0 0 𝑆 + (
𝑏1 − 𝑏2

𝑚𝑠
) −

𝑏2
𝑚𝑢𝑠2

0 0 𝑘2 𝑘𝑡2 −𝑘 0 −
𝑏2
𝑚𝑠

𝑆 +
𝑏2

𝑚𝑢𝑠2

|

|

|

|

|

|

|

|

|

𝑆 0 0 0 0
1

𝑚𝑢𝑠1
0 0

0 𝑆 0 0 0 −
1

𝑚𝑢𝑠1

1
𝑚𝑠

1
𝑚𝑠

0 0 𝑆 0 0 0
1
𝑚𝑠

−
1

𝑚𝑢𝑠2

0 0 0 𝑆 0 0 0 −
1

𝑚𝑢𝑠2

0 0 0 0 𝑆 𝑆 −
1

𝑚𝑢𝑠1
0

1
𝑚𝑢𝑠2

−𝑘𝑡1 𝑘1 0 0 𝑘
𝑏1

𝑚𝑢𝑠1
𝑆 −

𝑏1
𝑚𝑠

0

0 −𝑘1 −𝑘2 0 0 −
𝑏1

𝑚𝑢𝑠1
𝑆 + (

𝑏1 − 𝑏2
𝑚𝑠

) −
𝑏2

𝑚𝑢𝑠2

0 0 𝑘2 𝑘𝑡2 −𝑘 0 −
𝑏2
𝑚𝑠

𝑆 +
𝑏2

𝑚𝑢𝑠2

|

|

|

|

|

     (22)
 

This equation was solved in MATLAB as it would be extremely tedious and 

impractical to solve by hand. The code for this and the following determinant calculations 

may be found in Appendix C. The result even simplified is very lengthy, and will be 

separated into numerator and denominator portions for clarity.  

(23) 
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𝑇𝐹1𝑁𝑈𝑀 = ((𝑆3𝑏2𝑘𝑡1 + 𝑆2𝑘 𝑘𝑡1 + 𝑆2𝑘2𝑘𝑡1 + 𝑆2𝑘𝑡1𝑘𝑡2 + 𝑆4𝑘𝑡1𝑚𝑢𝑠2)𝑚𝑠
2

+ (𝑘 𝑘1𝑘𝑡1 − 2 𝑆2𝑏2
2𝑘𝑡1 + 𝑘 𝑘2𝑘𝑡1 + 𝑘1𝑘2𝑘𝑡1 + 𝑘1𝑘𝑡1𝑘𝑡2 + 𝑘2𝑘𝑡1𝑘𝑡2

+ 𝑆2𝑏1𝑏2𝑘𝑡1 + 𝑆3𝑏1𝑘𝑡1𝑚𝑢𝑠2 − 𝑆3𝑏2𝑘𝑡1𝑚𝑢𝑠2 + 𝑆2𝑘1𝑘𝑡1𝑚𝑢𝑠2 + 𝑆2𝑘2𝑘𝑡1𝑚𝑢𝑠2

+ 𝑆 𝑏1𝑘 𝑘𝑡1 − 𝑆 𝑏2𝑘 𝑘𝑡1 + 𝑆 𝑏1𝑘2𝑘𝑡1 + 𝑆 𝑏2𝑘1𝑘𝑡1 − 2 𝑆 𝑏2𝑘2𝑘𝑡1 + 𝑆 𝑏1𝑘𝑡1𝑘𝑡2

− 𝑆 𝑏2𝑘𝑡1𝑘𝑡2)𝑚𝑠 + 𝑘1𝑘2𝑘𝑡1𝑚𝑢𝑠2 + 𝑆 𝑏2𝑘1𝑘𝑡1𝑚𝑢𝑠2) 

𝑇𝐹1𝐷𝐸𝑁𝑂𝑀 = ((𝑆4𝑏1𝑏2 + 𝑆3𝑏1𝑘 + 𝑆3𝑏2𝑘 + 𝑆3𝑏1𝑘2 + 𝑆3𝑏2𝑘1 + 𝑆3𝑏1𝑘𝑡2 + 𝑆3𝑏2𝑘𝑡1

+ 𝑆5𝑏1𝑚𝑢𝑠2 + 𝑆5𝑏2𝑚𝑢𝑠1 + 𝑆2𝑘 𝑘1 + 𝑆2𝑘 𝑘2 + 𝑆2𝑘 𝑘𝑡1 + 𝑆2𝑘 𝑘𝑡2 + 𝑆2𝑘1𝑘2

+ 𝑆2𝑘1𝑘𝑡2 + 𝑆2𝑘2𝑘𝑡1 + 𝑆2𝑘𝑡1𝑘𝑡2 + 𝑆4𝑘 𝑚𝑢𝑠1 + 𝑆4𝑘 𝑚𝑢𝑠2 + 𝑆4𝑘1𝑚𝑢𝑠2

+ 𝑆4𝑘2𝑚𝑢𝑠1 + 𝑆4𝑘𝑡1𝑚𝑢𝑠2 + 𝑆4𝑘𝑡2𝑚𝑢𝑠1 + 𝑆6𝑚𝑢𝑠1𝑚𝑢𝑠2)𝑚𝑠
2

+ (𝑘 𝑘1𝑘𝑡1 − 2 𝑆2𝑏2
2𝑘 − 2 𝑆2𝑏2

2𝑘1 − 2 𝑆2𝑏2
2𝑘𝑡1 − 2 𝑆4𝑏2

2𝑚𝑢𝑠1 − 2 𝑆3𝑏1𝑏2
2

+ 𝑘 𝑘1𝑘𝑡2 + 𝑘 𝑘2𝑘𝑡1 + 𝑘 𝑘2𝑘𝑡2 + 𝑘1𝑘2𝑘𝑡1 + 𝑘1𝑘2𝑘𝑡2 + 𝑘1𝑘𝑡1𝑘𝑡2 + 𝑘2𝑘𝑡1𝑘𝑡2

− 2 𝑆2𝑏1𝑏2𝑘 − 2 𝑆2𝑏1𝑏2𝑘2 + 𝑆2𝑏1𝑏2𝑘𝑡1 − 𝑆2𝑏1𝑏2𝑘𝑡2 + 𝑆4𝑏1𝑏2𝑚𝑢𝑠1

− 𝑆4𝑏1𝑏2𝑚𝑢𝑠2 + 𝑆3𝑏1𝑘 𝑚𝑢𝑠1 + 𝑆3𝑏1𝑘 𝑚𝑢𝑠2 − 𝑆3𝑏2𝑘 𝑚𝑢𝑠1 − 𝑆3𝑏2𝑘 𝑚𝑢𝑠2

+ 𝑆3𝑏1𝑘2𝑚𝑢𝑠1 + 𝑆3𝑏2𝑘1𝑚𝑢𝑠1 + 𝑆3𝑏1𝑘2𝑚𝑢𝑠2 − 𝑆3𝑏2𝑘1𝑚𝑢𝑠2 − 2 𝑆3𝑏2𝑘2𝑚𝑢𝑠1

+ 𝑆3𝑏1𝑘𝑡1𝑚𝑢𝑠2 + 𝑆3𝑏1𝑘𝑡2𝑚𝑢𝑠1 − 𝑆3𝑏2𝑘𝑡1𝑚𝑢𝑠2 − 𝑆3𝑏2𝑘𝑡2𝑚𝑢𝑠1

+ 𝑆5𝑏1𝑚𝑢𝑠1𝑚𝑢𝑠2 − 𝑆5𝑏2𝑚𝑢𝑠1𝑚𝑢𝑠2 + 𝑆2𝑘 𝑘1𝑚𝑢𝑠1 + 𝑆2𝑘 𝑘2𝑚𝑢𝑠1

+ 𝑆2𝑘 𝑘2𝑚𝑢𝑠2 + 𝑆2𝑘1𝑘2𝑚𝑢𝑠1 + 𝑆2𝑘1𝑘2𝑚𝑢𝑠2 + 𝑆2𝑘1𝑘𝑡1𝑚𝑢𝑠2 + 𝑆2𝑘1𝑘𝑡2𝑚𝑢𝑠1

+ 𝑆2𝑘2𝑘𝑡1𝑚𝑢𝑠2 + 𝑆2𝑘2𝑘𝑡2𝑚𝑢𝑠1 + 𝑆4𝑘1𝑚𝑢𝑠1𝑚𝑢𝑠2 + 𝑆4𝑘2𝑚𝑢𝑠1𝑚𝑢𝑠2

− 2 𝑆 𝑏2𝑘 𝑘1 − 2 𝑆 𝑏2𝑘 𝑘2 + 𝑆 𝑏1𝑘 𝑘𝑡1 + 𝑆 𝑏1𝑘 𝑘𝑡2 − 𝑆 𝑏2𝑘 𝑘𝑡1 − 𝑆 𝑏2𝑘 𝑘𝑡2

− 2 𝑆 𝑏2𝑘1𝑘2 + 𝑆 𝑏1𝑘2𝑘𝑡1 + 𝑆 𝑏2𝑘1𝑘𝑡1 + 𝑆 𝑏1𝑘2𝑘𝑡2 − 𝑆 𝑏2𝑘1𝑘𝑡2 − 2 𝑆 𝑏2𝑘2𝑘𝑡1

+ 𝑆 𝑏1𝑘𝑡1𝑘𝑡2 − 𝑆 𝑏2𝑘𝑡1𝑘𝑡2)𝑚𝑠 + 𝑘1𝑘2𝑘𝑡1𝑚𝑢𝑠2 + 2 𝑆 𝑏2𝑘 𝑘1𝑚𝑢𝑠2

+ 𝑆 𝑏2𝑘1𝑘𝑡1𝑚𝑢𝑠2 + 𝑆3𝑏2𝑘1𝑚𝑢𝑠1𝑚𝑢𝑠2 + 𝑆2𝑘1𝑘2𝑚𝑢𝑠1𝑚𝑢𝑠2) 

It is evident that this system is of great complexity with a matrix of 8 state 

variables, so the following mathematical results will not be displayed within the body of 

this report, but rather will be handled internally within MATLAB, only plotting the 

insightful behavioral results from a frequency response analysis on this system. The next 

step in the analysis is to replace the Laplacian operator 𝑆 with 𝑗𝜔 to simulate a harmonic 
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input, ultimately permitting an analysis of the frequency response and amplitude ratio of 

the system. There exists a convenient function within MATLAB that can take the 

coefficients of the S values of a transfer function system to plot both the frequency 

response and phase angle, but given the length and complexity of this system, it is easier 

to make these calculations “by hand” within the MATLAB code as reflected in Appendix 

C, rather than manually searching through to find the coefficients of each degree of S. 

Once these calculations are made, plots are created according to Figure 27. For relevance 

of these plots, they were made with parameter values according to Table 3. 

Table 3: Values assigned to parameters in half car equations used to create plots of frequency response behavior. 

Parameter Value Units 

𝑚𝑠 200 kg 

𝑚𝑢𝑠1 8.0 kg 

𝑚𝑢𝑠2 8.0 kg 

𝑘1 4000 N/m 

𝑘2 4000 N/m 

𝑘 50000 Nm/deg 

𝑘𝑡1 123464 N/m 

𝑘𝑡2 123464 N/m 

𝑚𝑠 182/4 *for 400lb vehicle kg 

𝑏1 0.6(2)𝑚𝑠

4 √
𝑘1

(
𝑚𝑠

4 )
 

Ns/m 

𝑏2 0.6(2)𝑚𝑠

4 √
𝑘1

(
𝑚𝑠

4 )
 

Ns/m 
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Figure 27: Frequency response plots of the left un-sprung mass velocity to the input velocity in the conventional half-

car model. 

By a similar process to equation 22, the transfer functions for 
𝑉𝑚𝑠

𝑉𝑖𝑛
(𝑆) and 

𝑉𝑚𝑢𝑠2

𝑉𝑖𝑛
(𝑆) were 

calculated, converted to a harmonic input for frequency response analysis, and the 

amplitude ratio and phase angles were plotted and calculated. The resulting plots of these 

calculations are given below.  
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Figure 28: Frequency response plots of the right un-sprung mass velocity to the input velocity in the conventional half-

car model. 

 

Figure 29: Frequency response plots of the sprung mass velocity to the input velocity in the conventional half-car 

model. 
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Now for the most important plot of this conventional model, is to overlay the 

frequency response amplitude ratio between the left and right un-sprung masses. This 

will clearly show the difference between the behavior of the two wheels on either side of 

the car when only one wheel experiences a bump or change in velocity while the other 

continues on flat ground, but is forced to move because of the sway bar connection 

between the two wheels.  

 

Figure 30: Visual comparison of behavior between left and right wheels only connected by the sway bar. 

Introduction to Koenigsegg Design 

Christian von Koenigsegg, a Swedish hypercar manufacturer sought to innovate at 

every opportunity possible. One of these brilliant innovations is his famous Triplex 

suspension, which utilizes the addition of a third damper mounted transversely between 

the two upper wishbone control arms of wheels on either side of the car. With this 

addition and many others, he has successfully made some of the uncontested best racing 

performance vehicles ever manufactured, winning all sorts of records and firsts. 
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Koenigsegg Design Transverse Half-Car Model Analysis 

Schematic. 

 

Figure 31: Schematic of innovative half car model showing idealized model connected by familiar energy components. 

Bond Graph. 

 

Figure 32: Bond graph of innovative half car model fully augmented and numbered. 
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Derivation of state space equations and matrix. The derivation of the state 

space equations was quite similar to those derived for the conventional transverse half car 

model being that the bond graphs are so similar and maintain integral causality. Very 

conveniently, the derivations of all of the 𝑞̇ equations were exactly the same, so I will 

refer you back to the previous section’s derivations for those expressed equations. 

However, all three of the 𝑝̇ equations are slightly different with the addition of the third 

damper to the system. This is intuitively expected, given that additional damping 

naturally changes the momenta of masses within a system when acted upon by an input 

velocity. These new equations are derived as follows: 

𝑝4̇ = 𝑞2(𝑘𝑡1) + 𝑞8(−𝑘1) + 𝑞22(−𝑘) + 𝑝4 (
−𝑏1 − 𝑏

𝑚𝑢𝑠1

) + 𝑝12 (
𝑏1

𝑚𝑠

) + 𝑝19 (−
𝑏

𝑚𝑢𝑠2

) + 𝑚𝑢𝑠1𝑔 (24) 

𝑝12̇ = 𝑞8(𝑘1) + 𝑞15(𝑘2) + 𝑝4 (
𝑏1

𝑚𝑢𝑠1

) + 𝑝12 (
−𝑏1 − 𝑏2

𝑚𝑠

) + 𝑝19 (
𝑏2

𝑚𝑢𝑠2

) − 𝑚𝑠𝑔 (25) 

𝑝19̇ = 𝑞15(−𝑘2) + 𝑞20(−𝑘𝑡2) + 𝑞22(𝑘) + 𝑝4 (−
𝑏

𝑚𝑢𝑠1

) + 𝑝12 (
𝑏2

𝑚𝑠

) + 𝑝19 (
−𝑏 − 𝑏2

𝑚𝑢𝑠2

) + 𝑚𝑢𝑠2𝑔 (26) 

Since these state variable equations are new, the [𝐴] matrix of the state space matrix 

equation was re-created, as shown with the vector replacements from equations 24 - 26. 

[
 
 
 
 
 
 
 
𝑞2̇

𝑞8̇

𝑞15̇
𝑞20̇
𝑞22̇
𝑝4̇

𝑝12̇
𝑝19̇  ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 −

1

𝑚𝑢𝑠1
0 0

0 0 0 0 0
1

𝑚𝑢𝑠1
−

1

𝑚𝑠
−

1

𝑚𝑠

0 0 0 0 0 0 −
1

𝑚𝑠

1

𝑚𝑢𝑠2

0 0 0 0 0 0 0
1

𝑚𝑢𝑠2

0 0 0 0 0
1

𝑚𝑢𝑠1
0 −

1

𝑚𝑢𝑠2

𝑘𝑡1 −𝑘1 0 0 −𝑘
−𝑏1 − 𝑏

𝑚𝑢𝑠1

𝑏1

𝑚𝑠
−

𝑏

𝑚𝑢𝑠2

0 𝑘1 𝑘2 0 0
𝑏1

𝑚𝑢𝑠1
(
−𝑏1 − 𝑏2

𝑚𝑠
)

𝑏2

𝑚𝑢𝑠2

0 0 −𝑘2 −𝑘𝑡2 𝑘 −
𝑏

𝑚𝑢𝑠1

𝑏2

𝑚𝑠

−𝑏 − 𝑏2

𝑚𝑢𝑠2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑞2

𝑞8

𝑞15

𝑞20

𝑞22

𝑝4

𝑝12

𝑝19]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0 ]

 
 
 
 
 
 
 

[

𝑉𝑖𝑛

𝑚𝑢𝑠1𝑔
𝑚𝑢𝑠2𝑔
𝑚𝑠𝑔

] (27) 
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If one were to compare the two A matrices, it is apparent that the only differences 

appear in the 9 entries of the lower right corner of the matrix, corresponding to the 

momentum variables. From this point, the same mathematical process as was done in the 

conventional half car analysis was carried out. The plots of the behavior of the system 

based on the same three transfer functions as derived previously, are shown in Figure 33 

through Figure 36. For plot relevance, the values assigned to the equation parameters are 

given in Table 4. 

Table 4: Values assigned to parameters in Koenigsegg equations used to create plots of frequency response behavior. 

Parameter Value Units 

𝑚𝑠 200 kg 

𝑚𝑢𝑠1 8.0 kg 

𝑚𝑢𝑠2 8.0 kg 

𝑘1 4000 N/m 

𝑘2 4000 N/m 

𝑘 50000 Nm/deg 

𝑘𝑡1 123464 N/m 

𝑘𝑡2 123464 N/m 

𝑚𝑠 182/4 *for 400lb vehicle kg 

𝑏1 0.6(2)𝑚𝑠

4 √
𝑘1

(
𝑚𝑠

4 )
 

Ns/m 

𝑏2 0.6(2)𝑚𝑠

4 √
𝑘1

(
𝑚𝑠

4 )
 

Ns/m 

𝑏 ( 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑒𝑓𝑓. ) ∗ 𝑏1 Ns/m 
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Figure 33: Frequency response plots of the left un-sprung mass velocity to the input velocity in the transverse damper 

half-car model. 

 

Figure 34: Frequency response plots of the right un-sprung mass velocity to the input velocity in the transverse damper 

half-car model. 
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Figure 35: Frequency response plots of the sprung mass velocity to the input velocity in the transverse damper half-car 

model. 

 

Figure 36: Visual comparison of behavior between left and right wheels only connected by the sway bar and transverse 

damper. 
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Discussion  

At long last, the final plot that is meant to truly tell the difference between the 

effectiveness of a system with a transversely mounted third damper compared to one 

without. 

 

Figure 37: Comparison of right wheel response with and without transverse damper. 

Through a grueling process, we have arrived at a visual plot that represents the 

amplitude ratios of the right un-sprung masses of the two compared systems, and it is 

clear that there is a winner among the two. Both of these systems were given the same 

values for all the parameters, (spring stiffness, tire stiffness, damping coefficients, etc.) 

aside from the obvious additional third damper which was an added parameter to the 

transverse damper half car model. However, it is clear that the system with the added 

transversely mounted damper caused the right wheel (the wheel that rides along flat 
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ground) to have a significantly lesser amplitude ratio in relation to the input velocity 

acting on the left side of the vehicle. Ultimately, this means that the contact patch and 

contact forces between the right tire and the road are less affected, so power transmission 

and grip are more steady, permitting greater tangential force from the ground and a faster 

race car. 

It is imperative to note that the values assigned to the parameters in this system by 

no means represent an optimally tuned vehicle. The values assigned were found from 

FSAE forums and online sources according to what teams have used in the past to get 

reasonably good results. This means that there is a great deal of tuning to be done to 

actually get the frequency response to something that will benefit the driving experience, 

rather than accidentally cause resonance between masses that can go out of control very 

quickly for a given input frequency. However, for a primitive approach to the suspension 

design of a vehicle, in considering whether or not to make an addition of a third, 

transversely mounted damper, it appears that it would provide a great benefit to the 

vehicle’s power transmission to the ground by having a lesser effect on wheels traveling 

on flat ground that are pulled up by the anti-roll bar torsion.  

Semi-Active System Control with Magnetorheological Dampers 

 There exist three types of suspension system control: passive, semi-active, and 

active. In passive systems, the energy parameters of the system (spring stiffness and 

damping coefficient) are set to static values. This only allows the suspension setup to be 

effective over a specific frequency range. However, if the system and its operating 

conditions are changed, the optimum performance cannot be achieved. Active control 
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systems however impart a force or velocity on the system to directly counteract specific 

behaviors over a very wide range of frequencies, but generally require a large power 

supply or are heavy and are therefore not ideal for racing situations. Semi-active control 

changes the vehicle parameters to change the behavioral response of the system without 

imparting an additional force from an outside energy source. This type of control is 

highly appealing with its low-mass implementation and no need for additional energy 

inputs, with applications over a much wider frequency range than passive suspension. 

With the rise in automotive electronics and sensor monitoring contributing to 

computational control of vehicle dynamics parameters, the opportunities for suspension 

control are increased greatly. Magnetorheological (MR) damper technology hit the 

commercial market in about 2004, developed by the General Motors Delphi Automotive 

Division. The opportunities of this semi-active control mechanism were limited at first 

due to a lack of understanding and controllability. However, further iterations and newer 

models coupled with more accurate sensors and faster reactive computing has led to an 

innovative means of suspension design. Koenigsegg included these MR dampers into 

their vehicles for a highly controllable system whose frequency response behavior can be 

semi-actively controlled through both reactive and predictive settings of the MR dampers 

to change the effective hydraulic fluid viscosity and alter the damping coefficient of the 

damper.  

Magnetorheological fluid is a fluid with iron particles in it that responds to a 

magnetic stimulus, changing shape and/or viscosity. Engineers have implemented the use 

of magnetorheological fluid within dampers by adding iron particles to hydraulic fluid, 
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such that when a magnetic field is induced within the fluid, it causes these iron particles 

to align themselves into lines. This particle alignment increases the viscosity of the fluid 

by making it more resistant to deformation by shear stress. Additionally, the magnetic 

field is generated by a series of wires running perpendicular to the length of the cylinder 

that have electric current sent through them. Ampere’s Law dictates that the magnitude of 

the magnetic field generated around a current carrying wire is proportional to the current 

in the wire serving as its source. In this way, as magnetorheological fluid viscosity is 

proportional to the strength of the magnetic field, so it is also proportional to the 

magnitude of the current sent through the wires.  

Further, to demonstrate the superior adjustability of magnetorheological dampers, 

magnetorheological dampers have been designed with current carrying wires going in 

opposite directions and timed such that the residual eddy-currents from the magnetic field 

generated by the first set of wires is negated by the second set. For example, one set of 

wires all travel in parallel directions, and the current through them induce a magnetic 

field, aligning iron particles in the fluid. When the viscosity is desired to be lower 

however, the current is shut off, but it takes a fraction of a second for the magnetic field 

to dissipate due to residual eddy currents, meaning that those aligned iron particles are 

not yet released from their positions in the fluid so the viscosity remains higher even after 

current is cut off. These eddy currents are counteracted by adding an additional second 

set of wires to the damper so that as the first set are being shut off, the second set 

activates and produces a magnetic field in the opposite direction working to immediately 

disrupt the field that existed and scatter the aligned particles, only activating long enough 
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to disrupt these residual eddy currents and then shutting off before realigning the particles 

with the new magnetic field orientation. 

However, the practical use of MR dampers is significantly hindered by its 

characteristic hysteretic and non-linear dynamics. Such behavior makes the effective 

damping coefficient and damping forces with a given velocity difficult to calculate and 

predict. Therefore, for a successful implementation of MR dampers into a system, it 

demands an accurate model of the damper, and an effective control strategy in how the 

system calculates the current to be produced through the damper based on input variables. 

There exist a few different models that are designed to help predict the dynamics of the 

MR damper. These models include NARX, viscoelastic-plastic, nonlinear blackbox, 

fuzzy, neural network developed by Chang and Roschke, phenomenological based on a 

Bouc-Wen hysteresis model, and polynomial among others.  

 

Figure 38: Right wheel frequency response plotted over a range of transverse damping coefficients. These coefficients 

are given as ratios of the damping coefficient at each individual wheel (𝑏1) which has a damping ratio of 0.6, for 

reference with respect to other vehicle parameters. 
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Figure 39:Right wheel frequency response plotted over a range of transverse damping coefficients. The 𝑏1 damping 

coefficient is given a damping ratio of 0.707 as opposed to 0.6 in Figure 38.  

Figure 38 and 39 give great insight into the areas of control available with a 

variable damping coefficient. Using an MR damper the frequency response of a system is 

no longer limited to a single curve, but a whole range based on a variable damping 

coefficient. If a successful model of the MR damper behavior is created such that the 

effective damping coefficient is accurately related to an electrical input current, the 

system could be coded to input a specific current based on sensor data to immediately set 

a damping coefficient that will yield optimum control at the frequency observed. For 

example, as the vehicle races around the track, the sensors will constantly be feeding data 

into the onboard computer. The desired damping force can be calculated according to the 

force and velocity of the input, and if the damper motion velocity is also measured by a 

sensor, the input current can be calculated according to the model generated of the MR 

damper behavior to yield the desired damping force.  
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Conclusion 

Though a suspension system is simple in principle, the design process is no small 

feat – especially for racing applications where every fraction of a second counts. Further, 

the analysis of suspension systems is arguably more complicated to yield helpful results 

that may be interpreted allowing for improvement to the system as a whole. The dynamic 

systems bond graph approach to this comparison of suspension designs makes for an easy 

to follow process, but is sometimes not so easy to manipulate and interpret the results. In 

the process of calculating the necessary determinants, transfer functions, amplitude ratios, 

and phase angles necessary to plot frequency response of different aspects of the system, 

at times the mathematics seemed overwhelming. Eight state variables results in an 8x8 

linear system when converted to the Laplacian domain, such that when transfer functions 

were calculated through MATLAB, the resulting equation put into a Word document was 

well over a page in length. This goes to show the overall complexity of the systems being 

analyzed, and the power of modern computation. Symbolic 8x8 determinants alone 

would take dozens of hours to calculate, but when the matrices of the system are entered 

correctly into MATLAB, they can be calculated in fractions of a second. There is much 

work to be done as far as tuning the values assigned to the system parameters to yield 

more desirable frequency response plots, which will be done in further work on the 

subject outside of this report.  

Ultimately, this investigation and comparison was a challenging process that 

required the full application of Dynamic Systems Modeling to work through the analysis 
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from start to finish. I am glad for the challenge and look forward to continuing this work 

in the full design of the Liberty University FSAE suspension system.  

Limitations and Future Work 

 This work could be improved by mathematical plots with input values and 

parameters measured from a physical system for greater accuracy and meaningful results. 

In my limited knowledge of suspension design, though I have learned a great deal to 

reach the current design of this system, I have a great deal left to learn in optimizing each 

aspect of force and movement that the suspension is responsible for. With this being 

Liberty University’s first FSAE vehicle, I have no previous model to test and learn from, 

only my textbooks and online resources.  

Further investigation is planned to be done by empirical testing on the 

manufactured Formula SAE vehicle with and without the transverse third damper 

connected to the system to gather squat and dive curves, and best fit an effective quarter 

car damping coefficient to simulate the anti-squat and anti-dive characteristics of a third 

damper addition. Additionally, single-sided disturbances will be investigated in an effort 

to gather vertical displacement data of the opposite wheel to validate the mathematical 

model created by the dynamic systems analysis and plotted in MATLAB. Measured 

coefficients from the vehicle such as mass, spring rate, damping coefficient etc. can be 

gathered and input into the MATLAB program to establish the mathematical baseline 

against which to compare empirical data plots.  
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Appendix A 

Mass Spring Damper System: 2nd Order Differential Equation Development: 

Some input of displacement is put into the system by the road that causes the spring and 

damper to compress, but they still apply a force to the sprung mass that they are 

suspending, which is oscillatory in nature (due to the spring) once the input disturbance is 

returned to a steady flat surface. However, if the stiffness value of the spring and the 

damping coefficient of the damper are established correctly, the system can be controlled 

to dampen out oscillatory effects very quickly. The second order differential equation that 

describes this behavior is given generally as follows.  

𝑚
𝑑2𝑥𝑜𝑢𝑡

𝑑𝑡2
+ 𝑏

𝑑𝑥𝑜𝑢𝑡

𝑑𝑡
+ 𝑘𝑥𝑜𝑢𝑡 = 𝐹𝑖𝑛 (28) 

Here m is the sprung mass, b is the damping coefficient, and k is the spring stiffness. If 

the derivatives of 𝑥𝑜𝑢𝑡 are replaced by Laplacian operators to form a characteristic 

equation, it looks like this for the homogenous case: 

𝑚𝑠2 + 𝑏𝑠 + 𝑘 = 0 (29) 

Solved for s, this comes out to: 

𝑠1,2 = −
𝑏

2𝑚
± ((

𝑏

2𝑚
)
2

−
𝑘

𝑚
)

0.5

 (30) 

In which if there is no damping, in other words the damping coefficient b=0, 

𝑠1,2 = ±𝑗√
𝑘

𝑚
 (31) 
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Signifying pure oscillatory motion, in which the natural frequency is given by: 

𝜔𝑛 = √
𝑘

𝑚
 (32) 

Following this point in the analysis, there are three possible cases in which the solved 

radicand is either equal to zero (critical damping), less than zero (underdamped), or 

greater than zero (overdamped). For the first case in the event in which the two solutions 

of s are equal and real, in which, 

𝑠1 = 𝑠2 = −
𝑏

2𝑚
 (33) 

the resulting homogenous solution to the differential equation is therefore: 

𝑥𝑜𝑢𝑡ℎ
(𝑡) = 𝑐1𝑒

−
𝑏

2𝑚
𝑡 + 𝑐2𝑡𝑒

−
𝑏

2𝑚
𝑡 (34) 

It should therefore be noted that if, 

𝑏

2𝑚
= √

𝑘

𝑚
 (35) 

then the damping coefficient b in this case is the critical damping coefficient, 𝑏𝑐, because 

the exponent in the homogeneous solution would be equal to the previously determined 

resonant frequency. The critical damping coefficient may be algebraically solved for and 

is determined to be, 

𝑏𝑐 = 2𝑚√
𝑘

𝑚
 (36) 
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Now a new term zeta may be introduced to simplify the relationship, being equal to the 

ratio of the damping coefficient to the critical damping coefficient.  

𝜁 =
𝑏

𝑏𝑐
=

𝑏

2𝑚𝜔𝑛
 (37) 

Now equation 4 may be re-written with the zeta variable as follows: 

𝑠1,2 = 𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 (38) 

The second case of the solution is one in which the radicand is less than zero, and there 

exist two complex distinct roots as the solution to the above solution in equation 12, 

given by  

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛𝑗√1 − 𝜁2 (39) 

This way the homogenous solution is given by: 

𝑥𝑜𝑢𝑡ℎ
(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 {𝑐1 cos [(𝜔𝑛√1 − 𝜁2) 𝑡] + 𝑐2 sin [(𝜔𝑛√1 − 𝜁2) 𝑡]} (40) 

And the final possibility is where the radicand is greater than zero, such that there exist 2 

distinct real roots to the equation, given by 

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 (41) 

In which the resulting homogenous solution is written simply as 

𝑥𝑜𝑢𝑡ℎ
(𝑡) = 𝑐1𝑒

(−𝜁𝜔𝑛+𝜔𝑛√𝜁2−1)𝑡
+ 𝑐2𝑒

(−𝜁𝜔𝑛+𝜔𝑛√𝜁2−1)𝑡
 (42) 

The total solution then is to plot together the applicable case of the homogenous solution 

with the particular solution, in which the particular solution is given as follows: 
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𝑥𝑜𝑢𝑡𝑝
=

𝐹𝑖𝑛

𝑘
 (43) 

𝑥𝑜𝑢𝑡𝑇𝑜𝑡𝑎𝑙
= 𝑥𝑜𝑢𝑡ℎ

+ 𝑥𝑜𝑢𝑡𝑝
 (44) 
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Appendix B 

MATLAB Code Generated for Four-Bar Linkage Analysis 

% Suspension Geometry 4-bar Linkage Analysis  

clear vars 

  

%Required Characteristics for FSAE Design: 

% Minimum wheel travel = 2.00 inches 

% Minimum Jounce = 1.00 inch 

% Minimum Rebound = 1.00 inch 

 

%Set lengths of suspension members [all dimensions in inches] for 25% RC/CG height: 

a = 13.71; % a = upper wishbone length 

b = 8.08;  % b = upright connection distance of wishbones 

c = 14.84; % c = lower wishbone length 

d = 6.0; % d = fixed distance between frame members mounting points 

e = 0;  % e = horiztonal displacement between top and bottom frame members 

%f = 300/25.4; %total vertical height from absolute bottom frame member to top mounting 

frame member 

if c+b <= c+a 

    disp('Grashof Law Verified') 

else  

    disp('Grashof Law Violated') 

end 

  

%Calculation of Position for the System: 

theta_1 = 0; %by the way the diagram is drawn: 

  

whl_trvl = 2.25; 

% x = [0 e e+a*cosd(theta_4-theta_7-theta_2) c*cosd(theta_7) 0]; 

% y = [0 d*cosd(theta_5) d*cosd(theta_5)-a*sind(theta_4-theta_7-theta_2) c*sind(theta_7) 

0]; 

% labels = {'Bottom Frame','Top Frame','Top of Upright','Bottom of Upright','Bottom 

Frame'}; 

  

theta_2 = (80:105); 

for theta_2 = (90:100) 

K1 = d/a; 

K2 = d/c; 

K3 = (a^2 -b^2 +c^2 + d^2)/(2*a*c); 

K4 = d/b; 

K5 = (c^2-d^2-a^2-b^2)/(2*a*b); 

  

A = cosd(theta_2)-K1-K2*cosd(theta_2)+K3; 

B = -2*sind(theta_2); 

C = K1-(K2+1)*cosd(theta_2) + K3; 

D = cosd(theta_2)-K1 + K4*cosd(theta_2) +K5; 

E = -2*sind(theta_2); 

F = K1+(K4-1)*cosd(theta_2)+K5; 

    theta_3 = 2*atand((-E-(E^2-4*D*F)^0.5)/(2*D)); 

w = [0 a*sind(90-theta_2) a*sind(90-theta_2)+b*cosd(theta_3) d 0]; 

z = [0 a*cosd(90-theta_2) a*cosd(90-theta_2)+b*sind(theta_3) 0 0]; 

pause(0.02); 

hold on 

  

%Plot of all 4 links of suspension geometry through wheel travel 

% subplot(2,2,1); 

figure(1) 

plot(w,z,'.-'); 

title('Suspension Geometry: Modeled as 4-bar Linkage'); 

xlabel('Vertical Distance [inches]'); 

ylabel('Horizontal Distance [inches]'); 

% text(x,y,labels,'VerticalAlignment','bottom','HorizontalAlignment','left'); 

axis([-10 18 -10 18]); 

hold on 
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%Plotting the axis of equilibrium ride height for desired ground clearance 

grnd_clrnce = 1.5; %distance from ground surface to center of lowest frame member. 

%desired actual ground clearance is 1.0 inches, to permit wheel travel of 

%1in and retain clearance without vehicle contact to ground. 

  

%Front Suspension Geometry 

F_upper = 11.13; %height in inches from ground 

F_lower = 4.63; %height in inches from ground 

%Rear Suspension Geometry 

R_upper = 10.74; %height in inches from ground 

R_lower = 4.74; %height in inches from gound 

  

d_tire = 16; 

r_tire = d_tire/2; 

h = r_tire - grnd_clrnce; %height of wheel center above bottom frame member 

line([R_upper-r_tire,R_upper-r_tire], get(gca, 'ylim')); 

text(R_upper-r_tire,-2,'\leftarrow Axis of Equilibrium Ride Height','FontSize',8); 

  

%Plot of only Upright through wheel travel 

upright_w = [a*sind(90-theta_2) a*sind(90-theta_2)+b*cosd(theta_3)]; 

upright_z = [a*cosd(90-theta_2) a*cosd(90-theta_2)+b*sind(theta_3)]; 

% subplot(2,2,2); 

figure(2) 

plot(upright_w,upright_z,'.-'); 

title('Close-Up of Exaggerated Upright Camber Angle Variation Throughout Wheel Travel') 

xlabel('Vertical Distance [inches]'); 

ylabel('Horizontal Distance [inches]'); 

axis([-3 10 13 15.5]); 

hold on 

  

%Plotting the axis of equilibrium ride height for desired ground clearance 

line([R_upper-r_tire,R_upper-r_tire], get(gca, 'ylim')); 

text(R_upper-r_tire,5,'\leftarrow Axis of Equilibrium Ride Height','FontSize',8); 

line([R_upper-r_tire+whl_trvl/2,R_upper-r_tire+whl_trvl/2], get(gca, 'ylim')); 

text(R_upper-r_tire+whl_trvl/2,6,'\leftarrow Maximum Rebound Distance','FontSize',8); 

line([R_upper-r_tire-whl_trvl/2,R_upper-r_tire-whl_trvl/2], get(gca, 'ylim')); 

text(R_upper-r_tire-whl_trvl/2,4,'\leftarrow Maximum Jounce Distance','FontSize',8); 

  

wheel_center = [(a*sind(90-theta_2)+a*sind(90-theta_2)+b*cosd(theta_3))/2 (a*cosd(90-

theta_2)+a*cosd(90-theta_2)+b*sind(theta_3))/2]; 

disp('wheel center coordinates:'); 

disp(wheel_center) 

  

wheel_center_h = (a*sind(90-theta_2)+a*sind(90-theta_2)+b*cosd(theta_3))/2; 

wheel_center_v = (a*cosd(90-theta_2)+a*cosd(90-theta_2)+b*sind(theta_3))/2; 

% subplot(2,2,3); 

figure(3) 

plot(wheel_center_h,wheel_center_v,'.-'); 

title('Wheel Center Point through Wheel Travel'); 

xlabel('Vertical Position'); 

ylabel('Horizontal Position'); 

hold on 

line([R_upper-r_tire,R_upper-r_tire], get(gca, 'ylim')); 

line([R_upper-r_tire+whl_trvl/2,R_upper-r_tire+whl_trvl/2], get(gca, 'ylim')); 

text(R_upper-r_tire+whl_trvl/2,10,'\leftarrow Maximum Rebound Distance','FontSize',8); 

line([R_upper-r_tire-whl_trvl/2,R_upper-r_tire-whl_trvl/2], get(gca, 'ylim')); 

text(R_upper-r_tire-whl_trvl/2,10.5,'\leftarrow Maximum Jounce Distance','FontSize',8); 

axis([1 4.5 13.5 15]); 

  

Initial_slope = 0; 

  

%A plot of camber angle versus input theta_2 

    y2 = a*cosd(90-theta_2)+b*sind(theta_3); 

    y1 = a*cosd(90-theta_2); 

    x2 = a*sind(90-theta_2)+b*cosd(theta_3); 

    x1 = a*sind(90-theta_2); 

    hold on 



 
INNOVATIVE FORMULA SAE SUSPENSION DESIGN 76 

 
 

slope = (y2-y1)/(x2-x1)+Initial_slope; 

camber = atand(slope)-8.3; 

% subplot(2,2,4); 

figure(4) 

plot(theta_2, camber,'.-'); 

hold on 

title('Camber Angle versus Theta 2'); 

xlabel('Theta 2 (degrees)'); 

ylabel('Camber Angle (degrees)'); 

%axis([70 95 2 8]); 

end 

  

%Putting labels on the final points to give reference to the plots 

% subplot(2,2,1); 

labels1 = {'Top Frame','Top of Upright','Bottom of Upright','Bottom Wishbone Mount','Top 

Frame'}; 

text(w,z,labels1,'VerticalAlignment','bottom','HorizontalAlignment','left'); 

%subplot(2,2,2); 

labels2 = {'Top of Upright','Bottom of Upright'}; 

text(upright_w,upright_z,labels2,'VerticalAlignment','bottom','HorizontalAlignment','left

'); 

%Listing output variables 

theta_4 = 2*atand((-B-(B^2-4*A*C)^0.5)/(2*A)); 

%(These angles are for the proper orientation x-y attempt...) 

% theta_5 = asind(e/a); 

% theta_6 = theta_4-theta_2; 

% theta_7 = 180-theta_4; 

Angular_Position_Variables = {'theta_1'; 'theta_2'; 'theta_3'; 'theta_4'}; 

angles = [theta_1; theta_2; theta_3; theta_4];% theta_5; theta_6; theta_7]; 

T = table(Angular_Position_Variables, angles); 

  

%calculating range of theta_2 that yields desired total wheel travel: 

  

%calculate wheel center distance between first theta 2 input and last theta 

%2 input 

  

%Camber off-set to consider from inclination angle = 8.3 degrees 
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Appendix C 

MATLAB Code Generated for Dynamic Systems Vehicle Response Analysis 

%Honors Petition Analysis 

  

%Quarter Car Model: 

syms S m_us m_s k b k_t omega 

A_1 = [0 0 -1/m_us 0; 0 0 1/m_us -1/m_s; k_t -k -b/m_us b/m_s; 0 k b/m_us -b/m_s]; 

B_1 = [1 0 0 0]; 

sIA = S*eye(4)-A_1; 

Num_1 = [sIA(:,1:3) B_1(:,1)]; 

  

%Transfer Function Vm/Vin 

Vm_Vin = 1/m_s*det(Num_1)/det(sIA); 

collect(Vm_Vin); 

  

%Replace S with j*omega for harmonic input 

TF1 = subs(Vm_Vin, S, omega*1i); 

  

%Setting Values 

m_us = 8; %kg 

k = 4000; %N/m - this is the lowest available spring rate from KAZ tech, equivalent to 

175lbf/in 

k_t = 123464; %N/m 

m_s = 182/4; %kg - for an estimated 400lb vehicle 

b = 0.6*2*m_s*sqrt(k/m_s); %For damping ratio = 0.6 

assume(omega, 'real'); 

  

TF1_num = -(k_t*(k + b*omega*1i)); 

TF1_denom = (k*m_s*omega^2 - k*k_t + k*m_us*omega^2 + k_t*m_s*omega^2 - m_s*m_us*omega^4 

- b*k_t*omega*1i + b*m_s*omega^3*1i + b*m_us*omega^3*1i); 

TF1_actual = TF1_num/TF1_denom; 

  

%Amplitude Ratio and Phase Angle Calculations 

amp_ratio_TF1 = 

sqrt(real(TF1_num)^2+imag(TF1_num)^2)/sqrt(real(TF1_denom)^2+imag(TF1_denom)^2); 

phi_1 = atan2d((imag(TF1_num)),real(TF1_num))-atan2d(imag(TF1_denom),real(TF1_denom)); 

phi_1 =subs(phi_1,omega,[0:1000]); 

phi_1 = double(phi_1); 

phi_1 = phi_1.* (phi_1 >= 0) + (phi_1 + 360) .* (phi_1 < 0); 

  

figure(1); 

subplot(2,1,1) 

fplot(amp_ratio_TF1, [0 1000]); 

title('Quarter Car Model Amplitude Ratio vs Frequency'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude RatioTf V_m_s / V_i_n'); 

ylim([-.1 2.0]); 

  

subplot(2,1,2); 

plot(0:1000,phi_1); 

title('Quarter Car Model Phase Angle Frequency Response'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

%% 

%Conventional Transverse Half Car Model 

  

syms S m_us1 m_us2 m_s b b_1 b_2 k k_1 k_2 k_t1 k_t2 V_in g omega 

A_2 = [0 0 0 0 0 -1/m_us1 0 0; 0 0 0 0 0 1/m_us1 -1/m_s -1/m_s; 

    0 0 0 0 0 0 -1/m_s 1/m_us2; 0 0 0 0 0 0 0 1/m_us2; 

    0 0 0 0 0 1/m_us1 0 -1/m_us2; k_t1 -k_1 0 0 -k -b_1/m_us1 b_1/m_s 0; 

    0 k_1 k_2 0 0 b_1/m_us1 -(b_1-b_2)/m_s b_2/m_us2; 0 0 -k_2 -k_t2 k 0 b_2/m_s -

b_2/m_us2]; 

B_3 = [1 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0; 0 1 0 0; 0 0 0 -1; 0 0 1 0]; 
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sIA = S*eye(8)-A_2; 

  

%Transfer Function of Vmus1/Vin 

Num_2 = [sIA(:,1:5),B_3(:,1),sIA(:,7:8)]; %Cramer's Rule: replacing the p_4 column with 

V_in  

TF2 = 1/m_us1*det(Num_2)/det(sIA); 

collect(TF2); 

  

%Transfer Function of Vmus2/Vin 

Num_3 = [sIA(:,1:7),B_3(:,1)]; 

TF3 = 1/m_us2*det(Num_3)/det(sIA); 

  

%Transfer Function of Vms/Vin 

Num_4 = [sIA(:,1:6),B_3(:,1),sIA(:,8)]; 

TF4 = 1/m_s*det(Num_4)/det(sIA); 

collect(TF4); 

  

%Determining the Amplitude Ratio and Phase Angle Frequency Response of the 

%Conventional Half Car Model Transfer Functions: 

TF2 = subs(TF2, S, omega*1i); 

TF3 = subs(TF3, S, omega*1i); 

TF4 = subs(TF4, S, omega*1i); 

  

%Assign values to symbolic parameters to give a plot for comparison: 

%These values are made considering a typical FSAE racecar 

m_s = 200; %kg 

m_us1 = 8; %kg 

m_us2 = m_us1; %kg 

k_1 = 4000; %N/m 

k_2 = k_1; %N/m 

k_t1 = 123464; %N/m 

k_t2 = k_t1; %N/m 

k = 50000; 

b_1 = 0.6*2*m_s/4*sqrt(k_1/(m_s/4)); %Should be between 0.5 and 0.7 damping ratio. 

b_2 = b_1; 

  

%Plotting Transfer Function 2, left unsprung mass velocity to V_in 

TF2_num = -(k_t1*(2*b_2^2*m_s*omega^4 - b_2*m_s^2*omega^5*1i - k*m_s^2*omega^4 - 

k_2*m_s^2*omega^4 - k_t2*m_s^2*omega^4 + m_s^2*m_us2*omega^6 - b_1*b_2*m_s*omega^4 + 

b_1*k*m_s*omega^3*1i - b_2*k*m_s*omega^3*1i + b_1*k_2*m_s*omega^3*1i + 

b_2*k_1*m_s*omega^3*1i - b_2*k_2*m_s*omega^3*2i + b_2*k_1*m_us2*omega^3*1i + 

b_1*k_t2*m_s*omega^3*1i - b_2*k_t2*m_s*omega^3*1i - b_1*m_s*m_us2*omega^5*1i + 

b_2*m_s*m_us2*omega^5*1i + k*k_1*m_s*omega^2 + k*k_2*m_s*omega^2 + k_1*k_2*m_s*omega^2 + 

k_1*k_2*m_us2*omega^2 + k_1*k_t2*m_s*omega^2 + k_2*k_t2*m_s*omega^2 - 

k_1*m_s*m_us2*omega^4 - k_2*m_s*m_us2*omega^4)); 

TF2_denom = (2*b_2^2*m_s*m_us1*omega^6 - b_1*b_2*m_s^2*omega^6 + b_1*k*m_s^2*omega^5*1i - 

2*b_2^2*k*m_s*omega^4 + b_2*k*m_s^2*omega^5*1i - 2*b_2^2*k_1*m_s*omega^4 + 

b_1*k_2*m_s^2*omega^5*1i + b_2*k_1*m_s^2*omega^5*1i - 2*b_2^2*k_t1*m_s*omega^4 + 

b_1*k_t2*m_s^2*omega^5*1i + b_2*k_t1*m_s^2*omega^5*1i - b_1*b_2^2*m_s*omega^5*2i - 

b_1*m_s^2*m_us2*omega^7*1i - b_2*m_s^2*m_us1*omega^7*1i + k*k_1*m_s^2*omega^4 + 

k*k_2*m_s^2*omega^4 + k*k_t1*m_s^2*omega^4 + k*k_t2*m_s^2*omega^4 + k_1*k_2*m_s^2*omega^4 

+ k_1*k_t2*m_s^2*omega^4 + k_2*k_t1*m_s^2*omega^4 + k_t1*k_t2*m_s^2*omega^4 - 

k*m_s^2*m_us1*omega^6 - k*m_s^2*m_us2*omega^6 - k_1*m_s^2*m_us2*omega^6 - 

k_2*m_s^2*m_us1*omega^6 - k_t1*m_s^2*m_us2*omega^6 - k_t2*m_s^2*m_us1*omega^6 + 

m_s^2*m_us1*m_us2*omega^8 - 2*b_1*b_2*k*m_s*omega^4 - 2*b_1*b_2*k_2*m_s*omega^4 + 

b_1*b_2*k_t1*m_s*omega^4 - b_1*b_2*k_t2*m_s*omega^4 - b_1*b_2*m_s*m_us1*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b_2*k*k_1*m_s*omega^3*2i + b_2*k*k_2*m_s*omega^3*2i - 

b_2*k*k_1*m_us2*omega^3*2i - b_1*k*k_t1*m_s*omega^3*1i - b_1*k*k_t2*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + b_2*k_1*k_2*m_s*omega^3*2i - 

b_1*k_2*k_t1*m_s*omega^3*1i - b_2*k_1*k_t1*m_s*omega^3*1i - b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_2*k_t1*m_s*omega^3*2i - b_2*k_1*k_t1*m_us2*omega^3*1i 

- b_1*k_t1*k_t2*m_s*omega^3*1i + b_2*k_t1*k_t2*m_s*omega^3*1i + 

b_1*k*m_s*m_us1*omega^5*1i + b_1*k*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b_2*k*m_s*m_us2*omega^5*1i + b_1*k_2*m_s*m_us1*omega^5*1i + b_2*k_1*m_s*m_us1*omega^5*1i 

+ b_1*k_2*m_s*m_us2*omega^5*1i - b_2*k_1*m_s*m_us2*omega^5*1i - 

b_2*k_2*m_s*m_us1*omega^5*2i + b_2*k_1*m_us1*m_us2*omega^5*1i + 

b_1*k_t1*m_s*m_us2*omega^5*1i + b_1*k_t2*m_s*m_us1*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i - 
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b_1*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i - k*k_1*k_t1*m_s*omega^2 

- k*k_1*k_t2*m_s*omega^2 - k*k_2*k_t1*m_s*omega^2 - k*k_2*k_t2*m_s*omega^2 - 

k_1*k_2*k_t1*m_s*omega^2 - k_1*k_2*k_t2*m_s*omega^2 - k_1*k_2*k_t1*m_us2*omega^2 - 

k_1*k_t1*k_t2*m_s*omega^2 - k_2*k_t1*k_t2*m_s*omega^2 + k*k_1*m_s*m_us1*omega^4 + 

k*k_2*m_s*m_us1*omega^4 + k*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_s*m_us1*omega^4 + 

k_1*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_us1*m_us2*omega^4 + k_1*k_t1*m_s*m_us2*omega^4 + 

k_1*k_t2*m_s*m_us1*omega^4 + k_2*k_t1*m_s*m_us2*omega^4 + k_2*k_t2*m_s*m_us1*omega^4 - 

k_1*m_s*m_us1*m_us2*omega^6 - k_2*m_s*m_us1*m_us2*omega^6); 

TF2_actual = TF2_num/TF2_denom; 

% H2 = tf([-56937720257911902017945600000000 -3819498389416736554363503247360000i 

3506737252964536091714189532186536543 151045883307874263858068069490434806976i - 

74997029763368346898221501022877676397339 -2012966146597960745377582809939607156765866i 

561096677042127519547757619417240724567297966 

37209735545605006698306619193361073923567616i -

44238226098683991777087695400023451811545964544 

1722010398720942306000393237584310330982400000i 

877489276075031452779253757246774968320000000000],[3689348814741910323200000000 0 -

291797976455567166397935396635342 0 9050216191234562096011300626214101788 0 -

127139589893816555139911723637762535244094 0 

735097324995800450811324296348669012956987392 0 -

57550527568803929465446408905987755443662880768 0 

1137420930565652810071563351290617528320000000000]); 

% figure(3); 

% bode(H2); 

% title('Conventional Half Car Model Bode Diagram of V_m_u_s_1/V_i_n'); 

amp_ratio_TF2 = 

sqrt((real(TF2_num))^2+(imag(TF2_num))^2)/sqrt((real(TF2_denom))^2+(imag(TF2_denom))^2); 

  

figure(4); 

subplot(2,1,1); 

fplot(amp_ratio_TF2,[0,1000]); 

title('Conventional Half Car Model Amplitude Ratio of V_m_u_s_1 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_u_s_1 / V_i_n'); 

ylim([0 1.75]); 

phi_2 = atan2d((imag(TF2_num)),real(TF2_num))-atan2d(imag(TF2_denom),real(TF2_denom)); 

phi_2 =subs(phi_2,omega,[0:1000]); 

phi_2 = double(phi_2); 

phi_2 = phi_2.* (phi_2 >= 0) + (phi_2 + 360) .* (phi_2 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_2); 

title('Conventional Half Car Model Phase Angle of V_m_u_s_1 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

%Plotting Transfer Function 3, right unsprung mass Velocity to V_in 

TF3_num = -(k_t1*m_s*omega*(k*m_s*omega^3*1i - k*k_1*omega*1i - k*k_2*omega*1i - 

k_1*k_2*omega*1i + b_1*b_2*omega^3*1i + b_1*k*omega^2 - b_2*k*omega^2 + b_1*k_2*omega^2 + 

b_2*k_1*omega^2)*1i); 

TF3_denom = (2*b_2^2*m_s*m_us1*omega^6 - b_1*b_2*m_s^2*omega^6 + b_1*k*m_s^2*omega^5*1i - 

2*b_2^2*k*m_s*omega^4 + b_2*k*m_s^2*omega^5*1i - 2*b_2^2*k_1*m_s*omega^4 + 

b_1*k_2*m_s^2*omega^5*1i + b_2*k_1*m_s^2*omega^5*1i - 2*b_2^2*k_t1*m_s*omega^4 + 

b_1*k_t2*m_s^2*omega^5*1i + b_2*k_t1*m_s^2*omega^5*1i - b_1*b_2^2*m_s*omega^5*2i - 

b_1*m_s^2*m_us2*omega^7*1i - b_2*m_s^2*m_us1*omega^7*1i + k*k_1*m_s^2*omega^4 + 

k*k_2*m_s^2*omega^4 + k*k_t1*m_s^2*omega^4 + k*k_t2*m_s^2*omega^4 + k_1*k_2*m_s^2*omega^4 

+ k_1*k_t2*m_s^2*omega^4 + k_2*k_t1*m_s^2*omega^4 + k_t1*k_t2*m_s^2*omega^4 - 

k*m_s^2*m_us1*omega^6 - k*m_s^2*m_us2*omega^6 - k_1*m_s^2*m_us2*omega^6 - 

k_2*m_s^2*m_us1*omega^6 - k_t1*m_s^2*m_us2*omega^6 - k_t2*m_s^2*m_us1*omega^6 + 

m_s^2*m_us1*m_us2*omega^8 - 2*b_1*b_2*k*m_s*omega^4 - 2*b_1*b_2*k_2*m_s*omega^4 + 

b_1*b_2*k_t1*m_s*omega^4 - b_1*b_2*k_t2*m_s*omega^4 - b_1*b_2*m_s*m_us1*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b_2*k*k_1*m_s*omega^3*2i + b_2*k*k_2*m_s*omega^3*2i - 

b_2*k*k_1*m_us2*omega^3*2i - b_1*k*k_t1*m_s*omega^3*1i - b_1*k*k_t2*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + b_2*k_1*k_2*m_s*omega^3*2i - 

b_1*k_2*k_t1*m_s*omega^3*1i - b_2*k_1*k_t1*m_s*omega^3*1i - b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_2*k_t1*m_s*omega^3*2i - b_2*k_1*k_t1*m_us2*omega^3*1i 

- b_1*k_t1*k_t2*m_s*omega^3*1i + b_2*k_t1*k_t2*m_s*omega^3*1i + 

b_1*k*m_s*m_us1*omega^5*1i + b_1*k*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b_2*k*m_s*m_us2*omega^5*1i + b_1*k_2*m_s*m_us1*omega^5*1i + b_2*k_1*m_s*m_us1*omega^5*1i 
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+ b_1*k_2*m_s*m_us2*omega^5*1i - b_2*k_1*m_s*m_us2*omega^5*1i - 

b_2*k_2*m_s*m_us1*omega^5*2i + b_2*k_1*m_us1*m_us2*omega^5*1i + 

b_1*k_t1*m_s*m_us2*omega^5*1i + b_1*k_t2*m_s*m_us1*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i - 

b_1*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i - k*k_1*k_t1*m_s*omega^2 

- k*k_1*k_t2*m_s*omega^2 - k*k_2*k_t1*m_s*omega^2 - k*k_2*k_t2*m_s*omega^2 - 

k_1*k_2*k_t1*m_s*omega^2 - k_1*k_2*k_t2*m_s*omega^2 - k_1*k_2*k_t1*m_us2*omega^2 - 

k_1*k_t1*k_t2*m_s*omega^2 - k_2*k_t1*k_t2*m_s*omega^2 + k*k_1*m_s*m_us1*omega^4 + 

k*k_2*m_s*m_us1*omega^4 + k*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_s*m_us1*omega^4 + 

k_1*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_us1*m_us2*omega^4 + k_1*k_t1*m_s*m_us2*omega^4 + 

k_1*k_t2*m_s*m_us1*omega^4 + k_2*k_t1*m_s*m_us2*omega^4 + k_2*k_t2*m_s*m_us1*omega^4 - 

k_1*m_s*m_us1*m_us2*omega^6 - k_2*m_s*m_us1*m_us2*omega^6); 

TF3_actual = TF3_num/TF3_denom; 

amp_ratio_TF3 = 

sqrt((real(TF3_num))^2+(imag(TF3_num))^2)/sqrt((real(TF3_denom))^2+(imag(TF3_denom))^2); 

  

% figure(5); 

% H3 = tf([1464438165033494136472618401792000000, 

195863877409290252677973733408329303525*1i, -71069840071612843540548377317557308533450, -

4301395089965414876537350139078609409597775*1i, 

651628432086768101407606450390502562224777200, -

145563079048854427592038881035805667652096000*1i, -

52039244978822833689677944100460585884232908800, 

12707123512235269799761546958005306654720000000*1i + 

1039726617962485429169238376175370240000000000000],[14757395258967641292800000000, 0, -

1167191905822268665591741586541368, 0, 36200864764938248384045202504856407152, 0, -

508558359575266220559646894551050140976376, 0, 

2940389299983201803245297185394676051827949568, 0, -

230202110275215717861785635623951021774651523072, 0, 

4549683722262611240286253405162470113280000000000]); 

% bode(H3); 

% title('Conventional Half Car Model Bode Diagram V_m_u_s_2/V_i_n') 

  

% figure(6); 

% bode(H2); 

% hold on 

% bode(H3); 

% p1=bode(H2); 

% p2=bode(H3); 

% title('Conventional Half Car Model Left and Right Wheel Frequency Response'); 

% legend([p1 p2],'V_m_u_s_1/V_i_n','V_m_u_s_2/V_i_n'); 

  

figure(7); 

subplot(2,1,1); 

fplot(amp_ratio_TF3,[0,1000]); 

title('Conventional Half Car Model Amplitude Ratio of V_m_u_s_2 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_u_s_2 / V_i_n'); 

ylim([0 1]); 

phi_3 = atan2d((imag(TF3_num)),real(TF3_num))-atan2d(imag(TF3_denom),real(TF3_denom)); 

phi_3 =subs(phi_3,omega,[0:1000]); 

phi_3 = double(phi_3); 

phi_3 = phi_3.* (phi_3 >= 0) + (phi_3 + 360) .* (phi_3 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_3); 

title('Conventional Half Car Model Phase Angle of V_m_u_s_2 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

%Plotting Transfer Function 4, sprung mass velocity to V_in 

TF4_num = -(k_t1*(k*k_1*m_s*omega^2 + b_1*k*m_s*omega^3*1i + b_2*k*m_s*omega^3*1i + 

b_1*k_2*m_s*omega^3*1i + b_2*k_1*m_s*omega^3*1i + b_1*k_t2*m_s*omega^3*1i - 

b_1*m_s*m_us2*omega^5*1i - b_1*b_2*m_s*omega^4 + k*k_2*m_s*omega^2 - k*k_1*m_us2*omega^2 

+ k_1*k_2*m_s*omega^2 + k_1*k_t2*m_s*omega^2 - k_1*m_s*m_us2*omega^4)); 

TF4_denom = (2*b_2^2*m_s*m_us1*omega^6 - b_1*b_2*m_s^2*omega^6 + b_1*k*m_s^2*omega^5*1i - 

2*b_2^2*k*m_s*omega^4 + b_2*k*m_s^2*omega^5*1i - 2*b_2^2*k_1*m_s*omega^4 + 

b_1*k_2*m_s^2*omega^5*1i + b_2*k_1*m_s^2*omega^5*1i - 2*b_2^2*k_t1*m_s*omega^4 + 

b_1*k_t2*m_s^2*omega^5*1i + b_2*k_t1*m_s^2*omega^5*1i - b_1*b_2^2*m_s*omega^5*2i - 
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b_1*m_s^2*m_us2*omega^7*1i - b_2*m_s^2*m_us1*omega^7*1i + k*k_1*m_s^2*omega^4 + 

k*k_2*m_s^2*omega^4 + k*k_t1*m_s^2*omega^4 + k*k_t2*m_s^2*omega^4 + k_1*k_2*m_s^2*omega^4 

+ k_1*k_t2*m_s^2*omega^4 + k_2*k_t1*m_s^2*omega^4 + k_t1*k_t2*m_s^2*omega^4 - 

k*m_s^2*m_us1*omega^6 - k*m_s^2*m_us2*omega^6 - k_1*m_s^2*m_us2*omega^6 - 

k_2*m_s^2*m_us1*omega^6 - k_t1*m_s^2*m_us2*omega^6 - k_t2*m_s^2*m_us1*omega^6 + 

m_s^2*m_us1*m_us2*omega^8 - 2*b_1*b_2*k*m_s*omega^4 - 2*b_1*b_2*k_2*m_s*omega^4 + 

b_1*b_2*k_t1*m_s*omega^4 - b_1*b_2*k_t2*m_s*omega^4 - b_1*b_2*m_s*m_us1*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b_2*k*k_1*m_s*omega^3*2i + b_2*k*k_2*m_s*omega^3*2i - 

b_2*k*k_1*m_us2*omega^3*2i - b_1*k*k_t1*m_s*omega^3*1i - b_1*k*k_t2*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + b_2*k_1*k_2*m_s*omega^3*2i - 

b_1*k_2*k_t1*m_s*omega^3*1i - b_2*k_1*k_t1*m_s*omega^3*1i - b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_2*k_t1*m_s*omega^3*2i - b_2*k_1*k_t1*m_us2*omega^3*1i 

- b_1*k_t1*k_t2*m_s*omega^3*1i + b_2*k_t1*k_t2*m_s*omega^3*1i + 

b_1*k*m_s*m_us1*omega^5*1i + b_1*k*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b_2*k*m_s*m_us2*omega^5*1i + b_1*k_2*m_s*m_us1*omega^5*1i + b_2*k_1*m_s*m_us1*omega^5*1i 

+ b_1*k_2*m_s*m_us2*omega^5*1i - b_2*k_1*m_s*m_us2*omega^5*1i - 

b_2*k_2*m_s*m_us1*omega^5*2i + b_2*k_1*m_us1*m_us2*omega^5*1i + 

b_1*k_t1*m_s*m_us2*omega^5*1i + b_1*k_t2*m_s*m_us1*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i - 

b_1*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i - k*k_1*k_t1*m_s*omega^2 

- k*k_1*k_t2*m_s*omega^2 - k*k_2*k_t1*m_s*omega^2 - k*k_2*k_t2*m_s*omega^2 - 

k_1*k_2*k_t1*m_s*omega^2 - k_1*k_2*k_t2*m_s*omega^2 - k_1*k_2*k_t1*m_us2*omega^2 - 

k_1*k_t1*k_t2*m_s*omega^2 - k_2*k_t1*k_t2*m_s*omega^2 + k*k_1*m_s*m_us1*omega^4 + 

k*k_2*m_s*m_us1*omega^4 + k*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_s*m_us1*omega^4 + 

k_1*k_2*m_s*m_us2*omega^4 + k_1*k_2*m_us1*m_us2*omega^4 + k_1*k_t1*m_s*m_us2*omega^4 + 

k_1*k_t2*m_s*m_us1*omega^4 + k_2*k_t1*m_s*m_us2*omega^4 + k_2*k_t2*m_s*m_us1*omega^4 - 

k_1*m_s*m_us1*m_us2*omega^6 - k_2*m_s*m_us1*m_us2*omega^6); 

amp_ratio_TF4 = 

sqrt((real(TF4_num))^2+(imag(TF4_num))^2)/sqrt((real(TF4_denom))^2+(imag(TF4_denom))^2); 

  

figure(8); 

subplot(2,1,1) 

fplot(amp_ratio_TF4, [0, 1000]); 

title('Conventional Half Car Model Amplitude Ratio of V_m_s/V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_s/V_i_n'); 

ylim([0 6]); 

phi_4 = atan2d((imag(TF4_num)),real(TF4_num))-atan2d(imag(TF4_denom),real(TF4_denom)); 

phi_4 =subs(phi_4,omega,[0:1000]); 

phi_4 = double(phi_4); 

phi_4 = phi_4.* (phi_4 >= 0) + (phi_4 + 360) .* (phi_4 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_4); 

title('Conventional Half Car Model Phase Angle of V_m_s/V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

figure(9) 

fplot(amp_ratio_TF2,[0,1000]); 

hold on 

fplot(amp_ratio_TF3,[0,1000]); 

ylim([0 1.5]); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio'); 

legend('Left Wheel (experiences bump)','Right Wheel (changes velocity from sway bar 

connection)'); 

title('Conventional Half Car Model Comparison of Amplitude Ratio Frequency Response of 

Left and Right Wheels'); 

  

%% 

%Koenigsegg Transverse 3rd Damper Addition System 

syms S m_us1 m_us2 m_s b b_1 b_2 k k_1 k_2 k_t1 k_t2 V_in g omega 

A_3 = [0 0 0 0 0 -1/m_us1 0 0; 0 0 0 0 0 1/m_us1 -1/m_s -1/m_s; 

    0 0 0 0 0 0 -1/m_s 1/m_us2; 0 0 0 0 0 0 0 1/m_us2; 

    0 0 0 0 0 1/m_us1 0 -1/m_us2; k_t1 -k_1 0 0 -k (-b_1-b)/m_us1 (b_1)/m_s -b/m_us2; 

    0 k_1 k_2 0 0 (b_1)/m_us1 (-b_1-b_2)/m_s (b_2)/m_us2; 0 0 -k_2 -k_t2 k -b/m_us1 

(b_2)/m_s (-b-b_2)/m_us2]; 

B_3 = [1 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0; 0 1 0 0; 0 0 0 -1; 0 0 1 0]; 
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sIA = S*eye(8)-A_3; 

det(sIA); 

  

%Transfer Function of Vmus1/Vin 

Num_5 = [sIA(:,1:5),B_3(:,1),sIA(:,7:8)]; %Cramer's Rule: replacing the p_4 column with 

V_in  

TF5 = 1/m_us1*det(Num_5)/det(sIA); 

collect(TF5); 

  

%Transfer Function of Vmus2/Vin 

Num_6 = [sIA(:,1:7),B_3(:,1)]; 

TF6 = 1/m_us2*det(Num_6)/det(sIA); 

  

%Transfer Function of Vms/Vin 

Num_7 = [sIA(:,1:6),B_3(:,1),sIA(:,8)]; 

TF7 = 1/m_s*det(Num_7)/det(sIA); 

collect(TF4); 

  

%Determining the Amplitude Ratio and Phase Angle Frequency Response of the 

%Conventional Half Car Model Transfer Functions: 

TF5 = subs(TF5, S, omega*1i); 

TF6 = subs(TF6, S, omega*1i); 

TF7 = subs(TF7, S, omega*1i); 

  

%Assign values to symbolic parameters to give a plot for comparison: 

%These values are made considering a typical FSAE racecar 

m_s = 200; %kg 

m_us1 = 8; %kg 

m_us2 = m_us1; %kg 

k_1 = 4000; %N/m 

k_2 = k_1; %N/m 

k_t1 = 123464; %N/m 

k_t2 = k_t1; %N/m 

k = 50000; 

b_1 = 0.707*2*m_s/4*sqrt(k_1/(m_s/4)); %Damping ratio should be between 0.5 and 0.7 

b_2 = b_1; 

b = 1*b_1; 

  

%Plotting Transfer Function 5, left unsprung mass velocity to V_in 

TF5_num = (k_t1*(m_s^2*m_us2*omega^6 - b_2*m_s^2*omega^5*1i - k*m_s^2*omega^4 - 

k_2*m_s^2*omega^4 - k_t2*m_s^2*omega^4 - b*m_s^2*omega^5*1i + b*k*m_s*omega^3*1i + 

b*k_1*m_s*omega^3*1i + b_2*k*m_s*omega^3*1i + b*k_1*m_us2*omega^3*1i + 

b*k_t2*m_s*omega^3*1i + b_2*k_1*m_s*omega^3*1i + b_2*k_1*m_us2*omega^3*1i + 

b_2*k_t2*m_s*omega^3*1i - b*m_s*m_us2*omega^5*1i - b_2*m_s*m_us2*omega^5*1i + 

k*k_1*m_s*omega^2 + k*k_2*m_s*omega^2 + k_1*k_2*m_s*omega^2 + k_1*k_2*m_us2*omega^2 + 

k_1*k_t2*m_s*omega^2 + k_2*k_t2*m_s*omega^2 - k_1*m_s*m_us2*omega^4 - 

k_2*m_s*m_us2*omega^4)); 

TF5_denom = (b*b_1^2*m_s*omega^5*1i + b*b_1*m_s^2*omega^6 + b*b_2*m_s^2*omega^6 + 

b_1^2*b_2*m_s*omega^5*1i + b_1*b_2*m_s^2*omega^6 - b*k*m_s^2*omega^5*4i + 

b_1^2*k*m_s*omega^4 - b*k_1*m_s^2*omega^5*1i - b_1*k*m_s^2*omega^5*1i - 

b*k_2*m_s^2*omega^5*1i - b_2*k*m_s^2*omega^5*1i - b*k_t1*m_s^2*omega^5*1i - 

b*k_t2*m_s^2*omega^5*1i + b_1^2*k_2*m_s*omega^4 - b_1*k_2*m_s^2*omega^5*1i - 

b_2*k_1*m_s^2*omega^5*1i + b_1^2*k_t2*m_s*omega^4 - b_1*k_t2*m_s^2*omega^5*1i - 

b_2*k_t1*m_s^2*omega^5*1i + b*m_s^2*m_us1*omega^7*1i + b*m_s^2*m_us2*omega^7*1i - 

b_1^2*m_s*m_us2*omega^6 + b_1*m_s^2*m_us2*omega^7*1i + b_2*m_s^2*m_us1*omega^7*1i - 

k*k_1*m_s^2*omega^4 - k*k_2*m_s^2*omega^4 - k*k_t1*m_s^2*omega^4 - k*k_t2*m_s^2*omega^4 - 

k_1*k_2*m_s^2*omega^4 - k_1*k_t2*m_s^2*omega^4 - k_2*k_t1*m_s^2*omega^4 - 

k_t1*k_t2*m_s^2*omega^4 + k*m_s^2*m_us1*omega^6 + k*m_s^2*m_us2*omega^6 + 

k_1*m_s^2*m_us2*omega^6 + k_2*m_s^2*m_us1*omega^6 + k_t1*m_s^2*m_us2*omega^6 + 

k_t2*m_s^2*m_us1*omega^6 - m_s^2*m_us1*m_us2*omega^8 + 3*b*b_1*k*m_s*omega^4 - 

b*b_2*k*m_s*omega^4 + b*b_1*k_1*m_s*omega^4 - b*b_2*k_1*m_s*omega^4 + 

b_1*b_2*k*m_s*omega^4 + b*b_1*k_1*m_us2*omega^4 - b*b_2*k_1*m_us2*omega^4 + 

b*b_1*k_t2*m_s*omega^4 - b*b_2*k_t2*m_s*omega^4 + b_1*b_2*k_1*m_s*omega^4 - 

b_1*b_2*k_t2*m_s*omega^4 - b*b_1*m_s*m_us2*omega^6 + b*b_2*m_s*m_us2*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b*k*k_1*m_s*omega^3*1i + b*k*k_2*m_s*omega^3*1i + 

b*k*k_1*m_us2*omega^3*1i + b*k*k_t1*m_s*omega^3*1i + b*k*k_t2*m_s*omega^3*1i - 

b_1*k*k_1*m_s*omega^3*1i + b*k_1*k_2*m_s*omega^3*1i - b_1*k*k_2*m_s*omega^3*1i + 

b_1*k*k_1*m_us2*omega^3*1i + b*k_1*k_2*m_us2*omega^3*1i + b*k_1*k_t1*m_s*omega^3*1i + 
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b_2*k*k_t1*m_s*omega^3*1i + b*k_2*k_t2*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + 

b*k_1*k_t1*m_us2*omega^3*1i + b*k_t1*k_t2*m_s*omega^3*1i - b_1*k_1*k_2*m_s*omega^3*1i - 

b_1*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_s*omega^3*1i + b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_us2*omega^3*1i + 

b_2*k_t1*k_t2*m_s*omega^3*1i - b*k*m_s*m_us1*omega^5*1i - b*k*m_s*m_us2*omega^5*1i - 

b*k_1*m_s*m_us1*omega^5*1i - b*k_1*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b*k_2*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us2*omega^5*1i - b*k_1*m_us1*m_us2*omega^5*1i - 

b*k_t1*m_s*m_us2*omega^5*1i - b*k_t2*m_s*m_us1*omega^5*1i + b_1*k_1*m_s*m_us2*omega^5*1i 

- b_2*k_1*m_s*m_us1*omega^5*1i - b_1*k_2*m_s*m_us2*omega^5*1i - 

b_2*k_1*m_s*m_us2*omega^5*1i - b_2*k_1*m_us1*m_us2*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i + 

b*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i + k*k_1*k_t1*m_s*omega^2 + 

k*k_1*k_t2*m_s*omega^2 + k*k_2*k_t1*m_s*omega^2 + k*k_2*k_t2*m_s*omega^2 + 

k_1*k_2*k_t1*m_s*omega^2 + k_1*k_2*k_t2*m_s*omega^2 + k_1*k_2*k_t1*m_us2*omega^2 + 

k_1*k_t1*k_t2*m_s*omega^2 + k_2*k_t1*k_t2*m_s*omega^2 - k*k_1*m_s*m_us1*omega^4 - 

k*k_2*m_s*m_us1*omega^4 - k*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_s*m_us1*omega^4 - 

k_1*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_us1*m_us2*omega^4 - k_1*k_t1*m_s*m_us2*omega^4 - 

k_1*k_t2*m_s*m_us1*omega^4 - k_2*k_t1*m_s*m_us2*omega^4 - k_2*k_t2*m_s*m_us1*omega^4 + 

k_1*m_s*m_us1*m_us2*omega^6 + k_2*m_s*m_us1*m_us2*omega^6); 

amp_ratio_TF5 = 

sqrt((real(TF5_num))^2+(imag(TF5_num))^2)/sqrt((real(TF5_denom))^2+(imag(TF5_denom))^2); 

  

figure(10); 

subplot(2,1,1); 

fplot(amp_ratio_TF5,[0,1000]); 

title('Transverse Damper Half Car Model Amplitude Ratio of V_m_u_s_1 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_u_s_1 / V_i_n'); 

ylim([0 1.75]); 

phi_5 = atan2d((imag(TF5_num)),real(TF5_num))-atan2d(imag(TF5_denom),real(TF5_denom)); 

phi_5 =subs(phi_5,omega,[0:1000]); 

phi_5 = double(phi_5); 

phi_5 = phi_5.* (phi_5 >= 0) + (phi_5 + 360) .* (phi_5 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_5); 

title('Transferse Damper Half Car Model Phase Angle of V_m_u_s_1 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

%Plotting Transfer Function 7, right unsprung mass Velocity to V_in 

TF6_num = (k_t1*m_s*omega*(k*m_s*omega^3*1i - k*k_1*omega*1i - k*k_2*omega*1i - 

k_1*k_2*omega*1i + b*b_1*omega^3*1i + b_1*b_2*omega^3*1i + b*k*omega^2 + b_2*k*omega^2 + 

b_1*k_2*omega^2 + b_2*k_1*omega^2 + b*m_s*omega^4)*1i); 

TF6_denom = (b*b_1^2*m_s*omega^5*1i + b*b_1*m_s^2*omega^6 + b*b_2*m_s^2*omega^6 + 

b_1^2*b_2*m_s*omega^5*1i + b_1*b_2*m_s^2*omega^6 - b*k*m_s^2*omega^5*4i + 

b_1^2*k*m_s*omega^4 - b*k_1*m_s^2*omega^5*1i - b_1*k*m_s^2*omega^5*1i - 

b*k_2*m_s^2*omega^5*1i - b_2*k*m_s^2*omega^5*1i - b*k_t1*m_s^2*omega^5*1i - 

b*k_t2*m_s^2*omega^5*1i + b_1^2*k_2*m_s*omega^4 - b_1*k_2*m_s^2*omega^5*1i - 

b_2*k_1*m_s^2*omega^5*1i + b_1^2*k_t2*m_s*omega^4 - b_1*k_t2*m_s^2*omega^5*1i - 

b_2*k_t1*m_s^2*omega^5*1i + b*m_s^2*m_us1*omega^7*1i + b*m_s^2*m_us2*omega^7*1i - 

b_1^2*m_s*m_us2*omega^6 + b_1*m_s^2*m_us2*omega^7*1i + b_2*m_s^2*m_us1*omega^7*1i - 

k*k_1*m_s^2*omega^4 - k*k_2*m_s^2*omega^4 - k*k_t1*m_s^2*omega^4 - k*k_t2*m_s^2*omega^4 - 

k_1*k_2*m_s^2*omega^4 - k_1*k_t2*m_s^2*omega^4 - k_2*k_t1*m_s^2*omega^4 - 

k_t1*k_t2*m_s^2*omega^4 + k*m_s^2*m_us1*omega^6 + k*m_s^2*m_us2*omega^6 + 

k_1*m_s^2*m_us2*omega^6 + k_2*m_s^2*m_us1*omega^6 + k_t1*m_s^2*m_us2*omega^6 + 

k_t2*m_s^2*m_us1*omega^6 - m_s^2*m_us1*m_us2*omega^8 + 3*b*b_1*k*m_s*omega^4 - 

b*b_2*k*m_s*omega^4 + b*b_1*k_1*m_s*omega^4 - b*b_2*k_1*m_s*omega^4 + 

b_1*b_2*k*m_s*omega^4 + b*b_1*k_1*m_us2*omega^4 - b*b_2*k_1*m_us2*omega^4 + 

b*b_1*k_t2*m_s*omega^4 - b*b_2*k_t2*m_s*omega^4 + b_1*b_2*k_1*m_s*omega^4 - 

b_1*b_2*k_t2*m_s*omega^4 - b*b_1*m_s*m_us2*omega^6 + b*b_2*m_s*m_us2*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b*k*k_1*m_s*omega^3*1i + b*k*k_2*m_s*omega^3*1i + 

b*k*k_1*m_us2*omega^3*1i + b*k*k_t1*m_s*omega^3*1i + b*k*k_t2*m_s*omega^3*1i - 

b_1*k*k_1*m_s*omega^3*1i + b*k_1*k_2*m_s*omega^3*1i - b_1*k*k_2*m_s*omega^3*1i + 

b_1*k*k_1*m_us2*omega^3*1i + b*k_1*k_2*m_us2*omega^3*1i + b*k_1*k_t1*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b*k_2*k_t2*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + 

b*k_1*k_t1*m_us2*omega^3*1i + b*k_t1*k_t2*m_s*omega^3*1i - b_1*k_1*k_2*m_s*omega^3*1i - 

b_1*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_s*omega^3*1i + b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_us2*omega^3*1i + 
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b_2*k_t1*k_t2*m_s*omega^3*1i - b*k*m_s*m_us1*omega^5*1i - b*k*m_s*m_us2*omega^5*1i - 

b*k_1*m_s*m_us1*omega^5*1i - b*k_1*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b*k_2*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us2*omega^5*1i - b*k_1*m_us1*m_us2*omega^5*1i - 

b*k_t1*m_s*m_us2*omega^5*1i - b*k_t2*m_s*m_us1*omega^5*1i + b_1*k_1*m_s*m_us2*omega^5*1i 

- b_2*k_1*m_s*m_us1*omega^5*1i - b_1*k_2*m_s*m_us2*omega^5*1i - 

b_2*k_1*m_s*m_us2*omega^5*1i - b_2*k_1*m_us1*m_us2*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i + 

b*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i + k*k_1*k_t1*m_s*omega^2 + 

k*k_1*k_t2*m_s*omega^2 + k*k_2*k_t1*m_s*omega^2 + k*k_2*k_t2*m_s*omega^2 + 

k_1*k_2*k_t1*m_s*omega^2 + k_1*k_2*k_t2*m_s*omega^2 + k_1*k_2*k_t1*m_us2*omega^2 + 

k_1*k_t1*k_t2*m_s*omega^2 + k_2*k_t1*k_t2*m_s*omega^2 - k*k_1*m_s*m_us1*omega^4 - 

k*k_2*m_s*m_us1*omega^4 - k*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_s*m_us1*omega^4 - 

k_1*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_us1*m_us2*omega^4 - k_1*k_t1*m_s*m_us2*omega^4 - 

k_1*k_t2*m_s*m_us1*omega^4 - k_2*k_t1*m_s*m_us2*omega^4 - k_2*k_t2*m_s*m_us1*omega^4 + 

k_1*m_s*m_us1*m_us2*omega^6 + k_2*m_s*m_us1*m_us2*omega^6); 

amp_ratio_TF6 = 

sqrt((real(TF6_num))^2+(imag(TF6_num))^2)/sqrt((real(TF6_denom))^2+(imag(TF6_denom))^2); 

  

figure(11); 

subplot(2,1,1); 

fplot(amp_ratio_TF6,[0,1000]); 

title('Transverse Damper Half Car Model Amplitude Ratio of V_m_u_s_2 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_u_s_2 / V_i_n'); 

ylim([0 1]); 

phi_6 = atan2d((imag(TF6_num)),real(TF6_num))-atan2d(imag(TF6_denom),real(TF6_denom)); 

phi_6 =subs(phi_6,omega,[0:1000]); 

phi_6 = double(phi_6); 

phi_6 = phi_6.* (phi_6 >= 0) + (phi_6 + 360) .* (phi_6 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_6); 

title('Transverse Damper Half Car Model Phase Angle of V_m_u_s_2 / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

%Plotting Transfer Function 8, sprung mass velocity to V_in 

TF7_num = (k_t1*(k*k_1*m_s*omega^2 - b_1*b_2*m_s*omega^4 + b*k*m_s*omega^3*2i + 

b*k_1*m_s*omega^3*1i + b_1*k*m_s*omega^3*1i + b_2*k*m_s*omega^3*1i + 

b*k_1*m_us2*omega^3*1i + b*k_t2*m_s*omega^3*1i + b_1*k_2*m_s*omega^3*1i + 

b_2*k_1*m_s*omega^3*1i + b_1*k_t2*m_s*omega^3*1i - b*m_s*m_us2*omega^5*1i - 

b_1*m_s*m_us2*omega^5*1i - b*b_1*m_s*omega^4 + k*k_2*m_s*omega^2 - k*k_1*m_us2*omega^2 + 

k_1*k_2*m_s*omega^2 + k_1*k_t2*m_s*omega^2 - k_1*m_s*m_us2*omega^4)); 

TF7_denom = (b*b_1^2*m_s*omega^5*1i + b*b_1*m_s^2*omega^6 + b*b_2*m_s^2*omega^6 + 

b_1^2*b_2*m_s*omega^5*1i + b_1*b_2*m_s^2*omega^6 - b*k*m_s^2*omega^5*4i + 

b_1^2*k*m_s*omega^4 - b*k_1*m_s^2*omega^5*1i - b_1*k*m_s^2*omega^5*1i - 

b*k_2*m_s^2*omega^5*1i - b_2*k*m_s^2*omega^5*1i - b*k_t1*m_s^2*omega^5*1i - 

b*k_t2*m_s^2*omega^5*1i + b_1^2*k_2*m_s*omega^4 - b_1*k_2*m_s^2*omega^5*1i - 

b_2*k_1*m_s^2*omega^5*1i + b_1^2*k_t2*m_s*omega^4 - b_1*k_t2*m_s^2*omega^5*1i - 

b_2*k_t1*m_s^2*omega^5*1i + b*m_s^2*m_us1*omega^7*1i + b*m_s^2*m_us2*omega^7*1i - 

b_1^2*m_s*m_us2*omega^6 + b_1*m_s^2*m_us2*omega^7*1i + b_2*m_s^2*m_us1*omega^7*1i - 

k*k_1*m_s^2*omega^4 - k*k_2*m_s^2*omega^4 - k*k_t1*m_s^2*omega^4 - k*k_t2*m_s^2*omega^4 - 

k_1*k_2*m_s^2*omega^4 - k_1*k_t2*m_s^2*omega^4 - k_2*k_t1*m_s^2*omega^4 - 

k_t1*k_t2*m_s^2*omega^4 + k*m_s^2*m_us1*omega^6 + k*m_s^2*m_us2*omega^6 + 

k_1*m_s^2*m_us2*omega^6 + k_2*m_s^2*m_us1*omega^6 + k_t1*m_s^2*m_us2*omega^6 + 

k_t2*m_s^2*m_us1*omega^6 - m_s^2*m_us1*m_us2*omega^8 + 3*b*b_1*k*m_s*omega^4 - 

b*b_2*k*m_s*omega^4 + b*b_1*k_1*m_s*omega^4 - b*b_2*k_1*m_s*omega^4 + 

b_1*b_2*k*m_s*omega^4 + b*b_1*k_1*m_us2*omega^4 - b*b_2*k_1*m_us2*omega^4 + 

b*b_1*k_t2*m_s*omega^4 - b*b_2*k_t2*m_s*omega^4 + b_1*b_2*k_1*m_s*omega^4 - 

b_1*b_2*k_t2*m_s*omega^4 - b*b_1*m_s*m_us2*omega^6 + b*b_2*m_s*m_us2*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b*k*k_1*m_s*omega^3*1i + b*k*k_2*m_s*omega^3*1i + 

b*k*k_1*m_us2*omega^3*1i + b*k*k_t1*m_s*omega^3*1i + b*k*k_t2*m_s*omega^3*1i - 

b_1*k*k_1*m_s*omega^3*1i + b*k_1*k_2*m_s*omega^3*1i - b_1*k*k_2*m_s*omega^3*1i + 

b_1*k*k_1*m_us2*omega^3*1i + b*k_1*k_2*m_us2*omega^3*1i + b*k_1*k_t1*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b*k_2*k_t2*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + 

b*k_1*k_t1*m_us2*omega^3*1i + b*k_t1*k_t2*m_s*omega^3*1i - b_1*k_1*k_2*m_s*omega^3*1i - 

b_1*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_s*omega^3*1i + b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_us2*omega^3*1i + 

b_2*k_t1*k_t2*m_s*omega^3*1i - b*k*m_s*m_us1*omega^5*1i - b*k*m_s*m_us2*omega^5*1i - 
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b*k_1*m_s*m_us1*omega^5*1i - b*k_1*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b*k_2*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us2*omega^5*1i - b*k_1*m_us1*m_us2*omega^5*1i - 

b*k_t1*m_s*m_us2*omega^5*1i - b*k_t2*m_s*m_us1*omega^5*1i + b_1*k_1*m_s*m_us2*omega^5*1i 

- b_2*k_1*m_s*m_us1*omega^5*1i - b_1*k_2*m_s*m_us2*omega^5*1i - 

b_2*k_1*m_s*m_us2*omega^5*1i - b_2*k_1*m_us1*m_us2*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i + 

b*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i + k*k_1*k_t1*m_s*omega^2 + 

k*k_1*k_t2*m_s*omega^2 + k*k_2*k_t1*m_s*omega^2 + k*k_2*k_t2*m_s*omega^2 + 

k_1*k_2*k_t1*m_s*omega^2 + k_1*k_2*k_t2*m_s*omega^2 + k_1*k_2*k_t1*m_us2*omega^2 + 

k_1*k_t1*k_t2*m_s*omega^2 + k_2*k_t1*k_t2*m_s*omega^2 - k*k_1*m_s*m_us1*omega^4 - 

k*k_2*m_s*m_us1*omega^4 - k*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_s*m_us1*omega^4 - 

k_1*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_us1*m_us2*omega^4 - k_1*k_t1*m_s*m_us2*omega^4 - 

k_1*k_t2*m_s*m_us1*omega^4 - k_2*k_t1*m_s*m_us2*omega^4 - k_2*k_t2*m_s*m_us1*omega^4 + 

k_1*m_s*m_us1*m_us2*omega^6 + k_2*m_s*m_us1*m_us2*omega^6); 

amp_ratio_TF7 = 

sqrt((real(TF7_num))^2+(imag(TF7_num))^2)/sqrt((real(TF7_denom))^2+(imag(TF7_denom))^2); 

  

figure(12); 

subplot(2,1,1) 

fplot(amp_ratio_TF7,[0 1000]); 

title('Transverse Damper Half Car Model Amplitude Ratio of V_m_s / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio of V_m_s / V_i_n'); 

ylim([0 2]); 

phi_7 = atan2d((imag(TF7_num)),real(TF7_num))-atan2d(imag(TF7_denom),real(TF7_denom)); 

phi_7 =subs(phi_7,omega,[0:1000]); 

phi_7 = double(phi_7); 

phi_7 = phi_7.* (phi_7 >= 0) + (phi_7 + 360) .* (phi_7 < 0); 

subplot(2,1,2); 

plot(0:1000,phi_7); 

title('Transverse Damper Half Car Model Phase Angle of V_m_s / V_i_n'); 

xlabel('Frequency [Hz]'); 

ylabel('Phase Angle [deg]'); 

  

figure(13) 

fplot(amp_ratio_TF5,[0,1000]); 

hold on 

fplot(amp_ratio_TF6,[0,1000]); 

ylim([0 1.5]); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio'); 

legend('Left Wheel (experiences bump)','Right Wheel (changes velocity from sway bar 

connection damped by transverse damper)'); 

title('Transverse Damper Half Car Model Comparison of Amplitude Ratio Frequency Response 

of Left and Right Wheels'); 

  

figure (14) 

fplot(amp_ratio_TF6,[0,1000]); 

hold on 

fplot(amp_ratio_TF3,[0,1000]); 

xlabel('Frequency [Hz]'); 

ylabel('Amplitude Ratio'); 

legend('Right Wheel with Transverse Damper','Right Wheel Without Transverse Damper'); 

title('Comparison of Right Wheel Amplitude Ratio Frequency Response With and Without 

Transverse Damper'); 

  

%Plotting Frequency Response of Transverse Damper System with Various 

%Damping Coefficients 

figure (15); 

for b = 0*b_1:0.2*b_1:3*b_1 

TF6_num = (k_t1*m_s*omega*(k*m_s*omega^3*1i - k*k_1*omega*1i - k*k_2*omega*1i - 

k_1*k_2*omega*1i + b*b_1*omega^3*1i + b_1*b_2*omega^3*1i + b*k*omega^2 + b_2*k*omega^2 + 

b_1*k_2*omega^2 + b_2*k_1*omega^2 + b*m_s*omega^4)*1i); 

TF6_denom = (b*b_1^2*m_s*omega^5*1i + b*b_1*m_s^2*omega^6 + b*b_2*m_s^2*omega^6 + 

b_1^2*b_2*m_s*omega^5*1i + b_1*b_2*m_s^2*omega^6 - b*k*m_s^2*omega^5*4i + 

b_1^2*k*m_s*omega^4 - b*k_1*m_s^2*omega^5*1i - b_1*k*m_s^2*omega^5*1i - 

b*k_2*m_s^2*omega^5*1i - b_2*k*m_s^2*omega^5*1i - b*k_t1*m_s^2*omega^5*1i - 

b*k_t2*m_s^2*omega^5*1i + b_1^2*k_2*m_s*omega^4 - b_1*k_2*m_s^2*omega^5*1i - 
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b_2*k_1*m_s^2*omega^5*1i + b_1^2*k_t2*m_s*omega^4 - b_1*k_t2*m_s^2*omega^5*1i - 

b_2*k_t1*m_s^2*omega^5*1i + b*m_s^2*m_us1*omega^7*1i + b*m_s^2*m_us2*omega^7*1i - 

b_1^2*m_s*m_us2*omega^6 + b_1*m_s^2*m_us2*omega^7*1i + b_2*m_s^2*m_us1*omega^7*1i - 

k*k_1*m_s^2*omega^4 - k*k_2*m_s^2*omega^4 - k*k_t1*m_s^2*omega^4 - k*k_t2*m_s^2*omega^4 - 

k_1*k_2*m_s^2*omega^4 - k_1*k_t2*m_s^2*omega^4 - k_2*k_t1*m_s^2*omega^4 - 

k_t1*k_t2*m_s^2*omega^4 + k*m_s^2*m_us1*omega^6 + k*m_s^2*m_us2*omega^6 + 

k_1*m_s^2*m_us2*omega^6 + k_2*m_s^2*m_us1*omega^6 + k_t1*m_s^2*m_us2*omega^6 + 

k_t2*m_s^2*m_us1*omega^6 - m_s^2*m_us1*m_us2*omega^8 + 3*b*b_1*k*m_s*omega^4 - 

b*b_2*k*m_s*omega^4 + b*b_1*k_1*m_s*omega^4 - b*b_2*k_1*m_s*omega^4 + 

b_1*b_2*k*m_s*omega^4 + b*b_1*k_1*m_us2*omega^4 - b*b_2*k_1*m_us2*omega^4 + 

b*b_1*k_t2*m_s*omega^4 - b*b_2*k_t2*m_s*omega^4 + b_1*b_2*k_1*m_s*omega^4 - 

b_1*b_2*k_t2*m_s*omega^4 - b*b_1*m_s*m_us2*omega^6 + b*b_2*m_s*m_us2*omega^6 + 

b_1*b_2*m_s*m_us2*omega^6 + b*k*k_1*m_s*omega^3*1i + b*k*k_2*m_s*omega^3*1i + 

b*k*k_1*m_us2*omega^3*1i + b*k*k_t1*m_s*omega^3*1i + b*k*k_t2*m_s*omega^3*1i - 

b_1*k*k_1*m_s*omega^3*1i + b*k_1*k_2*m_s*omega^3*1i - b_1*k*k_2*m_s*omega^3*1i + 

b_1*k*k_1*m_us2*omega^3*1i + b*k_1*k_2*m_us2*omega^3*1i + b*k_1*k_t1*m_s*omega^3*1i + 

b_2*k*k_t1*m_s*omega^3*1i + b*k_2*k_t2*m_s*omega^3*1i + b_2*k*k_t2*m_s*omega^3*1i + 

b*k_1*k_t1*m_us2*omega^3*1i + b*k_t1*k_t2*m_s*omega^3*1i - b_1*k_1*k_2*m_s*omega^3*1i - 

b_1*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_s*omega^3*1i + b_1*k_2*k_t2*m_s*omega^3*1i + 

b_2*k_1*k_t2*m_s*omega^3*1i + b_2*k_1*k_t1*m_us2*omega^3*1i + 

b_2*k_t1*k_t2*m_s*omega^3*1i - b*k*m_s*m_us1*omega^5*1i - b*k*m_s*m_us2*omega^5*1i - 

b*k_1*m_s*m_us1*omega^5*1i - b*k_1*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us1*omega^5*1i - 

b*k_2*m_s*m_us2*omega^5*1i - b_2*k*m_s*m_us2*omega^5*1i - b*k_1*m_us1*m_us2*omega^5*1i - 

b*k_t1*m_s*m_us2*omega^5*1i - b*k_t2*m_s*m_us1*omega^5*1i + b_1*k_1*m_s*m_us2*omega^5*1i 

- b_2*k_1*m_s*m_us1*omega^5*1i - b_1*k_2*m_s*m_us2*omega^5*1i - 

b_2*k_1*m_s*m_us2*omega^5*1i - b_2*k_1*m_us1*m_us2*omega^5*1i - 

b_2*k_t1*m_s*m_us2*omega^5*1i - b_2*k_t2*m_s*m_us1*omega^5*1i + 

b*m_s*m_us1*m_us2*omega^7*1i + b_2*m_s*m_us1*m_us2*omega^7*1i + k*k_1*k_t1*m_s*omega^2 + 

k*k_1*k_t2*m_s*omega^2 + k*k_2*k_t1*m_s*omega^2 + k*k_2*k_t2*m_s*omega^2 + 

k_1*k_2*k_t1*m_s*omega^2 + k_1*k_2*k_t2*m_s*omega^2 + k_1*k_2*k_t1*m_us2*omega^2 + 

k_1*k_t1*k_t2*m_s*omega^2 + k_2*k_t1*k_t2*m_s*omega^2 - k*k_1*m_s*m_us1*omega^4 - 

k*k_2*m_s*m_us1*omega^4 - k*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_s*m_us1*omega^4 - 

k_1*k_2*m_s*m_us2*omega^4 - k_1*k_2*m_us1*m_us2*omega^4 - k_1*k_t1*m_s*m_us2*omega^4 - 

k_1*k_t2*m_s*m_us1*omega^4 - k_2*k_t1*m_s*m_us2*omega^4 - k_2*k_t2*m_s*m_us1*omega^4 + 

k_1*m_s*m_us1*m_us2*omega^6 + k_2*m_s*m_us1*m_us2*omega^6); 

amp_ratio_TF6MR = 

sqrt((real(TF6_num))^2+(imag(TF6_num))^2)/sqrt((real(TF6_denom))^2+(imag(TF6_denom))^2); 

fplot(amp_ratio_TF6MR, [0 600]); 

legend('Right Wheel with Transverse Damper') 

hold on 

end 

Legend = cell(16,1); 

Legend{1} = 'b = 0.0*b_1'; 

Legend{2} = 'b = 0.2*b_1'; 

Legend{3} = 'b = 0.4*b_1'; 

Legend{4} = 'b = 0.6*b_1'; 

Legend{5} = 'b = 0.8*b_1'; 

Legend{6} = 'b = 1.0*b_1'; 

Legend{7} = 'b = 1.2*b_1'; 

Legend{8} = 'b = 1.4*b_1'; 

Legend{9} = 'b = 1.6*b_1'; 

Legend{10} = 'b = 1.8*b_1'; 

Legend{11} = 'b = 2.0*b_1'; 

Legend{12} = 'b = 2.2*b_1'; 

Legend{13} = 'b = 2.4*b_1'; 

Legend{14} = 'b = 2.6*b_1'; 

Legend{15} = 'b = 2.8*b_1'; 

Legend{16} = 'b = 3.0*b_1'; 

  

legend(Legend); 

title('Frequency Response of Right Wheel from Left Wheel Disturbance in 3rd Damper 

System, Over Many Transverse Damping Coefficients'); 

xlabel('Freqency [Hz]'); 

ylabel('Amplitude Ratio'); 
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Appendix D 

Hand Calculations and Derivations of Dynamic Systems Analysis 

 


