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Tangent Lines

Sam Estep

2018-05-06

In [1] Leibniz published the first treatment of the subject of calculus. An
English translation can be found in [2]; he says that

to find a tangent is to draw a right line, which joins two points
of the curve having an infinitely small difference, or the side of
an infinite angled polygon produced, which is equivalent to the
curve for us.

Today, according to [3],

a straight line is said to be a tangent line of a curve y = f(x) at
a point x = c on the curve if the line passes through the point
(c, f(c)) on the curve and has slope f ′(c) where f ′ is the derivative
of f .

At first glance, it would appear that this second definition is simply a more
precise version of the first; indeed, the cited Wikipedia article states this
sentiment explicitly. In this paper we examine cases where Wikipedia’s def-
inition is more strict than Leibniz’s original one, and present two attempts
at formulating a more general, but still precise, definition.

1 Non-differentiability

It is well known that differentiability implies continuity:

f ′(c) exists =⇒ lim
x→c

[f(x)− f(c)] = f ′(c) lim
x→c

(x− c) = 0

This makes intuitive sense; in order to be able to draw a tangent line to a
curve at a point, that curve needs to actually be what we think of as a curve.
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Figure 1: The absolute value function.

Implicit in Leibniz’s definition is the assumption that we can find points with
an infinitely (arbitrarily) small difference, which is exactly what continuity
gives us. Thus we will assume continuity in our exploration here. One can
imagine, especially given the next section, situations in which continuity
could be deemed too strong, but those are beyond our scope.

1.1 Semi-differentiability

Consider the function f : R → R given by f(x) = |x|, as shown in Figure
1. We know that f ′(x) = sgn(x) for x 6= 0, but what about that corner
point at x = 0? It is tempting to extend this derivative to be zero here, so
as to agree with the sign function everywhere; this is what the symmetric
derivative does:

fs(0) = lim
h→0

f(0 + h)− f(0− h)

2h
= lim

h→0

|h| − |−h|
2h

= 0

However, if we do this then we stray from our original motivation—namely,
tangent lines. A more conservative approach is to just say that the left and
right derivatives of f are

∂−f(0) = lim
x→0−

f(x)− f(0)

x− 0
= −1 and ∂+f(0) = lim

x→0+

f(x)− f(0)

x− 0
= 1;

since these both exist, f is called semi-differentiable at zero.
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Figure 2: A semicubical parabola, exhibiting a cusp at the origin.

How does this relate to Leibniz’s definition? At least in the translation
above, an indefinite article is used to describe the term “tangent”, which
suggests that it need not be unique. Perhaps we should say that both y = x
y = −x are tangent lines to y = |x| at x = 0. But then again, this doesn’t
seem to line up quite so well with his imagery of an infinite-angled polygon.

1.2 Cusps

Consider the parametric curve r : R→ R2 given by r(t) = (t2, t3), as shown
in Figure 2. Then the derivative r′(t) = (2t, 3t2) is defined everywhere, and
for t 6= 0 it gives us a nonzero vector that tells us the tangent line to the
curve. Note that r′(0) = (0, 0), so we could simply say that the tangent line
to this curve is undefined at the origin. In fact, other parametrizations such
as t 7→ (

3
√
t2, t) are actually non-differentiable at the origin.

But r does have a tangent line at the origin. If we instead think of
this curve using the multivalued function f(x) = ±x3/2 for x ≥ 0, then
f ′(x) = ±3

2

√
x, so f ′(0) = 0. This could obviously be made more rigorous

using actual functions, but it gets the point across: the curve has a horizontal
tangent line at the origin, and a unique one at that. It doesn’t play with the
conventional concept of derivatives, but if we go back to Leibniz’s definition,
we see that lines joining the origin to nearby points do indeed approach the
x-axis as the difference approaches zero.
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2 Tangentiability

Here we will attempt to make rigorous the notion of being able to define a
unique tangent line to a curve at a point. The reader is invited to look for
the interesting ways in which this intuitive interpretation breaks down when
we relax the constraint of continuity.

2.1 Vector calculus

Let r : S ⊆ R→ R2 and t ∈ S. If the solution set to the equation

lim
h→0

r⊥ · r(t+ h)− r(t)

h
=

d

dτ

∣∣∣∣
τ=t

[r⊥ · r(τ)] = 0

is {cr⊥ | c ∈ R} for some nonzero r⊥ = (x, y) ∈ R2, then we say that r is
tangentiable at t with orthogonal vector r⊥ and tangent vector r‖ = (−y, x).

Note first that this is an extension of differentiability whenever the deriva-
tive is nonzero. Specifically, if r′(t) 6= 0 exists then r is tangentiable at t with
tangent vector r‖ = r′(t). To see this, consider the equation

lim
h→0

r⊥ · r(t+ h)− r(t)

h
= r⊥ · lim

h→0

r(t+ h)− r(t)

h
= r⊥ · r′(t) = 0.

Since r′(t) 6= 0, we see that choosing r‖ = r′(t) gives a nonzero r⊥ such that
the solution set to this equation is {cr⊥ | c ∈ R}.

The converse is false, though. Consider the curve r : R → R2 given by
r(t) = (|t|, |t|3/2 sgn(t)), which we can see to be simply another parametriza-
tion of the semicubical parabola from earlier. Then r′(t) = (sgn(t), 3

2

√
|t|)

for t 6= 0. If r′(0) existed then it would cause a jump discontinuity, which is
impossible for a derivative; thus r is not differentiable at zero. But for any
r⊥ = (x, y),

lim
h→0

r⊥ · r(t+ h)− r(t)

h
= lim

h→0

[
x sgn(h) + y

√
|h|
]

= x lim
h→0

sgn(h)

is zero iff x = 0, so the solution set to our definitional equation is 0 × R. In
other words, by our above definition of tangentiability, this r has a horizontal
tangent line at r(0) = (0, 0).

Notice the specificity of the parametrization that we used for this example.
If we use the t 7→ (t2, t3) parametrization the derivative at zero is defined
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and is itself zero, so the solution set is R2; in other words, our definition is
not satisfied because the tangent line is not unique. On the other hand, if we
use t 7→ (

3
√
t2, t) then one coordinate of the derivative tends to infinity while

the other stays constant at 1, so the solution set is {(0, 0)}. Thus, while our
definition works correctly for some parametrizations, it fails for others, which
is quite undesirable; we would like for our characterization of tangent lines to
be as geometric as possible, and maximally agnostic of what parametrization
we choose.

2.2 Complex numbers

We will now redefine tangentiability as follows. First, consider the function
ψ : C× → T given by ψ(z) = (z/|z|)2 = z/z̄, where

C× = C \
{

0
}

and T =
{
z ∈ C

∣∣ |z| = 1
}

=
{
eiθ
∣∣ θ ∈ R

}
are the multiplicative group of the complex numbers and the circle group,
respectively. Clearly ψ is a homomorphism; let us examine its kernel. If
ψ(z) = 1 then (z/|z|)2 = 1, so z/|z| = ±1. This is equivalent to saying
that z is an (obviously nonzero) point on the “horizontal” real line R. What
does this mean? Recall that multiplication in the complex numbers can be
thought of geometrically as scaling and rotation. Thus given that the kernel
is a horizontal line through the origin, we might guess that the cosets in
C×/ kerψ are all horizontal lines through the origin.

Let’s make this rigorous. One direction is simple: for z ∈ C× and c ∈ R×,

ψ(cz) =
cz

cz
=
cz

cz̄
=
z

z̄
= ψ(z).

Conversely, write z, w ∈ C× in polar form as z = aeiθ and w = beiφ for
a, b ∈ R× and θ, φ ∈ R. If we assume that ψ(z) = ψ(w) then

ψ(aeiθ) = ψ(beiφ) =⇒ aeiθ

ae−iθ
=

beiφ

be−iφ
=⇒ ei(2θ) = ei(2φ),

which means that 2φ− 2θ = n(2π) for some n ∈ Z, so φ = θ + nπ. Then

(eiπ)n = (−1)n = ±1 =⇒ w = beiφ = bei(θ+nπ) =
b

a
aeiθ(eiπ)n = ± b

a
z.

Since ±b/a ∈ R×, this shows that ψ partitions C× into lines passing through
the origin (sans the origin itself, of course).
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Now for f : R → C and t ∈ R, let St = {s ∈ R | f(s) 6= f(t)}. If t is a
limit point of St, then we define the tangent of f at t to be

f‖(t) = lim
s→t

ψ(f |St(s)− f(t))

if it exists. Since T is closed, we know mf (t) ∈ T. If we consider C ∼= R2

as vector spaces over R, then the existence of this limit means that we can
draw a tangent line to the graph of f at t.

We will show that this is an extension of our previous definition involving
the dot product, and then show that it works even in the cases where our
previous definition failed. Let r : R → R2 be tangentiable with nonzero
orthogonal vector r⊥ = (x, y) ∈ R2. Define f : R→ C by f(t) = (1, i) · r(t),
and for any t ∈ R, let St ⊆ R be as above. Assume that t is not a limit
point of St, so there is some neighborhood V ⊆ R containing t such that
f(V ) = {f(t)}; this implies that r′(t) = 0, so the solution set of orthogonal
vectors must be R2, contradicting tangentiability. Thus t must be a limit
point of St.

It remains to show that f‖(t) = ψ((1, i)·r‖). Besides the algebraic details,
the key point here is that

r′(t) = lim
s→t

r(s)− r(t)

s− t
6= 0 =⇒ lim

s→t
s∈St

s− t
‖r(s)− r(t)‖

is bounded

which allows us to show that

f‖(t)− ψ((1, i) · r‖) = lim
s→t

ψ(f |St(s)− f(t))− ψ(−y + xi)

= lim
s→t
s∈St

f(s)− f(t)

[<f(s)−<f(t)] + [=f(s)−=f(t)]i
− −y + xi

−y − xi

= lim
s→t
s∈St

2x[<f(s)−<f(t)] + 2y[=f(s)−=f(t)]

(x− yi)([<f(s)−<f(t)]− [=f(s)−=f(t)]i)

=
2

x− yi
lim
s→t
s∈St

(x, y) · (<[f(s)− f(t)],=[f(s)− f(t)])

|f(s)− f(t)|

=
2

x− yi
lim
s→t
s∈St

r⊥ · [r(s)− r(t)]

‖r(s)− r(t)‖

=
2

x− yi
lim
s→t
s∈St

r⊥ · r(s)− r(t)

s− t
lim
s→t
s∈St

s− t
‖r(s)− r(t)‖

= 0.
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Knowing now that this second definition is more general than our ear-
lier one, let’s go back to the other two parametrizations of the semicubical
parabola. If we define f : R → C by f(t) = t2 + t3i then f(t) 6= f(0) for all
t 6= 0, so

f‖(0) = lim
s→0

ψ(f(s)− f(0)) = lim
s→0

s2 + s3i

s2 − s3i
= lim

s→0

1 + si

1− si
= 1 = ψ(1);

in other words, the tangent line to f at zero is the unique line through the
origin containing 1, that is, the real line. Or if we define it by f(t) =

3
√
t2 + ti

then, again, f(t) 6= 0 for all t 6= 0, so

f‖(0) = lim
s→0

ψ(f(s)− f(0)) = lim
s→0

3
√
s2 + si

3
√
s2 − si

= lim
s→0

1 + 3
√
si

1− 3
√
si

= 1 = ψ(1).

This, needless to say, is pretty rad.
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