

# ATRX mutation in Pineal Parenchymal Tumor of Intermediate Differentiation

Michelle Nagurney<sup>1</sup>, Christopher Farrell<sup>2</sup>, Zi-Xuan Wang<sup>1</sup>, Mark T. Curtis<sup>1</sup>

<sup>1</sup>Department of Pathology, Anatomy, and Cell Biology; <sup>2</sup>Department of Neurosurgery Thomas Jefferson University, Philadelphia, PA

Nothing to disclose • The authors of this abstract have indicated no conflicts of interest • TJUH IRB #18D.293

#### **BACKGROUND**

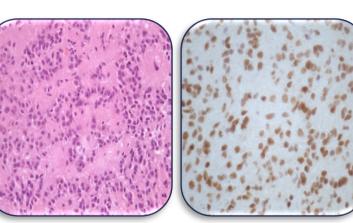
- ➤ Pineal parenchymal tumors (pineocytomas, pineal parenchymal tumors of intermediate differentiation (PPTID) and pineoblastomas) are rare tumors (<0.5% of intracranial neoplasms) ranging from WHO Grade I to IV
- > Tumors in this class can cause major morbidity and death
- ➤ Distinguishing between WHO Grade II and III PPTID and between PPTID and pineoblastomas can be challenging
- > Few studies on molecular profiles of pineal parenchymal tumors have been done
- ightharpoonup Recent identification of an isolated ATRX ( $\alpha$ -thalassemia/mental retardation syndrome X-linked gene) mutation using Next Generation Sequencing in a PPTID raises the possibility of ATRX involvement in pineal parenchymal tumor biology

#### **OBJECTIVES**

Based on our identification of an ATRX mutation in a PPTID of a 22 year old female, we analyzed the frequency of ATRX loss in pineal parenchymal tumors using ATRX immunohistochemical staining.

#### **STUDY METHODS**

- ➤ Next Generation Sequencing panel of 41 CNS-related genes were analyzed in a recent PPTID
- > The TJUH Co-Path Database was searched from 1995 to 2016 with the following terms: pineal cyst, pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma
- ➤ Pineal cysts served as the non-neoplastic control
- > Samples deemed to have adequate tissue size were subsequently stained for ATRX using validated immunohistochemical staining methods routinely performed by our lab
- > The following data was obtained for each case (Table 1):
  - Patient age and gender
  - ➤ Pathology diagnosis, including tumor classification and grade
  - ➤ ATRX IHC result (positive = ≥90% nuclear staining; negative = ≤ 5% nuclear staining)

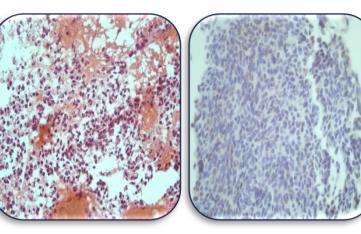

|                  | Pineal Cyst | Pineocytoma | PPTID | Pineoblastoma |  |
|------------------|-------------|-------------|-------|---------------|--|
| Number           | 2           | 3           | 5     | 2             |  |
| Age<br>(Mean)    | 36          | 44.7        | 36    | 30.5          |  |
| Female/<br>Male  | 0/2         | 3/o         | 4/1   | 1/1           |  |
| Grade I          | N/A         | 3           | 0     | 0             |  |
| Grade II         | N/A         | 0           | 2     | 0             |  |
| Grade II/<br>III | N/A         | 0           | 2     | 0             |  |
| Grade III        | N/A         | 0           | 1     | 0             |  |
| Grade IV         | N/A         | 0           | 0     | 2             |  |

**Table 1:** Demographics and WHO grade of pineal lesions studied.

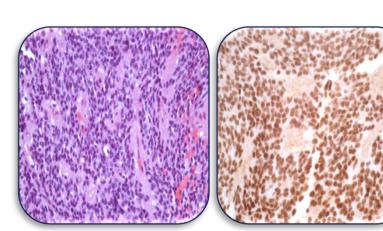
### **RESULTS**

| Brain Tumor Ge | ain Tumor Gene Sequencing Panel |       |        |         |           |  |  |
|----------------|---------------------------------|-------|--------|---------|-----------|--|--|
| ACVR1          | EGFR                            | IDH1  | NF1    | POLE    | SMARCB1   |  |  |
| AKT1           | FGFR1                           | IDH2  | NF2    | POLR2A  | SMO       |  |  |
| ATRX           | FUBP1                           | KLF4  | NRAS   | PTEN    | TERT prom |  |  |
| BCOR           | H3F3A                           | KRAS  | PDGFRA | PTPN11  | TP53      |  |  |
| BRAF           | HIST1H3B                        | LTBP4 | PIK3CA | RB1     | TRAF7     |  |  |
| ac             | HIST1H3C                        | LZTR1 | PIK3R1 | SMAD4   | ZBTB20    |  |  |
| CTNND2         | HRAS                            | MSH6  | PLCG1  | SMARCA4 |           |  |  |

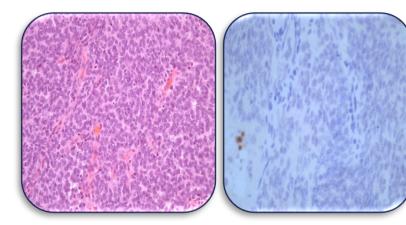
**Table 2:** The Brain Tumor Panel performed on DNA extracted from FFPE tumor tissue using Illumina's TruSeq Amplicon Cancer Panel kit. A mutation in the ATRX gene (4 nucleotide deletion variant resulting in a frameshift mutation) was detected. **No mutations were identified in any of the other 40 genes analyzed.** 




Pineal Cyst in a 36 year old male, ATRX retained




Pineoblastoma in a 31 year old female, WHO Grade IV,


Loss of ATRX IHC staining



PPTID in a 28 year old female, WHO Grade II-III, Loss of ATRX IHC staining



Pineocytoma in a 51 year old female, WHO Grade I, ATRX retained



PPTID\* in a 22 year old female, (\*index case) WHO Grade III, Loss of ATRX IHC staining



PPTID in a 49 year old female, WHO Grade II, Loss of ATRX IHC staining

**Figure 1:** Representative images of the 12 pineal lesion cases (pineal cysts, pineocytomas, PPTIDs, and pineoblastomas) are shown. The images on the left are H&E (hematoxylin and eosin) stains, and the images on the right are ATRX immunohistochemical stains.

# RESULTS (CONTINUED)

|                               | Pineal<br>Cyst | Pineocytoma | PPTID | Pineoblastoma |
|-------------------------------|----------------|-------------|-------|---------------|
| Number of cases               | 2              | 3           | 5     | 2             |
| Loss of IHC staining for ATRX | 0              | O           | 3     | 1             |

**Table 3:** ATRX was maintained in all pineal cysts and pineocytomas analyzed. 3 of 5 PPTIDs and 1 of 2 pineoblastomas showed loss of ATRX (no staining in ≥95 % cells) by immunohistochemistry. In this limited sample, <u>4 of 10 pineal parenchymal neoplasms demonstrated loss of expression of ATRX: 3 PPTIDs and 1 pineoblastoma.</u>

- > ATRX loss was identified in PPTIDs and pineoblastomas, but not pineocytomas
- > No grade-related association (grade II vs grade III) of ATRX loss was observed in PPTIDs
- ➤ No significant age-related differences in ATRX status were observed in our analyzed cases: 42.8 ± 11.2 years (ATRX retained) vs 32.5 ± 11.6 years (ATRX loss)

## **DISCUSSION**

- ➤ Previous molecular analysis of a PPTID and a pineoblastoma by two different groups identified mutations in TSC1 and IKZF3 (PPTID) and in DICER1, ARID1 and KDM5C (pineoblastoma); Neither group reported the presence of an ATRX mutation
- ➤ The alternative lengthening of telomeres (ALT) pathway is a telomeraseindependent mechanisms of telomere length maintenance allowing improved survival of a variety of tumor cell types
- > ALT activation in many tumors is related to loss of function of the ATP-dependent helicase ATRX (tumors with ATRX loss show ALT phenotype)
- ➤ Loss of ATRX has been proposed as a potential strong prognostic marker in both pancreatic neuroendocrine tumors and neuroblastomas

## **CONCLUSIONS**

- > Our study suggests that ATRX loss may occur with some frequency in pineal parenchymal tumors
- > ATRX loss may play a role in the biological behavior of pineal parenchymal tumors
- ➤ Collaborative studies may help determine the relationship between ATRX loss in pineal parenchymal tumors and tumor behavior, leading to more predictive grading for these neoplasms