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Abstract

Objective—Implanting subdural and penetrating electrodes in the brain cause acute trauma and 

inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior 

and its potential impact on clinical decision-making and algorithms for implanted devices have not 

been assessed in detail. In this study we aim to characterize the temporal and spatial variability in 

continuous, prolonged human iEEG recordings.

Approach—Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, 

each implanted with 16 subdural electrodes and continuously monitored for an average of 18 

months, was included in this study. Time and spectral domain features were computed each day 

for each channel for the duration of each patient’s recording. Metrics to capture post-implantation 

feature changes and inflexion points were computed on group and individual levels. A linear 

mixed model was used to characterize transient group-level changes in feature values post-

implantation and independent linear models were used to describe individual variability.

Main Results—A significant decline in features important to seizure detection and prediction 

algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and 

high gamma bands, was observed in many patients over 100 days following implantation. In 

addition, spatial variability across electrodes declines post-implantation following a similar 

timeframe. All selected features decreased by 14–50% in the initial 75 days of recording on the 
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group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings 

demonstrate that iEEG signal features demonstrate increased variability following implantation, 

most notably in the weeks immediately post-implant.

Significance—These findings suggest that conclusions drawn from iEEG, both clinically and for 

research, should account for signal variability and that properly assessing the iEEG in patients, 

depending upon the application, may require extended monitoring.

Keywords

Brain Machine Interface; Long-term EEG; Electroencephalography; Epilepsy; Electrodes; 
Intracranial

INTRODUCTION

Intracranial electrodes are routinely used to map cortical networks when patients with drug-

resistant, localization-related epilepsy are evaluated for epilepsy surgery1. Emerging 

technologies of closed-loop stimulation and brain-machine interface (BMI) technologies are 

broadening applications for chronic intracranial electrodes to include therapeutic electrical 

stimulation, seizure monitoring and warning systems, responsive neurostimulation, and 

adaptive deep brain stimulation2–6. Each application benefits from a thorough understanding 

of acute changes at the brain-electrode interface and how they affect recorded signals.

Electrode implantation causes acute trauma and an immunologic reaction that has been 

studied extensively7–12. Greater than 50% of patients have histopathological changes from 

electrode implantation as soon as one day after surgery13. This reaction has been associated 

with changes in electrode impedance8,14–17 and overall signal quality8,18,19. However, no 

studies have characterized the effect of such changes on signal features other than signal-to-

noise ratios and impedance measurements. Furthermore, no analysis has been performed on 

long-term continuous recordings in humans, which has direct implications for algorithm 

design and clinical interpretation. For example, the Responsive Neurostimulator (RNS®) 

System (NeuroPace; Mountain View, CA) currently requires physicians to manually tune 

algorithm parameters to maintain high-sensitivity seizure detection over extended use3. 

Likewise, in the NeuroVista (Seattle, WA) seizure advisory system study, feature drift was 

observed and algorithm retraining was necessary for months after implantation2. 

Characterizing changes in signal features (line length, area, energy, half-wave, power) used 

in these two devices for seizure detection would improve algorithm development, patient-

specific customization, and clinical interpretation of recorded results6,20–26.

Similarly, short-term intracranial EEG (iEEG) is the gold standard for guiding surgical 

treatment of localization-related epilepsy, yet less than 66% of cases result in long-term 

seizure remission27. In an attempt to electrographically localize the seizure onset zone, iEEG 

recordings are obtained in an inpatient hospital setting, typically over 1–2 weeks. If 

reactions occurring at the brain-electrode interface affect recorded signals to the degree that 

extracted biomarkers become unreliable, then clinical decisions based on these features 

should be questioned. In addition, emergence of biomarkers such as high-frequency 
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oscillations for surgical planning adds importance to assessing time-dependent changes in 

spectral characteristics28.

In this study, we evaluate continuous subdural iEEG recordings from 15 ambulatory human 

patients recorded for an average of 18 months. We aim to characterize temporal and spatial 

variability across electrodes, focusing on time and spectral domain features that are of 

clinical and algorithmic interest. By incorporating features used in the NeuroPace RNS® 

device as well as the original NeuroVista trial, our findings will have immediate impact on 

algorithms currently utilized in patient management in addition to informing future 

algorithm development.

METHODS

Dataset

Fifteen patients with drug resistant, localization-related epilepsy were each implanted with 

16 subdural electrodes during a trial of the NeuroVista seizure prediction device2. Electrodes 

were placed unilaterally over the region containing the presumed seizure onset zone as 

determined by standard clinical evaluation. In patients with bilateral temporal lobe seizures, 

leads were placed over the hemisphere observed to generate the greater number of seizures. 

Patient demographics and recording duration are given in Table 1. Further details about the 

human patients are discussed in the original manuscript reporting this trial2.

Recording device

The NeuroVista electrode array consists of four electrode strips each with four medical 

grade platinum-iridium (90/10) contacts. Electrodes, each with a 2 mm exposed contact 

diameter, were spaced either 10mm or 20mm apart for optimal coverage of the seizure onset 

zone and surrounding areas (Figure S1). The electrodes were connected to a hermetically 

sealed subclavicular implantable telemetry unit that sampled each of the 16 channels at 400 

Hz. The telemetry unit amplified, digitized, and buffered the data, which was then wirelessly 

transmitted to an external belt-worn computing and warning device. Limited telemetry range 

and patient-related factors (e.g. misplaced external device, failure to maintain battery charge 

levels) occasionally interrupted data acquisition throughout the trial, resulting in data gaps. 

Subsequent to the study, the data were converted to the Multiscale Electrophysiology Format 

(MEF)29, ported to ieeg.org, and accessed in MATLAB using the IEEG-Portal30 toolbox for 

data analysis.

Feature Extraction

Each channel was initially low-pass filtered at 190 Hz with a third order Butterworth filter. 

Four time-domain features (line length21, area25, energy, and half-wave amplitude31) as well 

as average spectral power in delta [0.1–4 hz], theta [4–8], alpha [8–12], beta [12–30], 

gamma [30–100], and high-gamma [100–180] bands were computed. Additional sub-band 

trends were also calculated for gamma and high gamma to account for both line noise and an 

expected decrease in power with increasing frequency.
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These features were selected to represent those commonly used in algorithms to detect 

epileptiform activity as well as common, interpretable spectral bands. Line length, for 

example, has been shown to be an efficient feature for detecting seizures by capturing 

transient increases in frequency and voltage that occur during a seizure21. The time domain 

features included in this study are also easily implemented in devices with limited 

computational resources. Line length, area, and half-wave are used in the FDA-approved 

NeuroPace RNS® for ambulatory seizure detection and line length, area, and energy were 

used in the original NeuroVista trial for seizure prediction2. Therefore, tracking these time-

domain features has immediate implications for human implantable devices. The selected 

spectral bands are observed in normal and abnormal human physiological processes and are 

commonly used in the interpretation of EEG. For example, delta power is increased during 

specific stages of sleep and in some patients with brain lesions. Similarly, alpha power 

indicates a relaxed state but may be pathologically elevated in comatose patients.

Specifically, line length is the absolute derivative of signal amplitude21. Area is defined as 

the absolute voltage amplitude23,24. The energy of a signal is calculated as the squared 

voltage amplitude. The half wave feature represents the amplitude and duration of a signal 

after segmentation based on local minima and maxima25,26. From the segmentation, the 

amplitude and duration can be extracted and reflects energy at various frequencies 

depending on tunable parameters. Here, the average half-wave amplitude is used. Spectral 

power was calculated using Welch’s power spectral density estimate. Additional details of 

feature calculations are provided in the supplementary materials.

The mean value of each feature was calculated in 5-minute moving windows with no overlap 

over each channel for each patient. These values were subsequently averaged across 24-hour 

segments within each channel to reduce data dimensionality and account for changes due to 

circadian rhythm.

Preprocessing

Artifacts, which were rare, were identified for the majority of patients through visualization 

of extracted features. Outliers were manually identified based on large spikes or large drops 

in each feature space and, if verified to arise from artifacts on raw EEG, were removed from 

corresponding channels across all features. Large increases in feature values were often 

correlated with short periods of line noise harmonics or transient epileptiform activity 

(seizures), particularly if these periods occurred in windows overlapping with data gaps as 

they would not be averaged out. Large decreases correlated most often with multiple 

electrode drop offs. In total, 396 out of 6565 days, or 6.1% of available days, were removed. 

Examples of removed artifacts are shown in the supplementary materials (Figure S2).

Statistical Analysis

Statistical analyses were performed in R. For each patient and for each day, the mean and 

coefficient of variation (standard deviation/mean) across channels were calculated for each 

feature. The coefficient of variation captured spatial variability normalized by the mean 

feature value. Before averaging across patients for group level analysis, feature values for 

each channel and coefficients of variation for each patient were independently normalized to 
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[0–1] based on 95% of the values. Individuals were also analyzed independently to 

understand variability among patients.

Group statistics

Group-level feature values were initially observed to decrease post-implantation before 

stabilizing. Based on this observation, a reference distribution, intended to represent a period 

after a post-implantation effect, was obtained from the mean and standard deviation of 

values from day 200 to day 500. Though there is variability in feature values during this 

period, the purpose of this approach is to model the range of feature values as a comparator 

for the immediate post-implantation phase without making a prior assumption of 

stabilization. As patients dropped out due to variable recording durations, these times were 

selected to include at minimum the majority of patients (8/15). Means corresponding to a 

critical value of a one-sided z-test with significance of p=0.05 (z=1.645) were selected as the 

reference threshold. Values greater than this threshold were significantly different than the 

distribution of values expected for a particular feature. The number of days required to enter 

this predefined reference range is reported. Furthermore, as features were observed to 

continue to decrease after entering the reference range, an inflexion point was calculated as 

the day when the derivative of feature values crosses 0.

To model the group level change in feature values in the initial 75 days post-implantation, a 

linear mixed model (equation 1) was used with day as a covariate and feature value 

(averaged over channels) as a response variable. Linear mixed models allow modeling of 

patient-specific trends and are also robust to missing data. Separate models were fit for each 

feature and estimates for group level fixed effects (β1), intercepts (β0), and random effects 

(b0i, b1i) were obtained. As the feature value on day 1 and the rate of change across days 1–

75 may vary with each patient, a random intercept (boi) and slope (b1i) was used. This 

accounts for longitudinal measurements and assumes that each patient is drawn from a 

population. The Wald t-statistic was used to determine the significance of any trend across 

time.

(1)

where b0i ~ N(0, τ2), b1i~N(0, τ1i
2), Yij denotes the j’th feature value for patient i, tij indexes 

the day after implantation, b0i and b1i are random intercepts and slopes for each patient, for 

patient i.

Individual statistics

Changes in feature values were observed to follow a linear trend post-implantation, though 

there was variability present among patients. To determine the average rate of change in 

feature values, independent linear models (equation 2) were fit on the first 75 days post-

implantation for each feature, for each patient with time in days as the covariate. This 75-

day period was selected to model the initial rate of change in feature values observed across 

many patients. The significant main effects of time are reported after adjusting for false 

discovery rate (FDR) of 0.05 (Benjamini-Hochberg32). These main effects (β1) represent the 
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rate of decay (or growth) of a feature over time (t) and whether this rate is statistically 

different than 0 (indicating stability).

(2)

where Y denotes the feature value for a given patient, t denotes the day after implantation, 

β0, β1 are the intercepts and slopes. This model was fit individually for each patient and each 

feature.

Days to reference range and inflexion points were also calculated for individual patients. 

Specifically, in order to determine an accurate reference distribution, only patients with more 

than 50 days within our 200–500 day range were included. Furthermore, a few patients were 

observed to remain unstable throughout the recording period. To identify these patients, a 

linear model, similar to equation 2, was fit to the feature values within this reference 

distribution and patients with a significant linear trend that explains more than 50% of the 

variance (adjusted R^2 > 0.5) were excluded from the calculations. This ensured that the 

reference range, when calculated individually, captured an appropriate reference distribution.

Code Availability

Code is available at http://www.github.com/hoameng/transients-2017.

RESULTS

Temporal variability

The day that each feature enters our predefined reference distribution and the inflexion day 

are given in Table 2 with corresponding feature values in Table 3. Time domain features 

show a prominent transient response in the first 100 days after implantation (Figure 1). 

Specifically, line length, half-wave amplitude, and energy are highest at implantation, enter 

the reference range between days 27 and 48, and decrease between 36% and 42% in the first 

75 days (Table 4). Area follows the same initial decreasing trend, but due to fluctuations 

throughout the recording period, feature values remain within our defined reference 

distribution. In addition to these features, we tested root mean square (RMS) and the first 

and second derivative of the voltage. The corresponding figures are given in Figure S5 and 

S6.

All spectral bands show a transient decline in power from day 1 that falls below the 

calculated threshold by day 100 (Figure 2). The average power decline from day 1 to day 75 

was 40% (Table 4).

Spatial variability

The coefficient of variation for line length and half-wave declined in the first 100 days, 

whereas the coefficients of variation for area and energy fluctuated within the reference 

range (Figure 3). The coefficient of variation for spectral power in the delta, theta, alpha, and 

beta bands also declined in the initial stages of recording. Increasing frequency bands were 

inversely related to the magnitude of the post-implantation effect (Figure 4). These findings 
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indicate that spatial variability of lower frequency power bands across channels decreases 

over time, entering our defined reference distribution between 37–52 days after 

implantation.

The normalized feature values for all features at day 1, number of days to cross the reference 

threshold, and number of days to inflexion point are given in Table 3 for both temporal and 

spatial trends.

Individual Fits

Beta estimates for each patient and each feature are shown in Figure 5, with corresponding p 

values in Figure S7. Of the 135 patient-feature combinations, 83 displayed a statistically 

significant linear trend after FDR correction, 79 of which declined in the initial 75 days. 

Fourteen of the 15 patients had significantly decreasing values in at least one feature. Patient 

3 and 5’s recordings were more stable in the spectral domain, resulting in insignificant beta 

estimates across all power bands. Calculated line length, beta power, and gamma power for 

all subjects are shown in Figures 6 and 7. There was also patient variability in the days to 

reference threshold and inflexion points as seen in Figures 6–7 and Table S1 and S2.

DISCUSSION

In this study we analyzed continuous long-term ambulatory recordings from subdural iEEG 

electrodes implanted in humans and characterize the temporal and spatial variability of time 

and spectral domain features frequently used in research and device algorithms. This study is 

unique as it explores the only known dataset of long-term continuously recorded human 

iEEG spanning an average of 1.5 years, as opposed to episodic, brief recordings lasting up to 

a few weeks. Our findings may directly impact the clinical management of human patients, 

since the selected features represent those used in current implantable devices (discussed 

further below). We show on a group level that in the majority of features there is an initial 

decline in the mean values that reaches an inflexion point roughly 100 days after 

implantation (Figures 1, 2, Table 2). This trend in feature values is consistent on the group 

level (14/15 patients), although there is significant variability among patients beyond the 

initial weeks (Figures 5–7). Furthermore, spatial variability between channels for line length, 

half-wave, and a number of spectral bands (delta to beta) decreases post-implantation before 

stabilizing in a similar time frame. These observations demonstrate an initial period of 

decline in iEEG recordings features relative to long-term trends. While these patterns are 

present on the group level, there is significant inter-patient variability that is worth noting, 

suggesting a need to further study individual characteristics to adequately predict and control 

for transient patient-specific changes in EEG signals

Temporal variability

On a group level, we found a significant initial decline in the majority of feature values, 

reaching a point of inflexion near day 100 (Figure 1, Table 2). Several of these features, such 

as line length, energy, and power, have an expected correlation that is reflected in similar 

temporal trends (Figure 1, 2). Furthermore, the strong correlation between line length and 
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power (Table S3), coupled with the dissimilarity in trends with area, suggests that line length 

in practice is more sensitive in recording changes in frequency than voltage amplitude.

To ensure our findings were not significantly influenced by main line noise frequency and to 

help account for decreases in power with increasing frequency, we conducted an additional 

analysis for gamma and high gamma sub-bands. Gamma sub-bands (30–45 Hz and 55–100 

Hz) displayed similar temporal trends to the full 30–100 Hz band despite removing line 

noise at 50 Hz, stabilizing on similar days (~30–40 days) (Figure S3). High gamma sub-

bands (100–140 Hz and 140–180 Hz) also displayed similar trends (Figure S4). These 

figures suggest that our findings are consistent regardless of line noise or higher frequencies.

These findings demonstrate the temporal variability present in time and frequency domain 

features following implantation. Line length and half-wave, two features used in the 

NeuroPace25 and NeuroVista2 algorithms, decrease by over 30% in the first 75 days as 

estimated by a linear fit (Table 4). Using these features for seizure detection or prediction 

may lead to decreased sensitivity over time as feature values trend down. The lack of stable 

feature baselines may also present challenges in using early data for device training. 

Furthermore, power features decrease dramatically by over 40% on average over time (Table 

4). This drift must be accounted for in chronic neurodevices, either by directly modeling the 

change or waiting until stabilization before optimizing algorithms. Finally, changes in 

RNS® detections observed in the first few months after a chronic implant should be 

interpreted with caution, so as not to falsely attribute perceived clinical response to early 

changes in therapeutic stimulation parameters.

Spatial variability

It is also important to capture the variability between electrodes to inform algorithms that 

utilize spatial features (measurements between channels). If the processes causing post-

implantation changes affect all electrodes equally, the mean may decrease while the 

coefficient of variation, which is normalized by the mean, would remain constant. However, 

we observed that the spatial variation of line length, half-wave, and spectral power decreases 

over time (Figures 3, 4) and, similar to temporal variability, this effect is more significant in 

the lower frequencies. Notably, while the spatial variation enters the defined reference 

distribution later than the temporal variation, suggesting a different rate of decline, the 

coefficients of variation form reaches our calculated inflexion point roughly the same time 

(day 100) as their corresponding mean feature values (Table 2). A decrease in the coefficient 

of variation indicates that the standard deviation relative to the mean is decreasing. This may 

suggest that the processes responsible for the trend in mean feature values affect each 

electrode differently, and the magnitude of this difference decreases over time. As a result, 

we can expect any spatial measures of iEEG to be unstable in the initial periods after an 

implant. This may be accounted for by variability in electrode locations. For instance, sub-

temporal electrodes may experience greater movement due to the anatomical location, which 

results in a greater tissue reaction (discussed further below) at the brain-electrode interface 

relative to more stable electrodes. This may affect voltage recordings differently for these 

electrodes relative to the mean effect across all electrodes, causing the observed decrease in 

the coefficient of variation when averaged over a day.
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Previous studies

Histological changes at the brain-electrode interface likely explain the observed feature 

variability following implantation, since both follow a similar time course. These 

interactions have been studied extensively in electrodes implanted into animals and 

humans7,9,10,18 and involve an acute inflammatory response followed by chronic fibrosis 

that significantly diminishes by 6–8 weeks10,33–35. Notably, many of these past studies 

analyzed the impact of intracortical electrodes, which penetrate the cortical surface and have 

an increased burden on the brain. Several studies in non-human primates and rats with 

subdural electrodes have shown minimal damage to the cortex but fibrous tissue 

encapsulation over time36–38 that subsequently lead to greater changes in electrode 

impedance relative to intracortical electrodes14,39,40. Since electrode impedance directly 

impacts our calculated features, we relate our observations to previously reported changes in 

impedance in studies of subdural iEEG. Specifically, subdural electrodes implanted in rats 

have shown an increase in impedance in the first 30 days after implantation38 that stabilizes 

after week 1837,38. On histology, fibrous tissue encapsulation was observed surrounding the 

electrodes. Interestingly, a recent study in non-human primates recorded for over 600 days 

reported root-mean-square (RMS) voltage stability at 300 days, which is much later than the 

stability we observe in signal features36 and possibly suggests different timescales between 

non-human primates and humans. In fact, we separately calculated RMS as well and time to 

stabilization/inflexion was 17/108 days, respectively (Figure S5). This difference might be 

related to differences in immune response in these animals, sterile conditions of the implants 

or perhaps mechanical or material factors. In humans, Sillay et al. recently showed that 

impedance in the NeuroPace RNS® subdural electrodes increases an estimated 30% from 

day 1 to day 84 after implantation and stabilizes by four months39. This is similar to the 

magnitude of change that we observed in our time and spectral features from day 0 to day 75 

(Table 4), suggesting that our observed changes are related to previously described changes 

in impedance. However, it should be noted that the RNS® impedance recordings were 

collected intermittently with limited temporal resolution, whereas our recordings were 

continuous. Notably, while we observe high degree of similarity between the time courses of 

each of the power bands, the decrease in power was greatest in lower frequencies. These 

changes could be motivated by an increase in both the resistive and capacitive impedance 

due to tissue encapsulation, as previously reported in microelectrodes41.

Individual variability

While group level trends show a clear initial trend in feature values, there is also substantial 

individual variability that is important to consider. At least two or more features for 13 

patients displayed a significant trend in the initial 75 days (Figure 5) before entering into a 

relatively stable state. This suggests that many patients on an individual level also experience 

an initial decline in feature values. Interestingly, beyond this initial period, the feature trends 

display more variability and the patients appear to group into several cohorts. For example, 

line length trends shows patients that appear stable (3), quickly enter a reference range (1, 5, 

7, 10, 14, 15), show a more gradual trend towards a defined reference range (4, 6, 8, 9, 11, 

13), or appear to be relatively unstable (2, 12) (Figure 6). These patterns are similar for beta 

power (Figure 7). In two patients (3 and 5), all but one feature was stable (Figure 5, Figure 

S6). Patients 3 and 5 with stable EEG were the two youngest individuals, perhaps suggesting 
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that these patients may have a more robust wound healing response than other patients42, 

though we do not have enough data to draw any definitive conclusions. Alternatively, it is 

possible that surgical complications and electrode location may impact these values. 

Furthermore, patients with a significant decline in one feature tend to have a similar trend in 

other features, suggesting a common source likely due to changes at the brain-electrode 

interface. The observed patient level variability suggests a need for patient-specific control 

during iEEG recording, and additional insights may be found as chronic invasive recording 

becomes more widely available.

Although 95% of all statistically significant features initially decreased over time, four 

features displayed increasing values. Though it is difficult to explain these differences, it is 

clear the majority of patients demonstrate significant initial trends over time (Figure 5).

Clinical Implications

Our study is the first of its kind to extend observations of RMS and impedance to signal 

features in continuous recordings, a next step towards translating these findings into clinical 

care. Variability in signal properties has ramifications for emerging closed loop systems for 

the treatment of drug-resistant epilepsy3, development of brain-machine interfaces and 

clinical trial design. These systems must be cognizant of post-implant variability, suggesting 

a need for strategies to either algorithmically control for this instability or otherwise 

optimize on an individual basis.

As an example, current common practice using the NeuroPace implantable responsive 

neurostimulator includes a postoperative observation period to capture patient seizures for 

algorithm training. The duration of this period varies from center to center, and parameters 

for seizure detection and closed-loop stimulation are typically adjusted at each subsequent 

clinic visit based on the number and types of detections and on the clinically evident 

seizures reported since the last visit. The detection parameters, which are based on area, line 

length, and half-wave, are then tuned based on a feature threshold. Once a seizure is 

detected, the device responsively stimulates in an attempt to abort the seizure. The observed 

changes suggest a need for frequent tuning of feature parameters for seizure detection on a 

patient-by-patient basis in order to ensure accurate detection of electrographic seizures. 

Clinicians should also set expectations for their patients that the timeframe for optimization 

of detection and stimulation parameters necessarily includes a potentially prolonged period 

for stabilization.

It is also important to determine the impact of these changes on clinical biomarkers that are 

used in the care of the drug resistant epilepsy population. Acute implantation can induce 

interictal epileptiform activity and seizures that do not accurately represent a patient’s 

underlying disorder43,44. This may be a result of direct effects, such as of trauma, electrode 

contact with the cortical tissue, or complications of electrode placement such as hemorrhage, 

fluid collections or cerebral edema44. Seizure onset localization relies on identifying subtle 

electrographic changes that are spatially distinct, so any changes in spatial variability may 

interfere with the localization procedure. Of interest, there is evidence that patients who 

appear to have multifocal onset seizures immediately after electrode implantation during 

standard clinical evaluation localize to one predominant area in the chronic steady state, 
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eventually resulting in seizure-free outcome after surgery45. This provides at least 

circumstantial evidence that the chronic steady state may better reflect a patient’s baseline 

than alterations of the network from implantation. In this dataset, clinical seizure semiology 

typically did not change in the chronic state from pre-implantation in most of our patients, 

giving some reassurance that these effects are limited in scope. However, it has been 

demonstrated in that seizures can have similar clinical appearance while arising from 

different parts of an epileptic networks, sometimes with different EEG signatures. A recent 

study by our group shows this phenomenon in a long-term canine model46. Classifying 

seizures and mapping their temporal trends is an ongoing project in our laboratory.

Limitations

In this analysis, we defined a “reference” distribution to occur between day 200 and day 

500. Although this is an arbitrary definition, we believe that this captures the variability in 

feature values after any initial post-implantation changes, regardless of how the features 

behave afterward. By modeling this distribution, increased variability during this period will 

increase the reference threshold and raise the feature values necessary to demonstrate a 

change in trends post-implantation relative to longer term recordings. Despite this 

variability, which is difficult to explain on our time scale, the feature value trends post-

implantation are important to describe both on an individual and group level.

An interesting question to consider from our findings is whether the steady state observed 

after stabilization of chronic intracranial recordings represents “ground truth”. It is possible 

that recordings immediately post-implantation more accurately reflect neural activity, and 

that chronic recordings are confounded due to changes at the brain-electrode interface. This 

question is particularly important when considering epilepsy biomarkers, such as interictal 

epileptiform discharges and seizures, and interpreting what their temporal and spatial 

distributions mean with respect to the fundamental mechanisms underlying epileptic 

networks. Like the Heisenberg Uncertainty Principle, unfortunately, it is clear that our 

measurements of the iEEG, for which there is not currently a noninvasive alternative, perturb 

the system and may induce chronic change. At present, iEEG studies provide the best way of 

assessing an epileptic network’s broad band activity on a clinical scale, even taking this 

limitation into consideration. It will be important in future studies from this unique data 

archive to determine if localization of seizures and interictal epileptiform discharges change 

similarly over the first 100 days, which may have more important consequences for current 

epilepsy surgery and ablative therapies. Should spatial localizations change, as the paper by 

DiLorenzo et al suggests, either due to brain disruption or merely inadequate temporal 

sampling, this may require a paradigm shift in the duration of monitoring required to 

localize epileptic networks for intervention. This might require that we monitor patients in 

the ambulatory setting for months, rather than weeks in the hospital.

CONCLUSION

We have shown that calculated features of human subdural recordings decline after 

implantation and exhibit a temporal and spatial post-implantation response that requires 

roughly 100 days to enter a reference range. This response was present in the majority of our 
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patients, though there was significant variability between individual recordings. Our findings 

directly explain observed trends in human neurodevice implants and show that systems that 

use or interpret subdural electrode recordings must account for signal variability on a patient 

level for optimal performance. In addition, further study is warranted to better explain inter-

subject differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Temporal trend of time domain features
Mean line length, area, half-wave, and energy are shown with standard error (grey). 

Smoothed individual subject trends are shown in orange. Overlaid is the smoothed mean 

(blue) and reference threshold (red dashed line).
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Figure 2. Temporal trend of spectral domain features
Average power in delta (0–4 Hz), theta (4–8), alpha (8–12), beta (12–30), gamma (30–100), 

and high-gamma (100–180) frequencies are shown, with standard error bars in grey. 

Smoothed individual subject trends are shown in orange. Overlaid is the smoothed mean 

(blue) and reference threshold (red dashed line).
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Figure 3. Coefficient of variation for time domain features
The mean and standard error of the coefficient of variation is shown for each time domain. 

Overlaid is the smoothed mean (blue) and reference threshold (red dashed line).
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Figure 4. Coefficient of variation for spectral domain features
The mean coefficient of variation is shown for each feature with standard error bars in grey. 

Overlaid is the smoothed mean (blue) and reference threshold (red dashed line).
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Figure 5. Individual variability
A linear model was fit separately for each patient for each feature from day 1 to day 75. Beta 

estimates ( , equation 2) for effect of time are shown here as well as on a color scale. The 

color scale indicates beta values (% change/day), with red indicating an increase in feature 

values and blue indicating a decrease. Grey indicates that the beta estimate for the patient/

feature pair was not significantly different than 0 (no change) after False Discovery Rate 

(FDR) correction. LL = line length. Associated p values are given in Figure S7.
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Figure 6. Normalized line length across days by subject
Each point represents the average value for a given day. Overlaid is the smoothed mean 

(blue) and reference threshold (red dashed line). The orange indicates the day feature values 

enter a reference range and the green line indicates the inflexion point.
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Figure 7. Normalized beta power across days by subject
Each point represents the average value for a given day. Overlaid is the smoothed mean 

(blue) and reference threshold (red dashed line). The orange indicates the day feature values 

enter a reference range and the green line indicates the inflexion point.
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Table 2

Days to reference range and inflexion.

Days to reference range / inflexion

Feature Temporal Spatial

Line Length 37.3 / 98 52.1 / 108

Area * / 166 *

Half-wave 8.9 / 108 37.5 / 98

Energy 21.6 / 108 * / 311

Delta 17 / 108 52.5 / 98

Theta 23.5/ 108 41.6 / 98

Alpha 20.8 / 117 38.7 / 98

Beta 26.6 / 117 40.9 / 98

Gamma 42.9 / 98 * / 253

High Gamma 42.4 / 117 * / 88

For each feature, the time to the reference range is calculated as the first day when the mean value (or coefficient of variation) for each patient 
enters the defined reference range.

*
within reference distribution at implantation. Corresponding values are given in Table 3.
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