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Yeast mitochondrial protein Pet111p binds directly to two
distinct targets in COX2 mRNA, suggesting a mechanism of
translational activation
Received for publication, August 14, 2018, and in revised form, March 10, 2019 Published, Papers in Press, March 25, 2019, DOI 10.1074/jbc.RA118.005355

Julia L. Jones‡§, X Katharina B. Hofmann¶, Andrew T. Cowan§1, Dmitry Temiakov�, Patrick Cramer¶,
and Michael Anikin§2

From the ‡Graduate Program in Cell and Molecular Biology, Graduate School of Biomedical Sciences and the §Department of Cell
Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, the ¶Department of
Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and the �Department of
Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Edited by Karin Musier-Forsyth

The genes in mitochondrial DNA code for essential subunits
of the respiratory chain complexes. In yeast, expression of mito-
chondrial genes is controlled by a group of gene-specific trans-
lational activators encoded in the nucleus. These factors appear
to be part of a regulatory system that enables concerted expres-
sion of the necessary genes from both nuclear and mitochon-
drial genomes to produce functional respiratory complexes.
Many of the translational activators are believed to act on the
5�-untranslated regions of target mRNAs, but the molecular
mechanisms involved in this regulation remain obscure. In this
study, we used a combination of in vivo and in vitro analyses to
characterize the interactions of one of these translational acti-
vators, the pentatricopeptide repeat protein Pet111p, with its
presumed target, COX2 mRNA, which encodes subunit II of
cytochrome c oxidase. Using photoactivatable ribonucleoside-
enhanced cross-linking and immunoprecipitation analysis, we
found that Pet111p binds directly and specifically to a 5�-end
proximal region of the COX2 transcript. Further, we applied in
vitro RNase footprinting and mapped two binding targets of the
protein, of which one is located in the 5�-untranslated leader
and the other is within the coding sequence. Combined with the
available genetic data, these results suggest a plausible mecha-
nism of translational activation, in which binding of Pet111p
may prevent inhibitory secondary structures from forming in
the translation initiation region, thus rendering the mRNA
available for interaction with the ribosome.

The yeast cytochrome c oxidase (COX)3 complex is an
assembly of 12 subunits (1), of which only three, Cox1p, Cox2p,
and Cox3p, are encoded by mitochondrial DNA, whereas the
others are the products of nuclear genes. A regulatory system
must therefore be in place to ensure coordinated expression
from both genomes, such that all of the subunits are produced
synchronously and stoichiometrically for the correct assembly
of the complex (2). This system appears to utilize a set of
nuclear DNA-encoded messengers that act in a gene-selective
manner to authorize the mitochondrial mRNAs to undergo
translation (2–4). Expression of subunit II of COX, Cox2p, is
under the control of one of such messengers, the product of the
nuclear gene pet111 (5, 6). Genetic characterization has dem-
onstrated that the product of this gene, Pet111p, sanctions the
translation of COX2 by acting in the 5�-UTR of the mRNA (7)
and thereby limits the production of Cox2p under physiologic
conditions (8). As is the case with most yeast mitochondrial
gene-specific translational activators (3), Pet111p is anchored
to the matrix surface of the inner mitochondrial membrane,
thus enabling co-translational insertion of the nascent Cox2p
into the membrane (8). This function of Pet111p appears to be
of critical importance because Cox2p failed to accumulate
when translated away from the membrane (9). At the mem-
brane, Pet111p is associated in a complex, which also includes
translational activators specific to COX1, COX3, and COB (10,
11). This suggests an additional function of the translational
activators to ensure proper spatial coordination during the pro-
duction and assembly of respiratory complexes III and IV. All of
these interactions presumably take place in the framework of
the recently discovered MIOREX super complex, which is
responsible for the organization of mitochondrial gene expres-
sion (12).

The finding that Pet111p functionally interacts with the
5�-UTR of COX2 (7, 13) to enable translation invited a sugges-
tion that the protein may bind to the mRNA directly. However,
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a direct binding of Pet111p to COX2, or any other RNA, has not
yet been demonstrated. In this study, we evaluated Pet111p for
its potential to interact with RNA both in vivo and in vitro.
Using photoactivatable ribonucleoside-enhanced cross-linking
and immunoprecipitation (PAR-CLIP) analysis, we confirmed
that Pet111p preferentially associates with the 5�-end proximal
portion of COX2 mRNA. Further analysis by a combination of
electrophoretic mobility shift assay (EMSA) and RNase foot-
printing revealed two distinct binding targets of the protein,
one close to the 5�-end of the transcript and one in the begin-
ning of the coding sequence. Based on the positions of the bind-
ing targets and taking into account the results of genetic anal-
ysis and the prediction of the structural organization of the
RNA, we suggest plausible mechanisms by which binding of
Pet111p could facilitate translation of COX2.

Results

Pet111p directly contacts COX2 mRNA in vivo

To examine whether Pet111p is engaged in direct contacts
with RNA in vivo, we carried out an unbiased analysis using
PAR-CLIP. Yeast expressing tandem affinity purification (TAP)-
tagged Pet111p (Pet111p-TAP) were grown in the presence of
4-thiouracil and UV-irradiated to induce the formation of
RNA–protein cross-linking products. The cells were then
lysed, and the lysate was subjected to immunoprecipitation
using anti-TAP-tag antibodies. The co-precipitated RNA spe-
cies were trimmed with RNase T1, and the presence of
Pet111p-TAP in the resulting immunoprecipitate was con-
firmed by Western blotting (Fig. S1). The photocross-linked
RNA in a part of the sample was 5�- 32P-labeled and analyzed by
SDS-PAGE. As shown in Fig. S1, a population of radioactive
species with an electrophoretic mobility approximately corre-
sponding to Pet111p-TAP was dominant on the gel. We inter-

preted these species as RNA–Pet111p–TAP cross-linking
products. After adapter ligation, the cross-linked RNA was con-
verted into cDNA and PCR-amplified, and the amplification
products were subjected to deep sequencing. The collected
sequencing reads 20 –50 nucleotides (nt) in length aligned with
the sequence of mitochondrial DNA are presented in Fig. 1A.
The alignment showed that the vast majority of the reads
belonged to COX2 mRNA. Although some background levels
of the RNA in the sample originated from the nuclear genome
or represented other mitochondrial genes, the RNA sequences
associated with COX2 were over 30 times more abundant (Fig.
1B). Within the COX2 mRNA (Fig. 1C), the density of the reads
was significantly higher in the 5�-end proximal region, includ-
ing the 5�-UTR and �60 nucleotides into the beginning of the
coding sequence. These results confirm that Pet111p is indeed
an RNA-binding protein that selectively interacts with COX2 in
vivo with a particularly high affinity to the 5�-end region of the
mRNA.

Expression of recombinant Pet111p

To determine whether Pet111p requires additional mito-
chondrial factors to bind to COX2 and to define its binding
target (or targets) with greater precision, we purified a recom-
binant form of the protein and used it to assemble and evaluate
complexes with synthetic RNA oligonucleotides of defined
length and sequence. As is the case for most nucleus-encoded
mitochondrial proteins, Pet111p is expected to undergo N-
terminal processing during import into mitochondria. We
intended to generate a recombinant form of the mature protein;
however, to the best of our knowledge, the processing site of
Pet111p has never been experimentally established. To deter-
mine the site of maturation, we took advantage of an available
library of yeast ORFs inserted into the BG1805 expression vec-

Figure 1. Pet111p is predominantly associated with COX2 mRNA in vivo. A, PAR-CLIP analysis of cells expressing Pet111p-TAP was performed, and the
resulting RNA reads were aligned to the yeast mitochondrial genomic sequence. B, the abundance of the RNA reads associated with the nuclear and
mitochondrial genomic sequences was compared with that of the cox2-associated reads. C, a portion of the alignment in A showing the distribution of the
sequencing reads in the vicinity of the cox2 gene. The position of the coding sequence is indicated by the red bar with the arrows showing the direction of
translation. The red lines correspond to the untranslated regions of the mature mRNA.

Translational activator Pet111p interacts with COX2 mRNA
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tor (14) that provides a C-terminally fused hexahistidine tag.
We overexpressed the tagged Pet111p in yeast, isolated the
mitochondrial fraction, and partially purified the processed
form of the protein using Ni-IDA beads under denaturing con-
ditions. Analysis of the preparation by PAGE (Fig. 2A) revealed
a major band running at �97 kDa, and the protein in the band
was further identified as Pet111p by peptide mass fingerprint-
ing (PMF) (15). Edman degradation analysis of the protein
returned two overlapping sequences: STELI and YSTEL. We
therefore concluded that Pet111p undergoes a two-step pro-
cessing with mitochondrial processing peptidase (MPP) cleav-
ing a 33-amino acid peptide at Tyr-33 and Icp55p removing
residue Tyr-34 (Fig. 2A). Based on these data, we constructed a
plasmid for bacterial expression of a mature form of Pet111p, in
which an N-terminal histidine purification tag (MAH6) was
fused to amino acid Ser-35 of the protein. This recombinant
from of the protein is referred to as rPet111p in this study.
Expression in Escherichia coli at a reduced temperature and low
induction levels allowed us to obtain rPet111p in a soluble form.
The protein was purified to homogeneity by a preliminary
enrichment with Ni-IDA beads followed by heparin affinity
chromatography and gel filtration (Fig. S2A). Surprisingly, the
apparent electrophoretic mobility of rPet111p corresponded to
a molecular mass of �70 kDa, which was substantially lower
than the calculated value of 91.3 kDa. To exclude the possibility
that this shift was due to a truncation that might have occurred
during the expression, we determined the actual molecular
mass of the protein in the preparation by MALDI-TOF-MS. As
shown in Fig. S2B, the observed molecular mass of rPet111p
was in agreement with the expected value.

COX2 mRNA does not undergo maturation at the 5�-end

Several yeast mitochondrial mRNAs have been shown to
undergo Pet127p-dependent trimming at the 5�-end following

endonucleolytic processing of the primary transcripts (16). The
position of the 5�-end in mature COX2 was previously mapped
to coincide with the start site of the cox2 promoter (17). The
mapping was performed at a single-nucleotide resolution by
extension of a DNA primer hybridized to COX2 with RT. How-
ever, the 3�-end of the primer used in the study corresponded to
position 33 inside the 5�-UTR; thus, had the trimming shifted
the 5�-end into the region between that point and the transla-
tional start site, the experiment would fail to detect the matu-
ration product. Therefore, to design the RNA oligonucleotides
for the in vitro reconstruction of the rPet111p–RNA com-
plexes, we needed to verify the position of the 5�-end in mature
COX2. We repeated the primer extension experiment shifting
the entire primer to a location inside the coding sequence. As
shown in Fig. 2B, extension of the primer did not terminate near
the area of the initiation codon and produced a larger single
product. Comparison with a set of DNA size markers placed the
3�-end of the product to the position corresponding to �1 of
the primary transcript, consistent with published data (17).
This allowed us to conclude that COX2 does not undergo a
5�-end trimming, and thus the entire sequence of its 5�-UTR
was included in the evaluation of interaction with rPet111p.

rPet111p specifically binds in vitro to at least two distinct
targets in the 5�-end proximal region of COX2

Our PAR-CLIP analysis showed that Pet111p interacts with
RNA directly and specifically in vivo. To examine whether the
protein retains this ability in the absence of other mitochon-
drial factors, we used EMSA. In this experiment, radioactively
labeled RNA probes of defined sequence were incubated with
rPet111p to allow the formation of complexes, which were then
separated from free RNA by native PAGE. We first compared
two RNA probes, of which one encompassed the entire COX2
5�-UTR (COX2–1–54), and the other represented a sequence

Figure 2. Characterization of the processing of Pet111p and COX2 in mitochondria. A, an image of a Coomassie-stained polyacrylamide gel showing the
proteins in a preparation of tagged Pet111p partially purified from yeast mitochondria. The composition of the C-terminal purification tag is shown above the
image. The positions of the hexahistidine (6His) and hemagglutinin epitope (HA) tags are indicated. The protein in the indicated band was identified as Pet111p
by PMF, and Edman degradation analysis of the protein revealed two sequence reads, pointed to by the bent arrows. The reads are aligned with a portion of the
Pet111p sequence (numbers indicate positions of the flanking amino acid in the sequence of the Pet111p precursor), in which the determined N-terminal
sequence of the mature protein is underlined. The amino acids represented by bold letters match the consensus of the MPP/Icp55 processing site (37), which is
shown below the alignment. The sites of cleavage by MPP and Icp55 are indicated by arrows. B, a phosphor imaging scan of an area of a polyacrylamide gel
showing the products of extension of a 5�-32P-labeled DNA primer COX2-96 –76. The primer was hybridized to COX2 mRNA in a total mitochondrial RNA isolate
and extended with RT (lane 3). Control lanes 1 and 2 contained, respectively, the unextended primer and the primer extended in the absence of mitochondrial
RNA. The length of the product of extension in lane 3 was determined by a comparison with DNA size markers (lanes 4 – 6). The markers were generated by
extension of the primer in the presence of 2�,3�-dideoxynucleoside triphosphates as specified above the image. The dsDNA template used in the primer
extension reactions contained a sequence of the cox2 promoter between positions �7 and � 109 relative to the start site (�1), as explained by the scheme to
the right. The bands in lane 4 are assigned on the right of the image, and the position on the gel that corresponds to the initiation codon is indicated by brackets.
An area on the top of the image is enlarged to show the slow-running bands in lanes 3–5 more clearly, and the bands in lanes 4 and 5 are assigned on the right.
Comparison with the size markers indicates that the 3�-end of the product of primer extension in lane 3 corresponds to position �1.

Translational activator Pet111p interacts with COX2 mRNA
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downstream from the coding sequence (nonspecific control
(NSC)). As shown in Fig. 3A, EMSA revealed prominent
bands corresponding to the COX2–1–54 –rPet111p complex,
whereas NSC failed to complex appreciably with the protein.
We conclude that rPet111p can discriminate between RNA
molecules independently of other mitochondrial proteins and
that the 5�-UTR harbors a binding target of the protein.

A relatively stable stem–loop structure has been predicted to
form upstream of the ORF of COX2 (18). It resides within a
31-nt region, which has been shown to contain residues
required for respiration (19), suggesting that the stem–loop
might be a target of Pet111p. To evaluate this possibility, we
used an overlapping pair of RNA probes, which covered the
entire sequence of the 5�-UTR, but were positioned in such a
way that the stem–loop structure could not form in either
probe. If this structure was required for binding to Pet111p, we
would expect to see a loss of the complex formation with both
probes. However, as shown in Fig. 3B, whereas the COX2-
23–54 probe failed to form a complex, the 5�-end proximal
probe (COX2–1–30) retained the ability to interact with the
protein. These results indicate that a binding target of Pet111p
resides within the sequence of COX2–1–30 and argue against
the involvement of the stem–loop as a major binding or speci-
ficity determinant. Considering that no secondary structure is
expected to form within COX2–1–30, Pet111p can thus be clas-
sified as a sequence-specific single-stranded RNA-binding
protein.

The high abundance of the PAR-CLIP sequencing reads at
the site of translation initiation of COX2 (Fig. 1C) prompted us
to examine whether that region had an additional binding tar-
get for Pet111p. The probe used in this experiment (COX2–

58 –95) extended from just downstream of the initiation codon
to the descending strand of a predicted stem–loop structure
(20) located in the beginning of the coding sequence. EMSA
revealed that this probe could readily complex with rPet111p
with an affinity comparable with that of the COX2–1–30 probe,
which was used as a positive control (Fig. 3C). Therefore we
conclude that at least two Pet111p-binding targets are present
in the 5�-end proximal region of COX2: one in the beginning of
the 5�-UTR and one downstream from the initiation codon, and
that the protein can recognize both targets independently of
other mitochondrial factors.

The two mapped RNA targets of Pet111p share little similarity

Our EMSA results indicated the presence of Pet111p-bind-
ing targets in the RNA probes COX2–1–30 and COX2–58 –95.
To define the targets with greater precision, we employed
RNase I footprinting (21). 5�- 32P-Labeled COX2–1–30 was
subjected to limited digestion with RNase I, and the products of
digestion were separated at a single-nucleotide resolution (Fig.
4A, lane 2). RNase I is known to cleave poorly at GMP residues
(22), and thus the weak band corresponding to the product of
cleavage at G22 was readily identifiable and provided a refer-
ence point to assign other bands in the lane. The pattern of the
cleavage products was reasonably uniform throughout the
probe, except at the purine-rich 3�-end where the cleavage was
somewhat less prominent, suggesting that the probe was free
of secondary structures. The probe was also incubated with
rPet111p to allow the formation of a complex, the complex was
treated with RNase I, and the products of digestion were sepa-
rated (Fig. 4A, lane 3). The pattern of the cleavage was clearly
different in the presence of rPet111p. As evident from the traces
representing the distribution of radioactivity in lanes 2 and 3,
the cleavage efficiency decreased drastically in a region close to
the middle of the probe while increasing toward the ends. For
each RNA fragment 2–29 nt in length, the effect of rPet111p
was plotted as a logarithm of the intensity ratio in lanes 2 and 3
(bar plot in Fig. 4A). The positive-value bars in the plot indi-
cated the residues in the RNA, at which RNase I cleavage was
partially blocked by rPet111p. The most prominent protection
was observed between positions 7 and 19, suggesting the pres-
ence of a Pet111p-binding target within these boundaries. In a
similar way, probe COX2–58 –95 was subjected to RNase I in
the absence or presence of rPet111p (Fig. 4B). The cleavage
products were quantified and analyzed as described above, and
a region between positions 66 and 85 was identified as partially
protected by the protein, which defined the boundaries of a
second binding target of rPet111p. The clear footprints
observed with both RNA probes attested once again to the abil-
ity of rPet111p to discriminate in favor of certain sequences in a
single-stranded RNA context. As shown in Fig. 4C, the posi-
tions of the two mapped targets correlated with the areas in the
COX2 mRNA where the PAR-CLIP sequence reads were the
most abundant. Interestingly, the peaks of the density of
the reads were somewhat shifted downstream relative to the
rPet111p-binding targets, probably reflecting a bias imposed by
the PAR-CLIP method.

The finding that the two mapped targets of rPet111p sub-
stantially differ in length (13 nt versus 21 nt in the 5�-UTR and

Figure 3. rPet111p binds to specific regions of COX2 mRNA in vitro. The
labeled RNA probes shown in the schemes to the left were incubated with
varying concentrations of rPet111p and resolved by native PAGE. A, the bind-
ing efficiency of two probes was compared, one spanning the entire 5�-UTR
and the other corresponding to a sequence downstream of the ORF (NSC). DS
marks the position of a conserved dodecameric sequence (38), and the
dashed line indicates the region not present in the mature COX2 (17). B, two
overlapping probes were designed to cover the sequence of the 5�-UTR, and
their interaction with rPet111p was compared. C, the binding efficiency of the
COX2–1–30 probe was compared with that of a probe (COX2–58 –95) repre-
senting a sequence in the beginning of the ORF.

Translational activator Pet111p interacts with COX2 mRNA
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ORF targets, respectively) and share little sequence similarity
was surprising. To account for this observation, one can assume
that Pet111p might harbor two RNA-binding sites, of which
each recognizes one of the two targets. Hypothetically, the pro-
tein could then associate with both targets simultaneously if the
two binding sites worked independently. To test whether this
was the case, we used EMSA to resolve the complexes that were
formed by rPet111p in the presence of both COX2–1–30 and
COX2–58 –95 (Fig. 4D). In the first set of samples, the radiola-
beled probe COX2–1–30 was present at a fixed concentration,
whereas the concentration of COX2–58 –95, which was not
labeled, was gradually increased. Because of the basic nature of
the protein, the electrophoretic mobility of the complexes is
mostly controlled by their charge. Thus, within the range of the
lengths of the RNA probes used in the study, the longer
the RNA associated with rPet111p, the greater the mobility of
the complex. Accordingly, if the COX2–58 –95 probe were to
bind to the radiolabeled COX2–1–30-rPet111p binary com-
plex, the radioactive band of this ternary complex would be
expected to appear between the bands corresponding to the

free RNA and the binary complex. However, we did not observe
a band of the ternary complex either with this set of samples or
in a reciprocal experiment where the radioactive probe COX2–
58 –95 was used at a fixed concentration and the unlabeled
probe COX2–1–30 was present at increasing concentrations
(Fig. 4D). Moreover, each probe appeared to outcompete the
other one when added in excess, with the target in the 5�-UTR
exhibiting a higher affinity to the protein. Thus, our data
suggest that rPet111p can only bind to one RNA target at a
time, and therefore, at least some of the RNA recognition
and/or binding elements in the protein may be involved in
interaction with each of the two targets.

Discussion

Genetic studies in yeast have identified a set of nuclear gene
products that activate the translation of mitochondrial mRNAs
(2–4). One of these factors, Pet111p, is specifically required for
the translation of COX2 mRNA (6) and was suggested to act by
a direct association with the 5�-UTR of the transcript (13).
However, this suggestion has not yet been verified experimen-

Figure 4. rPet111p recognizes two distinct targets in the 5�-end proximal region of COX2 mRNA. A, 5�-32P-labeled COX2–1–30 RNA (0.6 �M) was digested
with RNase I in the absence or presence of rPet111p (0.8 �M). The cleavage products were resolved by denaturing PAGE. The traces represent the distribution
of radioactivity within lanes 2 (blue) and 3 (black). For each RNA fragment 2–29 nt in length, intensities of the corresponding bands in lanes 2 (I0) and 3 (I1) are
plotted as log2(I0/I1). Positions in the RNA, at which the bars in the plot exceeded 55% of the average of all positive-value bars (red line) were considered
protected by rPet111p and are indicated by bold letters in the sequence of COX2–1–30. B, 5�-32P-labeled COX2–58 –95 (0.3 �M) was treated with RNase I in the
absence or presence of rPet111p (0.6 �M), and the digestion products were resolved by PAGE. Digestion with RNase A was performed to generate RNA size
markers (left lane). The traces and the bar plot on the right are as in A. The green and black traces correspond to lanes 2 and 3, respectively. C, a region of the
alignment of the PAR-CLIP reads (Fig. 1) is shown. The positions of the two identified targets of rPet111p are indicated in blue (5�-UTR) and green (ORF). D,
5�-32P-labeled COX2–1–30 was incubated with 0.8 �M rPet111p. The formed complex was resolved from the unbound probe in a native gel. Where indicated,
unlabeled COX2–58 –95 was present in the mixtures (0.2, 0.4, and 0.8 �M). In a reciprocal experiment (right side of the image), the labeled probe was COX2–
58 –95, and the unlabeled competitor was COX2–1–30. The dotted arrow points to the expected position of rPet111p bound to both RNA probes.

Translational activator Pet111p interacts with COX2 mRNA
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tally, nor has a mechanism been proposed by which the pre-
sumed interaction could lead to the activation of translation.
Here, we set out to examine the relationship between Pet111p
and COX2 in greater detail. We found that the protein is indeed
associated predominantly with COX2 in vivo (Fig. 1) and binds
directly to two distinct RNA targets in vitro (Fig. 3). We mapped
the targets to the regions 7–19 (5�-UTR target) and 66 – 86
(ORF target) relative to the transcription start site (Fig. 4, A and
B). Obviously, not all nucleotides within the mapped boundar-
ies may be critical for the specific binding of Pet111p. The
sequences that are actually recognized are expected to be some-
what shorter and may be discontinuous. A comprehensive
mutagenesis analysis is needed to identify the RNA bases that
constitute the actual signals recognized by the protein.

The two identified targets of Pet111p vary in length and do
not contain an apparent common sequence pattern that would
be stringent enough to set these regions apart from the rest of
the mitochondrial RNA. It is not obvious how a single protein
can recognize these two diverse targets. Our EMSA data show
that the protein can only bind to one of the targets at a time (Fig.
4D), which could be either due to a steric overlap of the two
RNA-binding sites or because some elements in the protein are
engaged during the recognition of either target. Alternatively,
Pet111p may undergo structural reorganization to adapt to cer-
tain targets, but not others, by an induced fit mechanism. In this
scenario, the same structural elements may be involved in dif-
ferent modes of specific binding to each of the two targets
depending on the RNA sequence context and the structural
configuration of the corresponding RNA recognition modules
in the protein.

It is currently unclear how binding of Pet111p may promote
the translation of COX2. In general, the protein could modify
the structure of the message, facilitate the recruitment of the
ribosome at the site of initiation, or stabilize the association of
the mRNA with other yet-unknown factors needed for efficient
translation. A recent study has shown that the mitochondrial
ribosome cannot associate with COX2 in �pet111 cells,
whereas binding to other mRNAs is not significantly affected

(23); however, the mechanism behind this effect is unclear. It
has been predicted that the 5�-end proximal region in COX2
may assume the fold shown in Fig. 5A (24). In this structure, a
sequence in the vicinity of the translation initiation codon is
base-paired with the upstream RNA. Remarkably, most of the
upstream sequence involved in the duplex overlaps with the
Pet111p 5�-UTR target mapped in this study. Therefore, bind-
ing of Pet111p would prevent the duplex from forming, thus
making the translation initiation region single-stranded and
accessible to the ribosome. A comprehensive mutagenesis anal-
ysis of the COX2 5�-UTR has revealed a 31-nt region, located
between positions 9 and 39, where substitutions led to a loss of
translation of the mutant mRNA and cellular respiration (19).
Significantly, the Pet111p 5�-UTR– binding target substantially
overlaps with the upstream part of this region (Fig. 5A). Curi-
ously, the reported mutants demonstrated two clearly distinct
phenotypes. Substitutions downstream from position A23 did
not significantly destabilize the mutant mRNAs, but inhibited
their translation. Conversely, a drastic decrease in the mRNA
levels was added to the translational defects when the nucleo-
tides upstream from position C24 were mutated. These latter
mutations alter the Pet111p 5�-UTR target and would be
expected to interfere with the binding of the protein. Because
inactivation of pet111 was reported to cause up to a 10-fold
decrease in levels of COX2 (6), the observed destabilization of
the mutant mRNAs was likely caused by the loss of protection
by Pet111p. The loss of translation resulting from the substitu-
tions (19) and deletions (13) introduced into the 5�-UTR down-
stream from the Pet111p target suggests that a second enhancer
of translation may be present there. This element may function
at the RNA level or serve as a binding site for an additional
translational activator. Taking all of the above considerations
into account, our mapping of the Pet111p 5�-UTR– binding
target is consistent with results of previous genetic, in vivo bio-
chemistry, and structural prediction analysis of the 5�-leader.

The finding that Pet111p contacts COX2 inside the ORF was
surprising, because none of the mRNA-specific yeast mito-
chondrial translational activators were previously reported to

Figure 5. A possible mechanism of activation of COX2 translation by Pet111p. A, a structure formed by the 5�-UTR and a region in the beginning of the ORF
as previously proposed (24) is shown on the left. The blue lettering indicates the UTR target of rPet111p. The region highlighted in pink contains residues
required for respiration (19). B, a previously suggested alternative structure involving the beginning of the ORF is shown on the left (20). The Pet111p ORF target
is shown in green lettering. Deletions or substitutions of certain nucleotides within the sequence highlighted in yellow, either in the WT or 70A�C;72A�U
background, disrupted translation (20). On the right of both panels, it is shown how binding of Pet111p (gray hollow cylinders) to corresponding targets would
prevent the RNA structures from forming, making the region of the start codon (red lettering) single-stranded and available for translation. B, binding of Pet111p
at the ORF target is also expected to interfere with a downstream stem–loop structure. Destabilization of this structure was reported to promote translation of
COX2 (20).
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act outside of the 5�-UTRs. Remarkably, the only known mam-
malian mitochondrial translational activator, TACO1, has
recently been shown to bind selectively to the ORF of COX1
(25). Our data thus indicate that a similar phenomenon may
also exist in yeast, and regulation of yeast mitochondrial trans-
lation may involve binding of activators inside ORFs. Signifi-
cantly, translation of a chimeric mRNA, in which the COX2
ORF was fused to an upstream COX3 5�-UTR sequence, was
possible in the absence of Pet111p (7). Therefore, if the binding
of Pet111p to the ORF target is required for translation in the
WT background, this requirement must be dictated by an ele-
ment present in the COX2 5�-UTR and is bypassed when the
entire leader is replaced. However, the functional significance
of the binding of Pet111p at this site is yet to be confirmed
genetically. Previous work has shown that a positively acting
translation control element is embedded in the region that
encodes the first 14 amino acids of the Cox2p precursor and
that the sequence comprising codons 2– 6 is critical for the
function of this element (20). The sequence of codons 7–10 was
also important for translation when codon 6 was mutated.
Notably, the mapped Pet111p ORF target, which approxi-
mately corresponds to codons 5–11, partially overlaps with this
control element (Fig. 5B). The reported translational and respi-
ratory defects induced by mutations within the first 10 codons
of COX2 may therefore result from weakening the interaction
between Pet111p and its ORF target. Consistently, these defects
were relieved in cells overexpressing Pet111p (20), although an
effect of the overexpression on the interaction of Pet111p with
the 5�-UTR target might have also contributed to the suppres-
sion. The proximal region of the COX2 ORF was suggested to
fold into a structure (20) such that the nucleotides at the site
of translation initiation are base-paired with a downstream
sequence, which is included in the ORF-binding target of
Pet111p (Fig. 5B). Therefore, similar to the mechanism sug-
gested in Fig. 5A, binding of the protein would be expected to
prevent the base pairing of the initiation region, making it avail-
able for association with the ribosome. The two putative struc-
tures shown in Fig. 5 do not appear to be compatible, and thus
the mRNA may alternate between the two states. Simultaneous
binding of two Pet111p molecules at both targets may be nec-
essary to prevent base pairing of the translation initiation
region. In addition, a translation-inhibiting element has been
identified in the sequence comprising codons 15–25 (26), and a
part of this sequence is predicted to form a stem–loop structure
with an upstream region (20) as shown in Fig. 5B. Weakening
the structure by deletion or substitution of the involved nucle-
otides diminished the translation-inhibiting effect of this ele-
ment (20, 26). Importantly, the ORF target of Pet111p partially
overlaps with the sequence of the upstream strand of the stem
of the structure. Therefore, binding of the protein should inter-
fere with the formation of the structure, thereby providing
additional means to promote COX2 translation. Although the
proposed model of translational activation by Pet111p is cer-
tainly speculative, it is remarkable that a very similar mecha-
nism has been shown to facilitate the translation of mRNA in
maize chloroplasts. In this mechanism, binding of PPR10 in the
5�-UTR of ATP-H induces structural remodeling in the initia-

tion region, which liberates the Shine–Dalgarno sequence and
thus enables translation (27).

Based on bioinformatic analysis, Pet111p has been assigned
as a member of the pentatricopeptide repeat (PPR) protein fam-
ily (28). Especially numerous in plant organelles (29), PPR pro-
teins generally function in post-transcriptional RNA metabo-
lism by associating with predominantly single-stranded RNA
targets in a sequence-specific manner (30). Plant PPR proteins
recognize their targets using domains composed of multiple
35–amino acid PPR motifs. The recognition occurs in a modu-
lar mode, at a ratio of one RNA base per one PPR motif, and in
accordance with a set of principles known as the PPR code (31).
Only three Saccharomyces cerevisiae proteins (Aep3p, Dmr1p,
and Pet309p) were found to contain the sequence motifs that
matched the plant PPR pattern (32). Although the general func-
tional profile of a group of 12 additional PPR proteins identified
in yeast (28) appears to be consistent with that of the plant PPR
proteins, the sequence signature of their PPR motifs is evidently
distinct (33). It is therefore not clear whether the yeast PPR
proteins utilize the same mechanistic patterns as those in
plants. Our data indicate that Pet111p, a protein from the yeast
PPR subfamily, can interact with single-stranded RNA directly
and sequence-specifically. However, it remains to be deter-
mined whether this recognition utilizes a PPR code similar to
the one in plants and whether it is modular in nature. To better
understand the function of yeast PPR proteins, more informa-
tion on the corresponding protein–RNA interacting pairs is
needed. Other gene-specific translational activators that are
presumed to selectively interact with targets in the yeast mito-
chondrial mRNAs have been classified as PPR proteins (28).
The approach presented in this work opens a way to mapping
the targets of these proteins with high precision.

Experimental procedures

Oligonucleotides

Synthetic DNA oligonucleotides were purchased from Inte-
grated DNA Technology, and synthetic RNA was from GE
Healthcare Dharmacon and Integrated DNA Technology
(sequences are listed in Table S1). The RNA probes used in the
EMSA and RNase footprinting experiments were 5�-labeled
and gel-purified as described in the supporting information.

PAR-CLIP analysis

PAR-CLIP and data acquisition were performed as described
in the supporting information. Data quality control and map-
ping were performed as described (34). Briefly, sequencing
reads were quality trimmed and mapped to the S. cerevisiae
genome (sacCer3, version 64.2.1) using the short read aligner
STAR version 2.5.2b (35). Coverage plots were generated using
GenomicAlignments (36).

Determination of the mature N terminus of Pet111p

Mitochondria were isolated from yeast expressing tagged
Pet111p as specified in the supporting information. Approxi-
mately 0.3 ml of settled mitochondria were resuspended in 1.2
ml of lysis solution (7 M guanidine HCl, 100 mM NaCl, 15 mM

imidazole, 3 mM �-mercaptoethanol), and the suspension was

Translational activator Pet111p interacts with COX2 mRNA

7534 J. Biol. Chem. (2019) 294(18) 7528 –7536

 at T
hom

as Jefferson U
niversity on M

ay 28, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/cgi/content/full/RA118.005355/DC1
http://www.jbc.org/cgi/content/full/RA118.005355/DC1
http://www.jbc.org/cgi/content/full/RA118.005355/DC1
http://www.jbc.org/cgi/content/full/RA118.005355/DC1
http://www.jbc.org/


sonicated on ice with five 30-s pulses intermitted with 30-s
pauses on a F60 sonic dismembrator (Fisher Scientific). The
lysate was cleared by centrifugation (20,000 � g, 15 min), and
the supernatant was incubated with 20 �l of Ni-IDA–agarose
beads (Gold Biotechnology) in a tumbling tube overnight at
room temperature. The beads were then washed three times
with the lysis solution and two times with water using 1.4
ml/wash. The bound proteins were eluted with 80 �l of 1�
lithium dodecyl sulfate gel loading buffer (Novex, Life Technol-
ogies), a 20-�l sample of the eluate was separated by 4 –12%
lithium dodecyl sulfate–PAGE, and the protein bands were
visualized by Coomassie staining. The band that corresponded
to the tagged Pet111p was identified by PMF as described in the
supporting information. The eluted proteins were separated by
PAGE once again and transferred onto an Immobilon-PSQ
membrane (EMD Millipore) by electroblotting, and the tagged
Pet111p band was cut out from the membrane and submitted
for N-terminal sequencing (Midwest Analytical).

Expression and purification of rPet111p

E. coli XJb(DE3) cells (Zymo Research) were transformed
with plasmid pGD1, and rPet111p was expressed at a tempera-
ture of 12 °C. The protein was purified sequentially on a nickel–
agarose column, by heparin-affinity chromatography, and gel
filtration as described in the supporting information.

Mapping of the 5�-end in mature COX2

DNA primer COX2–96-76 was hybridized to COX2 in a
preparation of total mitochondrial RNA and extended with RT
as detailed in the supporting Experimental procedures.

Electrophoretic mobility shift assays

rPet111p was combined with 5�-32P-labeled RNA probes (0.1
�M) in 10 �l of binding buffer (20 mM Tris�HCl, pH 7.2, 50 mM

NaCl, 5 mM MgCl2, 5% glycerol). Yeast tRNA (Sigma) was
added at a 2-fold molar excess over the protein (or 1 �M in Fig.
4D) to reduce nonspecific binding, and the mixtures were incu-
bated for 20 min at 30 °C. The mixtures were supplemented
with 2 �l of 30% glycerol spiked with xylene cyanol and bro-
mphenol blue and loaded on 8% (37.5:1, acrylamide:bisacryl-
amide) polyacrylamide gels cast in the presence of 1� Tris
borate/EDTA buffer. Electrophoresis was performed at room
temperature in 0.5� Tris borate/EDTA running buffer for
15 min at 175 V. Radioactive bands corresponding to
protein–RNA complexes and unbound RNA were visualized
using storage phosphor screens and a Typhoon 9410 scanner
(GE Healthcare).

RNase footprinting

5�- 32P-Labeled RNA probes were incubated with rPet111p
(where indicated) in 10 �l of binding buffer (specified above) for
20 min at 30 °C. Yeast tRNA (1 and 1.2 �M in the experiments
shown in Fig. 4, A and B, respectively) was present in the mix-
tures. RNase I (New England Biolabs) was then added to a con-
centration of 8 units/ml where indicated, and the mixtures were
incubated for 16 min at 30 °C. RNase A (Qiagen) was used at a
concentration of 0.8 ng/ml where indicated. The reactions were
stopped by mixing them with 10 �l of gel loading buffer (50 mM

EDTA in 95% formamide spiked with xylene cyanol and bro-
mphenol blue) and heating at 95 °C for 5 min. The products of
digestion were separated in gradient thickness (0.4 –1.2 mm)
20% (19:1, acrylamide:bisacrylamide) gels cast with 7 M

urea. The radioactive RNA species were visualized by phos-
phor imaging with a Typhoon 9410 scanner (GE Healthcare)
and quantified using ImageQuant 5.2 software (Molecular
Dynamics).
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