
Results

• Test dataset results for binary algorithm distinguishing aortic dissection from controls: 
• Patient-level AUC of 0.97 (95% CI: 0.91-1.00)
• Sensitivity of 100.0% (20/20) 

• Two false positive cases with eccentric mural thrombus and endovascular stent 

Methods

• 80 de-identified HIPAA compliant CT chest examinations were obtained on unique patients
• 50% of studies demonstrated acute aortic dissection (40/80)
• 50% of studies comprised control studies without dissection (40/80)

• Studies were verified by two board-certified radiologists
• The Inception V3 DCNN was used using the Tensorflow framework, pretrained on 1.2 million 

everyday color images 
• Real-time data-augmentation was performed

• Colorization, rotations, translation, shearing, and zoom
• Six window-level settings were used for each slice. 
• Data were split into  the following datasets: 

• Training: 30 patients, 15 with and 15 without dissection; 4235 images
• Validation: 10 patients, 5 with and 5 without dissection; 1295 images
• Test: 40 patients, 20 with and 20 without dissection;  3423 images 

• A 2D network was used that analyzed three slices at a time 
• Receiver operating characteristic (ROC), area-under-the-curves (AUC) on the test data, and 

sensitivity and specificity of the algorithms were performed

Figure 2 ROC Curve: Inception V3 DCNN

Purpose 
To assess the efficacy of deep convolutional neural networks (DCNNs ) in differentiating acute aortic 
dissections from non-dissected aortas on thoracic CT 

• Acute thoracic aortic dissection represents the deadliest iteration of the acute aortic syndrome, 
with an estimated annual global incidence of 30 million cases per year and a 90% mortality rate 
without emergent treatment1

• Lethal complications of cardiac tamponade, aortic rupture, congestive heart failure, 
stroke, and myocardial infarction2

• Malperfusion syndrome complications of paraplegia, acute renal failure, and 
mesenteric ischemia2

• Stanford Type A dissections represent 61% of cases and emerge proximally to the left subclavian 
artery3

• Stanford Type B dissections represent 39% of cases and occur distally to the left subclavian 
artery3

• Aortic dissections must be managed emergently with aggressive blood pressure stabilization, 
open surgical repair, or thoracic aortic endograft placement4

• Thoracic CTA is the most frequent modality employed in the primary diagnosis of aortic 
dissection, and is utilized in 69% of all cases6

• Prior semi-automated solutions for detection algorithms on CTA achieved modest success 
• Semi-automated algorithm to detect healthy, non-dissected ascending aortas with 

an accuracy of 97%, with no information regarding presence of aortic pathology8

• Wavelet analysis and probabilistic model segmenting true and false lumens in 
Stanford Type A aortic dissections, with modest results of a sensitivity  0.7 and a 
specificity of 0.89

• Proposed CAD solution specifically designed to segment dissected aortas on 3D CTA 
with no real world performance data10

• Deep convolutional neural networks (DCNNs) have already demonstrated success with regard 
to image classification solutions on CTA 

• Successful classification and segmentation of coronary arteries on CTA with plaque 
burden scoring13

• Bicuspid aortopathy classification on CTA14

• Successfully prediction of 30-day mortality following interventions for Stanford 
Type A dissections15

• Radiologists are  responsible for the emergent diagnosis of aortic dissections on thoracic CTA to 
ensure timely treatment and intervention 

• A computer-aided detection (CAD) system that could automate instantaneous detection of 
critical aortic dissections to triage patient care appropriately would therefore be invaluable. 

• DCNNs demonstrate success in the classification of acute aortic dissection from non-dissected 
aortas on thoracic CTA with an AUC of 0.97 

• Automated, instantaneous classification of critical aortic dissections could allow radiologists 
to expediently diagnose aortic dissections and ensure timely intervention

References
1. S. A. LeMaire, L. Russell, Epidemiology of thoracic aortic dissection. Nat Rev Cardiol (2011).
2. A. Evangelista, G. Maldonado, D. Gruosso, G. Teixido, J. Rodríguez-Palomares, K. Eagle, Insights from the International Registry of 

Acute Aortic Dissection. Global cardiology science &, practice 2016 (1) (2016) 201608.
3. I. Vilacosta, J. A. Ramon, Acute aortic syndrome, Heart 2001 85–4.
4. M. A. Coady, J. A. Rizzo, Goldstein LJ, Elefteriades JA. Natural history, pathogenesis,  and etiology  of thoracic aortic aneurysms 

and dissections, Cardiol Clin 4 (615–35).
5. Case courtesy of Radswiki, Radiopaedia.org, rID.
6. R. R. Baliga, C. A. Nienaber, E. Bossone, The role of imaging in aortic dissection and related syndromes, JACC Cardiovasc Imaging 7 

(4) (2014) 406–424.
7. M. A. Lepage, L. E. Quint, S. S. Sonnad, G. M. Deeb, D. M. Williams, Aortic Dissection CT Features that Distinguish True Lumen 

from False Lumen, American Journal of Roentgenology 177 (1) (2001) 207–211.
8. S. Saur, C. Kuhnel, T. Boskamp, G. Szekely, Automated Ascending Aorta Detection in CTA Datasets. Bildverarbeitung für die 

Medizin 2008: Algorithmen — Systeme — Anwendungen, 2008.

9. N. Lee, H. Tek, A. Laine, True-false lumen segmentation of aortic dissection using multi-scale wavelet analysis and generative-
discriminative model matching, 2008.

10. T. Kovacs, P. Cattin, H. Alkhadi, S. Wildermuth, G. Szekely, Automatic Segmentation of the Vessel Lumen from 3D CTA Images of 
Aortic Dissection, Bildverarbeitung für die Medizin 2006 161–165.

11. H. C. Shin, H. R. Roth, M. Gao, Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset 
characteristics and transfer learning, IEEE transactions on medical imaging. 2016–35.

12. J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, Imagenet: A large-scale hierarchical image database. InComputer Vision and Pattern 
Recognition, 2009. CVPR 2009, in: IEEE Conference on, 2009, pp. 248–255.

13. M. Zreik, W. van Hamersvelt,  M. Wolterink,  T. Leiner,  A. Viergever,  I. Išgum,  A Recurrent CNN  for Automatic Detection and 
Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography, IEEE Transactions on Medical Imaging (2018)
1–1doi:10.1109/TMI.2018.2883807.

14. E. C. Roselli, J. Idrees, Y. Zhu, T. Carnes, Machine-learning phenotypic classification of bicuspid aortopathy. Wojnarski, J Thorac
Cardiovasc Surg 2018, Feb;155(2):461-469.e4. Epub.

15. F. Macrina, P. E. Puddu, A. Sciangula, F. Trigilia, M. Totaro, F. Miraldi, F. Toscano, M. Cassese, Toscano, M: Artificial neural 
networks versus multiple logistic regression to predict 30-day mortality after operations for Type A ascending aortic dissection, 
Open Cardiovasc Med J 2009 3–81.

16. B. Zhou, A. Khosla, L. A., A. Oliva, A. Torralba, Learning Deep Features for Discriminative Localiza- tion, 2016.

Automated Assessment of Acute Aortic Dissection 

on Thoracic CT Using Deep Learning 
Varun Singh1, Richard Gorniak, M.D.1, Adam Flanders, M.D.1, Paras Lakhani, M.D.1

1Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA

Conclusion 

Introduction

Figure 1  Axial section 
of CTA demonstrating 
Stanford Type B aortic 
dissection5 Figure 3 Stanford Type B aortic dissection axial CTA with colorized augmentation 

(left) and corresponding Class Activation Map16 (CAM) (right)

Figure 4 
False positive: 
Eccentric 
thrombus axial 
CTA with 
colorized image 
(left) and 
corresponding 
CAM (right)

Figure 5 
False positive: 
Endovascular 
stent  axial CTA 
with colorized 
image (left) and 
corresponding 
CAM (right)


