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 2 

SUMMARY 25 

Gram-negative bacteria are intrinsically resistant to drugs, due to their double-membrane 26 

envelope structure that acts as a permeability barrier and as an anchor for efflux pumps. 27 

Antibiotics are blocked and expelled from cells, and cannot reach high enough intracellular 28 

concentrations to exert a therapeutic effect. Efforts to target one membrane protein at a time 29 

have been ineffective. Here, we show that m1G37-tRNA methylation determines the synthesis of 30 

a multitude of membrane proteins via its control of translation at proline codons near the start of 31 

open-reading frames. Decreases in m1G37 levels in Escherichia coli and Salmonella impair 32 

membrane structure and sensitize these bacteria to multiple classes of antibiotics, rendering 33 

them unable to develop resistance or persistence. Codon engineering of membrane-associated 34 

genes reduces their translational dependence on m1G37 and confers resistance. These findings 35 

highlight the potential of tRNA methylation in codon-specific translation to control the 36 

development of multi-drug resistance in Gram-negative bacteria. 37 

 38 

KEYWORDS: membrane barrier, drug efflux, m1G37-tRNA, TrmD, proline codons, resistance, 39 

persistence, tRNAPro 40 

  41 
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Multi-drug resistance of Gram-negative bacteria is a critical and expanding medical challenge. 42 

In many cases, antibiotics are blocked from entry and expelled from cells, and hence cannot 43 

reach high enough intracellular concentrations to exert a therapeutic effect. This problem is due 44 

in large part to the double-membrane structure of the cell envelope of Gram-negative bacteria, 45 

which acts both as a permeability barrier and as a platform for efflux machineries that export 46 

drugs (Payne et al., 2007; Silver, 2011). In previous efforts focusing on targeting one membrane 47 

protein or one efflux pump at a time, resistance mutations were quick to develop (Murakami et 48 

al., 2006). Such mutations are selected upon the antibiotic challenge during therapy, giving rise 49 

to a resistant population (Silver, 2011, 2012). Inhibition of a process that simultaneously controls 50 

the expression of multiple membrane-associated genes would be a more powerful strategy for 51 

enhancing antibiotic efficacy. Such a global mechanism, which has not yet been identified, could 52 

provide a new anti-bacterial strategy to enable multiple drugs to take action, render resistance 53 

less likely, and accelerate bactericidal action.   54 

 55 

The cell envelope of Gram-negative bacteria consists of a plasma inner membrane (IM), a cell 56 

wall, and an outer membrane (OM). The IM is a fluid lipid bilayer, while the cell wall is a rigid 57 

and cross-linked matrix of peptidoglycan that endows the cell with mechanical strength (Holtje, 58 

1998). The OM is made up of phospholipids in the inner leaflet and lipopolysaccharides in the 59 

outer leaflet, forming an asymmetric bilayer that prevents compounds from diffusing into the 60 

periplasm or cytosol, and also expels compounds to the external medium through membrane-61 

bound efflux transporters (Nikaido, 1998). We recently showed that, in addition to its barrier 62 

function, the OM of Escherichia coli confers mechanical stiffness to the cell on par with the cell 63 

wall (Rojas et al., 2018), indicating that robust OM biogenesis is important for cellular 64 

mechanical integrity. The biogenesis of both IM and OM requires extensive integration with 65 

protein components, which also regulate cell-wall synthesis (Typas et al., 2011). Thus, the 66 

production of membrane proteins determines the quality of the entire Gram-negative cell 67 
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envelope; it is essential for establishing a permeability barrier and efflux activity against drugs 68 

and for defining cell shape and stability during cell growth. 69 

 70 

One mechanism for global coordination of protein biosynthesis is via codon-specific translation, 71 

which directly impacts the speed and quality of translation at specific codons and has the ability 72 

to reprogram gene expression for disease development and drug resistance (Rapino et al., 73 

2018). This regulation is distinct from transcriptional regulation via promoters or translational 74 

regulation via ribosome-binding sites. Mechanistically, codon-specific translation is mediated by 75 

post-transcriptional modifications of the tRNA anticodon or adjacent nucleotides. For 76 

membrane-associated genes, the translation of proline (Pro) codons (CCN) is critical, because 77 

Pro is the unique amino acid that is required for the creation of kinks in polypeptides and for the 78 

structure and activity of trans-membrane domains (Schmidt et al., 2016). We previously showed 79 

that the translation of Pro codons, particularly CC[C/U] codons, requires the conserved N1-80 

methylation of G37 on the 3'-side of the tRNA anticodon (Gamper et al., 2015a, b). Without 81 

m1G37, tRNA is highly prone to stalling and +1 frameshifting (Gamper et al., 2015a, b), which 82 

are errors that disrupt the reading frame and prematurely terminate protein synthesis. The 83 

synthesis of m1G37 in bacteria is by the conserved tRNA methyl transferase TrmD, using S-84 

adenosyl-methionine as the methyl donor (Hou et al., 2017) (Figure 1A, B). Depletion of TrmD, 85 

and consequently m1G37-tRNA, accumulates ribosomal frameshifts and leads to cell death 86 

(Gamper et al., 2015a). We found that CC[C/U] codons are prevalent in Gram-negative 87 

membrane-associated genes (Figure 1C), raising the possibility that the m1G37 methylation of 88 

tRNA by TrmD can provide a general mechanism to control the biosynthesis of membrane 89 

proteins.  90 

 91 

Here, we demonstrate that TrmD is a global determinant of membrane biosynthesis in E. coli 92 

and Salmonella enterica serovar Typhimurium (hereafter Salmonella), two major Gram-negative 93 
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pathogens. We show that m1G37 deficiency caused by TrmD depletion disrupts the OM 94 

structure and rigidity, sensitizes E. coli and Salmonella to various classes of antibiotics, and 95 

suppresses their development of resistance or persistence upon antibiotic exposure. 96 

Engineering of the CC[C/U] codon to the less vulnerable CCG codon in membrane-associated 97 

genes reduces the translational dependence on m1G37 and confers drug resistance to bacteria. 98 

We also show that the conservation of m1G37 is required for codon-specific translation of 99 

CC[C/U], and that the methylation cannot be substituted by any other nucleotides. These results 100 

demonstrate that by simultaneously affecting codon-specific translation of Pro in entire classes 101 

of genes encoding membrane-associated proteins, TrmD-mediated methylation of tRNA is a 102 

major determinant of multi-drug resistance in Gram-negative bacteria. 103 

104 
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RESULTS 105 

 106 

m1G37-deficient E. coli and Salmonella have lower levels of membrane proteins 107 

We previously showed that m1G37 has the strongest effect on codon-specific translation of 108 

CC[C/U] at the 2nd codon position of an open reading frame, and that this effect gradually 109 

decreases over the next 15 codons (Gamper et al., 2015a). In an analysis of the E. coli MG1655 110 

genome, we found that the occurrence of CC[C/U] at the 2nd codon position is 2-fold higher for 111 

genes encoding membrane-associated proteins relative to non-membrane-associated proteins 112 

(1.8% vs. 0.8%, n = 4,289, p < 0.05, Fisher’s exact test with Bonferroni correction) (Hou et al., 113 

2017). This enrichment was also observed when considering both the 2nd and 3rd codon 114 

positions (3.7% vs. 1.5%, n = 4,289, p < 0.0005, Fisher’s exact test with Bonferroni correction). 115 

The over-representation of CC[C/U] is also evident in the genome of Salmonella LT2 (Hou et al., 116 

2017). Among genes with CC[C/U] at the 2nd codon position, 31% and 26% encode membrane-117 

associated proteins in E. coli and Salmonella, respectively (Figures 1C and S1). The high 118 

prevalence of Pro near the N-terminus of membrane proteins is consistent with its role in 119 

creating turns of transmembrane domains that cross a lipid bilayer (Yohannan et al., 2004). 120 

 121 

To determine how m1G37 controls codon-specific translation of membrane-associated genes, 122 

we created trmD-KD (knockdown) strains of E. coli and Salmonella. Since trmD is essential for 123 

cell viability (Gamper et al., 2015a) and cannot be deleted, we created each trmD-KD strain by 124 

deleting the chromosomal trmD (Figure S2A-B) while expressing the human counterpart trm5 125 

from a plasmid with an arabinose (Ara)-inducible promoter. We previously showed that Trm5 is 126 

capable of supplying m1G37-tRNA to support bacterial viability (Christian et al., 2004), but that it 127 

is unstable in bacteria and can be removed rapidly (Christian et al., 2013). In the E. coli and 128 

Salmonella trmD-KD strains, the level of human Trm5 upon Ara induction increased with time 129 

and reached a steady state in 1-2 h, but decreased rapidly within 30 min upon Ara removal 130 



 7 

(Figure 1D). Cells with Trm5-produced m1G37 formed colonies up to a 104-fold dilution, whereas 131 

m1G37-deficient cells were not viable even without dilution (Figure 1E). To determine 132 

intracellular m1G37 levels, cells were grown with 0.2% Ara to saturation and diluted 1:100 into 133 

fresh Luria broth (LB) with or without Ara for 4 h, followed by another dilution to OD600 = 0.1 in 134 

fresh LB with or without Ara and grown for 3 h. These serial passages were necessary to 135 

deplete cells of pre-existing m1G37-tRNA (Figure S3A). Primer extension analysis validated that 136 

the UGG isoacceptor of tRNAPro in trmD-KD cells contained m1G37 at 70% and 12% in cultures 137 

with and without Ara (Figure 1F). This pattern was preserved for the GGG isoacceptor (Figure 138 

S3B,C) and was consistent with quantitative mass spectrometry analyses of the UGG 139 

isoacceptor (Figure 1G). 140 

 141 

To determine the effect of m1G37 deficiency on the biosynthesis of membrane proteins, we 142 

used quantitative proteomics to measure protein levels in the membrane fraction of E. coli trmD-143 

KD cells grown with or without Ara. A total of 226 membrane proteins, 47 of which were 144 

associated with the OM, were analyzed by label-free quantification to determine fold-changes 145 

between Ara+ and Ara- conditions. While non-OM proteins were on average up-regulated in the 146 

absence of Ara by 16% (median increase of 20.22 = 1.16), OM proteins were on average down-147 

regulated by 21% (median decrease of 2-0.33 = 0.79) (Figure 2A). Of interest were LolB and 148 

OmpA, responsible for stable anchoring of drug-efflux pumps to the OM (Hayashi et al., 2014; 149 

Tsukahara et al., 2009) and for anchoring the OM to the peptidoglycan cell wall, respectively. 150 

lolB and ompA are enriched with Pro codons relative to the average codon usage in E. coli 151 

protein-coding genes (Figure 2B, lolB: CCN (6.7% vs. 4.3%) and CC[C/U] (2.4 vs. 1.1%) and 152 

ompA CCN (5.5 vs. 4.3%)). This enrichment is specific, because their usage of Leu codons 153 

(CUN), which also require m1G37 for translation, is typical (Figure S3D). The enrichment of Pro 154 

codons in lolB and ompA supports the notion that their decrease in protein levels is correlated 155 

with the poor translation of Pro codons in m1G37-deficient cells. Western blot analysis showed 156 
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that the amount of LolB relative to the cytosolic cysteinyl-tRNA synthetase CysRS (Hou et al., 157 

1991; Lipman and Hou, 1998) in m1G37-deficient cells decreased to 26% in E. coli and to 56% 158 

in Salmonella (Figures 2C and S3E), while relative mRNA levels were unaffected (Figure S3F), 159 

indicating that the reduction in protein levels was due to reduced translation. These data are 160 

consistent with the notion that translation of lolB involves a TrmD-dependent codon at the 2nd 161 

and 4th positions of the E. coli gene and at the 4th position of the Salmonella gene (Figure 1A), 162 

whereas translation of cysS (for CysRS) involves no such codons in the first 16 positions. 163 

Western blot analysis also showed that the amount of OmpA relative to CysRS decreased to 164 

72% in m1G37-deficient E. coli cells (Figure 2D), providing additional support for the notion that 165 

translation of membrane-associated genes that are enriched with Pro codons is sensitive to loss 166 

of m1G37.  167 

 168 

m1G37 deficiency causes membrane damage and reduces OM stiffness 169 

We hypothesized that the reduced biosynthesis of membrane proteins in m1G37-deficient cells 170 

would damage membrane structural integrity. We observed increased intracellular accumulation 171 

in m1G37-deficient bacteria of both the redox sensor AlamarBlue, which becomes fluorescent 172 

inside cells, and the DNA fluorescent stain Hoechst 33342, indicating increased membrane 173 

permeability (Figures 3A, B, S4A). The accumulation of each dye was measured during 174 

exponential growth, and dye exposure was initiated in the presence of carbonyl cyanide m-175 

chlorophenyl hydrazine (CCCP) to inactivate membrane efflux. To validate that AlamarBlue 176 

fluorescence reflected the permeability of the OM, we treated E. coli and Salmonella m1G37+ 177 

cells with sublethal doses of polymyxin B, which binds to lipopolysaccharide in the OM and 178 

permeabilizes the double-membrane envelope. We showed that intracellular AlamarBlue 179 

fluorescence increased as a function of polymyxin B dose (Figure S4B), and that the maximum 180 

increase (4- to 5-fold) at a lethal dose of polymyxin B was in the same range as the observed 181 

increases in m1G37-deficient cells relative to m1G37+ cells (2- to 3-fold, Figure 3A, B). We 182 
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further showed that the intracellular AlamarBlue increase due to m1G37 deficiency was similar 183 

to the increase in E. coli cells expressing a defective OM pore protein relative to the control 184 

(Figure S4C). This defective pore protein was created by mutations in the siderophore 185 

transporter protein FhuA to enlarge the pore size, rendering the OM hyperpermeable to a wide 186 

range of compounds without affecting efflux (Krishnamoorthy et al., 2016).  187 

 188 

To further validate the significance of the AlamarBlue increase due to m1G37 deficiency, we 189 

created proS-KD and cysS-KD strains, in which the essential genes responsible for amino-acid 190 

charging of tRNAPro (proS) and tRNACys (cysS), respectively, were deleted from the 191 

chromosome and cell viability was maintained by Ara-dependent, plasmid-borne expression of 192 

each native gene. The proS-KD strain was a positive control to determine whether the 193 

deficiency of Pro-tRNAPro affected translation of Pro codons in a manner similar to the deficiency 194 

of m1G37, while the cysS-KD strain was a negative control for how depletion of an essential 195 

protein that is unlikely to be involved in OM protein biogenesis would affect membrane 196 

permeability. The relative AlamarBlue increase due to proS depletion (2- to 3-fold) was 197 

comparable to that due to m1G37 deficiency, whereas the relative change due to cysS depletion 198 

was  not significant (<1.3-fold, Figure S4C). Together, these data show that m1G37 deficiency 199 

increases membrane permeability to the same extent as the deficiency caused by a 200 

hyperpermeable pore or by reduced levels of charged tRNA for translation of Pro codons.  201 

   202 

m1G37 deficiency also reduced membrane efflux, as indicated by the increased time required to 203 

pump out 50% of pre-loaded Nile Red dye (from 36 ± 1 to 66 ± 2 s for E. coli and 32 ± 3 to 45 ± 204 

3 s for Salmonella in m1G37-deficient relative to m1G37+ cells, Figure 3C-E). The extensions of 205 

efflux time (1.8- and 1.4-fold for E. coli and Salmonella, respectively) were smaller than that due 206 

to deletion of acrB relative to wildtype (> 4-fold) (Figure S5A, B); this smaller effect is expected, 207 

because m1G37 deficiency reduces but does not eliminate levels of efflux pumps, whereas acrB 208 
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deletion (ΔacrB) eliminates a component of the AcrAB-TolC complex, which is the major efflux 209 

pump responsible for expelling most antibiotics. The reduction in efflux due to m1G37 deficiency 210 

was also observed by monitoring ethidium bromide (Figure S5C, D), which showed an increase 211 

in the efflux time as a function of polymyxin B dose (Figure S5E, F). As expected, the extension 212 

time required for expelling ethidium bromide was smaller compared with the effect of ΔtolC on 213 

the AcrAB-TolC complex (Figure S5C, D). We also used Thioflavin T (ThT) to probe the 214 

membrane potential (Prindle et al., 2015) and confirmed that m1G37 deficiency reduced the 215 

fluorescence of ThT in E. coli and Salmonella (Figure 3F), further supporting our conclusion that 216 

the OM was impaired.  217 

 218 

To determine how m1G37 deficiency affected the cell envelope structure, we measured cellular 219 

mechanical stiffness using an assay that we recently developed and utilized to demonstrate that 220 

the OM makes a surprisingly large contribution to the overall stiffness of the E. coli cell envelope 221 

(Rojas et al., 2018). Perturbation of the OM by chemical agents or genetic mutations caused 222 

large reductions in stiffness and rendered cells susceptible to lysis under oscillatory osmotic 223 

shocks (Rojas et al., 2018). We previously showed that deletion of ompA and lpp and 224 

introduction of a mutant allele of lptD each decreased OM stiffness (Rojas et al., 2018). While 225 

ompA and lpp encode abundant OM proteins, the mutant lptD allele encodes a variant of the 226 

lipopolysaccharide assembly machinery that is known to increase the OM permeability to 227 

antibiotics (Ruiz et al., 2005). We thus hypothesized that the altered OM composition during 228 

m1G37 deficiency would decrease the stiffness of the cell envelope. 229 

 230 

Our assay involves application of force to the cell envelope by subjecting cells to oscillatory 231 

osmotic shocks using a microfluidic device and measurement of the resulting deformations of 232 

the cell envelope (Rojas et al., 2014; Rojas et al., 2018). For small shock magnitudes (100 mM 233 

sorbitol), the plasma membrane essentially remains in contact with the cell envelope (Rojas et 234 
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al., 2014), so that the boundary of the cytoplasm detected from phase-contrast images can be 235 

used to track the envelope contour. The degree to which the envelope deforms, as defined by 236 

the amplitude of the cell-length oscillations in response to oscillatory osmotic shocks, is 237 

inversely correlated with envelope stiffness (Rojas et al., 2018). During m1G37 deficiency due to 238 

growth without Ara for ~4 h, cells grew more slowly and were smaller than cells grown in the 239 

presence of Ara (Figure 3G). The amplitude of response to 100 mM oscillatory osmotic shocks 240 

increased substantially in Ara– cells relative to Ara+ cells (n = 2 experiments with 67-713 cells; 241 

Figure 3G-I), indicating a decrease in envelope stiffness. This increase in amplitude runs 242 

counter to the expectation based on the reduction in cell size alone, whereby the mechanical 243 

expansion of a thin shell under load is predicted to be larger for a cell with a larger radius than 244 

for a shell of the same material and thickness with a smaller radius. In sum, these data suggest 245 

that m1G37 deficiency changes the composition of the cell envelope, resulting in lower load-246 

bearing capacity and higher permeability. 247 

 248 

m1G37 deficiency sensitizes Gram-negative bacteria to multiple antibiotics  249 

We hypothesized that m1G37 deficiency would sensitize Gram-negative cells to antibiotics due 250 

to compromised permeability and mechanics of the cell envelope. We assessed antibiotics with 251 

various mechanisms of action (Silver, 2011), including: the β-lactams ampicillin and 252 

carbenicillin, which target cell-wall biosynthesis; the aminoglycosides kanamycin and 253 

gentamicin, which inhibit protein synthesis; paromomycin, which reduces fidelity of the 30S 254 

ribosomal subunit; the ansamycin polyketide rifampicin, which targets RNA polymerase; and the 255 

quinolone ciprofloxacin, which targets DNA gyrase. This diverse collection of antibiotics 256 

accesses different mechanisms of membrane permeability and efflux pumps, allowing us to 257 

determine the general impact of m1G37 deficiency. We inoculated E. coli and Salmonella at 106 258 

colony-forming units (CFUs)/mL and grew these cells with each antibiotic for 18 h. Defining 259 

growth as an increase in cell density above OD600 of 0.15 for the purpose of determining the 260 
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minimum inhibitory concentration (MIC), we found that m1G37-deficient E. coli and Salmonella 261 

showed at least 2-fold lower MICs relative to controls for all antibiotics (Figures 4A, B, S6A, B). 262 

In most cases, these reductions were in the same range as those reported previously for ΔtolC 263 

cells (Krishnamoorthy et al., 2016), and also in the same range as the reductions in cells treated 264 

with a sublethal dosage of polymyxin B (Figure 4A, B). For example, the fold-changes in the 265 

MICs of ampicillin and carbenicillin between m1G37+ and m1G37-deficient cells of E. coli (2.0- 266 

and 2.7-fold) and Salmonella (2.7- and 3.0-fold) were similar to those between untreated and 267 

polymyxin-treated m1G37+ cells (1.5- and 2.0-fold and 0.8- and 1.0-fold, respectively). This 268 

similarity held generally for all tested antibiotics, indicating that m1G37 deficiency has similar 269 

effects as polymyxin on membrane permeability to antibiotics. To further validate the magnitude 270 

of m1G37 effects on antibiotic sensitivity, we showed that the fold-change in MIC of antibiotics 271 

during m1G37 deficiency was generally larger than the effect of Δefp (Figure S6C), the gene 272 

encoding protein-synthesis elongation factor P, which has a role in antibiotic susceptibility 273 

(Navarre et al., 2010). The broad spectrum of antibiotics exhibiting a reduction in MIC in m1G37-274 

deficient cells indicates that multiple membrane proteins were affected, resulting in a generally 275 

compromised membrane similar to the damage caused by polymyxin B.  276 

 277 

As an additional probe of membrane structure, we tested vancomycin, a linear hepta-peptide 278 

that inhibits cell-wall synthesis (Ruiz et al., 2005). Vancomycin is typically only active against 279 

Gram-positive bacteria, although disruption of the OM in Gram-negative bacteria permits its 280 

passage and action (Shlaes et al., 1989; Young and Silver, 1991). We observed a 2- to 4-fold 281 

reduction in the MIC of vancomycin in m1G37-deficient cells (Figure 4A, B), a 4- to 5-fold 282 

reduction in polymyxin-treated m1G37+ cells (Figure 4A, B), and a 2-fold reduction in Δefp cells 283 

(Figure S6C). These effects further highlight the damage to the OM in m1G37-deficient cells. 284 

 285 
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While we could not quantify the full extent of the effect of m1G37 deficiency on antibiotic 286 

sensitivity, due to the essentiality of TrmD, we were interested in determining whether the OM 287 

damage in m1G37-deficient cells increased intracellular drug concentrations sufficiently to 288 

accelerate bactericidal action. By incubating 106 CFUs of cells with increasing concentrations of 289 

each antibiotic and measuring CFUs/mL over time within the first 24 h of treatment, we 290 

demonstrated that m1G37-deficient cells were killed faster relative to controls. The concentration 291 

of each drug that displayed the strongest effect due to m1G37 deficiency was selected for in-292 

depth analysis (Figure 4C, D). The time-kill kinetics of carbenicillin and ampicillin showed that 293 

the viability of both m1G37+ and m1G37-deficient cells remained relatively stable within 5-7 h of 294 

exposure, after which the viability of m1G37-deficient cells declined while m1G37+ cells regrew. 295 

By contrast, the time-kill kinetics of gentamicin and kanamycin showed a 103- to 104-fold 296 

decrease in viability immediately upon exposure, after which m1G37-deficient cells remained low 297 

in viability up to 24 h while m1G37+ cells recovered. The more robust regrowth of 298 

aminoglycoside-treated cells relative to carbenicillin- or ampicillin-treated cells is likely driven by 299 

the development of adaptive resistance through aminoglycoside-induced down-regulation of 300 

drug uptake and up-regulation of efflux (Mohamed et al., 2012). The presence of m1G37 may 301 

confer adaptive resistance by promoting biosynthesis of high-quality pumps. In the time-kill 302 

kinetics of vancomycin, m1G37 deficiency immediately decreased cell viability upon exposure, 303 

while m1G37+ cells simply increased in number over time.  304 

 305 

Our cysS-KD and proS-KD uptake data (Figure S4C) suggest that the reduced viability of 306 

m1G37-deficient cells was due to translational defects at Pro codons, and not to the nonspecific 307 

loss of an essential gene. Further supporting this conclusion, time-kill kinetics with carbenicillin 308 

and vancomycin revealed that m1G37-deficient proS-KD cells were killed faster and to a greater 309 

extent than cysS-KD cells (Figure 4E, F). To query whether the reduced cell viability during 310 

m1G37 deficiency was due to an unrelated stress response, we determined that m1G37+ and 311 
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m1G37-deficient cells had virtually identical time-kill kinetics when incubated with 2 mM H2O2 312 

(Figure S6E, F), indicating that the expression of genes in response to oxidative stress, unlike 313 

those for biosynthesis of the cell envelope, is not affected by m1G37 deficiency. Thus, m1G37 314 

deficiency has a specific effect on bacterial survival in antibiotic exposure, likely due to the 315 

reduced synthesis of membrane proteins. 316 

 317 

m1G37-deficient cells exhibit reduced resistance and persistence to antibiotics  318 

We hypothesized that the faster antibiotic killing of m1G37-deficient cells would preempt their 319 

ability to develop mutations that confer resistance. We chose a concentration for each drug near 320 

1X MIC for m1G37+ cells and determined the relative frequency of resistance in m1G37-deficient 321 

cells. Log-phase cells were grown on plates containing each antibiotic and the frequency of 322 

resistance was determined by the number of colonies that appeared after three days of 323 

incubation. Consistently across E. coli and Salmonella, analysis of a broad spectrum of 324 

antibiotics showed that m1G37-deficient cells produced significantly fewer resistant colonies 325 

than m1G37+ cells from an inoculum of 105 CFUs (Figure 5A, B). We confirmed that selected 326 

resistant colonies indeed exhibited an increase in MIC (by 3- to 6-fold) to the tested drug (Figure 327 

5C). When we tested each drug at 1X MIC for m1G37+ and m1G37-deficient cells, respectively, 328 

m1G37-deficient cells remained compromised in the frequency of resistance relative to m1G37+ 329 

cells (Figure S6G, H).  330 

 331 

Unlike resistance that arises from genetic mutations upon drug treatment, persistence arises 332 

from noise in gene expression that gives rise to drug tolerance in a subpopulation of isogenic 333 

cells (Brauner et al., 2016). This subpopulation of persisters typically survives for some time, 334 

contributing to the recurrence of chronic infections. Although the mechanisms underlying 335 

persistence are complex, one major pathway is to enhance efflux to pump out the drug (Pu et 336 

al., 2016) while shutting down all other biological processes. We hypothesized that by reducing 337 
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protein synthesis of efflux pumps and OM proteins (Figure 2C, D), m1G37 deficiency would 338 

reduce the frequency of persistence under antibiotic treatment. 339 

 340 

We studied persistence using Salmonella, which showed a greater response in uptake due to 341 

m1G37 deficiency than E. coli (Figure 3A, B) and hence was predicted to manifest a larger effect 342 

on persistence. Salmonella cells were treated with a lethal dosage (2-3X MIC) of gentamicin or 343 

paromomycin, and viability was measured over time after the start of treatment. While untreated 344 

cells maintained viability, drug-treated cells displayed bi-phasic time-kill curves (Figure 5D-F) 345 

that signify a heterogeneous response of persistent and non-persistent sub-populations 346 

(Balaban et al., 2004). The faster phase of the bi-phasic curve represented killing of the 347 

susceptible population, while the slower phase reflected killing of the persistent population. The 348 

greater extent of killing in the faster phase was consistent with the susceptible population being 349 

the larger fraction. After 6 h of treatment, m1G37-deficient cells exhibited a >10-fold reduction in 350 

the frequency of persistence relative to m1G37+ controls, indicating that m1G37 deficiency 351 

compromised Salmonella’s ability to tolerate high drug concentrations. Together, these data 352 

support the notion that, when the cell envelope was disrupted by m1G37 deficiency, more 353 

antibiotics penetrated into and accumulated inside cells to accelerate bactericidal action before 354 

resistance or persistence can develop. 355 

 356 

Codon composition determines the effect of m1G37 methylation 357 

We tested the hypothesis that the reduced synthesis of membrane proteins in m1G37-deficient 358 

cells was due to the poor translation of Pro codons by the unmethylated tRNAPro. We examined 359 

the translation of E. coli lolB, which has a CCC-C sequence at the 2nd codon and a CCC-G 360 

sequence at the 4th codon (Figure 1C). To maintain the natural gene dosage, we changed the 361 

m1G37-dependent CCC at both positions on the chromosome to the less-dependent CCG 362 

codon. We used λ-Red recombination for codon engineering, which left a scar in the genome. 363 
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Western blot analysis of lysates of cells with the scar showed that, while m1G37 deficiency 364 

reduced the translation of the unedited lolB to 89%, it had the opposite effect on the translation 365 

of the edited gene by increasing it to 131% (Figure 6A). Each measurement of lolB translation 366 

was normalized to that of cysS. The increase in lolB translation by single-nucleotide 367 

synonymous changes illustrates the effect of m1G37 on codon-specific translation. 368 

 369 

As a second test, we changed the CCC codon at the 6th position of tolC in Salmonella (Figure 1) 370 

to CCG. This single-nucleotide synonymous change would lessen the translational dependence 371 

on m1G37 relative to the unedited gene, thereby increasing tolC translation and reducing 372 

susceptibility to antibiotics in m1G37 deficiency. We focused on novobiocin, which is cell-373 

permeable but subject to TolC-mediated efflux (Kodali et al., 2005). Survival of m1G37-deficient 374 

cells under novobiocin treatment was 2.7-fold higher when expressing the edited tolC relative to 375 

cells expressing the unedited gene (Figure 6B), supporting the codon-specific effect of m1G37. 376 

The Pro at the 6th position of TolC is conserved among Gram-negative bacteria, and substitution 377 

of Pro with Ala by mutating the CCC codon to GCG reduced the protein to undetectable levels 378 

(data not shown), probably due to membrane mistargeting and destabilization (Masi et al., 379 

2009). These data suggest that the conservation of Pro at the 6th position is critical for TolC 380 

structure and function, and that its incorporation into the protein is regulated at the codon level 381 

by m1G37. 382 

 383 

The importance of m1G37 in the UGG isoacceptor of tRNAPro 384 

E. coli and Salmonella both express three isoacceptors of tRNAPro (http://trna.bioinf.uni-385 

leipzig.de/), all of which contain m1G37. Of the three, the UGG isoacceptor is the most sensitive 386 

to loss of m1G37 (Gamper et al., 2015a). This isoacceptor is capable of reading all Pro codons 387 

via an additional cmo5U34 modification at the wobble position (Nasvall et al., 2004), and it is 388 

also the only one that is required for cell growth and survival. We tested whether an alternative 389 
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nucleotide could substitute for m1G37 in the UGG tRNA to eliminate the need for trmD. We 390 

created a derivative of E. coli MG1655 that lacked the tRNA gene on the chromosome and 391 

expressed the isoacceptor from a plasmid to maintain viability. This strain also lacked the gene 392 

for the GGG isoacceptor on the chromosome, so that the translation of CC[C/U] was completely 393 

dependent on the plasmid-borne UGG tRNA. While we designed strains with all three non-G 394 

substitutions on the plasmid-borne tRNA, we only recovered the C37 variant (data not shown), 395 

suggesting that the A37 and U37 variants were lethal. We previously showed that the C37 396 

variant is not methylated by TrmD (Christian et al., 2004). 397 

 398 

The strain expressing the C37 variant of the UGG tRNA was severely defective in growth 399 

relative to the G37 version (Figure 6C), even though trmD was intact. Cells expressing the C37-400 

tRNA accumulated more Hoechst dye (Figure 6D), indicating the disruption of the membrane 401 

barrier. Cells expressing the C37-tRNA were also more sensitive to antibiotic killing than cells 402 

expressing the G37 version, with MIC decreases of 8.2-fold for gentamicin and 4.0-fold for 403 

vancomycin (Figure 6E). These decreases for two unrelated antibiotics suggest that the 404 

envelope structure is disrupted in cells expressing the C37-tRNA. Expression of the C37-tRNA 405 

led to more rapid killing upon exposure to gentamicin or vancomycin (Figure 6F). Collectively, 406 

these data indicate that C37-tRNA is unable to support the biosynthesis of membrane proteins 407 

at the levels of m1G37-tRNA, and that the single G37C substitution is sufficient to cause general 408 

damage to the cell envelope, leading to faster antibiotic killing. Thus, m1G37 methylation by 409 

TrmD is necessary for the function of UGG tRNA and cannot be replaced. 410 

411 
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DISCUSSION 412 

 413 

Multi-drug resistance among Gram-negative bacteria is a major human health problem. We 414 

report here the discovery of m1G37 methylation of tRNA as a global determinant of multi-drug 415 

resistance in E. coli and Salmonella. The mechanism of this methylation is at the codon level 416 

during the elongation phase of protein synthesis, rather than at the initiation of transcription or 417 

translation. Because protein synthesis is the last step of gene expression in a highly energy-418 

demanding process, the control of its speed and quality at individual codons provides enormous 419 

capacity to influence the proteome of a cell. The m1G37 methylation is present in all 420 

isoacceptors of Pro, two isoacceptors (GAG and CAG) of Leu, and one isoacceptor (CCG) of 421 

Arg. The complete association of m1G37 with tRNAPro species emphasizes its ability to regulate 422 

translation of genes enriched with Pro codons (particularly the CC[C/U] codons), which include 423 

many Gram-negative genes encoding OM proteins. With few exceptions, most of these genes 424 

are not operon-organized and cannot be simultaneously regulated by transcription or translation 425 

initiation. Instead, their dependence on translation of Pro codons to generate transmembrane 426 

domains provides a common thread that unites them under the control of m1G37 methylation. 427 

Our data support a model in which m1G37 ensures robust biosynthesis of Gram-negative OM 428 

membrane proteins to produce an effective envelope barrier and efflux activity, which confers 429 

multi-drug resistance, whereas m1G37 deficiency reduces the levels of OM proteins, thereby 430 

permeabilizing the OM structure and sensitizing cells to antibiotic killing (Figure 7A). While 431 

m1G37 deficiency does not act on all genes for membrane proteins, the effects are sufficiently 432 

widespread (e.g. lolB, ompA, and tolC) and impactful to accelerate bactericidal action of 433 

antibiotics and to halt resistance or persistence upon antibiotic exposure. Our data are generally 434 

consistent across E. coli and Salmonella, and are likely applicable to a broad spectrum of Gram-435 

negative pathogens, including Pseudomonas aeruginosa, Yersinia pestis, Serratia marcescens, 436 

and Shigella dysenteriae, in which CC[C/U] codons are widely present near the start of 437 
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membrane-associated genes (Figure S7). Strikingly, the CC[C/U] codon at the 6th position of 438 

tolC is conserved among -proteobacteria (Figure 7B), indicating that the efflux activity of the 439 

gene and multi-drug resistance of these Gram-negative bacteria is determined by m1G37. 440 

 441 

m1G37 is distinct from the >100 post-transcriptional modifications that have been associated 442 

with tRNA to date (http://modomics.genesilico.pl/). Crucially, m1G37 is both essential and is 443 

conserved across all three kingdoms of life (Bjork et al., 2001). In bacteria, where m1G37 is 444 

synthesized by TrmD, its level is stable across various growth phases (Gamper et al., 2015a). 445 

Even when E. coli cells are deep in stationary phase, when glucose and all other nutrients are 446 

depleted, m1G37 levels remain at ~100% (Gamper et al., 2015a). By contrast, levels of most 447 

tRNA post-transcriptional modifications are variable depending on cellular conditions. The 448 

synthesis of m1A58, required for tRNA translation in eukaryotes, is subject to demethylation 449 

during glucose deprivation (Liu et al., 2016). The formation of s4U8 in bacteria is induced by 450 

near-UV radiation (Favre et al., 1971) and that of cmo5U34 is activated by hypoxia (Chionh et 451 

al., 2016). The formation of m5C34 in yeast is induced by oxidative stress (Chan et al., 2012) 452 

and that of mcm5U34 and mcm5s2U34 is by alkylation damage (Begley et al., 2007). The 453 

stability of m1G37 levels emphasizes the potential of targeting TrmD for antibacterial therapies. 454 

 455 

TrmD is a high-priority antibacterial target (White and Kell, 2004). Besides its essentiality for 456 

bacterial growth and survival (Gamper et al., 2015a), TrmD is broadly conserved among 457 

bacterial species, has a methyl-donor binding site for drug targeting, and is fundamentally 458 

distinct from its human counterpart Trm5 in structure and mechanism (Christian et al., 2004; 459 

Christian and Hou, 2007; Christian et al., 2010; Christian et al., 2016; Lahoud et al., 2011; 460 

Sakaguchi et al., 2012; Sakaguchi et al., 2014), enabling the development of bacteria-selective 461 

compounds. However, while pharmaceutical companies have attempted to target TrmD, 462 

progress has stalled, because the isolated inhibitors have failed to overcome the OM barrier and 463 
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efflux activity (Hill et al., 2013). This obstacle resonates with the major challenge that confronts 464 

current antibacterial discovery – the inability to make compounds that penetrate bacteria, 465 

especially Gram-negative species (Tommasi et al., 2015). Our finding that TrmD is a global 466 

determinant of the biosynthesis of Gram-negative membrane proteins provides new insight into 467 

how to address this problem. 468 

 469 

To target TrmD, we suggest exploiting its ability to control the translation of CC[C/U] in 470 

membrane-associated genes. The CCC codon at the 6th position of tolC is an example, which is 471 

conserved among -proteobacterial pathogens and is required for protein stability, acting as an 472 

Achilles heel that is required for efflux activity of tolC but is also subject to regulation by TrmD 473 

for translation. While the AcrAB-TolC pump exports a wide range of antibiotics (Li et al., 1995; 474 

Okusu et al., 1996), it does not act on gentamicin-like aminoglycosides (Edgar and Bibi, 1997). 475 

Thus, primary inhibitors of TrmD should be gentamicin-like molecules, capable of entering cells 476 

without being expelled by AcrAB-TolC. Once inside cells, these inhibitors can target TrmD and 477 

reduce the synthesis of TolC, as well as many other membrane proteins and efflux pumps that 478 

depend on TrmD for translation. By targeting TrmD while exerting collateral damage on the cell 479 

envelope, primary inhibitors can destabilize the membrane barrier to allow secondary inhibitors 480 

with distinct mechanisms of action to enter cells and function. In this two-tiered strategy, 481 

accelerated bactericidal action should reduce the likelihood of resistance and persistence and 482 

improve the efficiency of antibacterial treatments, yielding a general strategy for mitigating 483 

bacterial multi-drug resistance. This study demonstrates that tRNA methylation events such as 484 

m1G37 have broad effects on cellular physiology and membrane biology, which can be exploited 485 

for novel drug discovery. 486 

487 
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STAR METHODS 488 

Detailed methods are provided in the online version of this paper and include the following: 489 

 • Key resources tables 490 

 • Contact for reagent and resource sharing 491 

 • Methods details 492 

   Construction of strains 493 

   MS analysis of membrane proteomes 494 

   Western blotting 495 

   Primer-extension analysis of m1G37 496 

   LC-MS/MS analysis of m1G37 497 

   Quantification of lolB mRNA with a YFP reporter 498 

   AlamarBlue accumulation assay 499 

   Hoechst accumulation assay 500 

   Nile Red efflux assay 501 

   Ethidium bromide efflux assay 502 

   Thioflavin T fluorescence assay 503 

   Imaging in microfluidic devices 504 

   Cell tracking and analysis 505 

   Minimal inhibitory concentration (MIC) measurements 506 

   Time-kill analyses 507 

   Resistance analyses 508 

   Persistence analyses 509 

   Codon engineering  510 

 • Quantification and statistical analyses 511 

 • Data and software availability 512 
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FIGURE LEGENDS 541 

 542 

Figure 1: m1G37-tRNA is important for expression of membrane-associated genes. 543 

A) TrmD (PDB: 1UAK) synthesizes m1G37-tRNA. 544 

B) Translation of CCC codon requires m1G37-tRNAPro to suppress +1 frameshifts at the P-545 

site. 546 

C) Gram-negative genes for membrane-associated proteins often contain CC[C/U] codons 547 

(red) near the start of the ORF. Five examples from E. coli (Ec) and Salmonella enterica 548 

(Se) are shown. 549 

D) Western blots of trmD-KD cells showed that human Trm5 is unstable upon removing the 550 

inducer Ara. Overnight cultures with 0.2% Ara were diluted 1:100 into fresh LB in Ara+/- 551 

conditions. Cells were sampled over time and levels of Trm5 and CysRS were 552 

determined using antibodies. 553 

E) Expression of trm5 is required for viability of trmD-KD cells. Overnight cultures in LB with 554 

0.2% Ara were maintained in a viable state by expression of the plasmid-borne PBAD-555 

controlled human trm5. Cells were serially diluted and spotted on LB plates with or 556 

without 0.2% Ara. Growth was assayed after overnight incubation at 37 °C. 557 

F) Primer extension analysis of of m1G37 in tRNAPro/UGG. Cells were prepared as in (D), 558 

diluted after 5 h to OD600 = 0.1 in fresh LB (Ara+/-), incubated for another 2 h at 37 °C, 559 

and total small RNA was purified. (Top) Primer extension was blocked at m1G37 in cells 560 

grown with Ara+ (+), whereas the primer read through to nucleotide C1 in cells grown 561 

without Ara (Ara–). (Bottom) m1G37 levels are shown as mean ± standard error of the 562 

mean (SEM), n = 3. Welch’s t-test: **p < 0.05, ***p < 0.01. 563 

G) Mass spectrometry analysis of m1G37 levels in tRNAPro/UGG. Cells were prepared as in 564 

(D) and the tRNA was isolated by affinity purification. m1G37 levels are shown as mean 565 

± SEM, n = 3. The fraction of m1G among total Gs in the tRNA was 0.055, representing 566 
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~100% methylation as compared to the theoretical value (one m1G among 25 Gs = 0.04, 567 

Figure S3B). Welch’s t-test: **p < 0.05, ***p < 0.01.   568 

See also Figures S1 and S2. 569 

 570 

Figure 2: m1G37 deficiency in E. coli and Salmonella affects cell viability. 571 

A) Quantitative mass spectrometry analysis of membrane proteins in E. coli trmD-KD cells 572 

isolated from Ara– and Ara+ conditions. The label-free quantification intensity is 573 

compared to the signal of log2 (fold-change) (Ara–/Ara+). OM proteins are plotted in 574 

black with a vertical line indicating the median of -0.33 (equivalent to a decrease of 575 

21%), while non-OM proteins are plotted in blue with a vertical line showing the median 576 

of 0.22 (equivalent to an increase of 16%). p < 0.001 by a Kolmogorov-Smirnov analysis.  577 

B) Frequency of Pro codons CCN (top) and CC[C/U] (bottom) in genes whose OM proteins 578 

are reduced in Ara– vs. Ara+ in (A). Each frequency is compared to the average 579 

frequency of respective Pro codons in E. coli protein-coding genes.  580 

C,D) m1G37 deficiency decreased LolB levels (C) to 26% in E. coli and to 56% in 581 

Salmonella, and decreased OmpA levels in E. coli to 72% (D) in Western blots (top). 582 

Overnight cultures of trmD-KD cells were diluted 1:100 into fresh LB with or without 0.2% 583 

Ara and grown for 4 h at 37 °C. Cells were inoculated into fresh LB in Ara+/- conditions 584 

for another 3 h. Data and error bars represent mean  SD, n = 4.  585 

See also Figure S3. 586 

 587 

Figure 3: m1G37 deficiency weakens the cell envelope. 588 

A,B) E. coli (A) and Salmonella (B) trmD-KD cells in m1G37 deficiency (m1G37−) show 589 

increased membrane permeability relative to m1G37+ cells. Cells were grown as in 590 

Figure 2C and the intracellular accumulation of AlamarBlue in m1G37+ (Ara+, blue) and 591 

m1G37-deficient (Ara–, red) conditions was monitored in the presence of CCCP. Levels 592 
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of intracellular dye accumulation were normalized by OD600. Data and error bars are 593 

mean ± SD, n = 3. 594 

C-E) E. coli (C) and Salmonella (D) trmD-KD cells showed reduced Nile Red efflux in 595 

m1G37− vs. m1G37+ conditions. Cells pre-loaded with Nile Red were de-energized with 596 

CCCP for 100 s, followed by addition of 50 mM glucose (Glc) to activate efflux, and the 597 

time course of Nile Red efflux was monitored for 200 s in cells grown in Ara+/- 598 

conditions. The time required to efflux 50% pre-loaded Nile Red (tefflux 50%) was longer for 599 

m1G37− relative to m1G37+ cells (E). The lack of efflux in m1G37+ cells in the presence 600 

of CCCP were negative controls. Data and error bars are mean ± SD, n > 3.  601 

F) Membrane potential was reduced in m1G37− vs. m1G37+ cells as measured by ThT 602 

fluorescence. E. coli and Salmonella trmD-KD cells were inoculated in LB from a 1:100 603 

dilution of an overnight culture without or with 0.2% Ara and grown for 4 h at 37 °C, 604 

followed by dilution in LB in Ara+/- conditions to OD600 of 0.1 and grown for 3 h at 37 °C. 605 

ThT fluorescence was normalized by OD600. Data and error bars are mean ± SD, n > 3. 606 

G) The population-averaged length of the cell envelope during 100-mM oscillatory osmotic 607 

shocks was shorter in Ara– (red) than Ara+ (blue) E. coli cells. Data are mean ± SD, n = 608 

3. Inset: Phase-contrast microscopy showed that E. coli trmD-KD cells were smaller in 609 

m1G37− (red) relative to m1G37+ (blue) conditions. Scale bars: 2 µm.  610 

H) The fractional extension of the cell envelope was larger in m1G37− relative to m1G37+ 611 

cells. The extension was calculated as (l - lav)/l, where l is the effective population-612 

averaged envelope length and lav is the time-averaged value of l using the period of the 613 

oscillatory cycles as an averaging window. Data are mean ± SD, n = 3. 614 

I) The amplitude of length oscillations in (H) averaged over oscillatory cycles was larger in 615 

m1G37− relative to m1G37+ cells, averaged over oscillatory cycles. Data and error bars 616 

are mean ± SD from n > 67 cells. ***: p < 0.0001 by Student’s t-test. In a replicate 617 

experiment, the ratio of the amplitude of length oscillations between m1G37+ and 618 
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m1G37− cells measured after sufficient m1G37 depletion to reduce growth rate to < 0.2 619 

h-1 was 1.43 (n > 609 cells).  620 

See also Figures S4 and S5. 621 

 622 

 623 

Figure 4: m1G37 deficiency sensitizes trmD-KD cells to multiple antibiotic classes. 624 

A,B) m1G37− cells had at least 2-fold lower MICs than m1G37+ cells. The fold-decrease in 625 

MIC of each antibiotic was calculated for E. coli (A) and Salmonella (B) trmD-KD cells as 626 

the ratio of the MIC in m1G37+ and m1G37− cells (red) and was compared with the 627 

relative decrease of m1G37+ cells upon treatment with polymyxin B (PMB) at 0.25X MIC 628 

(blue). Overnight cultures were inoculated into fresh LB at 106 CFUs/mL and incubated 629 

with an antibiotic in serial dilutions. After 18 h of incubation at 37 °C, cell densities lower 630 

than OD600 = 0.15 were scored as no growth. Fold-changes are taken from Figure S6A, 631 

where data and errors are mean ± SD, n > 4. Amp, ampicillin; Cbc, carbenicillin; Rif, 632 

rifampicin; Kan, kanamycin; Gen, gentamicin; Par, paromomycin; Cip, ciprofloxacin; Van, 633 

vancomycin. 634 

C,D) Time-kill analyses of E. coli (C) and Salmonella (D) trmD-KD cells indicate that 635 

m1G37+ cells (blue) recovered from antibiotic exposure, but that m1G37− (red) cells did 636 

not. Overnight cultures (106 CFUs/mL) were inoculated into fresh LB with an antibiotic at 637 

the indicated concentration and grown at 37 °C. Data and error bars show mean ± SD, n 638 

> 3. 639 

E,F) Percent survival of m1G37− E. coli trmD-KD cells upon exposure to 25 µg/mL 640 

carbenicillin (E) or 256 µg/mL vancomycin (F), showing a decrease in survival 641 

comparable to proS-KD cells but faster and to a greater extent compared with cysS-KD 642 

cells. Data and error bars show mean ± SD, n > 3.  643 

 See also Figure S6. 644 



 28 

 645 

Figure 5: m1G37 deficiency decreases resistance and persistence to antibiotic treatment. 646 

A-C) Resistance arises less frequently in m1G37− (red) E. coli (A) and Salmonella (B) trmD-647 

KD cells than in m1G37+ (blue) cells. An overnight culture of cells at 105 CFUs was 648 

plated onto an LB agar plate containing the indicated concentration of gentamicin (Gen), 649 

kanamycin (Kan), ampicillin (Amp), or vancomycin (Van). Each concentration was near 650 

1X MIC for m1G37+ cells. Resistant colonies were counted after incubation at 37 °C for 3 651 

days. Mutants were verified to have an increase in MIC to the respective antibiotic (C). 652 

Data and error bars are mean ± SD, n = 3. Welch’s t-test: *p < 0.1, **p < 0.05, ***p < 653 

0.01. 654 

D-F) Persistence of Salmonella trmD-KD cells, showing CFUs/mL over time (left) and the 655 

average CFUs/mL at 6 h post-treatment in m1G37+ and m1G37− conditions (right). 656 

Untreated Salmonella trmD-KD cells had similar CFUs/mL in the two conditions (D), 657 

while persistence arose more frequently in m1G37+ than m1G37– cells treated with 20 658 

µg/mL Gen (3.7X and 8.5X MIC for m1G37+ and m1G37– conditions) (E) and with 100 659 

µg/mL paromomycin (Par; 2.7X and 10.7X MIC for m1G37+ and m1G37– conditions) (F). 660 

An overnight culture in LB with 0.2% Ara was diluted 1:100 into fresh LB with or without 661 

0.2% Ara and incubated at 37 °C for 3 h. Cells were treated with water (no drug), Gen or 662 

Par for 0, 1, 2, 4, and 6 h, collected, washed, and plated on LB with Ara. Horizontal lines 663 

on the right represent the median, n = 5. Mann-Whitney U test: **p < 0.05, ***p < 0.01. 664 

 665 

Figure 6: m1G37-tRNA is required for translation of CC[C/U] codons. 666 

A) Western blot analysis showed that m1G37– (red) E. coli trmD-KD cells had lower lolB 667 

expression relative to cysS from the native gene than m1G37+ (blue) cells, but higher 668 

expression from the codon-engineered gene. Data and error bars are mean ± SD, n = 6. 669 

Welch’s t-test: **p < 0.05. 670 
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B) m1G37– Salmonella trmD-KD cells survived better in novobiocin treatment when 671 

expressing the engineered CCG codon at the 6th position of tolC than when expressing 672 

the natural CCC codon. Cells were grown in the presence of 12.5 µg/mL novobiocin for 673 

24 h and the fold-change in CFUs relative to t = 0 was compared. One sample t-test: *p 674 

< 0.1, n = 5. 675 

C) E. coli cells expressing C37-tRNAPro/UGG (red) grew poorly compared to cells expressing 676 

the G37 version (blue). Data and error bars are mean ± SEM, n = 3. 677 

D) Cells expressing C37-tRNAPro/UGG (red) accumulated more Hoechst 33342 dye than cells 678 

expressing G37-tRNAPro/UGG (blue). Data and error bars are mean ± SEM, n = 3. 679 

E) Cells expressing C37-tRNAPro/UGG (red) showed lower MICs than cells expressing G37-680 

tRNAPro/UGG (blue). Data and error bars are mean ± SEM, n = 3. Welch’s t-test: **p < 681 

0.05, ***p < 0.01. 682 

F) Cells expressing C37-tRNAPro/UGG (red) died faster than cells expressing G37-tRNAPro/UGG 683 

(blue) after exposure to gentamicin or vancomycin. Data and error bars are mean ± 684 

SEM, n = 3. 685 

 686 

Figure 7: m1G37-dependent regulation of bacterial multi-drug resistance. 687 

A) Gram-negative membrane-associated genes are enriched with CC[C/U] codons, which 688 

depend on TrmD synthesis of m1G37-tRNA for translation. In the m1G37+ condition 689 

(top), translation of CC[C/U] is active to establish a robust envelope barrier and efflux 690 

activity that confers multi-drug resistance. In the m1G37-deficient condition (m1G37–, 691 

bottom), translation of CC[C/U] is impaired, decreasing the barrier and efflux activity, 692 

permitting intracellular accumulation of multiple drugs, accelerating bactericidal action, 693 

and inhibiting the development of resistance and persistence. 694 

B) The tolC gene is conserved with the CC[C/U] codon at the 6th position among many 695 

Gram-negative -proteobacterial pathogens.  696 
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See also Figure S7. 697 

698 
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Key Resources Table 870 

 871 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal anti-LolB antibodies 
(Matsuyama et al., 

1997) 
N/A 

Rabbit polyclonal anti-CysRS antibodies This paper N/A 

Rabbit polyclonal anti-TrmD antibodies (Li and Bjork, 1999) N/A 

Rabbit polyclonal anti-hTrm5 antibodies Sigma-Aldrich 
Cat.#SAB2102581; 

QC18187 

Rabbit polyclonal anti-OmpA antibodies (Tani et al., 1990) N/A 

Goat polyclonal anti-rabbit IgG antibodies peroxidase 

conjugate 
Sigma-Aldrich Cat. #A0545 

Bacterial and Virus Strains  

Escherichia coli strain K-12 substrain MG1655 ATCC 700926 

E. coli strain BW25113 
The Coli Genetic Stock 

Center (CGSC) 
CGSC#: 7636 

E. coli ΔacrB CGSC JW0451-2 

E. coli Δefp CGSC JW4107-1 

E. coli ΔtolC CGSC JW5503-1 

Salmonella enterica serovar Typhimurium strain LT2 ATCC 700720 

Bacteriophage P1vir Goulian lab collection N/A 

Bacteriophage P22 ATCC 97540 

Chemicals, Peptides, and Recombinant Proteins 

L-(+)-arabinose Acros Organics Cat. #365181000 

D-(+)-glucose MG Scientific Cat. #MAL4912 

EcoRI New England BioLabs Cat. #R0101S 
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PstI New England BioLabs Cat. #R0140S 

PfuUltraII fusion HS DNA polymerase Agilent Technologies Cat. #600670 

Nuclease P1 Sigma-Aldrich Cat. #N8630 

Alkaline phosphatase Sigma-Aldrich Cat. #P5931 

1-methylguanosine (QQQ standard) Boc Sciences Cat. #2140-65-0 

Guanosine (QQQ standard) Sigma-Aldrich Cat. #G6752 

[γ-32P]-ATP PerkinElmer Cat. #NEG002A 

T4 polynucleotide kinase New England Biolabs Cat. #M0201 

AlamarBlue Dye Invitrogen Cat. #DAL1025 

Hoechst 33342 (H33342) Sigma-Aldrich Cat. #B2261 

Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) Sigma-Aldrich Cat. #C2759 

Ethidium bromide Sigma-Aldrich Cat. #E7637 

Nile Red Acros Organics Cat. #415711000 

Thioflavin T Sigma-Aldrich Cat. #T3516 

Sorbitol Sigma-Aldrich Cat. #S1876 

Ampicillin Fisher Scientific Cat. #BP1760 

Carbenicillin Fisher Scientific Cat. #BP2648 

Chloramphenicol Gold Biotechnology Cat. #G-105 

Ciprofloxacin Sigma-Aldrich Cat. #17850 

Gentamicin Gold Biotechnology Cat. #G-400 

Kanamycin Gemini Bio-products Cat. #400-114P 

Novobiocin Sigma-Aldrich Cat. #N1628 

Paromomycin Sigma-Aldrich Cat. #P5057 

Polymyxin B Sigma-Aldrich Cat. #P4932 

Rifampicin Sigma-Aldrich Cat. #R3501 

Vancomycin Sigma-Aldrich Cat. #SBR00001 

Critical Commercial Assays 
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SuperSignal West Pico Chemiluminescent Substrate Thermo Fisher Scientific Cat. #34080 

Experimental Models: Organisms/Strains 

E. coli BL21(DE3) trmD-KD (Gamper et al., 2015a) N/A 

E. coli MG1655 trmD-KD This paper N/A 

Salmonella enterica serovar Typhymurium LT2 trmD-

KD 
This paper N/A 

E. coli MG1655 cysS-KD This paper N/A 

E. coli MG1655 proS-KD This paper N/A 

E. coli proM-KD C37-UGG tRNA This paper N/A 

E. coli trmD-KD codon-engineered lolB This paper N/A 

Salmonella trmD-KD codon-engineered tolC This paper N/A 

Oligonucleotides 

Oligo DNA primers for strain construction, plasmid 

construction, codon engineering, primer extension 

and affinity tRNA purification 

Table S1 N/A 

Recombinant DNA 

pKD4 CGSC CGSC #7632 

pKD46 CGSC CGSC #7634 

PCP20 CGSC CGSC #7629 

pZS2R (Kelsic et al., 2015) N/A 

pACYC-araC-PC-PBAD-human trm5 (Gamper et al., 2015a) N/A 

pACYC-araC-PC-PBAD-Ec cysS-His-deg This paper N/A 

pACYC-araC-PC-PBAD-Ec proS-His-deg This paper N/A 

pKK223-3 E. coli G37-UGG tRNA This paper N/A 

pKK223-3 E. coli C37-UGG tRNA This paper N/A 

pZS2R-PlolB-YFP This paper N/A 

Software and Algorithms 
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MaxQuant v. 1.5.3.30 (Tyanova et al., 2016) 

http://www.biochem.m

pg.de/5111795/maxqu

ant 

tRNA MS analysis software v.B.07.00 

MassHunter 

Workstation, qualitative 

analysis 

N/A 

Image Lab v. 6.0 BIO-RAD 

http://www.bio-

rad.com/en-

us/product/image-lab-

software 

ImageJ v. 1.51 NIH https://imagej.nih.gov 

Felix32 
Photon Technology 

International 
N/A 

µManager v. 1.4 (Edelstein et al., 2014) N/A 

MATLAB 2016b MathWorks 

https://www.mathwork

s.com/products/matlab

.html 

Other 

NucleoSpin Gel and PCR Clean-up Macherey-Nagel Cat. #740609 

Gibson Assembly Master Mix New England BioLabs Cat. #E2611L 

MicroPulser Electroporator BIO-RAD Cat. #1652100 

NucleoBond AX 2000 Macherey-Nagel Cat. #740525 

Impact II Qtof Mass Spectrometer Bruker Daltonics N/A 

0.22-µm filter Millipore SLGV004SL 

6410 QQQ triple-quadrupole LC mass spectrometer Agilent N/A 

Immobilon-P PVDF Membrane Millipore IPVH00010 

Bransonic 1210 Ultrasonic Cleaner Branson N/A 
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Chemi-Doc XRS+ System BIO-RAD Cat. #1708265 

Typhoon IP Imaging system GE Healthcare N/A 

Infinite M200 PRO plate reader Tecan N/A 

Black opaque 96-well microplate Greiner Bio-One Cat. #655077 

Transparent sealing film Excel Scientific Cat. #STR-SEAL-PLT 

Synergy H1 Hybrid Multi-Mode Reader BioTek N/A 

Quartz cuvette Starna Cells Cat. #3-Q-10 

QuantaMaster 220 spectrofluorometer 
Photon Technology 

International 
N/A 

Microfluidic perfusion plates CellASIC Cat. #B04a 

ONIX microfluidic platform CellASIC N/A 

Nikon Eclipse Ti-E inverted fluorescence microscope Nikon N/A 

DU885 electron multiplying charged coupled device 

camera 
Andor N/A 

Active-control environmental chamber Haison Technology N/A 

 872 

873 
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Methods Details 874 

 875 

Strain constructions 876 

The Escherichia coli MG1655 trmD-KD (E. coli trmD-KD) strain was made via P1 transduction of 877 

E. coli K-12 MG1655, using phage lysate prepared from an E. coli BL21(DE3) trmD-KD strain 878 

(Gamper et al., 2015a, b). The Salmonella enterica serovar Typhymurium LT2 trmD-KD 879 

(Salmonella trmD-KD) strain was made using the λ-Red recombinase system (Datsenko and 880 

Wanner, 2000). A kanamycin resistance marker (kanR) was amplified from pKD4 using primers 881 

in Table S1 and purified using a PCR clean-up kit (Macherey-nagel). Salmonella LT2 cells were 882 

transformed with the λ-Red recombinase plasmid pKD46 and also with a pACYC-araC-PC-PBAD-883 

human trm5 that encodes human trm5 under the arabinose (Ara)-controlled PBAD promoter and 884 

the repressor araC under the PC promoter. Salmonella cells were grown with expression of λ-885 

Red recombinase, harvested in mid-log phase, and made electro-competent after two washes 886 

with cold 10% glycerol. Cells were electroporated with the indicated PCR-amplified and purified 887 

fragment using MicroPulser Electroporator (BIO-RAD), and cells exhibiting kanR were analyzed 888 

for marker insertion to the chromosomal trmD locus by PCR using primers in Table S1. Insertion 889 

was confirmed via sequencing (data not shown). After overnight growth at 43 °C to remove 890 

pKD46, cells were transformed with the FLP-recombinase plasmid pCP20 at 30 °C and removal 891 

of the kanR marker and the remaining ~100 bp scar sequence was confirmed via PCR and 892 

subsequent sequencing (data not shown). Finally, pCP20 was cured from cells by incubating 893 

them at 43 °C overnight. After confirmation of the trmD-KD genotypes via PCR using primers at 894 

flanking regions of the trmD locus (Figure S2A), cells were grown in Luria broth (LB) 895 

supplemented with 0.2% Ara overnight at 37 °C. Cells were inoculated at a 1:100 dilution into 896 

fresh LB without Ara but with 0.2% D-glucose (Glc) and grown for 3 h at 37 °C to deplete pre-897 

existing Trm5 and methylated tRNAs. A 10-fold serial dilution of cells was spotted onto LB 898 
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plates with 0.2% Ara or 0.2% Glc for m1G37+ and m1G37− conditions, respectively, and growth 899 

was examined after overnight incubation at 37 °C. 900 

 901 

To create E. coli cysS-KD and proS-KD strains, we first created the maintenance plasmids that 902 

expressed E. coli cysS and proS respectively with a C-terminal degron tag for rapid depletion. 903 

The ORFs were each amplified from extracted genomic DNA of E. coli MG1655 using primers in 904 

Table S1. These PCR products encoded a C-terminal 6x His tag followed by a GGS linker and a 905 

degron tag YALAA. The plasmid backbone sequence was amplified from the pACYC-araC-PC-906 

PBAD maintenance plasmid that already encoded a GGS linker and a degron tag using primers in 907 

Table S1. Each PCR product was ligated to the linearized plasmid using a Gibson cloning kit 908 

(New England Biolabs) and the correct clone was confirmed by sequencing analysis. E. coli 909 

MG1655 harboring pKD46 λ-Red recombinase plasmid and a cysS or proS maintenance 910 

plasmid was prepared as electrocompetent cells. A kanamycin marker targeting the 911 

chromosomal cysS or proS was amplified from pKD4 using primers in Table S1 and 912 

electroporated into competent cells of MG1655 for recombination and gene deletion. Cells were 913 

screened for kanamycin resistance and the chromosomal locus was confirmed by PCR using 914 

primers in Table S1. The kanamycin marker was then removed by FLP recombination using 915 

pCP20 and removal was confirmed by sequencing.  916 

 917 

The E. coli MG1655 strain expressing the variant C37-tRNAPro/UGG was constructed using the λ-918 

Red system to remove the native tRNA gene (proM) from the chromosome. A kanR marker was 919 

amplified via PCR with homologous extensions to the flanking regions of the proM locus using 920 

primers in Table S1. E. coli MG1655 was transformed with pKD46 and the maintenance plasmid 921 

pKK223-3 E. coli G37-UGG tRNA expressing E. coli proM at the EcoRI and PstI sites. Cells 922 

were electroporated with the PCR-amplified kanR to introduce the marker into the chromosomal 923 

proM locus. Non-G37 (namely, A37, C37, and U37) variants of E. coli tRNAPro/UGG were created 924 
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using Quikchange mutagenesis (Agilent) of pKK223-3 E. coli G37-UGG tRNA. Transformation 925 

of E. coli MG1655 with these variants, followed by P1 transduction of the proM-KD locus, 926 

recovered only the C37 variant. For cells expressing the G37 or C37 version of the UGG tRNA 927 

from the maintenance plasmid, the GGG tRNA gene (proL), which reads CCC and CCU codons 928 

but is not essential for growth, was removed via λ-Red recombination in E. coli MG1655, 929 

followed by P1 transduction into the respective strain (see Table S1 for primers). After selection 930 

for kanR, the marker was removed with FLP recombinase from pCP20 and purified. Each 931 

purified G37 and C37 clone was grown overnight and inoculated into fresh LB to OD600 = 0.05 932 

with 100 µg/mL ampicillin and growth in a 40-mL culture was monitored by OD600 for 13 h at 933 

37 °C. 934 

 935 

MS analysis of membrane proteomes 936 

An overnight E. coli trmD-KD culture was inoculated at a 1:100 dilution into fresh LB with or 937 

without 0.2% Ara and grown for 5 h at 37 °C. Cells were then diluted to OD600 = 0.1 in fresh LB 938 

with or without 0.2% Ara and grown for another 2 h. Cells were harvested and a membrane 939 

fraction was prepared by method 4 in (Thein et al., 2010). Extracted membrane proteins (30-40 940 

µg) were boiled in 4% SDS in 100 mM Tris pH 6.8, separated into three technical replicates, and 941 

run on a 10% SDS-PAGE gel. Proteins were visualized, digested with trypsin, and analyzed on 942 

an Impact II QTOF mass spectrometer (Bruker Daltonics) (Gibbs et al., 2017). Mass 943 

spectrometry data were analyzed with MaxQuant v. 1.5.3.30 (Tyanova et al., 2016) against the 944 

UNIPROT Escherichia coli K12 protein sequence database (downloaded on May 12, 2015; 945 

4,481 entries) plus common contaminants (245 entries) with variable modifications of 946 

methionine oxidation, N-acetylation of proteins, and fixed modification of cysteine 947 

carbamidomethylation. The false discovery rate was set to 1% for both proteins and peptides. 948 

Technical replicates of the two treatments were searched together using MaxQuant’s “match 949 

between run” and label-free quantification options. 950 
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 951 

Western blotting 952 

E. coli trmD-KD and Salmonella trmD-KD cells were grown in LB supplemented with 0.2% Ara 953 

overnight at 37 °C. Cells were inoculated at a 1:100 dilution into fresh LB with 0.2% Ara or 0.2% 954 

Glc and grown at 37 °C. To monitor the depletion of Trm5 (the maintenance protein), cells were 955 

sampled over 3 h and whole-cell lysates were prepared via repeated heating at 95 °C and 956 

vortexing. Cell lysates containing 15-20 µg proteins were separated via 12% sodium dodecyl 957 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to an Immobilon-P 958 

PVDF membrane (Millipore). The membrane was incubated with primary rabbit antibodies 959 

against human Trm5 (Sigma-Aldrich) at a 1:1,000 dilution or against E. coli CysRS at a 1:10,000 960 

dilution and secondary goat antibody against rabbit IgG (Sigma-Aldrich), followed by incubation 961 

with SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific) and 962 

imaging with Chemi-Doc XRS+ (BIO-RAD). The absence of chromosomally expressed TrmD 963 

was confirmed by Western blotting using rabbit antibodies against E. coli TrmD (a gift from Dr. 964 

Glenn Bjork). For LolB and OmpA quantification, after inoculation into fresh LB, cells were 965 

grown for 4 h at 37 °C, diluted to OD600 = 0.1 into fresh LB with or without 0.2% Ara, and grown 966 

for another 3 h. Cells were harvested, precipitated with 10% (w/v) trichloroacetic acid (TCA), 967 

washed with ice-cold acetone, and sonicated using a Bransonic 1210 Ultrasonic Cleaner 968 

(Branson) until the pellet was dissolved. Proteins were pelleted by centrifuge at 16,000g for 10 969 

min at 4 °C, dried and resuspended in water, then boiled in 1x SDS buffer at 95 °C for 5 min; 970 

total protein content was analyzed via 12% SDS-PAGE. Rabbit polyclonal antibodies against 971 

LolB and OmpA were kind gifts from Dr. Hajime Tokuda (Morioka University). Levels of LolB 972 

and OmpA relative to CysRS and total membrane proteins, respectively, were quantified using 973 

Image Lab v. 6.0 (BIO-RAD). 974 

 975 

Primer-extension analysis of m1G37 976 
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E. coli trmD-KD and Salmonella trmD-KD cells were grown in LB overnight as for Western 977 

blotting. Cells were diluted 1:100 into fresh LB with or without 0.2% Ara and grown for 4 h at 978 

37 °C. Cells were then diluted to OD600 = 0.1 in fresh LB with or without 0.2% Ara and grown for 979 

another 3 h. To analyze the initial pre-depletion of methylated tRNA (Figure S3A), the overnight 980 

culture was diluted 1:100 into fresh LB without Ara and cells were collected every hour up to t = 981 

3 h. Cells were harvested via centrifugation at 4,000g for 10 min at 4 °C and pellets were stored 982 

at -20 °C until use. Total small RNA was extracted from cell pellets as described previously 983 

(Frenkel-Morgenstern et al., 2012). Briefly, cell pellets were suspended in buffer A (1 mM Tris-984 

HCl [pH 7.5] and 10 mM MgCl2), mixed with an equal volume of water-saturated phenol, and 985 

vortexed three times each for 45 s. After centrifugation at 12,000g for 5 min, the aqueous phase 986 

was collected and the phenol phase was extracted three times with an equal volume of buffer A. 987 

Total small RNAs in the pooled aqueous phase were pelleted via ethanol precipitation and 988 

centrifugation. RNA pellets were dissolved in TE buffer (10 mM Tris-HCl [pH 8.0] and 1 mM 989 

ethylenediaminetetraacetic acid) and stored at -20 °C. The level of m1G37 in tRNAPro/UGG was 990 

quantified via primer extension on 2 µg of total small RNA with Superscript III reverse 991 

transcriptase (Invitrogen) at 50 °C for 40 min as described previously (Christian et al., 2004). 992 

The primer (Table S1) was designed to hybridize to the tRNA to enable a 2-nucleotide extension 993 

to m1G37 and was labeled at the 5'-end with [γ-32P]-ATP (PerkinElmer) using T4 polynucleotide 994 

kinase (New England Biolabs). The same primer was used for analysis of tRNAPro/UGG in E. coli 995 

and Salmonella, which share an identical sequence. Primer extension was stopped via heating 996 

at 65 °C for 5 min and separation was achieved on 12% polyacrylamide/7 M urea gels. Gels 997 

were imaged via phosphorimaging using a Typhoon IP Imaging system (GE Healthcare) and 998 

analyzed with ImageJ v. 1.51 (NIH). A similar analysis was performed for tRNAPro/GGG (Table S1, 999 

Figure S3B, S3C). The amount of m1G37 was calculated as the percentage by the band 1000 

intensity of the primer stop at position 37 over the sum of stops and read-through to nucleotide 1.   1001 

 1002 
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LC-MS/MS analysis of m1G37 1003 

E. coli trmD-KD and Salmonella trmD-KD cells were grown in Ara+ and Ara− conditions and 1004 

total small RNA was prepared as in primer-extension analysis. The tRNA fraction was enriched 1005 

using NucleoBond AX 2000 (Macherey-nagel). Briefly, the column was first equilibrated with a 1006 

buffer containing 100 mM Tris-acetate [pH 6.3], 15% EtOH, and 200 mM KCl. The RNA sample 1007 

was loaded and washed with a buffer containing 100 mM Tris-acetate [pH 6.3], 15% EtOH, and 1008 

400 mM KCl. The enriched tRNA fraction was then eluted from the column with a buffer 1009 

containing 100 mM Tris-acetate [pH 6.3], 15% EtOH, and 750 mM KCl, and tRNAPro/UGG 1010 

isoacceptor was affinity-purified (Masuda et al., 2018) and the salt adducts were removed by 1011 

repeated ethanol-precipitation in the presence of a high concentration of NH4OAc. 1012 

Approximately 200-300 ng tRNA was digested with nuclease P1 (1 U, Sigma-Aldrich) in 20 µL 1013 

reaction buffer containing 10 mM of NH4OAc [pH 5.3] at 42 °C for 2 h. With the addition of 2.5 1014 

µL NH4HCO3 (1M, freshly prepared in water), 1 U of alkaline phosphatase (Sigma-Aldrich) was 1015 

added and the sample was incubated at 37 °C for 2 h. After the incubation, the sample was 1016 

diluted with an additional 40 µL water and filtered with 0.22-µm filters (4 mm diameter, Millipore) 1017 

and 8 µL of the entire solution was injected into an LC-MS/MS. Nucleosides were separated by 1018 

reverse phase ultra-performance liquid chromatography on a C1 column with on-line mass 1019 

spectrometry detection by an Agilent 6410 QQQ triple-quadruple LC mass spectrometer in 1020 

positive electrospray ionization mode. The nucleosides were quantified with retention time and 1021 

the nucleoside-to-base ion mass transition of 284-152 (G), 268-136 (A), and 298.1-166.1 (m1G). 1022 

Quantification was performed in comparison with a standard curve, obtained from pure 1023 

nucleoside standards running with the same batch of samples. The m1G level was calculated as 1024 

the ratio of m1G to G based on calibrated concentration curves. 1025 

 1026 

Quantification of lolB expression with a YFP reporter 1027 
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The native promoter of lolB was PCR-amplified from E. coli MG1655 genomic DNA and inserted 1028 

into the pZS2R plasmid, a vector of 4.3 kb in length that carries a KanR marker, is amplified from 1029 

the pSC101 replication origin, and contains YFP under the control of the strong and constitutive 1030 

λ phage promoter R (a kind gift from Dr. Roy Kishony) (Kelsic et al., 2015)). The insertion 1031 

replaced the original promoter with the PlolB promoter to generate pZS2R-PlolB-YFP for 1032 

transcriptional analysis of YFP. E. coli trmD-KD cells harboring this plasmid were grown in LB, 1033 

diluted 1:100 into fresh LB, and grown for 4 h at 37 °C with or without 0.2% Ara. Cells were 1034 

diluted to OD600 = 0.1 in fresh LB with or without 0.2% Ara and grown for another 3 h. Cells were 1035 

then harvested by centrifugation at 7,000g for 1 min and suspended in M9, and the YFP 1036 

intensity from the suspension was measured in an Infinite M200 PRO (Tecan) plate reader at 1037 

excitation and emission wavelengths of 500 nm and 540 nm, respectively. After normalization 1038 

based on OD600, the signal intensity was calculated for the m1G37-deficient condition relative to 1039 

the m1G37+ condition (Figure S3F). 1040 

 1041 

AlamarBlue accumulation assay 1042 

E. coli trmD-KD and Salmonella trmD-KD cells were grown in Ara+ and Ara− conditions as in 1043 

RNA analyses above. Cells were washed with and resuspended in 150 µL of 20 mM potassium 1044 

phosphate buffer pH 7.0 containing 1 mM MgCl2 (PPB) at 4 x 108 CFU/mL in a 96-well plate. At 1045 

t = 0, a 1/10 volume of AlamarBlue (Invitrogen) in the stock concentration was added and 1046 

fluorescence signal at Ex565nm/Em590nm was monitored over 30 min as the uptake of 1047 

AlamarBlue. The signal was normalized by OD600 and plotted over time. E. coli cysS-KD and E. 1048 

coli proS-KD cells were grown in the same way and used for the assay. As a control, an E. coli 1049 

hyper-permeable strain (Krishnamoorthy et al., 2016) (a gift from Dr. Helen Zgurskaya) was 1050 

used. This strain has a highly permeable outer membrane, due to a mutant form of the outer 1051 

membrane protein FhuA that is driven from an arabinose promoter. The hyper-permeable strain 1052 

was grown for 5 h in the presence or absence of arabinose and AlamarBlue uptake was 1053 
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monitored as described above. Another control was the use of polymyxin B (PMB), which 1054 

disrupts and permeabilizes the outer membrane by binding to lipids. E. coli trmD-KD and 1055 

Salmonella trmD-KD cells grown with Ara were used for the assay, and the AlamarBlue uptake 1056 

was monitored for 10 min without PMB, followed by an additional 30 min of incubation in the 1057 

presence of varying concentrations of PMB (1 to 20 µg/mL). 1058 

 1059 

Hoechst accumulation assay 1060 

Hoechst H33342 dye is an intercalating agent that fluoresces when bound to DNA (van den 1061 

Berg van Saparoea et al., 2005), and hence is commonly used for measuring outer-membrane 1062 

permeability. The fluorescence intensity of the dye accumulated in the cell serves as a proxy for 1063 

cellular uptake and efflux. Accumulation of H33342 was monitored in the presence of cyanide 3-1064 

chlorophenylhydrazone (CCCP) to inhibit energy-dependent efflux. In accordance with a 1065 

protocol adapted from a previous assay (Murata et al., 2007), cells were grown to saturation 1066 

overnight with shaking at 37 °C in LB with chloramphenicol (34 μg/mL) and Ara (0.2% w/v), 1067 

diluted 1:100 into fresh LB with chloramphenicol in the presence of Ara or Glc (0.2% w/v), and 1068 

grown for 3 h to OD600~0.8 at 37 °C until cells reached exponential phase. Cells were then 1069 

diluted 1:10 into fresh LB with chloramphenicol in the presence of the same carbon source (Ara 1070 

or Glc) as in the first round of culturing and grown for 5 h. Cells were harvested via 1071 

centrifugation (5,400 g for 5 min) at room temperature, washed with 1X phosphate-buffered 1072 

saline (PBS) [pH 7.4], suspended in PBS, and adjusted to OD600~0.6. Each cell suspension 1073 

(100 μL) was transferred to a well in a black opaque 96-well microplate (Greiner Bio-One) and 1074 

mixed with 100 μL of 3 μM H33342 dye (Sigma-Aldrich) in 1X PBS [pH 7.4] to a final 1075 

concentration of 1.5 μM. The plate was covered with a transparent sealing film (Excel Scientific) 1076 

and fluorescence intensity was monitored every minute for 30 min with shaking in a Synergy H1 1077 

Hybrid Multi-Mode Reader (Biotek) or Infinite M200 PRO (Tecan) plate reader at 37 °C. 1078 

Fluorescence was recorded with excitation and emission wavelengths of 355 and 460 nm, 1079 
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respectively. In experiments in which ATP-dependent efflux was abolished, freshly prepared 1080 

CCCP (Sigma-Aldrich) was added to a final concentration of 50 µM (from a 50 mM stock 1081 

solution prepared in dimethyl sulfoxide (DMSO)) together with 1.5 μM H33342. Each experiment 1082 

was repeated at least three times. For E. coli C37-tRNAPro/UGG cells, a mid-log culture was used 1083 

for the assay. 1084 

 1085 

Nile Red efflux assay 1086 

The Nile Red efflux assay was modified from a previous protocol (Bohnert et al., 2010). Cells 1087 

were grown as for Hoechst assays for 5 h and then shifted to room temperature and prepared 1088 

as follows: each culture (6 mL) was centrifuged for 10 min at 3,829g and the pellet was 1089 

suspended in PPB. After another round of centrifugation and resuspension, cells were adjusted 1090 

to OD600~0.9-1.0 in PPB (potassium phosphate buffer: 20 mM potassium phosphate buffer pH 1091 

7.0 containing 1 mM MgCl2) and mixed with CCCP (1 mM stock solution in 50% DMSO) to a 1092 

final concentration of 5 μM. After incubation at room temperature for ~20 min, cells were 1093 

transferred to 10 mL glass tubes. Nile Red (Acros Organics; 1 mM stock in anhydrous DMSO) 1094 

was added to a final concentration of 5 μM, and the tubes were incubated at 37 °C and shaken 1095 

at 140 rpm for 3 h. Cells were shifted to room temperature for 1 h without shaking and then 1096 

centrifuged for 5 min at 3,829g. The supernatant was discarded, any droplets left clinging to the 1097 

tube walls were removed with Kimwipes, and cells were suspended in PPB at OD600~0.9-1.0. 1098 

Cell suspensions (0.2 mL) were quickly transferred to a quartz cuvette (Starna Cells Inc.) 1099 

containing 1.8 mL PPB. Fluorescence emission was recorded with a QuantaMaster 220 1100 

spectrofluorometer (Photon Technology International) using the PTI Felix32 software. Cell 1101 

suspensions were continuously stirred with a magnetic stirrer inside the cuvette. The slit width 1102 

was set to 10 nm and the excitation and emission wavelengths were set to 552 nm and 636 nm, 1103 

respectively. The fluorescence of each cell suspension was followed over 100 s, and Nile Red 1104 

efflux was triggered via rapid energization with the addition of 100 μL of 1 M glucose. 1105 
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Fluorescence was monitored for another 200 s. Trials displaying no pre-energization efflux were 1106 

included in the analysis, whereas trials that showed substantial pre-energization efflux were 1107 

discarded. The time required for 50% Nile Red efflux (tefflux 50%) was calculated for at least three 1108 

independent measurements per sample as described previously (Bohnert et al., 2010). A ΔacrB 1109 

strain from the Coli Genetic Stock Center (CGSC) at Yale University was tested as a control. 1110 

 1111 

Ethidium bromide efflux assay 1112 

E. coli trmD-KD and Salmonella trmD-KD cells were grown in Ara+ and Ara− conditions as in 1113 

RNA analyses above. Cells were adjusted to OD600~0.9-1.0 in PPB and incubated with 20 μM 1114 

CCCP and 10 µg/mL ethidium bromide (EtBr) for 2 h at 30 °C. Cells were spun, washed and 1115 

resuspended in a fresh PPB at 5x108 CFU/mL in a 96-well plate. The fluorescence signal of 1116 

EtBr at Ex530nm/Em600nm was monitored for the first 3 min, then efflux was activated by 1117 

addition of 50 mM Glc, and the signal was monitored for 30 min. The EtBr signal was 1118 

normalized by OD600 and plotted over time. An E. coli tolC-KO strain was purchased from CGSC, 1119 

and after the kanamycin marker was removed by a pCP20 plasmid transformation, it was used 1120 

for the assay as a control. Efflux was also assayed for E. coli trmD-KD and Salmonella trmD-KD 1121 

cells with various concentrations of polymyxin B added to the cell resuspension 5 min prior to 1122 

Glc addition. 1123 

 1124 

Thioflavin T fluorescence assay 1125 

Overnight cultures of E. coli and Salmonella trmD-KD cells were inoculated in LB at 1:100 1126 

dilution without or with 0.2% Ara and grown for 4 h at 37 °C. Cells were diluted in LB in Ara+/- 1127 

conditions to OD600 = 0.1 and grown for another 3 h at 37 °C. Cells were then washed with M9 1128 

medium and incubated in M9 containing 20 μM Thioflavin T (ThT) for 2 h at 37 °C with Ara or 1129 

Glc for m1G37+ and m1G37-deficient conditions, respectively, and the ThT fluorescence was 1130 

measured at Ex446nm/Em482nm and normalized by OD600 (Prindle et al., 2015). 1131 
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 1132 

Imaging in microfluidic devices 1133 

Overnight E. coli trmD-KD cultures were grown in LB + 0.2% Ara and 30 ug/mL chloramphenicol. 1134 

These cultures were diluted 1:100 into 1 mL fresh LB with 0.2% Ara or 0.2% Glc (to deplete the 1135 

pre-existing Trm5 and m1G37 tRNA) and grown with shaking at 37 °C for 3.5 h. Cells were then 1136 

transferred to B04A microfluidic perfusion plates (CellASIC Corp.) that had been loaded with 1137 

medium and pre-warmed to 37 °C, and cells were incubated at 37 °C for >1 h before imaging. 1138 

The medium was exchanged using the ONIX microfluidic platform (CellASIC Corp.). The 1139 

osmolarity of the growth medium or phosphate-buffered saline (PBS) was modulated with 1140 

sorbitol (Sigma). For oscillatory osmotic shocks, cells were allowed to grow for 5 min in medium 1141 

in the imaging chamber before being subjected to 100-mM oscillatory osmotic shocks by 1142 

switching between LB and LB + 100 mM sorbitol.  1143 

 1144 

Cells were imaged on a Nikon Eclipse Ti-E inverted fluorescence microscope with a 100X (NA 1145 

1.40) oil-immersion objective. Images were collected on a DU885 electron multiplying charged 1146 

couple device camera (Andor) using µManager v. 1.4 (Edelstein et al., 2014). Cells were 1147 

maintained at 37 °C during imaging with an active-control environmental chamber (HaisonTech). 1148 

 1149 

Cell tracking and analysis 1150 

To calculate the amplitude of length oscillations during oscillatory osmotic shocks, cells were 1151 

tracked over time using custom MATLAB algorithms, similar to previous studies (Rojas et al., 1152 

2014). First, cell-wall lengths (l) were automatically identified. The effective population-averaged 1153 

length leff at time t1 was calculated by integrating the population-averaged elongation rate over 1154 

time (Rojas et al., 2014): 1155 

𝑙eff = ∫ �̇�𝑑𝑡
𝑡1
𝑡0

+ 𝑙0, 1156 



 54 

where  is the mean initial cell length at time t0, and �̇� is the instantaneous growth rate. The 1157 

effective population-averaged length was then smoothed with a mean filter with window size 1158 

equal to the period of oscillation, and subtracted from the unsmoothed trace to obtain the 1159 

deviation of the length oscillations around the smoothed trace. The peak-to-peak amplitude was 1160 

calculated for each cycle. The mean amplitude was calculated by averaging the peak-to-peak 1161 

amplitude over cycles. Uncertainty was estimated as the standard deviation of the mean 1162 

amplitude over cycles. 1163 

 1164 

Minimal inhibitory concentration (MIC) measurements 1165 

Overnight cultures of trmD-KD cells with 0.2% Ara were diluted 1:100 into LB without Ara and 1166 

grown at 37 °C for 1 and 3 h for Salmonella and E. coli, respectively, to pre-deplete Trm5 and 1167 

methylated tRNAs (Figure S3). This short pre-depletion was appropriate for MIC analysis, 1168 

because longer pre-depletion made cells in m1G37-deficient conditions too weak to distinguish 1169 

death by antibiotic killing from death by lack of m1G37 (data not shown). After pre-depletion, 1170 

cells for all but ciprofloxacin analysis were diluted to 106 CFU/mL and grown in 96-well plates 1171 

with 0.2% Ara or Glc in the presence of an antibiotic across a 2-fold serial dilution. After 18 h of 1172 

incubation at 37 °C, OD600 was measured and the MIC was determined based on a threshold for 1173 

growth of OD600 = 0.15 (Kim et al., 2010). For analysis of MIC of ciprofloxacin, 105 CFU/mL cells 1174 

were inoculated and grown for 24 h at 37 °C. The MIC of polymyxin B for E. coli trmD-KD and 1175 

Salmonella trmD-KD cells grown in the Ara+ condition was determined as 0.5 and 1.0 µg/mL, 1176 

respectively. To test the effect of polymyxin B on the permeability of each antibiotic, we used 1177 

polymyxin B at 0.25X MIC for E. coli trmD-KD and Salmonella trmD-KD cells. For E. coli C37-1178 

tRNAPro/UGG cells, overnight cultures were inoculated into fresh LB at 106 CFU/mL and the MICs 1179 

were determined for gentamicin and vancomycin. A Δefp strain was purchased from CGSC and 1180 

the kanamycin marker was removed by transformation of the pCP20 plasmid. The MICs were 1181 

determined for ampicillin, gentamicin and vancomycin. 1182 
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 1183 

Time-kill analyses 1184 

Cells depleted of Trm5 and m1G37-tRNA were prepared as for MIC analyses and were 1185 

inoculated into fresh LB at 106 CFU/mL with 0.2% Ara or 0.2% Glc in the presence of an 1186 

antibiotic. Several concentrations were tested for each drug, ranging from 0.6X to 6.4X MIC 1187 

(Figure S6D); the concentration that yielded the largest difference between m1G37+ and 1188 

m1G37-deficient conditions was selected (12.5 µg/mL carbenicillin, 3.125 µg/mL ampicillin, 6.25 1189 

µg/mL gentamicin, 12.5 µg/mL kanamycin, and 256 µg/mL vancomycin). In the presence of the 1190 

chosen concentration of each drug, cells were grown at 37 °C and sampled up to 18-24 h. At 1191 

each time point, 10-fold serial dilutions of cells were spotted onto LB plates with 0.2% Ara and 1192 

grown overnight. The number of viable colonies was counted and converted to CFU/mL. For 1193 

analysis of E. coli cysS-KD and proS-KD cells, cells depleted of the protein product of each 1194 

gene were prepared in a similar manner as for trmD-KD cells and the time-kill curve was 1195 

determined for 25 µg/mL carbenicillin and 256 µg/mL vancomycin in the absence of Ara. After 1196 

counting viable colonies from an LB plate, the survival rate was calculated relative to t = 0. The 1197 

same CFU counting method was used for a control experiment with 2 mM H2O2 (Fig. S6); the 1198 

time course was followed up to 6 h. For analysis of E. coli C37-tRNAPro/UGG cells, overnight 1199 

cultures were inoculated into fresh LB at 106 CFU/mL with 3.125 µg/mL gentamicin or 512 1200 

µg/mL vancomycin and analyzed as above.  1201 

 1202 

Resistance analyses 1203 

Cells depleted of Trm5 and m1G37-tRNA were cultured as for MIC and time-kill assays. Cells 1204 

were diluted to 105 CFU based on the calibration that OD600 = 1 corresponds to 8 x 108 CFU/mL, 1205 

and plated on LB with 0.2% Ara or 0.2% Glc in the presence of an antibiotic at a concentration 1206 

near 1X MIC of m1G37+ cells or at a concentration of 1X MIC for each specific type of cells: 1207 

gentamicin at 2.7 µg/mL (m1G37+) and 0.88 µg/mL (m1G37-deficient) for E. coli and 5.5 µg/mL 1208 
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(m1G37+) and 2.3 µg/mL (m1G37-deficient) for Salmonella; ampicillin at 9.4 µg/mL (m1G37+) 1209 

and 4.7 µg/mL (m1G37-deficient) for E. coli and 2.4 µg/mL (m1G37+) and 0.78 µg/mL (m1G37-1210 

deficient) for Salmonella; vancomycin at 341 µg/mL (m1G37+) and 128 µg/mL (m1G37-deficient) 1211 

for E. coli and 512 µg/mL (m1G37+) and 192 µg/mL (m1G37-deficient) for Salmonella. After 1212 

incubation at 37 °C for 3 days, CFUs were counted. A representative gentamicin-resistant clone 1213 

was purified and an increase in MIC was confirmed (Fig. 5C). 1214 

 1215 

Persistence analyses 1216 

Salmonella trmD-KD cells were grown in LB with 0.2% Ara overnight, diluted 1:100 into fresh LB 1217 

with 0.2% Ara or 0.2% Glc, grown at 37 °C for 3 h, and challenged with a specific antibiotic for 6 1218 

h. At each time point, cells were washed three times with saline (0.9% NaCl) and 10-fold 1219 

dilutions were spotted on LB plates with 0.2% Ara at 37 °C. CFUs were counted the next day. 1220 

 1221 

Codon engineering 1222 

Codon engineering of E. coli lolB on the chromosome was performed with the λ-Red 1223 

recombinase system. The 5' end of lolB with the flanking sequence was amplified via PCR using 1224 

primers with mutations to change the second and fourth codons in the MG1655 genome AUG-1225 

CCC-CUG-CCC-GAU to AUG-CCG-CUG-CCG-GAU. The PCR product was connected with the 1226 

kanR sequence of pKD4 via a second PCR, followed by a third PCR to expand coverage to the 1227 

entire lolB sequence for homologous recombination. The resultant PCR product was introduced 1228 

into E. coli MG1655 cells expressing λ-Red recombinase from pKD46. After selection for the 1229 

kanR marker and confirmation via sequencing (data not shown), the mutated locus was moved 1230 

into E. coli trmD-KD with the maintenance plasmid expressing human trm5. The desired clone 1231 

was selected with the kanR marker, which was subsequently removed via pCP20-mediated FLP 1232 

recombination to leave a scar. The scar-carrying mutant with the engineered codon was purified 1233 

from single colonies. An isogenic strain carrying the wild-type sequence was also created from 1234 
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trmD-KD cells with the scar sequence. LolB protein levels were determined through Western 1235 

blotting. 1236 

Codon engineering of Salmonella tolC on the chromosome was accomplished with λ-Red 1237 

recombination. The 5' end of tolC with the flanking sequence was amplified by PCR with primers 1238 

containing a mutation to change the sixth codon from AUG-AAG-AAA-UUG-CUC-CCC-AUC to 1239 

AUG-AAG-AAA-UUG-CUC-CCG-AUC. After the second and third PCRs, recombination was 1240 

performed in Salmonella LT2 cells expressing λ-Red recombinase from pKD46. The mutation 1241 

was confirmed via sequencing (data not shown). A clone containing the mutation but without 1242 

phage contamination was isolated using a green plate (Chan et al., 1972) and the mutated locus 1243 

was transferred to Salmonella trmD-KD with the maintenance plasmid expressing human trm5. 1244 

The desired clone was selected with the kanR marker, which was removed via pCP20-mediated 1245 

FLP recombination to leave a scar. An isogenic strain carrying the wild-type sequence was 1246 

isolated from trmD-KD cells and grown in LB at 37 °C along with the mutant clone with 0.2% Ara. 1247 

Cells were inoculated into fresh Ara-free LB at 106 CFU/mL, supplemented with 12.5 µg/mL 1248 

novobiocin, and grown without pre-depletion at 37 °C. After 24 h of growth, 10-fold dilutions 1249 

were spotted onto LB plates with 0.2% Ara for CFU analysis. The fold-increase of CFUs after 24 1250 

h at 37 °C relative to t = 0 was calculated and normalized to growth of the wild-type clone. 1251 

 1252 

Quantification and statistical analyses 1253 

All experiments were repeated at least three times with biological replicates; mean or median 1254 

values are shown. Statistical significance was determined using an unpaired, two-tailed Welch’s 1255 

t test, a one-sample Student’s t test, a Wilcoxon rank-sum test, or Fisher’s exact test. Statistics 1256 

were computed with R v. 3.1.3 (R Core Team, Vienna, Austria) or Microsoft Excel. Statistical 1257 

significance was defined as p < 0.05. 1258 
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