

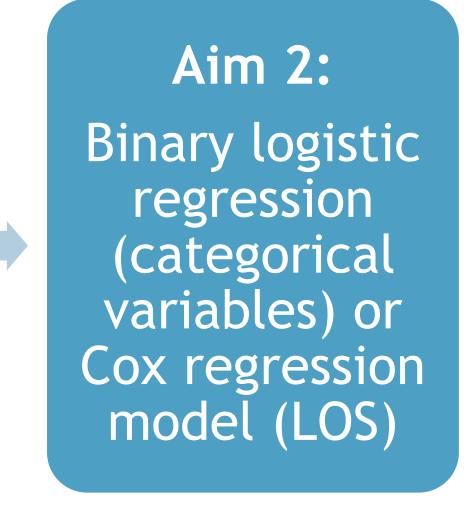
HOME OF SIDNEY KIMMEL MEDICAL COLLEGE

BACKGROUND

The Modified Early Warning Score (MEWS) was implemented at Jefferson in June 2017 to identify hospitalized patients who are experiencing clinical deterioration early. Although an early warning score is recommended for all in-patients, there is more data on validation of outcomes in medical patients compared to surgical patients.

AIMS

1. To identify characteristics of patients who trigger a red MEWS alert and to determine if these characteristics differ in medical versus surgical patients


2. To determine if there is a significant difference in outcomes (in-hospital mortality, discharge to hospice, hospital LOS, RRT, ICU transfer, intubation) for patients who receive a red alert as a medical versus surgical patient when accounting for age, sex, and race 3. To describe the rate of outcomes over time since MEWS implementation with medical and surgical patient subgroup analysis

METHODS

Data: Vizient database of all patients who received a Red MEWS alert during admission and discharged between June 2017-March 2018 (n=812).

Aim 1:

Chi-square test (categorical variables) or independent samples t-test (continuous variables)

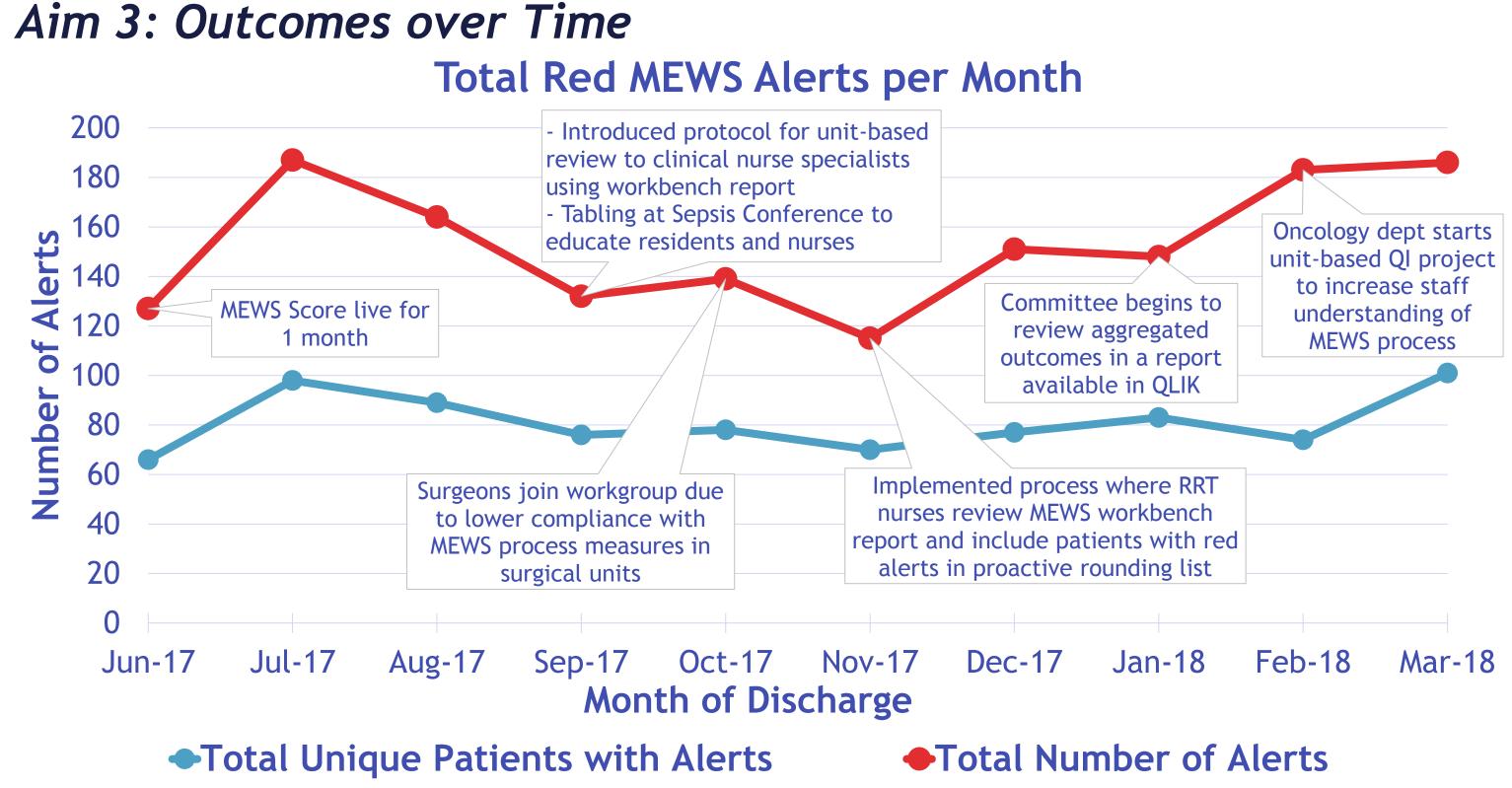
Aim 3: Line graphs of outcomes over time

Aim 2 Regression Models controlled for age, sex, and race: Logit(π) = β_0 + β_1 (SurgicalPt) + β_2 (Age) + β_3 (Female) + β_4 (Non-white)

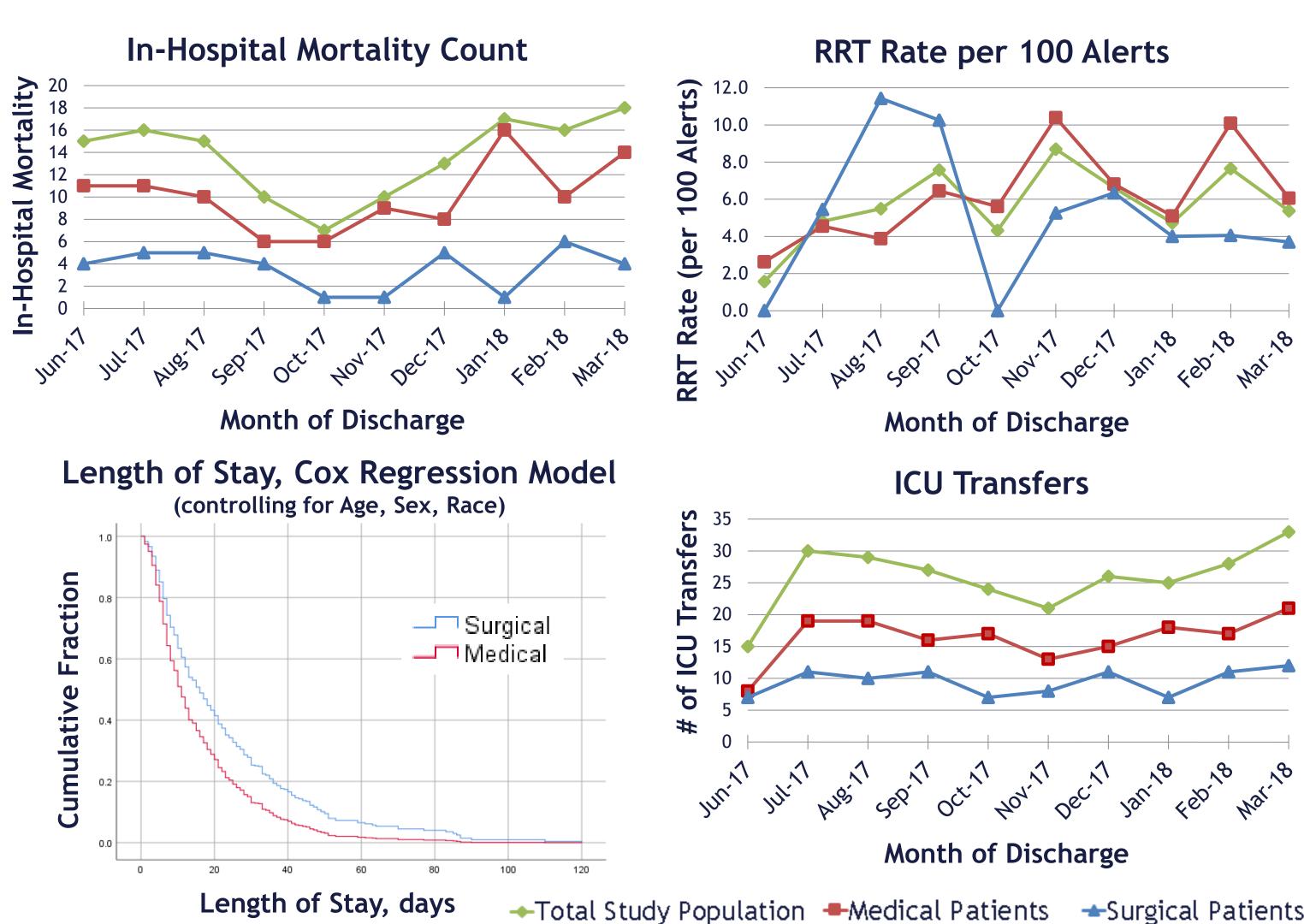
Understanding Differences in Medical versus Surgical Patients Alerted by the Modified Early Warning Score (MEWS) at Jefferson Hospital Nisha Patel, MD/MPH(c)

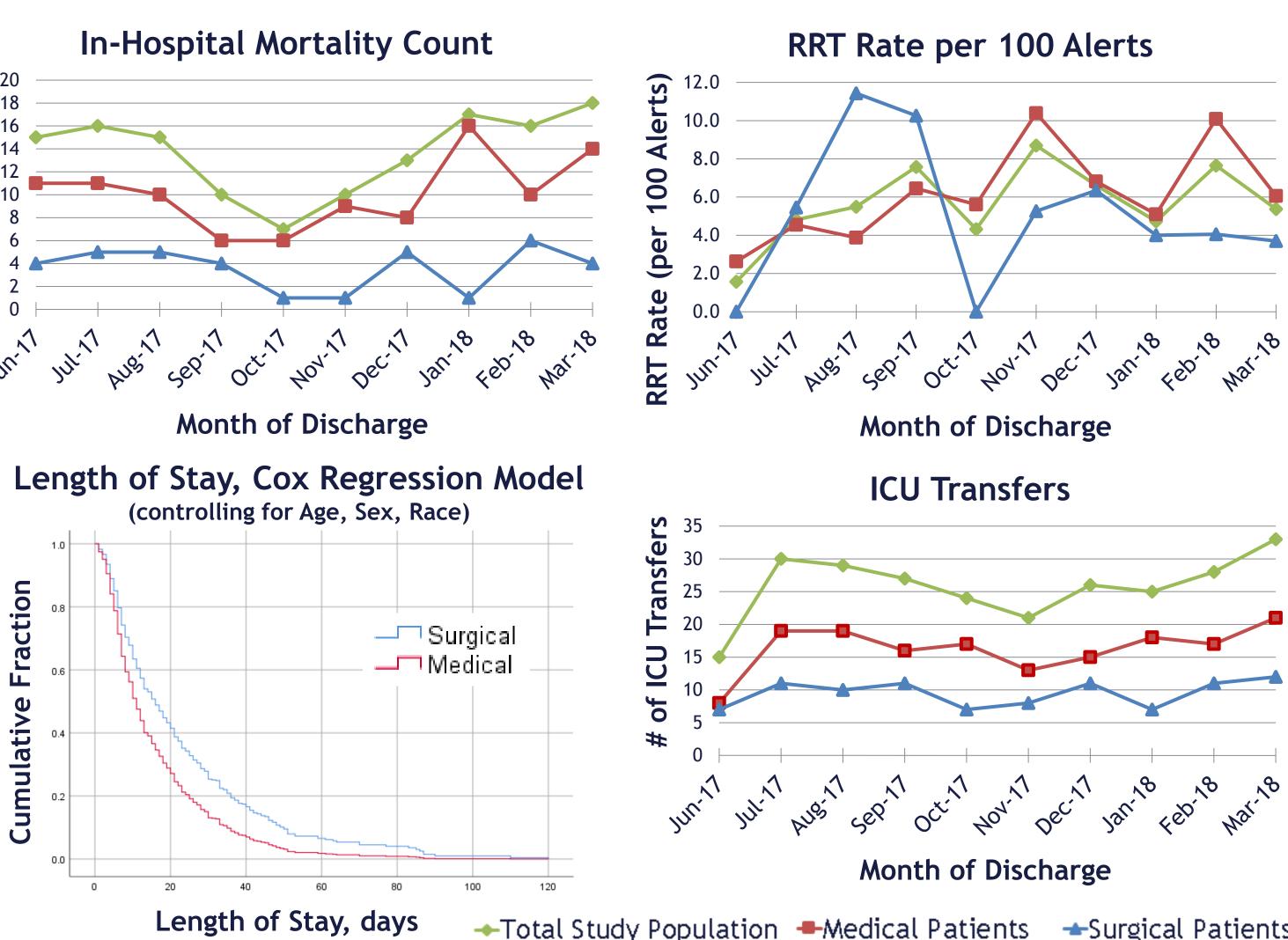
Jefferson College of Population Health, Thomas Jefferson University

RESULTS


Aim 1: Patient Characteristics								
	Total included (n=812)	Medical Patient (n=563)	Surgical Patient (n=249)	P-value				
Sex: female, n (%) Age, yrs; mean (s.d., range)	370 (45.6) 63.4 (16.1, 17-98)	253 (44.9) 64.3 (16.2, 18-98)	117 (47.0) 61.5 (15.8, 17-92)	0.589 0.026				
Race, n (%) White	504 (62.1)	345 (61.3)	159 (63.9)	0.485				
Non-White Source of Admission, n (%)	308 (37.9)	218 (38.7)	90 (36.1)					
Facility Non-Facility	268 (33.0) 544 (67.0)	196 (34.8) 367 (65.2)	72 (28.9) 177 (71.1)	0.099				
Insurance Category Commercial/Medicare/ Commercial+Medicare	485 (59.7)	318 (56.5)	167 (67.1)	0.005				
All Other Payers (includes Dual-Enrolled)	327 (40.3)	245 (43.5)	82 (32.9)					
Alerts per Patient (s.d., range)	1.89 (1.6, 1-17)	1.85 (1.5, 1-17)	1.97 (1.8, 1-14)	0.316				

- Surgical patients were younger than medical patients by approximately 2.7 years (95%) CI: 0.329-5.124).
- Being a surgical patient increased the odds of having Commercial/Medicare/Commercial+Medicare insurance by 56.9% (95% CI: 1.148, 2.144).


Aim 2: Differences in Outcomes


Ann Z. Dijjerences in outcomes								
	Total included (n=812)	Medical Patient (n=563)	Surgical Patient (n=249)	P-value	Effect Size (95% CI)			
In-Hospital Mortality (<i>n</i> , %)	137 (16.9)	101 (17.9)	36 (14.5)	0.402	OR=0.835 (0.549-1.272)			
RRT Post-Alert (n, %)	87 (10.7)	63 (11.2)	24 (9.6)	0.486	OR=0.837 (0.508-1.380)			
Length of Stay, days; median (s.d., range)	10 (15.2, 1- 120)	9 (12.0, 1-77)	13 (19.7, 1-120)	<0.001	HR=0.675 (0.571-0.798)			
Sepsis Diagnosis (n, %)	416 (51.2)	300 (53.3)	116 (46.6)	0.072	OR=1.284 (0.693-2.379)			
ICU Transfer (n, %)	258 (31.8)	163 (29.0)	95 (38.2)	0.011	OR=1.504 (1.097-2.062)			
Intubation Post-Alert (<i>n</i> , %)	39 (4.8)	19 (3.4)	20 (8.0)	0.006	OR=2.470 (1.289-4.732)			
Survived to Discharge	Total (n=675)	Medical (n=462)	Surgical (n=213)	P-value	Effect Size			
Discharge to Hospice (<i>n</i> , %)	98 (14.5)	81 (17.5)	17 (8.0)	0.006	OR=0.452 (0.258-0.793)			

- Each additional year of age increased the odds of in-hospital mortality by 3.0% in the total
- study population and discharge to hospice by 4.6% in those who survived to discharge.

• Being identified as White increased the odds of having an RRT call after alert by 72.1%.

DISCUSSION & LIMITATIONS

- patients at Jefferson.
- Further research:
 - transfer within 2 hours of alert
 - control group.
 - outcomes

CORE COMPETENCIES

- and disseminating data and information
- Identifies gaps in data
- approaches

ACKNOWLEDGEMENTS

Rebecca Jaffe, MD, Chair Brandon George, PhD, Preceptor Department of Risk Management

 Most differences between medical and surgical patients who receive red MEWS alerts are not statistically significant or indicate that surgical patients, while younger and more likely to have Commercial and/or Medicare insurance, have higher odds of having poor outcomes (longer length of stay, ICU transfer, and intubation post-alert). This evidence supports MEWS score implementation for both medical and surgical in-

• Examination of outcomes directly related to alert, such as intubation and ICU

• Validation of outcomes by comparing patients with a red MEWS alert against a

• Examination of differences in follow-up actions and their effect on patient

• Follow-up of alerted patients and their outcomes for a longer period of time

Applies ethical principles in accessing, collecting, analyzing, using, maintaining,

Describes how evidence is used in decision-making Conveys data and information to professionals and the public using a variety of

Describes the diversity of individuals and populations in a community Describes the value of a diverse public health workforce Retrieves evidence from print and electronic sources to support decision making Contributes to the public health evidence base