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Sigma1 Targeting to Suppress Aberrant Androgen Receptor 
Signaling in Prostate Cancer

Jeffrey D. Thomas1, Charles G. Longen1, Halley M. Oyer1, Nan Chen1, Christina M. Maher1, 
Joseph M. Salvino1, Blase Kania1, Kelsey N. Anderson1, William F. Ostrander3, Karen E. 
Knudsen2,3, and Felix J. Kim1,2,*

1Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, 
PA

2Sidney Kimmel Cancer Center, Philadelphia, PA

3Department of Cancer Biology, Sidney Kimmel College of Medicine at Thomas Jefferson 
University, Philadelphia, PA

Abstract

Suppression of androgen receptor (AR) activity in prostate cancer by androgen depletion or direct 

AR antagonist treatment, although initially effective, leads to incurable castration resistant prostate 

cancer (CRPC) via compensatory mechanisms including resurgence of AR and AR splice variant 

(ARV) signaling. Emerging evidence suggests that Sigma1 (also known as sigma-1 receptor) is a 

unique chaperone or scaffolding protein that contributes to cellular protein homeostasis. We 

reported previously that some Sigma1-selective small molecules can be used to pharmacologically 

modulate protein homeostasis pathways. We hypothesized that these Sigma1 mediated responses 

could be exploited to suppress AR protein levels and activity. Here we demonstrate that treatment 

with a small molecule Sigma1 inhibitor prevented 5α-dihydrotestosterone (DHT)-mediated 

nuclear translocation of AR and induced proteasomal degradation of AR and ARV, suppressing the 

transcriptional activity and protein levels of both full-length and splice-variant AR. Consistent 

with these data, RNAi knockdown of Sigma1 resulted in decreased AR levels and transcriptional 

activity. Furthermore, Sigma1 physically associated with ARV7 and ARv567es as well as full-

length AR. Treatment of mice xenografted with ARV-driven CRPC tumors with a drug-like small 

molecule Sigma1 inhibitor significantly inhibited tumor growth associated with elimination of AR 

and ARV7 in responsive tumors. Together, our data show that Sigma1 modulators can be used to 

suppress AR/ARV-driven prostate cancer cells via regulation of pharmacologically responsive 

Sigma1-AR/ARV interactions both in vitro and in vivo.
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INTRODUCTION

Androgen receptor (AR) is the primary driver of prostate cancer progression, and at all 

stages of disease prostate cancer cells are dependent upon AR signaling for growth and 

survival (1, 2). First line therapy involves suppression of AR activity by androgen depletion 

or direct AR ligand treatment. However, incurable castration resistant tumors develop as a 

result of resurgent AR activity attributable to a series of molecular alterations including: 

increased expression of AR or AR co-factors, mutations that facilitate promiscuous AR 

activation by non-androgen steroid hormones, or constitutively active AR splice variants that 

are non-responsive to androgen ablation or AR ligand treatment (1–4). Furthermore, 

intratumoral androgen biosynthesis and compensatory activation of multiple kinase 

pathways have been implicated in reactivation of the AR axis in castration resistant prostate 

cancer (CRPC) (2, 3). The adaptive nature of the AR axis in prostate cancer cells 

underscores the importance of discovering and developing novel approaches to overcome the 

inevitable resistance to current AR-targeted therapies by targeting AR and the networks on 

which it depends.

In prostate cancer cells the cascade of events leading to AR transcriptional activity is 

initiated by binding to dihydrotestosterone (DHT), which is converted from testosterone by 

the enzyme 5α-reductase (2, 4). DHT binding to the carboxy-terminal androgen binding 

domain results in AR conformational changes, dimerization, and transport from the 

cytoplasm to the nucleus wherein it interacts with transcriptional co-factors and is assembled 

into DNA bound protein complexes that produce AR-driven transcriptional activity (2). In 

the absence of bound androgens newly synthesized AR is held in the cytoplasm by multi-

chaperone complexes, including heat shock proteins (HSPs), which are thought to stabilize 

cytoplasmic AR. Protein chaperones, including heat shock protein 90 (HSP90), bind to and 

facilitate the processing, assembly, and transport of AR and associated proteins. Disruption 

of AR-chaperone associations can destabilize AR and result in subsequent degradation by 

the ubiquitin proteasome system (UPS) (5, 6).

Multiple AR splice variants (ARV) have been identified in CRPC tumors and cell lines (2, 

4). The best characterized ARV are the ARV7 and ARv567es splice variants, both of which 

lack much of the carboxy-terminal region of AR, including the ligand-binding domain 

(LBD) (2, 4). Therefore the activities of these ARV are hormone independent, and LBD 

targeted therapeutic agents such as enzalutamide are ineffective against these variants (2, 4).

Sigma1 (traditionally known as the sigma-1 receptor) is a unique 26 kilodalton integral 

membrane protein that more recently has been described as a molecular chaperone (7–9). 

Sigma1 is highly expressed in various cancer cell lines and can be detected throughout the 

cytoplasm, primarily as an endoplasmic reticulum (ER) protein with a long cytoplasmic tail 

(7, 8, 10). The physiological role of Sigma1 in cancer cells is still unclear. However, 

emerging evidence from our laboratory and others (9, 11) suggest that Sigma1 may in fact 

function as a novel molecular chaperone or a scaffolding protein in cancer cells. We have 

found that Sigma1 is involved in aspects of cancer cell protein homeostasis including protein 

synthesis, folding, transport, and degradation (12, 13).
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Furthermore, we have found that these Sigma1 protein homeostasis regulating functions can 

be pharmacologically modulated by selective small molecule compounds. Negative 

modulators of Sigma1 (inhibitors) disrupt protein homeostasis in cancer cells and thus 

suppress their growth and survival. Here we asked whether we could exploit these small 

molecule Sigma1 modulator responses to suppress AR levels and activity in hormone-

sensitive and CRPC cells.

MATERIALS AND METHODS

Chemicals

IPAG (1-(4-Iodophenyl)-3-(2-adamantyl) guanidine) was purchased from Tocris. 

Bafilomycin A1, inhibitor of the vacuolar type H+-ATPase (V-ATPase), 17-AAG (17-N-

allylamino-17-demethoxygeldanamycin), MG132 (Z-Leu-Leu-Leu-al), and 5α-

dihydrotestosterone (DHT) were purchased from Sigma-Aldrich. Cycloheximide was 

purchased from Alfa Aesar.

Cell lines and transfections

The LNCaP, VCaP, 22Rv1, and PC3 prostate cancer cell lines were acquired directly from 

ATCC. C4-2 cells were acquired directly from MD Anderson’s Characterized Cell line Core. 

All of these cell lines were authenticated by short tandem repeat (STR) profiling. Cell lines 

were acquired within the past six years. LAPC4 cells were a kind gift from Dr. Charles 

Sawyers (Memorial Sloan-Kettering Cancer Center). Under standard culture conditions, 

cells were maintained in RPMI 1640 supplemented with 10% fetal bovine serum (Corning). 

For DHT induction assays, cells were maintained for 3–5 days in phenol-red free IMEM 

supplemented with 5% charcoal stripped serum (CSS) (Corning) prior to DHT induction. 

For experiments performed under standard growth, steady-state conditions, cells were 

seeded approximately 24 hours prior to start of drug treatment in most assays.

Control-A siRNA was purchased from Santa Cruz Biotechnology. The two human Sigma1 

siRNA tested here were purchased from Santa Cruz Biotechnology and Dharmacon. Human 

ATG5 siRNA was purchased from Cell Signaling Technologies. For all Sigma1 and ATG5 

siRNA knockdown experiments, 100 nanomoles of siRNA per approximately 100,000 cells 

was transfected with INTERFERin transfection reagent (PolyPlus), and 48 hours later, cells 

were reseeded, allowed to attach and recover for 16–24 hours and transfected again.

The FLAG-AR, FLAG-ARV7, and FLAG-ARv567es plasmid constructs were gifts from Dr. 

Stephen Plymate (University of Washington School of Medicine, Seattle, WA) and have 

been described elsewhere(14). Plasmid transfections were performed with jetPRIME 

transfection reagent (PolyPlus) according to manufacturer’s procedures.

Colony formation, cell survival, and death assays

Trypan blue exclusion assays were used to quantify cell death. Values were generated from 

at least 3 independent determinations, and statistical significance was determined as 

described below.
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For the 3-D colony formation in soft agar assay, cells in culture medium were gently mixed 

at a 1:1 ratio with 0.6% agar and seeded at a density of 5,000 cells per milliliter of soft agar 

per 35mm well and layered on top of a solid footer comprising 1% agar (BD Biosciences). 

The soft agar layer was allowed to solidify, cell culture medium was added to cover the soft 

agar layer, and 24 hours later drug treatment was started. Cells were allowed to grow for 

approximately 4 weeks with weekly medium changes until visible colonies formed in 

untreated control cells. The suspended colonies were fixed with methanol and stained with 

0.01% crystal violet (Fisher). Colonies were counted automatically using the GelCount 

Colony Counter (Oxford Optronix).

For 2-D colony formation and crystal violet assays, 2 or 4 × 103 cells were seeded into a 

tissue culture-treated 12-well dish. Twenty-four hours after seeding drug treatment was 

applied to the wells and medium was replaced weekly until visible colonies formed in 

untreated control cells. Subsequently, the cells were washed with DPBS then fixed in 4% 

formaldehyde. The fixed cells were stained with 0.4% crystal violet (Fisher), washed with 

water and allowed to air-dry. Plates were photographed for analysis and colony counting. 

Crystal violet was extracted from cells by methanol and absorbance measurements at OD 

540 nm were acquired with a VersaMax plate reader (Molecular Devices). The relative 

number of surviving cell colonies was quantified and normalized data presented as the ratio 

of 540 nm values in the experimental treatment wells to 540 nm absorbance values in the 

untreated control wells.

Immunoblots and antibodies

Cell lysis, protein extraction, SDS-PAGE, and immunoblotting were performed as described 

previously (13), with a few modifications. The Luminata Western HRP Substrate 

chemiluminescence kit (Millipore) was used to reveal immunoblotted proteins. The rabbit 

polyclonal anti-Sigma1 antibody was generated in our laboratory as described elsewhere 

(13). The anti-β-actin and anti-HA (Y-11) antibodies were purchased from Santa Cruz 

Biotechnology. The rabbit anti-FLAG, anti-GAPDH, anti-LC3B, anti-ATG5, anti-p97/VCP, 

anti-PSMB5, anti-polyubiquitin (clone P4D1), anti-HSP90, anti-HSP70, anti-HSP27, anti-

glucocorticoid receptor (GR), anti-ErbB2/HER2, anti-ErbB3/HER3, anti-Akt antibodies, and 

horseradish peroxidase conjugated secondary antibodies were all purchased from Cell 

Signaling Technology. The anti-androgen receptor (D6F11) rabbit monoclonal antibody 

(Cell Signaling Technology) used here was raised against an epitope in the amino-terminus 

of AR. The anti-ARV7 antibody (Abcam, EPR15656) was raised against an epitope specific 

to the ARV7 splice variant, and the anti-ARv567es antibody (Abcam, EPR15657) was raised 

against an epitope specific to the ARv567es splice variant. We confirmed the specificity of the 

commercial ARV7 and ARv567es antibodies (Supplemental Figure 1).

Confocal microscopy

Cells were seeded onto #1.5 (0.17 mm) borosilicate glass coverslips (Electron Microscopy 

Sciences) coated with 0.1 mg/mL 75,000–150,000 MW poly-d-lysine substrate (Sigma-

Aldrich) 36 hours prior to fixation. The cells were washed with room temperature 

Dulbecco’s modified phosphate buffered saline solution (DPBS) and fixed in 4% 

formaldehyde (Pierce) for 15 minutes. After DPBS washes, cells were subjected to antigen 
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retrieval using a 10% (v/v) citrate-based unmasking solution (Vector) for 10 minutes at 

95°C. To reduce nonspecific secondary staining, cells were incubated with Image-iT FX 

solution (Molecular Probes) for 30 minutes at room temperature and washed with DPBS. 

Cells were blocked in 5% (v/v) normal goat serum (Invitrogen), 0.3% (v/v) Triton X-100 in 

DPBS for 1 hour. Sigma1 immunostaining was performed with our rabbit polyclonal anti-

Sigma1 antibody (described previously (13)) in 1% (w/v) bovine serum albumin (BSA), 

0.3% (v/v) Triton X-100 in DPBS, overnight at 4°C. After the primary stain, cells were 

washed with DPBS and stained with the corresponding secondary Alexa Fluor 488 goat anti-

rabbit IgG (H+L) (Molecular Probes) in 1% (w/v) BSA, 0.3% (v/v) Triton X-100 in DPBS 

for 2 hours at room temperature. Cells were washed with DPBS, nuclear counter-stained 

with 0.1 μg/mL DAPI (Pierce), then mounted onto glass slides using Prolong Gold 

(Molecular Probes). Coverslips were sealed using nail polish 36 hours after mounting. 

Images were acquired using the Olympus FV1000 inverted confocal microscope using a 60x 

1.42 NA oil immersion objective at a scanning resolution of 0.051 μm/pixel. Five randomly 

selected microscopic fields were taken for each condition.

AR transcriptional activity assay by quantitative RT-PCR (qRT-PCR)

RNA templates for qRT-PCR consisted of total RNA isolated using the RNeasy kit (Qiagen) 

per manufacturer’s protocol. Taq-Man primer probe sets were purchased from Life 

Technologies and the genes and catalog numbers used for the qRT-PCR experiments are the 

following: KLK3/PSA, (Hs03063374-m1), TMPRSS2 (Hs01120965-m1), and GAPDH 
(Hs99999905-m1). qRT-PCR was performed using the 7900HT- Fast Real Time PCR 

System (Applied Biosystems) and the reactions were performed in triplicate using the 

Brilliant II qRT-PCR master mix one step (Agilent Technologies) following the 

manufacturer’s instructions. Data were normalized to GAPDH transcript levels and 

presented as fold increase or percent decrease of KLK3/PSA and TMPRSS2 transcripts 

relative to non-treated or DMSO treated controls.

AR transcriptional activity assay by AR response element dependent luciferase reporter

The Human Androgen Receptor Reporter Assay System (Indigo Biosciences, product 

#IB03001) was used to evaluate AR transcriptional activity. Briefly, this assay uses Chinese 

hamster ovary cells expressing human AR and an Androgen Responsive Element (ARE)-

firefly luciferase construct. The manufacturers protocol was adhered to with the following 

exceptions: cells were seeded in CRM and compound-free CSM and allowed to adhere for 

24 hours, at which time the media was replaced with CSM containing compounds at the 

listed concentrations and 400 pM of the androgen 6αFl-Testosterone (6αFlT). The CRM 

and CSM media are described in the manufacturer product materials. The synthetic 

androgen analog, 6αFIT, was used as a reference agonist for the AR system. Once the 

combination treatment was applied the plates were incubated for 16 hours. The plate was 

read with an integration time of 500 milliseconds per well and 3 consecutive whole-plate 

reads.

AR nuclear localization assay

LNCaP cells were transfected with a GFP-AR plasmid construct and grown in selection 

medium containing 1 mg/mL G418 sulfate for approximately 3 weeks. Resistant colonies 
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were selected and pooled, and stably-transfected GFP-positive cells were isolated by cell 

sorting.

For the DHT induced nuclear localization assay, LNCaP(GFP-AR) cells were seeded as 

described above for confocal microscopy. Cells were cultured in phenol-red free IMEM 

containing 5% charcoal stripped serum (CSS) for 3–5 days. Subsequently, cells were pre-

incubated for 30 minutes with 10 μM IPAG, then 1nM DHT was added and treatment 

continued for 3 hours. The cells were washed with room temperature DPBS and fixed in 4% 

formaldehyde (Pierce) for 15 minutes. After fixation, cells were washed with DPBS, nuclear 

counter-stained with 0.1 μg/mL DAPI (Pierce), then mounted onto glass slides using Prolong 

Gold (Molecular Probes).

Images were acquired using the Olympus FV1000 inverted confocal microscope using a 60x 

1.42 NA oil immersion objective at a scanning resolution of 0.051 μm/pixel in 0.7 μm z-

stack slices. Five randomly selected microscopic fields were taken for each condition with at 

least 10 z-stack slices per field. Quantification was performed in Fiji-ImageJ by tracing an 

outline of the nucleus and whole cell and measuring the intensity of GFP-AR staining, 

generating relative % nuclear and cytoplasmic GFP-AR levels. For each experimental 

condition, 3 z-stack slices of at least 5–10 cells were analyzed per field in at least 5 fields 

from 3 independently performed experiments.

Isopycnic density-gradient centrifugation

LNCaP cells were seeded approximately 24 hours prior to treatment with DMSO (drug 

vehicle) or IPAG (10μM) for 3 hours. Subsequently, the cells were harvested by scraping 

with a rubber policeman and washed with DPBS. The cells were pelleted by centrifugation 

at 200 gmax for 7 minutes at 4°C in a GH-3.8 rotor (Beckman-Coulter), washed with DPBS, 

and pelleted once more. The cells were resuspended in ice-cold isotonic homogenization 

buffer (HB; 250mM D-sucrose, 150 mM sodium chloride, 25 mM Tris-HCl pH 7.6, 1 mM 

EDTA, supplemented with Halt Protease and Phosphatase Inhibitors (Pierce)) with the 

volume normalized against the pellet size. Cells were mechanically lysed using a syringe-

driven stainless-steel encased Balch ball-bearing homogenizer (Isobiotec, Heidelberg, 

Germany). The cells were passed though the tungsten carbide ball bore 14 times with a high 

tolerance clearance of 12μm. The post-nuclear supernatant was generated by separation of 

the homogenate using centrifugation at 1000 gmax for 15 minutes at 4°C in a F45-30-11 

rotor (Eppendorf). The iodinated density gradient media OptiPrep (Axis-Shield) was used to 

create a discontinuous density gradient. Stock (60% w/v) Optiprep was diluted in HB to 

obtain a 0.9 mL bottom layer of 50% (1.272 g/mL) Optiprep, a 0.8 mL middle layer of 30% 

(1.175 g/mL) Optiprep, and a 2 mL top layer of 10% w/v (1.079 g/mL) Optiprep loaded into 

OptiSeal polypropylene tubes (Beckman-Coulter). A 1 mL aliquot of PNS was loaded on top 

of the OptiPrep and separated by ultracentrifugation at 48,000 gmax for 19 hours at 4°C in a 

TLA 100.4 fixed angle rotor (Beckman-Coulter). Fourteen 300 μL fractions were collected 

by tube puncture and gravity flow.
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Co-immunoprecipitation assay

PC3 cells (AR-negative) were transiently transfected with either pcDNA3.1 (empty vector 

plasmid), Sigma1-HA, FLAG-AR, FLAG-ARV7, or FLAG-ARv567es plasmid constructs 

using jetPRIME Transfection Reagent (Polyplus). Forty-eight hours post-transfection, cells 

were harvested and lysed in HB as described above. Subsequently, lysates were solubilized 

in an equal volume of 2X NP-40 wash buffer (300 mM sodium chloride, 25 mM Tris pH 7.6, 

10% glycerol, 2% NP-40 detergent) supplemented with both Halt Protease and Phosphatase 

Inhibitors (Pierce). Detergent solubilized lysates were pre-cleared on Protein G Magnetic 

Beads (BioRad) coupled with mouse serum (Sigma-Aldrich). The pre-cleared lysates were 

then layered on Protein G Magnetic Beads coupled with mouse monoclonal (H-5) FLAG 

antibody (Santa Cruz Biotechnology) and incubated for 1 hour at 4°C with constant rotation. 

The Protein G Magnetic Beads were then washed with 1X NP-40 wash buffer (300 mM 

sodium chloride, 25 mM Tris pH 7.6, 10% glycerol, 1% NP-40 detergent). The 

immunoprecipitated protein complexes were eluted by heating at 95°C in Laemmli sample 

loading buffer supplemented with dithiothreitol (DTT) and β-mercaptoethanol.

Xenograft and in vivo drug efficacy study

Tumors were initiated by injecting 1 × 106 22Rv1 cells in 20% Matrigel into the right flank 

of castrated male athymic nude mice. Tumors were measured by caliper three times a week, 

and their volumes were calculated using the formula (a x b2)/2, where a is the longest 

dimension of the tumor, and b is the width. When tumors reached ~150 mm3, mice were 

randomly sorted and treatment was started. CT-189 (30 mg/kg) in a solution of 1% sodium 

carboxymethyl cellulose, 0.5% Tween-80 and DPBS or vehicle alone was administered 

orally using a gavage needle that had been dipped in 50% sucrose in water. Mice were dosed 

every other day until vehicle tumors reached ~1,000 mm3, and were euthanized 48 hours 

after their final dose. Tumors were dissected and flash frozen. Statistical analysis of tumor 

growth was performed using analysis of variance (ANOVA) (vehicle N = 8, CT-189 N = 8). 

Mice were weighed on tumor measurement days. All studies involving animals were done in 

accordance with protocols approved by the Drexel University College of Medicine 

Institutional Animal Care and Use Committee.

Protein from flash frozen tumors was extracted and solubilized in a solution of RIPA, 10% 

glycerol, EDTA, and Halt Protease and Phosphatase Inhibitors (Pierce) using a Bead-Ruptor 

tissue homogenizer (Omni). CT-189 treatment associated changes in proteins of interest in 

tumors (i.e., pharmacodynamics marker) were detected by immunoblot and quantified by 

densitometry.

Statistical analysis

For statistical analysis of immunoblot densitometry, ratios of protein band density in drug 

vehicle versus Sigma1 inhibitor treated samples were compared to an average of the vehicle 

treated samples. An unpaired, two-tailed t-test was performed to evaluate the statistical 

significance of differences between the two groups.
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Statistical significance of multiple comparisons was determined by one-way analysis of 

variance (ANOVA) followed by Bonferroni’s post-test using Prism software (GraphPad). 

This was applied to the 22Rv1 xenografted tumor growth inhibition study.

RESULTS

Sigma1 is required for prostate cancer cell growth and survival

First, we confirmed that RNAi or pharmacological inhibition of Sigma1 suppresses prostate 

cancer cell growth and survival. In these studies, we evaluated a panel of clinically relevant 

prostate cancer cell lines, including a hormone-therapy sensitive model of prostate cancer, 

LNCaP, which exhibits ligand-dependent AR activity in response to dihydrotestosterone 

(DHT). LNCaP harbors a gain-of-function AR mutation (T877A) that occurs with 

significant frequency in human disease (15). We also tested the CRPC model cell lines, C4-2 

(16, 17), VCaP (18), and 22Rv1 (19–21). The VCaP and 22Rv1 cells express splice variant-

derived forms of the AR, including the ARv567es and ARV7 splice variants that are 

constitutively active and refractory to AR-targeted therapeutics (19–21).

Using an anti-Sigma1 antibody generated in our laboratory (12, 13), we first confirmed 

Sigma1 protein expression in the cytoplasm of AR positive prostate adenocarcinoma cell 

lines by confocal immunofluorescence microscopy (data shown for C4-2 in Fig. 1A–B). We 

confirmed specificity of the Sigma1 immunostain by Sigma1 blocking peptide pre-

adsorption (Fig. 1A). We then confirmed the ability of treatment with Sigma1 siRNA to 

significantly reduce Sigma1 protein expression (Fig. 1B–C).

Next we performed siRNA-mediated knockdown experiments to determine whether Sigma1 

is required for prostate cancer cell growth and survival. Clonogenic growth was suppressed 

in Sigma1 knockdown cell cultures, shown for C4-2 in Figure 1D and quantified for C4-2, 

LNCaP, and 22Rv1 using a crystal violet staining assay in Figure 1E. Consistent with the 

RNAi results we found that treatment with a prototypic, selective small molecule inhibitor of 

Sigma1, IPAG, suppressed prostate cancer cell growth and survival in a dose-responsive 

manner in both 3-dimensional (3-D) soft agar growth and 2-dimensional (2-D) monolayer 

growth assays (Fig. 1F–G, respectively). Interestingly, IPAG inhibited prostate cancer cell 

growth more potently in 3-D culture compared to 2-D monolayer culture (Fig. 1F–G), with 

an IC50 of 3 μM for all cell lines under 3-D growth conditions compared to IC50 values of 6, 

7, and 10 μM for LNCaP, C4-2, and 22Rv1, respectively, under 2-D growth conditions. The 

difference in response may be due to the growth conditions as well as the time of treatment: 

the 2-D assay measures inhibition of cell survival after 72 hours of treatment with IPAG, 

whereas the 3-D assay measures inhibition of cell survival after approximately 3 – 4 weeks 

of treatment. The Sigma1 selective actions of IPAG have been confirmed elsewhere (13, 22).

Importantly, small molecule inhibition of Sigma1 produced time-dependent cell death. 

Significant cell death was observed between 24 and 48 hours after initiation of treatment of 

LNCaP cells with 10 μM IPAG (Fig. 1H). Based on this data, we performed all subsequent 

mechanism-focused experiments well within the 24 hour time point to minimize potential 

confounds associated with cell death.
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Androgen receptor transcriptional activity is suppressed by RNAi mediated knockdown 
and small molecule inhibition of Sigma1

Subsequently, we asked whether the growth and survival suppressing effects of Sigma1 

inhibitor treatment corresponded with changes to AR transcriptional activity. We used 

quantitative reverse transcriptase-PCR (qRT-PCR) to evaluate changes in transcript levels of 

the AR target genes KLK3/PSA and TMPRSS2. For these studies we evaluated the same 

panel of prostate cancer cell lines described above, with the addition of VCaP cells which 

harbor an amplification of the AR locus and the TMPRSS2-ERG fusion, which renders ERG 

expression under AR control (23).

We found significant reduction of KLK3/PSA and TMPRSS2 transcript levels in both 

LNCaP and VCaP cells following treatment with 20 μM IPAG for 16 hours under steady-

state, standard culture conditions – i.e., in fetal bovine serum containing growth medium 

(Fig. 2A).

To evaluate the effects of Sigma1 inhibition specifically on androgen induced AR 

transcriptional activity, we maintained LNCaP cells in culture medium supplemented with 

charcoal stripped serum (CSS) to mimic androgen deprivation and treated these cells with 

DHT in the absence or presence of IPAG (Fig. 2B). Following three days of growth in CSS 

medium, treatment with 1nM DHT for 3 hours induced KLK3/PSA and TMPRSS2 
transcript levels (Fig. 2B). Treatment with IPAG alone for 3 hours reduced KLK3/PSA and 

TMPRSS2 transcript levels below control levels (Fig. 2B). Co-treatment with IPAG blocked 

DHT induction of KLK3/PSA and TMPRSS2 transcripts, maintaining transcripts close to 

control levels (Fig. 2B).

To measure effects on direct AR transcriptional activity, we used a luciferase-based AR 

reporter assay. In this assay, 16-hour treatment with IPAG dose-responsively inhibited an AR 

agonist, 6αFIT, with an IC50 of 6 μM (Fig. 2C).

Consistent with small molecule inhibition of Sigma1, siRNA knockdown of Sigma1 in 

LNCaP cells significantly suppressed KLK3/PSA and TMPRSS2 transcript levels (Fig. 2D). 

Two different commercial Sigma1 siRNA produced decreases in KLK3/PSA and TMPRSS2 
transcript levels (data shown for SCBT siRNA in Fig. 2D).

Altogether, these data demonstrate that both RNAi mediated knockdown and 

pharmacological inhibition of Sigma1 suppress AR transcriptional activity.

Treatment with a Sigma1 inhibitor prevents nuclear transport of cytoplasmic AR

As Sigma1 is present throughout the cytoplasm of these prostate cancer cells (Fig. 1), and as 

nascent AR is stabilized by its cognate chaperones in the cytoplasm, we asked whether the 

decreased transcriptional activity in response to pharmacological inhibition of Sigma1 could 

be explained by inhibition of DHT induced translocation of AR to the nucleus. To evaluate 

this effect, we generated a LNCaP cell line stably transfected with a green fluorescent 

protein (GFP)-tagged androgen receptor (GFP-AR) construct. Using this LNCaP(GFP-AR) 

cell line, we monitored and evaluated DHT-induced nuclear localization of GFP-AR in the 

absence and presence of IPAG (Fig. 2E–F). LNCaP(GFP-AR) cells were cultured in CSS 
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supplemented medium for 3–5 days then treated for 3 hours with 1 nM DHT alone or in the 

presence of 10 μM IPAG (Fig. 2E–F). Treatment with DHT alone for 3 hours resulted in an 

increase from 34% ± 1% to 68% ± 2% nuclear GFP-AR (Fig. 2E–F). Co-treatment with 10 

μM IPAG completely abrogated this effect, maintaining the level of nuclear GFP-AR at 33% 

± 1% (Fig. 2E–F). Thus, the small molecule Sigma1 inhibitor prevented DHT-induced 

nuclear translocation of AR.

Sigma1 inhibitor induces ubiquitin proteasome mediated degradation of AR

Subsequently we investigated the fate of AR following extended treatment (16 hours) with 

IPAG or knockdown with Sigma1 siRNA. Knockdown of Sigma1 in LNCaP cells 

suppressed AR protein levels, under standard culture conditions (Fig. 3A). Consistent with 

Sigma1 siRNA, treatment with IPAG decreases steady-state AR protein levels in all 5 cell 

lines examined (Fig. 3B). In LNCaP cells, treatment with IPAG resulted in a >75% decrease 

in AR protein levels (Fig. 3B). IPAG treatment suppressed AR to similar levels in LAPC4 

(wild-type AR expressing) cells (24) and castration resistant C4-2 and 22Rv1 cells and 

clearly suppressed AR in VCaP cells as well (Fig. 3B). Interestingly, treatment with IPAG 

also eliminated splice-variant AR (ARV), including ARV7, as well as full-length AR in 

ARV-bearing 22Rv1 and VCaP cells under CSS medium culture conditions (Fig. 3B). 

Densitometry of immunoblots in Figure 3B are presented in Supplemental Figure 2.

We previously found that extended treatment with IPAG could suppress unfolded protein 

response (UPR) associated protein translation (12, 13). Therefore, we evaluated the potential 

and relative contribution of protein synthesis and degradation by treating with IPAG in the 

presence of the translation inhibitor, cycloheximide (CHX). Whereas translation arrest by 

CHX alone resulted in a time-dependent decrease in AR protein levels from 95% to 11% 

over 24 hrs, the combination of CHX and IPAG resulted in decreases that ranged from 80% 

to 1% of control levels (Fig. 3C). These data suggest that although translation arrest may 

contribute to decreased AR levels in response to IPAG treatment, protein degradation plays a 

significant role in the elimination of AR.

We previously found that extended treatment with IPAG could also induce autophagy (13). 

Therefore, we tested whether the IPAG-mediated decrease in steady-state AR protein levels 

was due to autophagosomal degradation by combining IPAG with bafilomycin A1 (inhibitor 

of autolysosomal degradation) or treating cells in which ATG5 had been knocked down with 

siRNA. ATG5 is a protein product of the essential autophagy gene ATG5, which is required 

for autophagosome formation. Inhibition of autophagosomal degradation or autophagosome 

formation did not block IPAG induced degradation of AR (Fig. 3D and Supplemental Figure 

3, respectively).

In parallel, we examined whether the ubiquitin proteasome system (UPS) is the operative 

pathway in Sigma1 inhibitor-induced AR degradation. Co-treatment of LNCaP cells with the 

proteasome inhibitor MG132 blocked IPAG-mediated degradation of AR (Fig. 3D), 

providing compelling evidence in support of the hypothesis that Sigma1 inhibitor-mediated 

degradation of AR is UPS-mediated.
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By 3 hours of treatment with IPAG steady state AR protein levels did not yet change 

significantly; however, DHT-induced nuclear localization was blocked (Fig. 2E–F). 

Subsequently, we asked whether during this time frame treatment with IPAG resulted in 

sequestration and targeting of cytoplasmic AR to the ubiquitin proteasome system (UPS). 

We used an isopycnic centrifugation technique to isolate subcellular fractions of LNCaP 

cells. In this assay, IPAG induces co-fractionation of AR and Sigma1 along with UPS 

components including PSMB5, polyubiquitinated proteins, and p97/VCP (Fig. 3E). In 

response to treatment with IPAG, 90% of Sigma1, 98% of PSMB5, 84% of p97/VCP, 66% 

of poly-ubiquitin immunoreactivity, and 46% of AR co-fractionated in fractions 4–6, from 

initially disparately distributed fractions (Fig. 3E). These results further support the idea that 

the Sigma1 inhibitor induces accumulation of AR to ubiquitin-enriched cell compartments to 

be targeted for proteasomal degradation. It is noteworthy that a portion of the total cellular 

AR within these cells shifts to Sigma1-enriched fractions, suggesting that a subpopulation of 

AR interacts with Sigma1 at a given time and emphasizing that IPAG-induced AR 

degradation is time dependent.

Selectivity of Sigma1 inhibitor induced protein elimination

Treatment with the Sigma1 inhibitor appears to be selective. Indeed, in response to IPAG 

treatment the levels of several proteins decrease; however, the levels of some proteins remain 

steady and a few increase (Fig. 4A). Because of its features, Sigma1 regulation of protein 

homeostasis draws comparison with HSP90. Here, we demonstrate that pharmacological 

modulation of Sigma1 and HSP90 involve distinct mechanisms.

Sigma1 modulators and HSP90 inhibitors induce the degradation of some overlapping but 

also distinct sets of client proteins. HSP90 chaperones a range of client proteins important in 

cancer cell growth and survival. We tested the effects of IPAG treatment on steady-state 

levels of several well-defined HSP90 client proteins that play important roles in this disease: 

ErbB2/HER2, ErbB3/HER3, and Akt. We found that the Sigma1 inhibitor affects some but 

not all of these client proteins. Treatment with IPAG elicited a similar dose-related decrease 

in steady-state ErbB2/HER2 and ErbB3/Her3 as the geldanamycin analog 17-AAG (Fig. 4B, 

C). However, in contrast to elimination of Akt produced by 17-AAG, we observed no 

significant change in Akt protein levels in response to IPAG treatment (Fig. 4B, C).

HSP90 is the best-characterized chaperone of glucocorticoid receptor (GR) as well as AR. In 

VCaP cells, treatment with 17-AAG resulted in dose-related elimination of GR (Fig. 4B). 

Interestingly, we observed no measurable change in GR protein levels in response to IPAG 

treatment (Fig. 4C). Considering the conservation and overlap in AR and GR mechanisms 

and support machinery, this result is somewhat unexpected. However, it further highlights 

the specificity and some key differences in mechanisms governing the actions of HSP90 and 

Sigma1.

Compensatory up-regulation of HSP70 and HSP27 are hallmarks of HSP90 inhibition (6, 

25). We confirmed that treatment with 17-AAG results in salient induction of both HSP70 

and HSP27 (Fig. 4D). In clear contrast, treatment with IPAG did not induce HSP70 and 

HSP27 (Fig. 4E).
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Together these data demonstrate a degree of selectivity of Sigma1 inhibitor-mediated 

actions. They demonstrate that Sigma1 and HSP90 have some overlapping but also distinct 

sets of client proteins, and they suggest that pharmacological modulation of Sigma1 and 

HSP90 are governed by distinct mechanisms of action.

Sigma1 inhibitor eliminates AR and AR splice variants

Nascent cytoplasmic AR is bound and stabilized by multi-chaperone protein complexes that 

include HSP90. DHT binding to AR stimulates transport of this complex to the nucleus, and 

HSP90 is thought to play a role in the transport as well as stabilization of AR (6, 26). 

However, HSP90 does not bind AR splice-variants (ARVs) (14, 20, 21, 27, 28), and HSP90 

inhibitors such as 17-AAG are unable to suppress ARV driven transcriptional activity (14, 

29).

Consistent with previously published reports, treatment with 17-AAG resulted in decreased 

full-length AR levels compared to DMSO, whereas ARV levels did not significantly change 

compared to vehicle treated control levels (Fig. 5A). In contrast, treatment with the Sigma1 

inhibitor, IPAG, resulted in a significant decrease of both full-length AR and ARV levels 

(Fig. 5B).

Among the multiple ARVs that have been identified in CRPC tumors and cell lines (2, 20, 

21, 27, 28) the best characterized are the ARV7 and ARv567es (2, 28). As a result of epitopes 

produced during splicing, these ARV contain unique amino acids that have enabled 

generation of antibodies specific to these variants (2, 20, 21, 27, 28). The 22Rv1 cell line 

expresses ARV7 (14). Using a validated antibody specifically raised against ARV7 (30, 31), 

we demonstrate that IPAG suppresses ARV7 compared to vehicle treated control levels in 

22Rv1 cells whereas 17-AAG does not (Fig. 5C–D).

We asked whether proteasomal degradation contributes to the elimination of ARVs in 

response to treatment with IPAG. Co-treatment of 22Rv1 cells with IPAG and MG132 

blocked the degradation of both full-length AR and ARVs (Fig. 5E), which we confirmed 

specifically for ARV7 as well (Fig. 5F).

Sigma1 inhibitor suppresses AR splice variant transcriptional activity

We confirmed that IPAG-mediated elimination of AR and ARV corresponds with 

suppression of AR and ARV transcriptional activity. When cultured in CSS medium, ARV 

transcriptional activity continues as evidenced by detectable KLK3/PSA and TMPRSS2 
transcripts under this hormone-depleted culture condition. In this experiment, we set our 

baseline relative KLK3/PSA and TMPRSS2 transcript value at 1.0 (Fig. 5G). Treatment with 

DHT induces full-length AR transcriptional activity, increasing KLK3/PSA and TMPRSS2 
transcript levels above DHT naïve cells (Fig. 5G). When treated with IPAG, KLK3/PSA and 

TMPRSS2 transcript levels decreased (Fig. 5G). This is consistent with the decreased ARV 

protein levels in response to treatment with IPAG (Fig. 3, 5). Co-treatment of DHT and with 

IPAG maintained KLK3/PSA and TMPRSS2 transcript levels below baseline (Fig. 5G).

In contrast to IPAG, treatment of 22Rv1 cells with 17-AAG did not decrease AR target gene 

transcript levels below the baseline value, with KLK3/PSA and TMPRSS2 transcript levels 
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(Fig. 5G). Therefore, constitutive ARV transcriptional activity in 22Rv1 cells is not altered 

by 17-AAG. These data support previous reports demonstrating that the HSP90 inhibitor, 

geldanamycin, does not suppress ARV transcriptional activity (14, 29). Co-treatment with 

DHT and 17-AAG resulted in increased KLK3/PSA and TMPRSS2 transcript levels (Fig. 

5G).

These data demonstrate that pharmacological inhibition of Sigma1 suppresses ARV as well 

as AR transcriptional activity. However, consistent with recent reports, HSP90 inhibitors 

suppress AR but not ARV transcriptional activity (Fig. 5 and (14, 29)).

Finally, we asked whether ARV transcriptional activity would be altered by Sigma1 RNAi. 

Consistent with small molecule inhibition of Sigma1, siRNA knockdown of Sigma1 in 

22Rv1 cells grown in CSS medium (Fig. 5H) suppressed KLK3/PSA and TMPRSS2 
transcript levels (Fig. 5I).

Sigma1 physically associates with AR and AR splice variants

The inability of HSP90 inhibitors to degrade ARV may be attributed to the lack of physical 

association between the two proteins (14, 29). This is consistent with HSP90 binding to AR 

CTD at amino acid residues which are absent in the ARVs (14, 20, 21, 27, 28). However, as 

the Sigma1 inhibitor decreased the levels of both AR and ARV, we asked whether Sigma1 

physically associates with ARV7 and ARv567es. To address this question, we performed co-

immunoprecipitation assays using FLAG epitope tagged AR, ARV7, and ARv567es 

constructs (described elsewhere (14, 29)) along with an affinity tagged Sigma1 construct. 

The Sigma1-HA plasmid construct contains a dual carboxy-terminal affinity-tagged murine 

Sigma1 with tandem hemagglutinin (HA) epitope (32). The high degree of amino acid 

homology between murine and human Sigma1 make them functionally interchangeable (32). 

We transiently transfected both constructs into PC3 cells (AR-negative prostate 

adenocarcinoma cell line) and immunoprecipitated post-nuclear cell lysates with an anti-

FLAG antibody. Whereas HSP90 binds full-length AR but not ARV7 or ARv567es (14), we 

demonstrate here that Sigma1 physically associates with both AR variants (Fig. 6B) as well 

as full-length AR (Fig. 6A). Together, our data suggest that Sigma1 may play a role in the 

support machinery of the AR-axis and contribute to the regulation of ARV as well as full-

length AR. Our data also suggest that Sigma1 may physically associate with the N-terminal 

domain (NTD) of AR; however, whether this association is direct or indirect remains to be 

determined.

In vivo efficacy of CT-189, a novel Sigma1 modulator with drug-Like properties

Although it is a useful chemical probe, IPAG has insufficient drug-like properties, and we 

were unable to use this compound in our in vivo efficacy studies. Therefore, we focused on 

modifications of IPAG as starting points to develop more drug-like probes to study the 

function of Sigma1 in vivo. We synthesized 1-(4-chlorophenyl)-3-(3-(4-

fluorophenoxy)propyl)guanidine, which we named CT-189 (Fig. 7A and Supplemental 

Table). CT-189 binds Sigma1 with a Ki = 38 nM using a [3H](+)-pentazocine binding 

competition assay described elsewhere(33), maintains AR and ARV eliminating properties 

(Fig. 7B–C), and AR and ARV transcriptional activity suppressing activities (Fig. 7D–F).
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CT-189 has drug-like properties. It is well tolerated by mice at efficacious doses. 

Importantly, mice treated with CT-189 did not lose weight (Fig. 7H), and we observed no 

behavioral abnormalities compared to vehicle treated mice.

In vivo, CT-189 inhibited the growth of xenografted 22Rv1 tumors by 60% following ~36 

days of treatment (Fig. 7G). A dose of 30 mg/kg CT-189 was administered by oral gavage 

every other day during this period. We performed biochemical analysis of the harvested 

tumors by immunoblot to confirm that AR and ARV7 elimination was associated with tumor 

growth inhibition. Compared to treatment with drug vehicle, tumors from CT-189 treated 

mice had decreased levels of ARV7 (79% ± 7% decrease) as well as AR (67% ± 8% 

decrease) protein levels (Fig. 7I and J, respectively).

DISCUSSION

Sigma1 and the AR axis

The dual goals of this study were to better understand the role of Sigma1 with regard to AR 

processing and function and to determine whether modulation of its activity may have 

therapeutic potential for the treatment of castration resistant prostate cancer. The concept of 

the role of Sigma1 is rapidly evolving, and emerging evidence suggests that either Sigma1 

may function as an allosteric co-factor protein associated with bona fide receptor systems or 

as a novel chaperone (34) or scaffolding protein. We demonstrate that treatment with a 

prototypic Sigma1 modulator, IPAG, results in cytoplasmic sequestration of AR and 

proteasome mediated degradation. Consistent with these data, RNAi knockdown of Sigma1 

results in decreased AR levels and transcriptional activity. Furthermore, we demonstrate that 

a drug-like analog of IPAG, which we named CT-189, maintains Sigma1 mediated AR/ARV 

eliminating activities, suppresses AR transcriptional activity, and importantly, significantly 

inhibits ARV driven tumor growth in a 22Rv1 xenograft model. To our knowledge this work 

represents the first demonstration of a direct interaction between Sigma1 and the AR axis, 

and it is the first evidence of in vivo efficacy of Sigma1 modulator compounds through this 

mechanism. An indirect connection between the AR axis and Sigma1 can be inferred from 

parallel lines of research showing that the endogenous steroid hormone 

dehydroepiandrosterone (DHEA) has affinity for both AR and Sigma1 (34–37). DHEA has 

been shown to upregulate AR levels and activity in the central nervous system (38), and it 

has been proposed to act as a Sigma1 agonist or activator (34). In the context of prostate 

cancer, circulating adrenal androgens, DHEA and DHEA sulfate (DHEA-S), are taken up by 

prostate tumors and converted into testosterone and other steroids that bind and activate AR 

(39). Elevated intratumoral androgens are characteristic of castration resistant tumors (39, 

40). DHEA and DHEA-S contribute to the persistent synthesis of intratumoral androgens 

following androgen deprivation therapy which drives CRPC (39, 40). It is tempting to 

speculate that Sigma1 interaction with DHEA may also play a role in prostate tumor growth. 

Our data, along with these indirect lines of evidence, suggest a role for Sigma1 in feedback 

mechanisms that regulate AR-associated networks.
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Sigma1 as a novel ligand-operated scaffolding protein that engages in selective protein 
associations

Sigma1 is expressed throughout the cytoplasm of prostate cancer cells and has been 

described as a primarily endoplasmic reticulum (ER) protein. Based on the recently resolved 

crystal structure (8), Sigma1 is an ER bound integral membrane protein with a relatively 

short ER luminal component and a relatively long cytoplasmic tail. The ER extends 

throughout the cytoplasmic space of the cell and associates with essentially all organelles 

(41). Therefore, it is not surprising that Sigma1 can physically associate with cytoplasmic 

and cytosolic proteins as well as ER luminal proteins. Here we have found that Sigma1 

physically and functionally interacts with AR.

HSP90 is the most extensively characterized AR chaperone. Along with co-chaperones, 

HSP90 binds and stabilizes nascent AR in the cytoplasm, and upon DHT binding to AR, AR 

is thought to dissociate from this chaperone complex and subsequently undergo transport to 

the nucleus (reviewed in reference 6). In our pull-down experiments we show that AR and 

Sigma1 physically associate (Fig. 6). Together, our experiments demonstrate that although 

Sigma1 and HSP90 may share some common associated proteins and may engage in multi-

protein complexes, they do not necessarily interact directly and they have distinct 

mechanisms of action. Three lines of evidence exemplify that pharmacological modulation 

of Sigma1 and HSP90 are driven by distinct mechanisms of action.

First, Sigma1 modulators such as IPAG and CT-189 eliminate both AR and ARV in 22Rv1 

cells whereas the HSP90 inhibitor 17-AAG eliminates only the full-length AR (Fig. 5, 7, and 

(14)). Among the multiple ARVs that have been identified in CRPC tumors and cell lines (2, 

20, 21, 27, 28) the best characterized are the ARV7 and ARv567es splice variants (2, 28). 

Recent reports demonstrate that HSP90 inhibitors suppress AR but not ARV transcriptional 

activity(14, 29). Whereas HSP90 binds full-length AR but not ARV7 or ARv567es (14), 

Sigma1 physically associates with both AR variants as well as full-length AR (Fig. 6). 

Furthermore, full-length AR and ARV are eliminated by IPAG but not 17-AAG (14, 29). 

This is consistent with HSP90 binding to AR CTD at amino acid residues that are absent in 

the AR variants (14, 20, 21, 27, 28). Our results with 22Rv1 cells suggest that Sigma1 binds 

to AR, either directly or indirectly, however, by a mechanism distinct from HSP90.

Second, our discovery that IPAG destabilizes and eliminates some, but not all, HSP90 client 

proteins provides further evidence that Sigma1 and HSP90 have distinct physiological roles 

and mechanisms of action. Notably, glucocorticoid receptor (GR) protein levels do not 

change in response to treatment with IPAG under conditions wherein AR is nearly 

eliminated (Fig. 4B, C). This was a surprising finding considering the degree of overlap 

between AR and GR mechanisms. It highlights the selectivity of Sigma1 modulator actions 

and further distinguishes Sigma1 and HSP90 mechanisms of action. Treatment with IPAG 

also eliminates ErbB2/HER2 and ErbB3/HER3, whereas the level of other HSP90 clients 

such as Akt is not altered (Fig. 4B, C).

The third finding providing evidence that Sigma1 and HSP90 function through distinct 

mechanisms is the lack of HSP70 and HSP27 induction in response to treatment with 

Sigma1 modulators (Fig. 4E). Inhibition of HSP90 with small molecule inhibitors results in 
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heat shock factor 1 (HSF1)-dependent transcriptional up-regulation of HSP70 and HSP27 (6, 

25). This cytoprotective, compensatory induction of HSP70 and HSP27 is a 

pharmacodynamic marker of HSP90 inhibition. This response is absent in Sigma1 

modulation and thus further distinguishes HSP90 and Sigma1 mediated effects (Fig. 4D, E).

Our data suggest that Sigma1 engages in a number of multi-protein complexes, some of 

which include AR. Whether Sigma1 directly or indirectly binds AR remains to be 

determined. Furthermore, it remains to be determined whether Sigma1 modulators directly 

alter protein-protein associations or the intracellular transport and localization of Sigma1-

associated complexes. Evidence of physical association with AR along with convergence of 

Sigma1, UPS components, and a subpopulation of AR to the same subcellular fractions 

suggest that both contribute to the pharmacological mechanism of Sigma1 modulator 

actions.

Implications for discovery of novel therapeutic agents and strategies to treat advanced 
prostate cancer

Resistance to first- and second-generation AR–targeting agents is invariably associated with 

reactivation of the AR axis, either via induction of intratumoral steroidogenesis or increased 

expression of AR and truncated AR splice variants (2). This is further complicated by 

compensatory up-regulation or feedback regulation of associated pathways, including ErbB 

receptor and PI3K (phosphatidyl inositol-3-kinase) activation in PTEN (phosphatase and 

tensin homolog) deficient prostate cancers (42). These examples demonstrate the importance 

of discovering and developing novel approaches to co-targeting the AR axis and the 

networks on which it depends (2).

It is noteworthy that Sigma1 inhibition suppresses growth of PTEN mutant LNCaP and C4-2 

and PTEN null PC3 cells (Fig. 1 and (12)). These data suggest that Sigma1 inhibitors engage 

mechanisms downstream of PTEN or mechanisms that cooperate with but are distinct from 

canonical PI3K/Akt and ERK growth and survival signaling pathways. PTEN deficiency, by 

mutation or loss of PTEN, has a significant impact on prostate cancer progression. Indeed, 

over 50% of advanced prostate cancers are PTEN deficient (42–44). Suppression of growth 

signaling in PTEN deficient prostate cancers (12, 13) as well as suppression of pathways 

that compensate for AR-targeted inhibition demonstrate that Sigma1 modulators may be 

used more broadly than just to target the AR axis.

Although Sigma1 modulators alter multiple processes and systems in cancer cells, our data 

provide evidence that Sigma1 is a specific but multi-functional target. Our comparison of 

IPAG and 17-AAG provides evidence in support of this notion. Additionally, in LNCaP and 

C4-2 cells, the steady-state protein levels of other nuclear hormone receptors including 

retinoic acid receptors and retinoid X receptors were not affected by treatment with IPAG 

(Supplemental Figure 4). We are just beginning to learn how selective Sigma1 modulator 

compounds can be used to regulate specific but multiple cellular processes. Here we 

demonstrate that Sigma1-mediated protein homeostasis can be pharmacologically regulated 

to inhibit AR transport and stability. The three CRPC lines (C4-2, VCaP, and 22Rv1) 

evaluated here were all responsive to small molecule Sigma1 inhibition. The Sigma1 

inhibitor also reduced ErbB2/HER2 and ErbB3/HER3 protein levels (Fig. 4C), thus 

Thomas et al. Page 16

Cancer Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



abrogating compensatory up-regulation of ErbB2/HER2 and ErbB3/HER3 in response to 

AR axis targeted treatments (2, 42, 45). The ability to pharmacologically modulate multi-

functional targets such as Sigma1 is advantageous in cancer as it imposes a barrier to 

compensatory response mechanisms to targeted therapies without the broad and often toxic 

effects of chemotherapy.

Here, we demonstrate in vivo efficacy with a drug-like Sigma1 compound, CT-189, in an 

ARV driven CRPC tumor xenograft model (Fig. 7 and Supplemental Table). Importantly, 

this Sigma1 inhibitor produced no detectable side-effects at efficacious doses - no weight 

loss and no behavioral abnormalities were observed under these study conditions. 

Altogether, our data provide evidence in support of the potential value of this therapeutic 

approach and Sigma1 as a drug target in the treatment of AR driven cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Suppression of AR positive prostate adenocarcinoma cell growth and survival in 
response to siRNA knockdown and small molecule inhibition of Sigma1
(A) Left panel: Immunofluorescence micrograph demonstrating cytoplasmic expression of 

Sigma1 protein in C4-2 cells. Sigma1 and DAPI staining of the nuclei. Right panel: 

Preadsorption of Sigma1 antibody with 1 mg/mL of an epitope blocking peptide to 

determine specificity of antibody staining. (B) Immunofluorescence micrograph showing 

Sigma1 siRNA knockdown in C4-2 cells; non-specific control (Ctrl siRNA) or Sigma1 

siRNA indicated. (C) Immunoblot confirming Sigma1 knockdown in C4-2 cells. (D–E) 
Clonogenic growth of LNCaP, C4-2, and 22Rv1 cells transfected with Ctrl siRNA or Sigma1 

siRNA. Representative image for C4-2 shown in (D) and quantification of clonogenic 

growth by crystal violet stain shown in (E). Data are presented as ratio of clonogenic growth 

determined by crystal violet absorbance compared to non-treated control (Clonogenic 

Growth, Normalized Absorbance). (F) Soft agar assay quantifying dose-associated 

suppression of 3-dimensional, clonogenic growth of LNCaP, C4-2, and 22Rv1 cell colonies 

in increasing concentrations of IPAG. (G) Alamar Blue assay quantifying dose-related 

suppression of 2-dimensional growth and survival of LNCaP, C4-2, and 22Rv1 cells in the 

presence of increasing concentrations of IPAG. All of the above data are presented as mean 

± standard error of the mean (S.E.M.). (H) Time course of LNCaP cell death in response to 

10 μM IPAG treatment as measured by trypan blue exclusion.
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Figure 2. Small molecule Sigma1 inhibitor suppresses AR transcriptional activity and DHT-
induced AR nuclear translocation
(A) Detection of KLK3/PSA and TMPRSS2 mRNA transcripts by qRT-PCR from LNCaP 

and VCaP cells treated for 16 hours with 20 μM IPAG under steady-state, normal culture 

conditions. (B) Detection of KLK3/PSA and TMPRSS2 mRNA transcript levels by qRT-

PCR from LNCaP cells grown in CSS medium for 72 hours then subjected to co-treatment 

of 1 nM DHT with DMSO or 10 μM IPAG for 3 hours. (C) AR transcriptional activity 

luciferase reporter assay. Dose-related inhibition of androgen agonist, 6α-Fl Testosterone 

(6α FlT) stimulated AR transcriptional activity by IPAG (2.5, 5, 10, 20, 40 μM), 6 μM IC50. 

(D) Detection of KLK3/PSA and TMPRSS2 mRNA transcript levels by qRT-PCR from 

LNCaP cells wherein Sigma1 was knocked down by siRNA. Immunoblot confirmation of 

Sigma1 knockdown in LNCaP shown in Fig. 4A. Data are presented as mean ± S.E.M from 

at least three independent experiments. (E) Confocal micrographs of LNCaP(GFP-AR) cells 

grown in charcoal-stripped medium for 3 days followed by 3 hour treatment with 1 nM DHT 

alone or in the presence of 10 μM IPAG. (F) Quantification of relative nuclear and 

cytoplasmic GFP-AR levels. For each condition, at least 5 cells were counted per field in at 

least 5 fields from 3 independently performed experiments, and data are presented as mean ± 

S.E.M. **P < 0.01; ***P < 0.001.
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Figure 3. Ubiquitin proteasome-mediated degradation of AR in response to treatment with small 
molecule Sigma1 inhibitor
(A) Immunoblot detection of Sigma1 and AR protein levels in LNCaP cells wherein Sigma1 

was knocked down by siRNA. Quantification of AR protein in these cells is shown. (B) 
Immunoblots of AR, AR splice variants (ARV), ARV7, and Sigma1 protein levels following 

16 hour treatment of the 5 indicated prostate cancer cell lines with DMSO (−) or 10 μM 

IPAG (+). (C) AR protein levels in LNCaP cells following treatment with cycloheximide 

(CHX) for indicated times. (D) Representative immunoblot and quantification of 3 

independent immunoblots of AR protein levels in LNCaP cells co-treated for 16 hours with 

10 μM IPAG and 1 μM MG132 or 100 nM Bafilomycin A1 (BafA1). (E) Immunoblot of 14 

fractions collected following isopycnic fractionation of post-nuclear cell components from 

LNCaP cells treated for 3 hours with DMSO or 10 μM IPAG. Immunoblots (IB) of AR, 

p97/VCP (VCP), polyubiquitinated proteins (Ub), 26S proteasome subunit (PSMB5), and 

Sigma1. Histograms show quantification of immunoblots where the percentage of each 

protein per fraction is depicted relative to its total across all 14 fractions. All data are 

presented as mean ± S.E.M. **P < 0.01; ***P < 0.001.
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Figure 4. Selectivity of Sigma1 inhibitor induced protein degradation in comparison with HSP90 
inhibitor
(A) Coomassie stain of SDS-PAGE resolved whole cell lysates from LNCaP cells treated for 

16 hours with DMSO (−) or increasing concentrations of IPAG (3, 10 μM). (B–C) 
Immunoblot of HSP90 client proteins from LNCaP cells treated for 16 hours with DMSO 

(−) or increasing concentrations of 17-AAG (0.3, 1 μM) (B) or IPAG (3, 10 μM) (C). The 

GR immunoblots are of whole cell lysates from VCaP cells. (D–E) Immunoblot showing 

induction of HSP70 and HSP27 in response to treatment with 17-AAG (1, 3 μM) (D), and 

absence of HSP70 and HSP27 induction in response to treatment with IPAG (3, 10 μM) (E). 
All data represent mean ± S.E.M. and are generated from at least 3 independent 

determinations.
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Figure 5. Sigma1 inhibitor mediated degradation of AR and ARV and suppression of AR and 
ARV driven transcription in comparison with HSP90 inhibitor
(A–F) Treatment with IPAG induces proteasomal degradation of full-length and splice 

variant AR. (A–B) Immunoblot and densitometry of full-length AR (FL) and ARV (SV) 

from whole cell lysates of 22Rv1 cells treated for 16 hours with 17-AAG (3 μM) (A) or 

IPAG (10 μM) (B). Quantifications of immunoblots by densitometry are shown below each 

immunoblot panel. (C–D) Immunoblots and densitometric quantification of ARV7 in 22Rv1 

cells treated for 16 hours with 17-AAG (3 μM) (C) or IPAG (10 μM) (D). (E–F) 
Representative immunoblots of AR and ARV protein levels (E) and ARV7 (F) in whole cell 

lysates from 22Rv1 cells co-treated for 8 hours with 10 μM IPAG and 1 μM MG132. Bands 

were quantified by densitometry and data are presented as levels of AR, ARV, or ARV7 

relative to DMSO treated control. (G) Detection of KLK3/PSA and TMPRSS2 mRNA 

transcript levels by qRT-PCR from 22Rv1 cells grown in CSS for 5 days, then subjected to 

16 hour treatment with 10 μM IPAG or 3 μM 17-AAG combined with 1 nM DHT. (H) 
Immunoblot confirming siRNA knockdown of Sigma1 in 22Rv1 cells from which RNA was 

isolated and evaluated in (I). (I) Detection of KLK3/PSA and TMPRSS2 mRNA transcript 

levels by qRT-PCR from CSS medium cultured 22Rv1 cells in which Sigma1 was knocked 

down. Bars represent mean ± S.E.M. and are generated from at least three independent 

determinations. *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 6. Sigma1 physically associates with full-length and splice variant AR
(A) Co-immunoprecipitation of full-length AR and Sigma1. PC3 cells (AR-negative prostate 

adenocarcinoma) were transiently transfected with an empty vector plasmid (−), affinity 

tagged Sigma1 (Sigma1-HA), FLAG-AR, or both of the latter. Detergent soluble post-

nuclear cell lysates were subjected to immunoprecipitation using an anti-FLAG antibody 

(IP: FLAG) and immunoblotted (IB) with antibodies against the indicated proteins. Input 

indicates post-nuclear cell lysates prior to IP. (B) Co-immunoprecipitation of ARVs and 

Sigma1. PC3 cells were transiently transfected with Sigma1-HA, FLAG-ARV7, and FLAG-

ARv567es plasmid constructs and subsequently subjected to the same procedure as described 

in (A).
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Figure 7. In vivo efficacy: Small molecule Sigma1 inhibitor suppresses growth of ARV driven 
CRPC tumor xenografted mice
(A) Chemical structure of 1-(4-chlorophenyl)-3-(3-(4-fluorophenoxy)propyl)guanidine 

(CT-189). (B) Immunoblots of AR in LNCaP cells treated for 16 hours with CT-189 (20 

μM). (C) Immunoblots of AR, ARV, and ARV7 from 22Rv1 cells, grown in CSS medium, 

treated for 16 hours with CT-189 (20 μM). (D–E) Detection of KLK3/PSA mRNA transcript 

levels by qRT-PCR from LNCaP cells (D) and 22Rv1 cells grown in CSS medium for 5 days 

(E), then subjected to 16 hour treatment with 20 μM CT-189. (F) Luciferase reporter assay 

showing dose-responsive inhibition of AR transcriptional activity by CT-189 (1.25, 2.5, 5, 

10, 20, 40 μM). (G) In vivo tumor growth inhibition by CT-189 in castrated mice 

xenografted with 22Rv1 cells. Treatment with CT-189 was started 14 days post-implantation 

of 22Rv1 cells, when tumors reached ~150 mm3. Either drug vehicle or CT-189 (30 mg/kg) 

was administered by oral gavage every other day (q.a.d., quaque altera die). N ≥ 8 for each 

treatment arm. One-way analysis of variance (ANOVA) was used to determine statistical 

significance, ***P < 0.001. (H) Mouse weight (grams) during treatment course. No 

significant weight loss compared to vehicle was observed in CT-189 (30 mg/kg) treated 

mice. (I–J) Tumors were measured and harvested within 48 hours after final drug 

administration, at treatment day 36. Tumor proteins were extracted and immunoblotted to 

evaluate changes in ARV7 (I) and AR (J) protein levels. Note that in panel J only AR was 

quantified. Bars represent mean ± S.E.M. and are generated from at least three tumors for 

each treatment condition analyzed in triplicate. **P < 0.01; ***P < 0.001.
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