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Abstract

Understanding the basal thermal state of the Greenland Ice Sheet (GrIS) has im-

portant implications for modeling its ongoing contribution to global sea level. Apart

from removing paleoclimate information from basal layers, basal melt affects the fric-

tion at the ice-bedrock interface which has important consequences in terms of ice

discharge to the surrounding oceans. The basal thermal state of the GrIS, however,

is poorly constrained by observations. The paucity of information is mostly due to

expensive and logistically complicated deep-ice drilling campaigns. As a result, only

a handful of deep ice cores are available in the entire GrIS. Because of the significance

of the basal thermal condition of the GrIS and the difficulties associated with obtain-

ing direct observations from the bed, there is a need for reliable numerical modeling

studies, as well as remote sensing techniques.

Perhaps the most important, yet least-known, thermal boundary condition for

modeling the basal temperature of the GrIS is the spatial distribution of geothermal

heat flux (GHF) beneath the ice. Several models have aimed at estimating the GHF

distribution in Greenland. However, the majority of these GHF models sharply con-

tradict each other and cannot reproduce the temperature measurements at ice cores,

when implemented in numerical ice sheet models.

This research improves our understanding of the basal thermal condition of the

GrIS from three perspectives. First, it reveals the shortcomings of an analytical tem-

perature solution for ice sheets that has been frequently used since the 1950s, and pro-

poses a new solution to resolve the old solution’s shortcomings. Second, in contrast

with other GHF maps, this study derives a new GHF map for Greenland that honors
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geologic and geophysical properties, as well as ice core information. And finally, this

study aims at reconciling remotely-sensed observations of basal water with the current

GHF models in Greenland.
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Chapter 1

Introduction

1.1 Greenland Ice Sheet and sea level

The Greenland Ice Sheet (GrIS) contains enough ice to raise eustatic sea level by about

7 meters if entirely melted (Bamber et al., 2013). Complete collapse of the GrIS, despite having

occurred over geologic time-scales, is not anticipated in the near-future. However, continuous mass

loss from GrIS to its peripheral oceans will have numerous negative socio-economic ramifications.

Increase in global sea level will inundate low-lying lands and island nations (such as Haiti and the

Maldives Islands). Given that nearly 10% of the world’s population lives near coastal areas, sea

level rise and associated storm surges will have undeniable social and economic impacts for all

countries. In addition, a significant portion of energy infrastructure is in coastal areas, making the

global economic system extremely susceptible to sea level changes. In order for policy-makers to

develop effective mitigation and adaptation strategies, polar scientists must provide robust insights

on timing and magnitude of the future changes in ice sheets, as an integral component of the global

sea level budget.

During the 1991-2015 period, the GrIS contributed an average of ∼0.47±0.23 mm yr−1 to

sea level rise (Van den Broeke et al., 2016). However, gravity measurements (Harig & Simons,

2016), as well as mass-budget estimates (Van den Broeke et al., 2016) show that since 2012-2013,

the near-steady trend of mass loss from Greenland has significantly increased, leading to an accel-

erated trend of mass loss of∼ 25.4±1.2 Gt yr−2 over the last decade (Velicogna et al., 2014). The

measured ice loss is commonly attributed to the warming climate and complex feedback mecha-

nisms through which ice sheets respond to temperature changes. However, in order to accurately
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predict the future contribution of the GrIS to global sea levels, it is necessary to properly investigate

and understand how the ice sheet behaves in a changing climate.

1.2 Greenland mass loss components

In a broad sense, mass loss from the GrIS can be decomposed into two main components.

The first component is related to the direct melting at the surface of the ice sheet. It is measured

as the difference between total accumulation and net ablation on the ice sheet. This component is

controlled by atmospheric forcings and has been relatively well constrained by direct observations

(e.g. Fausto et al., 2009), modeling efforts (e.g. Fettweis et al., 2013), and reanalysis studies that

combine direct measurements and modelling studies (e.g. Ettema et al., 2010). If the net mass loss

due to surface melting is greater than net mass gain (due to snow accumulation), this component

will be negative.

The second component of mass loss is due to the dynamic behavior of ice in response to

perturbations. Essentially, this component encompasses all the mechanisms that alter the flow

characteristics of the ice sheet and affect the direct discharge rate of ice to the surrounding ocean.

For example, an increase in ice temperature leads to softer and more deformable ice which results

in increased deformational ice velocities. Additionally, when basal melt occurs, the resulting melt-

water may lower the traction between ice and the underlying bedrock, which leads to enhanced

sliding speeds.

In Greenland, the contribution of these two components to the total mass loss has been nearly

equal in the recent years (Enderlin et al., 2014; Csathó et al., 2014). However, there are major

shortcomings in our current understanding of the dynamic behavior of glacier ice. These short-

comings have been the major field of investigation in glaciology in the past decade, since the 4th

Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC, Solomon

et al., 2007), and they remain the main source of uncertainty in our current estimates of future sea

level changes (e.g. Bindschadler et al., 2013). Despite the recent improvements in understanding

the processes of ice dynamics changes, our efforts are often hindered by difficulties in making
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direct observations and measurements of the subglacial environment.

1.3 Significance of ice temperature

Glacier ice is often modelled as an incompressible thermoviscoelastic fluid (Nye, 1952). That

is, it behaves as a fluid with rheologic properties that strongly depend on its temperature. According

to Glen’s constitutive law for glacier ice (Glen, 1955), the effective stress (τe) and effective strain

rate (ε̇e) are related as

ε̇e = A(T )τe
n, (1.1)

where A(T ) is a temperature-dependent creep rate factor and n is Glen’s flow law exponent, of-

ten chosen as 3. Based on laboratory experiments, the creep rate factor of glacier ice varies by

about 3 orders of magnitude between temperatures of −50 to −5◦C (Hooke, 1981; Van der Veen,

2013, section 2.2), with warmer ice being more deformable. Therefore, accurate estimates of ice

temperature are important for obtaining reliable numerical ice sheet models.

Apart from the temperature of the upper ice layers, basal temperature is of particular impor-

tance in order to understand and simulate subglacial processes. If the basal temperature exceeds

the pressure melting temperature, ice will melt and the resulting basal water can impact sliding

over the ice-bed interface (Iken & Bindschadler, 1986; Bell et al., 2007). In addition, melting at

the basal layers removes the paleoclimate record from the bottom layers. Therefore, identifying re-

gions with frozen bed in the interior of ice sheets is important for potential sites of future ice cores

(e.g. Van Liefferinge & Pattyn, 2013; Van Liefferinge et al., 2018). Making direct measurements,

however, are extremely difficult and logistically expensive. Due to such difficulties, numerical and

analytical models are critical to obtain information about the basal thermal condition of ice sheets

(e.g. Robin, 1955; Greve & Hutter, 1995).
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1.4 Significance of geothermal heat flux (GHF)

In order to model the basal thermal state of the ice sheets, it is crucial to know the heat sources

at the bed. The main heat sources are strain heating, GHF, and frictional heating when basal sliding

occurs. Among these heat sources at the bed, GHF is the least constrained by measurements. The

effects of spatial variations of GHF on ice sheet dynamics have been investigated by numerical

ice sheet models. Larour et al. (2012a) evaluate the uncertainties in GHF models for Pine Island

Glacier in West Antarctica, and show that the existing uncertainties can alter the ice hardness by

15% in slow moving regions. In East Antarctica, Pittard et al. (2016) show that localized regions of

elevated heat flux can substantially change the ice sheet geometry, especially in the interior regions.

Therefore, understanding the spatial variations in GHF is crucial, especially in the interior, slow-

moving regions of ice sheets.

To resolve the lack of information about GHF beneath the GrIS, several studies have attempted

to estimate the GHF in Greenland using remotely-sensed data. For example, Shapiro & Ritzwoller

(2004) use seismic tomography based on similarity functions in Greenland to estimate the GHF

in Greenland, and Fox Maule et al. (2009) use satellite-based magnetic anomaly data to infer the

depth at which the Curie isotherm occurs (known as the ‘Curie depth’). By knowing the Curie

depth, Fox Maule et al. (2009) produce a GHF distribution in Greenland that is very different from

the results by Shapiro & Ritzwoller (2004). Several other studies have also aimed at predicting the

GHF in Greenland (e.g. Pollack et al., 1993; Martos et al., 2018). However, the derived maps often

contradict each other, and cannot reproduce the measured basal temperatures at ice core locations

when implemented in numerical ice sheet models (Rogozhina et al., 2012). These uncertainties

impact the reliability of future sea level rise predictions in numerical models. Therefore, there is a

strong need to reconstruct the GHF beneath the GrIS by reconciling remote sensing observations,

ice core information, and numerical models.
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1.5 Dissertation objectives

The focus of this dissertation is to combine analytical solutions, numerical ice sheet models,

and remote sensing observations from radio-echo sounding (RES) to improve our current under-

standing of the basal thermal state and GHF distribution of the GrIS. In particular I seek to answer

the following questions:

1. Are the current analytical solutions for estimating ice sheet temperatures reliable? If not, can

they be improved?

2. What is the spatial distribution of GHF in Greenland?

3. Is there a statistical relationship between global GHF measurements and geologic/tectonic

variables? If yes, can GHF in Greenland be statistically predicted?

4. How can radar data help constrain the GHF in Greenland?

5. Can the various GHF models be reconciled using radar data and ice core information?

6. Do the uncertainties in GHF models make a substantial difference for estimating the rate of

basal melt-water production?

1.6 Dissertation outline

This dissertation consists of 5 chapters. This introduction is the first chapter, and Chapters

2, 3, and 4 are the main body of research conducted by the author. Chapter 2 is published in

Journal of Geophysical Research: Earth Surface, Chapter 3 is published in Geophysical Research

Letters, and Chapter 4 will be submitted to the Journal of Glaciology. The published chapters

are repeated here, verbatim from what has been published and the official citation to the paper is

reported as a footnote on the first page of the chapters. A list of references is provided at the end

of the dissertation.
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1.6.1 Chapter 2: An improved analytical solution for the temperature pro-

file of ice sheets

This chapter outlines the shortcomings of a 60 year-old analytical solution to estimate the

temperature profile of ice sheets (Robin, 1955). Then main shortcoming of the Robin solution is

due to a simplified assumption of a linear decrease of the vertical velocity profile from the surface

mass balance on the surface to zero at the bed. I demonstrate that the 1D energy conservation

equation for ice sheets is very sensitive to the choice of vertical velocity profile. Then, I present

an alternative way to solve the 1D energy equation in the vertical direction for the interior regions

of ice sheets to resolve the shortcomings of the Robin (1955) solution. I also propose a simplified

method to incorporate strain heating in the new analytical solution. Finally, I investigate the regions

of applicability of the presented solution in Greenland and Antarctica. In Chapter 4, this analytical

solution is used as a computationally frugal method to analyze the sensitivity of the minimum

required heat flux to thaw the bed in Greenland.

1.6.2 Chapter 3: Predicting the geothermal heat flux in Greenland: a Ma-

chine Learning approach

Nearly 40,000 continental GHF measurements are available globally. In this chapter, I combine

of all these GHF measurements with globally available geologic and tectonic parameters that are

potentially related to GHF (such as crustal thickness and age) to establish a statistical relationship

between the geologic features and GHF. I train a machine learning algorithm and evaluate the rigor

of the constructed statistical relationship. Then I use the trained algorithm to predict the GHF for

Greenland.
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1.6.3 Chapter 4: Constraining the geothermal heat flux in Greenland: com-

paring ice cores, radar observation, and numerical models

In this chapter, I use the locations of radar-detected basal thaw to constrain the GHF in

Greenland. I use the large-scale numerical ice sheet model SICOPOLIS and iteratively adjust the

GHF in Greenland and calculate the minimum GHF required to thaw the bed. Then I show that

the existing GHF models do not honor these estimated GHF constraints and I discuss the reasons

for numerous discrepancies between GHF models, radar inferences of basal thaw, and ice core

information.

1.6.4 Chapter 5: Summary and conclusion

Here, I summarize and synthesize the results of the dissertation. I discuss how the research

conducted in this work has improved our understanding about the basal thermal state of the GrIS

and suggest potential directions for future research to improve the current advances.

1.6.5 Appendix A: Supplementary Information for Chapter 3

This appendix outlines the details of the machine learning algorithm that was used in Chapter

3. Here, I investigate the robustness and stability of the employed algorithm, as well as verifying

that overfitting is avoided while training the algorithm. Additionally I show the results of feature-

importance analysis, obtained from the training step. Finally, I show the map of global GHF

measurements on the continental crust, in addition to auxiliary tables and maps showing the GHF

measurements at ice core or borehole sites in Greenland.
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Chapter 2

An improved analytical solution for the temperature profile of

ice sheets1

1This chapter has been published as Rezvanbehbahani, S., van der Veen, C. J., & Stearns, L. A. (2019). An
improved analytical solution for the temperature profile of ice sheets. Journal of Geophysical Research: Earth Surface.
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Abstract

The one-dimensional steady-state analytical solution of the energy-conservation equa-

tion obtained by Robin (1955) is frequently used in glaciology. This solution assumes

a linear decrease in surface velocity from a maximum value equal to the mass balance

at the surface to zero at the bed. Here we show that this assumption of a linear veloc-

ity profile leads to large errors in the calculated temperature profile and especially in

basal temperature. By prescribing a non-linear power function of elevation above the

bed for the vertical velocity profile arising from use of the Shallow Ice Approximation

(SIA), we derive a new analytical solution for temperature. We show that the solution

produces temperature profiles identical to numerical temperature solutions with the

SIA vertical velocity near ice divides. We quantify the importance of strain heating

and demonstrate that integrating the strain heating and adding it to the geothermal heat

flux at the bed is a reasonable approximation for the interior regions. Our analytical

solution does not include horizontal advection components, so we compare our so-

lution with numerical solutions of a two-dimensional advection-diffusion model and

assess the applicability and errors of the analytical solution away from the ice divide.

We show that several parameters and assumptions impact the spatial extent of applica-

bility of the new solution including surface mass-balance rate and surface temperature

lapse rate. We delineate regions of Greenland and Antarctica within which the analyti-

cal solution at any depth is likely within 2 K of the actual temperatures with horizontal

advection.
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2.1 Introduction

Variations in ice temperature affect the deformation rate by altering the rate factor several orders

of magnitude (e.g. Hooke, 1981), as well as the occurrence of sliding when basal temperatures

reach the melting point (e.g. Iken & Bindschadler, 1986). Therefore, robust estimation of ice-sheet

temperatures is essential for modeling of ice flow. The temperature fields of ice sheets can be

calculated using a variety of numerical models (e.g. SICOPOLIS, Greve & Hutter (1995); ISSM,

Larour et al. (2012b); VarGlaS, Brinkerhoff & Johnson (2013); PISM, Aschwanden et al. (2012),

etc.). However, applying these models often requires computationally expensive simulations. In

contrast, analytical temperature solutions are useful because: 1) they are significantly easier to

implement, 2) they serve as a validation tool for numerical models, 3) they facilitate analyzing

the sensitivity of temperature profiles to various input parameters, and 4) they can provide efficient

tools for initializing numerical ice sheet simulations (e.g., Aschwanden et al., 2013; Adalgeirsdottir

et al., 2014).

The only analytical temperature solution widely used in glaciology is the Robin (1955) solu-

tion. Robin emphasizes that his model is suitable only for the “temperature distribution near the

centre of an ice sheet”. This model is often used as a ‘back-of-the-envelope’ means for estimat-

ing basal temperatures (e.g. Anandakrishnan et al., 1998; Siegert, 2000; Palmer et al., 2013; Jezek

et al., 2015; Portnov et al., 2016), but there has been no attempt to validate or quantify uncertainties

associated with this solution or define the area within which the Robin solution can be applied.

The Robin solution approximates the distribution of the vertical velocity as decreasing lin-

early from the surface value, equal to minus the surface mass-balance rate, to zero at the glacier

bed. Here we show that this assumption leads to an underestimation of temperatures, owing to

extreme sensitivity of the energy conservation equation to parameterization of vertical velocity

(section 2.2.1). In order to resolve this issue, we approximate the vertical velocity obtained from

the Shallow Ice Approximation (SIA) (Hutter, 1983) with a power function of elevation above

the bed. We then implement this velocity profile in the one-dimensional, steady-state advection-

diffusion equation and derive a new analytical solution that substantially improves the temperature
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estimates (sections 2.2.2 and 2.2.3).

The presented analytical solution does not include strain heating and therefore, we evaluate its

importance on the temperature profile (section 2.3). Additionally, we confirm the applicability of

a previous suggestion of incorporating strain heating by adding the depth-integrated strain heating

to the geothermal heat flux at the bed (Fowler, 1992) in the analytical solutions (section 2.3). Since

the new analytical solution ignores horizontal heat advection, we also compare the temperatures

from the analytical solution to that of a two-dimensional steady-state ice sheet model, aiming

at approximating the spatial extent away from the ice divide where our solution can be applied

(section 2.4). Finally the results, implications, and spatial extent of applicability to Greenland and

Antarctic ice sheets are discussed (section 4.4).

2.2 One-dimensional models

In the interior of ice sheets, where horizontal velocities are small, the energy conservation can be

considered in the vertical (z) direction only. That is, horizontal advection and diffusion of heat are

assumed small and negligible. In steady-state conditions, the 1D energy conservation with constant

heat flux at the bed (G) and constant temperature at the surface (Ts) for an ice thickness of H is

(Van der Veen, 2013, Section 6.2);

−K
∂ 2T
∂ z2 + vz

∂T
∂ z

=
Qs

ρc
, for z ∈Ω = (0,H) (2.1a)

∂T
∂nz

=−G
κ
, for z on ΓN (z = 0) (2.1b)

T = Ts, for z on ΓD (z = H), (2.1c)

where T is the ice temperature, K is thermal diffusivity and κ is thermal conductivity, vz is the

vertical velocity, ρ and c are ice density and specific heat capacity, respectively. The surface

and basal boundaries are denoted by ΓD and ΓN , while Ω refers to the ice column (minus the
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Table 2.1: Symbols, values, and units.

Symbol Value Unit Description
A 5×10−8 kPa−3 yr−1 deformation rate factor
ḃ m yr−1 basal melt rate
c 2097 J kg−1 K−1 heat capacity
erf(x) error function
ε̇xz yr−1 strain rate of vertical shear
G 50 mW m−2 geothermal heat flux
Gs mW m−2 depth-integrated strain heating
γ non-linear exponent of vertical velocity
γ+ optimal exponent
Γ(a,x) upper incomplete gamma function
H m ice thickness
K 34.4 m2 yr−1 thermal diffusivity
κ 2.10 W m−1 K−1 thermal conductivity
L m ice sheet length
L f 333.5 kJ kg−1 laten heat of fusion
Ṁ m yr−1 surface mass-balance rate (ice equivalent)
n 3 Glen’s flow law exponent
nx,nz normal vectors
Qs mW m−2 strain heating
ρ 910 kg m−3 ice density
T ◦C temperature
Ts

◦C surface temperature
Tb

◦C basal temperature
τdx kPa driving stress
~v = {vx,vz} m yr−1 horizontal and vertical velocity

boundaries). The quantity n is the unit normal vector with components {nx,nz} in horizontal and

vertical directions, respectively. Symbols and their values are defined in Table 2.1.

In this study, we initially ignore strain heating Qs in the analytical derivation. We then include

Qs in the numerical solution and show how it affects the temperature profile. We also evaluate a

simple method to include strain heating in the analytical solution in section 2.3. Since we focus on

non-temperate ice, the surface temperatures that we use are cold enough to ensure that the basal

temperatures will not reach the pressure melting point throughout the study. Frictional heating at

the bed is also ignored.
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Figure 2.1: Parameterization of vertical velocities (a), and their corresponding temperature profiles
(b) from the SIA (equation 2.4) with different exponents of Glen’s flow law and the Robin solution
(equation 2.3). The linear vz from the Robin solution (red dotted) is compared with the exact
vertical velocity from SIA (dashed). Surface mass-balance rate, Ṁ, is 0.3 m yr−1 and geothermal
heat flux is G=50 mW m−2.

2.2.1 Accuracy of Robin’s analytical solution

In the absence of basal melt, if the vertical ice velocity, vz, is assumed to vary linearly from minus

the surface mass-balance rate, −Ṁ, at the ice surface to zero at the bottom (with z-axis positive

upwards), where the bed is at z = 0

vz =−
Ṁz
H

, (2.2)

then the analytical solution obtained by Robin (1955) for ice temperature at a given depth reads

T (z) = Ts−
G
√

π

2κq
[erf(zq)− erf(Hq)], (2.3)

with q =
√

Ṁ
2KH and the error function is defined as erf(z) = 2√

π

´ z
0 exp(−z′2) dz′, where z′ is a

dummy variable. The basal temperature can be obtained by setting z = 0 in equation (2.3). Equa-

tion (2.2) holds when the bed is frozen, and therefore, basal vertical velocity is zero. However,

extensions to the Robin solution have been proposed by Zotikov (1986, Section 4.2) and Hind-

marsh et al. (2009) to include basal melt by introducing a non-zero vertical velocity at the bed in
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the analytical solution.

Robin’s linear approximation for the vertical velocity does not substantially deviate from ver-

tical velocities obtained by using the SIA. However, the system of equations (2.1) is very sensitive

to the choice of vertical velocity distribution with inappropriate approximations leading to incor-

rect temperature estimates.

Using the SIA and further assuming that the surface vertical velocity equals the surface mass-

balance rate, the vertical velocity for z ∈ (0,H) is (Hindmarsh, 1999),

vzSIA =− Ṁ
n+1

[(
1− z

H

)n+2
−1+(n+2)

z
H

]
. (2.4)

We use a finite element framework, FEniCS (Logg et al., 2012), to solve equation (2.1) numer-

ically, given the SIA vertical velocity profile for equation (2.4). Comparison of the numerical

temperature solution with that of the Robin solution (Fig. 2.1) shows that small differences in

the vertical velocity distribution leads to the underestimation of the basal temperature by ∼8 K

in the Robin solution. This is because the linear velocity profile systematically overestimates the

vertical velocity at depth, and thus overestimates the downward advection of colder ice from the

surface to deeper ice layers. Therefore, the Robin solution must be cautiously used as a ‘back-of-

the-envelope’ method to estimate temperature in the interior regions. Note that warmer ice near

the bed (produced by the geothermal heat flux) changes the profile from the form of (2.4) to more

resemble the Robin solution profile (2.2), reducing the numerical error associated with the Robin

solution. In the following section, we address this issue by proposing a new analytical solution to

equation (2.1).

2.2.2 New analytical temperature solution

Assuming n = 3, the vertical velocity profile in the SIA (equation 2.4) is a fifth-order polynomial.

Deriving an analytical solution for the temperature profile in equation (2.1) using this equation is

not straightforward and may not be possible. However, equation (2.4) can be approximated with a
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similar form to that of the Robin’s approximation but with an exponent greater than unity for the

z/H term so as to introduce a concavity to the vertical velocity profile, similar to that produced by

modeling internal deformation using the SIA (Fig. 2.1). Thus

vz =−Ṁ
( z

H

)γ

. (2.5)

To find an analytical solution to the temperature equation (2.1) using this form for the velocity

profile, we follow the classic procedure for solving second order ordinary differential equations

without the source term outlined by, for example, Boyce et al. (1969, Chapter 3).

Substituting profile (2.5) in equation (2.1) and, for now, setting Qs to zero, the 1D advection-

diffusion equation becomes,

∂ 2T
∂ z2 +

Ṁ
KHγ

zγ ∂T
∂ z

= 0. (2.6)

Next, we define λ as

λ =
Ṁ

KHγ
. (2.7)

The heat equation can then be written as

∂ 2T
∂ z2 +P(z)

∂T
∂ z

= 0, (2.8)

where P(z) = λ zγ .

We define the temperature gradient term as ∂T
∂ z = ψ(z), so that the heat equation becomes

∂ψ(z)
∂ z

+P(z)ψ(z) = 0. (2.9)

The solution of the function ψ(z) is (Boyce et al., 1969, chapter 3)

ψ(z) =
C1

µ(z)
, (2.10)
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where µ(z) is the integrating factor defined as

µ(z) = exp
(ˆ

P(z)dz
)
= exp

(ˆ
λ zγdz

)
= exp

(
λ

γ +1
zγ+1

)
. (2.11)

At the ice sheet bed, ψ(z) = ∂T
∂ z

∣∣∣
z=0

represents the geothermal flux boundary condition on a flat

bed (equation 2.1b),

ψ(0) =
C1

µ(0)
=−G

κ
. (2.12)

From equation (2.11) we know that µ(0) = 1, meaning that C1 = −G
κ

and the full expression for

ψ(z) is

ψ(z) =
−G

κ

µ(z)
=−G

κ
exp
(
− λ

γ +1
zγ+1

)
. (2.13)

Then, by defining φ =− λ

γ+1 , the temperature profile T (z) can be obtained by integrating ψ(z) as

T (z) =
ˆ

ψ(z)dz =−G
κ

ˆ
exp
(

φzγ+1
)

dz. (2.14)

Therefore, the general solution to the temperature profile is

T (z) =−G
κ

(−z
(
−φzγ+1) −1

γ+1

γ +1

)
Γ

(
1

1+ γ
,−φzγ+1

)
+C2. (2.15)

where Γ(·, ·) is the upper incomplete gamma function (a.k.a. the Euler integral of second kind)

defined by Boyce et al. (1969, chapter 6),

Γ(a,x) =
ˆ

∞

x
ta−1e−tdt. (2.16)

The value of Γ(·, ·) can be found in ordinary differential equation textbooks or standard numerical

tables (e.g. Abramowitz & Stegun, 1964), as well as in several standard software packages, e.g.

NAG R©, MATLAB R©.
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The integration constant, C2, is found by setting T (H) equal to the surface temperature, Ts.

Substitution of this into equation (2.15) produces

T (z) = Ts +
G(−φ)

−1
γ+1

κ(γ +1)

[
Γ

(
1

1+ γ
,−φzγ+1

)
−Γ

(
1

1+ γ
,−φHγ+1

)]
. (2.17)

Equation (2.17) is a general form of the analytical steady-state solution to the 1D energy equa-

tion with a prescribed heat flux at the bed, surface temperature Ts, and a velocity parameterization

of the form −Ṁ( z
H )γ with γ > 0. In the special case where γ = 1, the error function emerges from

the upper incomplete gamma function through erf(x) = 1− Γ( 1
2 ,x

2)√
π

(Gautschi, 1998; Amore, 2005)

and the Robin solution is reproduced. The difference between basal and surface temperature can

be obtained by setting z = 0 in equation (2.17),

Tb−Ts =
G(−φ)

−1
γ+1

κ(γ +1)

[
Γ

(
1

1+ γ
,0
)
−Γ

(
1

1+ γ
,−φHγ+1

)]
. (2.18)

The value of γ that produces the best fit for approximating the vertical velocity profile obtained

from the SIA (equation 2.4) is γ = 1.397. However, comparing the temperature profile calculated

with this value in the analytical solution with the temperature profile obtained numerically (with

the vertical velocity profile given by equation 2.4) shows that the analytical solution does not quite

match the numerical solution with γ=1.397. Further adjustment of γ is required to match the

temperature profile from analytical solution with that of the numerical solution.

To find the optimal γ (hereafter γ+), we plot temperature profiles from the analytical solution

for a range of γ values in order to match this solution with the numerical solution (Fig. 2.2). For the

specific case shown in Fig. (2.2) (that is, Ṁ=0.3 m yr−1 and H=3000 m), we find that γ+=1.523.

However, γ+ depends upon surface mass-balance rate and thickness values, which is investigated

in section 2.2.3.
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Figure 2.2: Parameterization of vertical velocity with different exponents (a), and their corre-
sponding temperature profiles (b). The exact vz from the SIA (equation 2.4, dashed black) is
compared with nonlinear power functions. A range of γ values are used to estimate velocities
(colored lines). In this specific case, γ = 1.532 shows the optimal exponent to match temperature
calculations from our solution with that of SIA exact vertical velocities (inset). Ṁ is 0.3 m yr−1.

2.2.3 Finding γ+

We perform a series of experiments to investigate parameters that affect γ+. We find that γ+ is

sensitive to surface mass-balance rate (Ṁ) and ice thickness (H). Since Ṁ has the unit of velocity,

the vertical Péclet number can be defined as Pe = ṀH
K (hereafter we drop ‘vertical’). The Péclet

number is a non-dimensional number that represents the ratio of advective to diffusive heat transfer

(Bergman et al., 2011, Section 6.6). The vertical temperature distribution of the ice sheet strongly

depends on Pe number. If Pe = 0 (i.e. no vertical advection), the vertical temperature distribution

becomes linear with slope determined by the geothermal heat flux. In steady-state conditions with

large Pe, advective heat transfer dominates the upper part of the ice sheet, causing the upper layers

to become isothermal (same as the surface temperature) while the lower parts of the column will

be mostly modulated by conductive heat transfer forming a conductive boundary layer near the

bottom (Zotikov, 1986; Cuffey & Paterson, 2010). The normalized thickness of the conductive

boundary layer near the bottom is Pe−1/3 for the case of internal shearing, and Pe−1/2 for plug

flow (Morland, 1984).

The range of Péclet numbers considered here is between ∼2 and 100, corresponding to Ṁ
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values from 0.1 to 1.5 m yr−1 and thickness values from 1000 to 3000 m (e.g. Van den Broeke

et al., 2011). In the thick interior regions of ice sheets, vertical velocity as measured by the Péclet

number is often insubstantial. For example, in the East Antarctic Ice Sheet (EAIS) the Péclet

number lies between 2 and 4. Although Pe values as high as 100 are atypical in Greenland and

Antarctica, they can occur in ice-caps in Iceland or Antarctic Peninsula. We include this wide

range of Pe numbers for completeness.

In order to find the γ+, we iteratively solve for the γ in equation (2.18) with a fixed surface

temperature Ts, in order to match the basal temperature from the analytical solution with the nu-

merical solution. The iteration is terminated when the difference between basal temperatures from

the two models is less than 0.05 K. Results are summarized in Fig. 2.3 where γ+ is shown to have

a logarithmic relationship with Péclet number as,

γ+ = 1.39+0.044 ln(Pe). (2.19)

Hereafter, all the calculations from the analytical solution are with γ+ obtained from equation

(2.19), unless otherwise is specified. Note that since our analysis is thermo-mechanically decou-

pled, the vertical velocity distribution is independent of the ice temperature. Therefore, the value

of γ+ does not vary with changing Ts or G.

2.3 Effect of strain heating

The analytical solution (2.17) is obtained in the absence of strain heating in (2.1). Since strain heat-

ing is a depth-dependent term, it cannot be easily incorporated in the analytical solution. However,

because most vertical shear is concentrated in the basal ice layers, Fowler (1992) suggests that a

good approximation is that the strain heating can be included by adding it to the basal boundary

condition (equation 2.1b). In this section, we investigate under which conditions this ‘lumping’

of strain heating to the basal boundary condition is valid, by comparing the basal temperatures

estimated from the analytical solution with those obtained from the numerical solution (which
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Figure 2.3: Dependence of γ+ on vertical Pe. The value for γ+ is calculated by iterative adjustment
of γ in our solution to match the numerical solution (black circles), and the logarithmic fit (red line)
provides an expression for finding the optimal gamma value. The γ+ is independent of basal and
surface boundary conditions (G and Ts).

includes explicit calculation of strain heating at depth).

Heat released by internal deformation of ice can be expressed in terms of vertical shear strain

rate (ε̇xz) and shear stress (τxz) at depth through (e.g. Van der Veen, 2013, Section 4.2)

Qs = 2 ε̇xz τxz. (2.20)

This equation is a valid approximation when SIA constraints hold. For lamellar flow the shear

stress increases linearly from zero at the surface to maximum shear stress at the bed. In case of

SIA, the basal shear stress equals the driving stress which is calculated by τdx =−ρgH ∂H
∂x (Nye,
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1952). Applying Glen’s constitutive relation with n = 3, and rate factor A to express the vertical

strain rate in terms of the shear stress, the strain heating at depth becomes (Van der Veen, 2013;

Blatter & Greve, 2015),

Qs = 2A
(

1− z
H

)4
τ

4
dx. (2.21)

If the temperature is solved numerically, this term can be added explicitly at every depth (note that

dependence of rate factor, A, on temperature is neglected). However, including the source term in

the form of equation (2.21) in the 1D energy conservation equation would further complicate the

analytical temperature solution, if a solution exists at all. Therefore, we evaluate whether strain

heating can be incorporated by elevating the heat flux at the bed. The total strain heating in an ice

column (Gs) can be obtained by integrating equation (2.21) along a vertical profile, and

Gs =

ˆ H

0
Qs dz =

ˆ H

0
2A
(

1− z
H

)4
τ

4
dx dz =

2
5

AHτ
4
dx. (2.22)

This amount of strain heating needs to be added to the basal boundary condition used in the ana-

lytical solution.

To assess the importance of strain heating for temperature of an ice column, we compare

temperature profiles from 1) temperature profile from the analytical solution without strain heating,

2) temperature profile from the analytical solution with Gs added to the geothermal heat flux, and

3) numerical solution with Qs as strain heating at depth. The ice thickness is 3000 m with Ts of

−30◦C, Ṁ of 0.3 m yr−1, and G of 50 mW m−2. Since strain heating depends on rate factor and

driving stress, different values of rate factor are chosen to represent the effect of hard and soft ice,

in addition to three driving stress values (Fig. 2.4). The three driving stress values of 20, 40, and

60 kPa are chosen as typical values in the interior regions of ice sheets (see Fig. 1 in Sergienko

et al., 2014)

Our results indicate that for low driving stresses (∼20 kPa), regardless of the rate factor, the

effect of strain heating is negligible, and all three profiles (with different rate factors) produce
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nearly identical temperatures (Fig. 2.4a,d,g). At a driving stress of 40 kPa, temperature estimates

from both the numerical inclusion of strain heating (Qs) and the ‘lumped’ strain heating (Gs)

increase, with the ‘lumped’ strain heating slightly overestimating the basal temperatures compared

to the numerical solutions. For a soft ice with the rate factor of 10−7 kPa−3 yr−1 (corresponding to

∼−5◦C), the basal temperature with Gs exceeds that of Qs by less than 2 K. However, ignoring the

strain heating underestimates the basal temperature by about ∼4 K (Fig. 2.4h). With the driving

stress of 40 kPa, these two approaches of including the strain heating (i.e., Qs and Gs) produce

relatively similar temperature profiles, confirming the previous suggestion by Fowler (1992). With

the driving stress of 60 kPa, temperature overestimation of the ‘lumped’ method compared with

the numerical inclusion of Qs is small for a hard ice with a rate factor of 10−8 kPa−3 yr−1 (Fig.

2.4c). However, this overestimation rapidly increases for softer ice with rate factors of 5× 10−8

and 10−7 kPa−3 yr−1, making the ‘lumping’ method inaccurate (Fig. 2.4f,i).

Since both Gs and Qs are related to the fourth power of driving stress, the significance of

including strain heating (either through Gs or Qs) sharply increases with increase in driving stress.

Therefore, ignoring the strain heating in the analytical solution results in erroneous underestima-

tion of temperature profile. Although the ‘lumping’ method suggested by Fowler (1992) slightly

overestimates the basal temperature compared with the numerical inclusion of Qs, the magnitude

of its overestimation is significantly smaller than the magnitude of underestimation when strain

heating is ignored.

Fig. 2.5 shows a similar comparison to that in Fig. 2.4, but for basal temperatures of ice

columns with different thickness and rate factors. For a hard ice with rate factor of 10−8 kPa−3

yr−1 (corresponding to ∼−20◦C) ignoring strain heating results in underestimation of basal tem-

perature in the analytical solution by ∼2 K. For softer ice the underestimation becomes more

marked and rapidly increases with larger driving stress values (Fig. 2.5a). However, lumping the

depth-integrated strain heating with geothermal heat flux, despite the slight overestimation of basal

temperature compared with the numerical solution with Qs, produces a more reliable approxima-

tion of the basal temperature. Although the difference between the analytical and numerical solu-
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tions (with Gs and Qs, respectively) increases with driving stress (Fig. 2.5b), the difference in basal

temperatures remains within ∼2 K up to driving stress of ∼50-60 kPa. Ignoring the strain heating

in the analytical solution, however, results in substantial underestimation of basal temperatures

even with small driving stresses and rate factors (Fig. 2.5a). Therefore, our results corroborate

the findings of Fowler (1992) and Gs obtained from equation (2.22) must be incorporated in the

analytical solution.

Note that a uniform rate factor over the depth of the ice column has been used throughout this

study. The rate factor is, however, a temperature-dependent parameter, but that is not considered

here. In order to properly account for the changes of rate factor, the energy equation must be solved

numerically by parameterizing the rate factor as a function of temperature (e.g. Clarke et al., 1977),

which is not included in this study.

Although the driving stress is zero at the ice divide (and strain heating is consequently zero),

our temperature solution does not accurately estimate the basal temperature at the ice divide loca-

tions. Since the basal shear stress becomes zero at the ice divide, the SIA assumptions are violated

and therefore, the vertical velocity shape function at the ice divide is different from the SIA-derived

vertical velocity (Raymond, 1983). Since our solution incorporates an approximation to the SIA-

derived vertical velocity profile, it cannot be used at the ice divide where SIA assumptions are

violated (see section 4.4 for discussion).

2.4 Effect of horizontal advection

Since the upstream high-elevation regions have a colder surface temperature (owing to temperature

lapse rates being negative), the ice that is advected downstream has a lower temperature than the

ice deposited immediately above. Hence, the horizontal ice flow lowers the temperature of the

downstream regions. Since equation (2.17) is derived as a solution of the 1D temperature equation

and ignores the effect of horizontal heat advection, we compare temperatures from our solution

with those obtained numerically for a two-dimensional ice sheet. As with the one-dimensional

numerical solutions, we use FEniCS to solve the temperature equation,
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Figure 2.4: Incorporating strain heating in the temperature profile. The analytical solution without
strain heating (dashed grey) is compared with the numerical solution with strain heating (solid
black) and addition of depth-integrated strain heating to the geothermal heat flux in the analytical
solution (dashed red). Temperature profiles at each row have the same rate factor, that correspond
to −20, −10, and −5◦C, respectively. 24



Figure 2.5: Effect of strain heating on the basal temperature of an ice column with varying ice
thickness and rate factors. (a) shows the difference between basal temperature from the analytical
solution without strain heating and the numerical solution with strain heating, and (b) shows the
same temperature difference but depth-integrated strain heating is added to the heat flux at the
bed. In the numerical solution, strain heating expression (Qs, equation 2.21) is incorporated as a
source term in the solution (right hand side of equation 2.1). For the analytical solution the depth
integrated strain heating (Gs, equation 2.22) is added to the geothermal heat flux of 50 mW m−2

at the bottom. Results are shown for three different values of rate factor as A = 10−8 (dotted),
A = 5×10−8 (solid), and A = 10−7 kPa−3 yr−1 (dashed) lines. Note the difference in y−axes.

−K
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∂ 2T
∂ z2 +

∂ 2T
∂x2

)
+

(
vz

∂T
∂ z

+ vx
∂T
∂x

)
= 0, on Ω, (2.23a)

∂T
∂nz

=−G
κ
, for z on ΓN1 (z = 0), (2.23b)

∂T
∂nx

= 0, for x on ΓN2 (x = 0), (2.23c)

T = Ts, for z on ΓD (z = H), (2.23d)

with ΓN1 denoting the basal boundary and ΓN2 denoting the boundary at the ice divide. We apply

a range of surface mass balance and temperature lapse rates for 2D simulations with surface tem-

perature of −20◦C at zero elevation, chosen sufficiently low to keep basal temperatures below the

pressure melting point. Strain heating is also ignored for 2D simulations.

For the ice sheet profile, we use the Vialov (1958) steady-state profile, which is based on
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horizontal ice velocity determined by the SIA and constant surface mass-balance rate. The Vialov

profile is

(
H
H0

)2+ 2
n

+
( x

L

)1+ 1
n
= 1, (2.24)

with thickness at the ice divide, H0, defined as

H0
2+ 2

n = 2
(

Ṁ
A0

) 1
n

L1+ 1
n , (2.25)

and the constant A0 defined as

A0 =
2A

n+2
(ρg)n. (2.26)

Since the ice thickness goes to zero at the edge of the Vialov profile, we artificially assign a thick-

ness of 5 m to the downstream edge of the profile to prevent singularity in the continuity equation.

We adopt the Vialov profile to avoid introducing too many variables and feedbacks. The two-

dimensional temperature equation (2.23) is solved numerically for this profile. The artificially-

modified 5 m thickness at the edge of the profile has a constant temperature boundary condition of

−20◦C.

The Vialov profile (equation 2.24) is calculated for an ice sheet of length L=750 km and rate

factor of A=5×10−8 kPa−3 yr−1, roughly corresponding to −10◦C temperature. The uniform rate

factor implies that we are not accounting for thermo-mechanical coupling between temperature

and ice flow (similar to section 2.3). We use different surface mass-balance rates between 0.3 to 1

m yr−1. After obtaining the surface profile and driving stress through τdx =−ρgH ∂H
∂x , we calculate

the horizontal and vertical velocities {vx,vz} from the SIA (Van der Veen, 2013, equations 4.22-

4.30). We then apply the calculated velocities into the 2D energy conservation equation (2.23) and

solve for the temperature distribution using the Galerkin finite element method. The streamline

upwind Petrov-Galerkin method (SUPG, Brooks & Hughes, 1982) is implemented to stabilize the

spurious oscillations arising from the advection terms (similar to Brinkerhoff & Johnson, 2013;
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Cummings, 2016).

So far in the analysis, the surface kinematical condition has been equating the surface vertical

velocity to −Ṁ. While this is a reasonable approximation close to the ice divide, farther away, the

effect of surface slope on the kinematical condition has to be taken into account. For steady-state

conditions, the vertical velocity at the surface is related to the mass balance and horizontal velocity

at the surface as (Van der Veen, 2013, equation 9.77),

vz

∣∣∣∣
sur f ace

= vx

∣∣∣∣
sur f ace

∂H
∂x
− Ṁ. (2.27)

The surface vertical velocities are calculated from equation (2.27) and applied in the analytical

solution.

We present a series of comparisons between our analytical solution and the 2D thermal model.

For clarity, only one parameter is changed at a time. Fig. 2.6 shows the difference between the

analytical and the numerical solution for a range of surface mass-balance rates with a lapse rate

of 7.1 K km−1 (the annual average for Greenland, Steffen & Box, 2001). A new Vialov profile

and corresponding SIA velocity fields are calculated for every surface mass-balance rate and the

surface horizontal velocity along the ice sheet is plotted over the Vialov profile (Fig. 2.6). This

comparison shows that the 1D analytical solution overestimates englacial temperatures away from

the ice divide (owing to the absence of horizontal advection terms). However, the basal temperature

differences remain within 1−2 K for a large portion of the ice sheet length. Use of the SIA in the

creation of the Vialov profile shows that the horizontal velocities increase with an increase in

the surface mass-balance rate. Hence the effect of horizontal advection lowers the downstream

temperatures (as shown in Fig. 2.6). Although the location of the 2 K offset in basal temperatures

varies with changes in Ṁ values, the magnitude of surface velocities remains between ∼100−200

m yr−1 for all profiles (Fig. 2.6).

We assess the effect of surface temperature lapse rate on horizontal heat advection. We use a

range of lapse rates from 5 to 8 K km−1 to a Vialov profile with Ṁ of 0.3 m yr−1 (Fig. 2.7). Since

the surface mass-balance rate is taken as uniform for all comparisons, velocities for all simulations
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Figure 2.6: Difference between the analytical solution and the full 2D solution (Tanalytical −
Tnumerical) for a Vialov profile with different Ṁ values and geothermal heat flux of G=50 mW
m−2. The analytical solution is calculated using γ+ as a function of Péclet number (equation
2.19). Surface temperature lapse rate of 7.1 K km−1 is used as an average annual value represent-
ing Greenland (Steffen & Box, 2001). Contour lines representing two degree intervals are shown
(solid black). The second y-axis shows the surface horizontal velocity of the Vialov profile (green
line).

are identical and surface temperature is the only different parameter between these simulations.

With a lower lapse rate of 5 K km−1 our solution slightly overestimates the basal temperature

farther from the ice divide. As the lapse rate increases, the colder ice advected from upstream

regions increases and shortens the extent of our 1D solution’s applicability within a 2D Vialov

profile. The surface horizontal velocity at the location where the offset in basal temperatures is 2

K is ∼100 m yr−1 (similar to Fig. 2.6).

We summarize the results of experiments with different lapse rates in Fig. 2.8, which shows

the maximum normalized distance from the ice divide where the difference between the basal tem-
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Figure 2.7: Same as Fig. 2.6 with different values for surface temperature lapse rates. The Ṁ of
0.3 m yr−1 is used in the Vialov profile and geothermal heat flux is G=50 mW m−2.

peratures from the two solutions less than a defined threshold. The thresholds, arbitrarily defined at

0.5, 1, and 2 K and are plotted with respect to the range of lapse rates. The extents of applicability

show a notable peak at certain lapse rates, below which the analytical solution overestimates, and

above which it underestimates the basal temperature profiles. For lapse rates between 5.5−7.5 K

km−1, the difference in basal temperature estimates are small for much of the ice-sheet length.

However, for low lapse rates of 3−4 K km−1 and lapse rates larger than 8 K km−1, the extent of

applicability of the 1D analytical solution is more limited.

2.5 Discussion

We have presented a new analytical solution to the 1D vertical heat transport equation with flow

field constrained by the Shallow Ice Approximation by parameterizing the vertical velocity of the
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Figure 2.8: The basal temperature difference between the analytical solution and 2D numerical
solution as a function of surface temperature lapse rate. The x-axis shows the range of lapse
rates and the y-axis is the maximum normalized distance from the ice divide where the difference
between the two solutions is less than defined temperature thresholds. At lapse rates lower than
where the peak occurs, our model overestimates the basal temperatures and vice versa. Ṁ of 0.3 m
yr−1 and G of 50 mW m−2 are used for simulations.

SIA as a power function. In the absence of horizontal velocities, the temperatures from the new

analytical solution match those from the numerical solution with the exact SIA vertical velocity.

The analytical solution incorporates an exponent, γ+, which depends on surface mass-balance rate,

Ṁ, and thickness of the ice column, H. In order to use this solution, one must first calculate the

vertical Péclet number as Pe = ṀH
K and use it to obtain γ+ (equation 2.19). The value of γ+ can

be used to calculate the temperature profile using equation (2.17) and basal temperature can be

obtained through equation (2.18). In order to include the strain heating in the analytical solution,

the depth-integrated strain heating obtained from equation (2.22) can be added to the geothermal

30



heat flux at the bed (following Fowler, 1992).

The Péclet number includes the effects of two parameters that have an opposite effect on the

temperature of an ice column: ice thickness has an insulating effect, so that thicker ice results

in warmer temperatures at depth, while increase in surface mass-balance rate results in increased

vertical advection of cold surface-ice, lowering the temperature at depth. According to equation

(2.19), γ+ increases with an increase in Ṁ, and higher γ+ results in warmer temperature profiles

(Fig. 2.2). This may appear contradictory because surface mass balance acts as a cooling agent.

However, the magnitude of γ+ increases marginally with an increase in Ṁ, while changes in φ

and Γ(·, ·) in the analytical solution (equation 2.17) cancel the small increase in basal temperature

due to increased γ+. Therefore, the analytical solution is robust in capturing the thermal effect of

increased vertical advection. This is evident in Fig. 2.9, where larger surface mass-balance rates

reduce the difference between surface and basal temperature Ts−Tb, hence cooling the temperature

profile, while the Tb−Ts increases with an increase in ice thickness.

Note that at close proximity to ice divides (i.e., a few ice thicknesses) the basal shear stress

becomes zero, violating SIA assumptions (Raymond, 1983) and having the consequence of in-

ducing formation of a stagnant plug near the base under the divide. Also, it has been suggested

that Glen’s flow exponent near ice divides is close to 1 (Pettit & Waddington, 2003) which also

results in lower rate of vertical advection of cold ice and leads to a warmer basal ice (Fig. 2.1, blue

curves). Therefore, our analytical solution likely underestimates the basal temperatures in a region

about ∼3-4 ice thicknesses away from ice divides for two separate reasons.

In all comparisons, the parameters of interest are kept uniform along the ice flow. This is

certainly an over-simplification; surface mass balance clearly is not uniform on the ice sheet with

higher rates near the margins than the interiors (e.g. Ettema et al., 2010), and spatial variations of

geothermal heat flux (e.g. Fox Maule et al., 2009; Rezvanbehbahani et al., 2017) have been shown

to significantly impact the velocity field of ice sheets (e.g. Larour et al., 2012a; Schlegel et al.,

2015). Surface temperature lapse rate is also unlikely to be uniform along the surface of an ice

sheet (e.g. Hanna et al., 2005; Erokhina et al., 2017), which can alter the ice sheet temperature

31



Figure 2.9: Difference between basal and surface temperature (Tb−Ts) from the analytical solution
(equation 2.18) with respect to surface mass-balance rate at the ice divide for different thickness
values.

distribution. In the present study, the Vialov profiles and the corresponding velocities are obtained

from an ice-sheet-wide uniform rate factor, and the mechanical model is decoupled from the ther-

mal model. The interaction between the flow regime and thermal field requires thermo-mechanical

coupling which is not included and is beyond the scope of this study (see for example, Clarke et al.,

1977; Dahl-Jensen, 1989; Greve & Blatter, 2016; Bondzio et al., 2017). Thermal coupling can also

lead to stream formation and oscillations, (e.g., MacAyeal, 1993; Payne, 1995; Hindmarsh, 2009;

Brinkerhoff & Johnson, 2015).

The goal of the presented comparisons with the 2D thermal model is not to mathematically

quantify the effect of the horizontal advection term. Rather, our goal is to demonstrate the limi-

tations of the 1D analytical solution in a simple 2D ice sheet profile and setting loose constraints
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beyond which the solution cannot be applied. Evidently, even in these simplest cases quantifying

the impact of horizontal advection is not straightforward. Despite these limitations, we delineate

the interior regions of the Greenland and Antarctic ice sheets where the effect of horizontal ad-

vection and strain heating are likely less than 2 K compared with the analytical solution. In all

the comparisons between the analytical solution and the 2D numerical solution shown in section

2.4, the horizontal surface velocity that corresponds to the location of a 2 K difference was more

than 100 m yr−1. Owing to all the simplifications associated with the 2D simulations, we chose

a significantly more conservative range of 20 m yr−1 for the limit of 2 K offset in the analyt-

ical temperature solution. Also, as shown in section 2.3, strain heating can be incorporated in

the analytical solution by adding the depth-integrated strain heating to the geothermal heat flux

up to driving stresses of ∼50-60 kPa and produce basal temperatures within ∼2 K of the actual

value. Therefore, the boundaries marked in Fig. 2.10 show the regions with both surface velocities

less than 20 m yr−1 and driving stresses smaller than ∼60 kPa. Ice streams are excluded from

the marked regions, because their inherent shelfy-stream characteristic (MacAyeal, 1989) makes

horizontal advection the dominant heat transport mechanism.

Throughout this study, the surface temperatures are chosen sufficiently low so as to avoid

melting of the basal ice. However, assessing whether basal ice is at the pressure melting point can

be done using our solution, since one can solve for the heat flux in (2.18) that is required for the

basal ice to reach the pressure melting point, Gpmp, as

Gpmp =
(Tpmp−Ts)κ(γ +1)(−φ)

1
γ+1

Γ

(
1

1+γ
,0
)
−Γ

(
1

1+γ
,−φHγ+1

) . (2.28)

The pressure melting temperature can be estimated by Tpmp = 273.16− βP where P = ρgH is

the overburden pressure and β is the Clausius-Clapeyron constant of 9.8× 10−8 kPa−1 (Cuffey

& Paterson, 2010). If the sum of geothermal heat flux and strain heating close to the ice divide

exceeds Gpmp, the melt rate, ḃ can be estimated by
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Figure 2.10: Approximate delineation of the regions where the analytical temperature solution
can be used on the Greenland and Antarctic ice sheets with less than 2 K error (green regions).
The boundaries mark the interior of both the driving stress of ∼60 kPa (pink contour) and surface
velocity of 20 my yr−1 (blue contour). Greenland and Antarctic velocities are from Joughin et al.
(2010) and Rignot et al. (2011), respectively. The driving stresses for Greenland and Antarctica
are calculated from surface DEMs of Bamber et al. (2013) and Fretwell et al. (2013), respectively,
and all parameters are resampled to 10 km spatial resolution.

ḃ =
G+Gs−Gpmp

L f ρ
, (2.29)

where L f is the latent heat of fusion (see Table 1). This can be used as a first order approximation

for assessing the thermal condition at the bed or find the minimum amount of heat required to thaw

the bed, at the radar-detected locations with basal thaw (e.g. Oswald et al., 2018). If it is concluded

that the bed is at the pressure melting temperature, frictional heating can be readily added to the

geothermal heat flux as Gsliding = τ× vsliding.

Finally, it is worth noting that according the results presented here, the Robin (1955) solution

consistently underestimates the basal temperature. Therefore, the argument of the studies that have
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used the Robin solution to show that the bed is near the pressure melting temperature (e.g. Siegert,

2000) remains valid (despite its underestimation of the basal melt rate). In contrast, the studies

where the Robin solution has been used to demonstrate the presence of cold basal ice should be

revisited.

2.6 Conclusion

We present a new analytical solution to the one-dimensional heat transport equation by parameter-

izing the vertical velocity profile as a power function. Temperatures from the analytical solution

match numerical results obtained using vertical velocities derived from the SIA. We show that

strain heating plays an important role in calculating the temperature profile of ice sheet interiors.

We validate the approach suggested by Fowler (1992) that strain heating can be integrated at depth

(Gs) and added to the geothermal heat flux at the bed. We show that with driving stresses of up to

∼50−60 kPa, the analytical solution with Gs overestimates the basal temperature by less than 2 K.

We evaluate errors in temperature estimates from the analytical solution arising from ignoring

horizontal advection away from the ice divide, by calculating the offset between the analytical

solution and two-dimensional temperature estimates of a Vialov profile. The comparison results

depend on various parameters such as surface mass-balance rate, geothermal heat flux, and surface

temperature lapse rate. Although the effect of horizontal advection terms is not included in the

analytical solution, we show using numerical methods that the effect of horizontal advection on

temperatures computed using the Vialov profile depends on various parameters including surface

mass balance and surface temperature lapse rate. The effect of horizontal heat advection is more

pronounced on the englacial temperatures, however, the basal temperatures from the analytical

solution remain within 2 K for a large portion of the ice sheet length. Finally, we mark approximate

boundaries where the new analytical solution can be used with less than 2 K error in Greenland

and Antarctica. The analytical solution presented can be used to validate temperature calculations

from numerical ice sheet models.
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Chapter 3

Predicting the geothermal heat flux in Greenland:

a Machine Learning approach1

1This chapter has been published as Rezvanbehbahani, S., Stearns, L. A., Kadivar, A., Walker, J. D., & van der
Veen, C. (2017). Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach. Geophysical
Research Letters, 44(24), 12,271–12,279.
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Abstract

Geothermal heat flux (GHF) is a crucial boundary condition for making accurate pre-

dictions of ice sheet mass loss, yet it is poorly known in Greenland due to inaccessi-

bility of the bedrock. Here we use a machine learning algorithm on a large collection

of relevant geologic features and global GHF measurements, and produce a GHF map

in Greenland which we argue is within ∼15% accuracy. The main features of our

predicted GHF map include a large region with high GHF in central-north Greenland

surrounding the NorthGRIP ice core site, and hotspots in the Jakobshavn Isbræ catch-

ment, upstream of Petermann Gletscher, and near the terminus of Nioghalvfjerdsfjor-

den glacier. Our model also captures the trajectory of Greenland movement over the

Icelandic plume by predicting a stripe of elevated GHF in central-east Greenland. Fi-

nally, we show that our model can produce substantially more accurate predictions if

additional measurements of GHF in Greenland are provided.
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3.1 Introduction

Among the numerous input parameters needed to run ice sheet models, geothermal heat flux (GHF)

is perhaps the least constrained by observations. GHF affects the ice temperature and viscosity,

which can impact the ice sheet geometry and ice velocity (e.g. Larour et al., 2012a; Pittard et al.,

2016; Seroussi et al., 2017). In addition, the origin of ice streams in both Greenland and Antarctica

are commonly associated with locally elevated heat flow in the underlying bedrock (e.g. Fahne-

stock et al., 2001; Bell et al., 2007). Therefore, it is critical to have a robust estimate of the spatial

distribution of GHF in the underlying bedrock.

For the Greenland Ice Sheet (GrIS), the GHF is largely unknown apart from a few ice cores

where GHF is inferred from the temperature gradient in the basal ice layers. Two GHF models

are frequently used for Greenland; one inferred from seismic tomography (Shapiro & Ritzwoller,

2004), and the other from magnetic anomalies (Fox Maule et al., 2009). These two models differ

significantly from each other and suffer from numerous simplifying assumptions and unknown

parameters in ice-covered areas. Additionally, applying either of these GHF models in numerical

ice sheet models cannot reproduce the observed temperatures at ice core locations (Rogozhina

et al., 2012). Given the importance of GHF, it is clear that a new and independent estimate should

be constructed that honors both the ice core data as well as Greenland geology.

This study derives a new map of GHF for the GrIS using statistical relationships between

global heat flux observations and the combined influence of local geology and regional tectonic

setting. Compilations of global heat flux measurements on the continental crust include over

35,000 point measurements distributed across all continents. By assuming that GHF is a com-

plex function of geologic and tectonic features (e.g. crustal thickness, magnetic anomaly, gravity

field, rock type, age, elevation, proximity to spreading ridge), we construct a machine learning

algorithm to obtain the statistical relationship between geologic features and GHF. Based on the

obtained relationship, we predict the GHF for Greenland and discuss the relative importance of

input parameters in obtaining the new GHF map.
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3.2 Data

3.2.1 GHF measurements: global dataset

Global GHF data measured on the continents are obtained from the International Heat Flow Com-

mission provided by the University of North Dakota (Gosnold, 2011). The data have a nearly-

normal and unimodal distribution, with mean and standard deviation of 60.8 and 18.2 mW m−2,

respectively (Figure A.6). The spatial resolution of the data varies considerably; North America

and Europe are extensively surveyed, while measurements are sparse in South America and Africa.

We use the mean of GHF values within each 1 by 1 degree latitude-longitude cell, which reduces

the number of points from 35,000 to more than 4,000 points. We apply a low pass filter to remove

the short-scale spatial variability and highlight the large-scale spatial patterns of GHF that we are

interested in predicting for Greenland.

Prior to applying the low pass filter, we limit our analysis to GHF values less than 200 mW

m−2, because even in Iceland (with an obvious mantle plume) the majority of heat flow measure-

ments are below 200 mW m−2 (Hjartarson, 2015). Thus, we assume that for non-plume areas, such

high readings are anomalous local processes (similar to Goutorbe et al., 2011) and are therefore

removed to not contaminate our procedure.

3.2.2 GHF measurements: Greenland

There are only ten determinations of GHF in Greenland; five inferences from ice core sites and

five direct bedrock measurements in ice-free coastal areas (Table A.1 and Figure A.7). GHF de-

terminations at ice core sites usually mean that the GHF is inferred from the temperature gradient

in the basal ice layer. GHF is also estimated using numerical ice sheet models by adjusting the

GHF value at ice core locations so that the modeled basal temperature matches the measured basal

temperature (e.g. Greve, 2005), or using a Monte Carlo simulation to inversely infer the GHF (e.g.

Dahl-Jensen et al., 1998; Buchardt, 2009). Despite the uncertainties in these techniques, they form

our current understanding of the GHF of the GrIS.
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Table 3.1: Geologic datasets included in the feature vector for predicting GHF. The lithologies of
Hartmann & Moosdorf (2012) and geologic provinces of Dawes (2009) are converted to the vol-
canic, sedimentary, and metamorphic rock types. Details are explained in Supplementary Material,
section A.3 and Tables A.2 and A.3.

Variable Type Variable Name Reference

Continuous

Global surface topography Amante & Eakins (2009)
Greenland bedrock topography Bamber et al. (2013)
Depth to Moho Reguzzoni et al. (2013)
Lithosphere-asthenosphere boundary Pasyanos et al. (2014)
Age Poupinet & Shapiro (2009)
Bougeur gravity anomaly Balmino et al. (2012)
Crustal thickness Laske et al. (2013)
Upper mantle density anomaly Kaban et al. (2004)
Magnetic anomaly Maus et al. (2007)
Thickness of upper crust Bassin (2000)
Thickness of lower crust Bassin (2000)
Heat production provinces Goutorbe et al. (2011)

Classification

Age of last thermotectonic event USGS (1997)
Upper Mantle velocity structure Shapiro & Ritzwoller (2002)
Rock type Hartmann & Moosdorf (2012)
Rock type (Greenland) Dawes (2009)

Proximity

Distance to trench Coffin et al. (1998) (UTIG Plates Project)
Distance to transform ridge Coffin et al. (1998) (UTIG Plates Project)
Distance to young rift Şengör & Natal’in (2001)
Distance to volcano (5 nearest) Goutorbe et al. (2011)
Distance to ridge Coffin et al. (1998) (UTIG Plates Project)
Distance to hotspot Caltech seismic lab (Anderson, 2016)

On the exposed rocks around the coast of Greenland, Sass et al. (1972) report GHF values of

37 and 41.8 mW m−2 in the southernmost part of Greenland. There is also one data point from

Langseth et al. (1972) who measure the GHF at 51 mW m−2 in a fjord in south Greenland. In

addition, the Greenland Analogue Project (GAP) reports two GHF measurements near Isunnguata

Sermia in west Greenland of 27.2 mW m−2 (Meierbachtol et al., 2015) and 34.8 mW m−2 (Harper

et al., 2011). Meierbachtol et al. (2015) do not report the exact location of their GHF measure-

ments, therefore we use the average GHF value of these measurements (because the study domain

of Meierbachtol et al. (2015) is small, the two GHF measurements certainly fall in the same 1 by

1 latitude-longitude cell), which reduces the total number of GHF points in Greenland to nine.
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3.2.3 Geologic Features

In contrast to other efforts to estimate GHF in Greenland that use single geophysical features

such as gravity anomaly (Shapiro & Ritzwoller, 2004) or magnetic anomaly (Fox Maule et al.,

2009), we use a compilation of geologic features and information that are globally available on

the continental crust (Table 1). These geologic features are grouped into three major categories

(similar to Goutorbe et al., 2011): i) continuous data such as gravity anomaly and crustal thickness,

ii) categorical data including rock type and classes of velocity structure of the upper mantle, and iii)

proximity variables that describe the distance of each point to thermally active geologic features

such as hotspots, ridges, and volcanoes. All geologic features are resampled to a 1 degree latitude-

longitude grid using an ordinary kriging interpolation scheme.

3.3 Method

3.3.1 Overview of Statistical Models

The problem of predicting a continuous variable from a collection of relevant features is generally

known as a regression problem. In our case, we wish to find a predictor that assigns a GHF

value (denoted by ĜHF) to any point observation of geologic features. Performance of any such

predictor is then evaluated by comparing its predictions to known GHF values. Such models are

first trained on a set of point observations consisting of known values for geologic features and

GHF, referred to as training data. The output of the training procedure is an optimal predictor

which minimizes prediction error with respect to some cost function. The main model we present

here for GHF prediction is Gradient Boosted Regression Tree (GBRT, Friedman, 2001) which has

many desirable properties including ability to discover nonlinear statistical relationships, as well as

handling both continuous and categorical features in the regression model, and stability (Friedman

et al., 2001; Elith et al., 2008) (see Supplementary Material, section A.1 for general explanation of

GBRT and section A.2.2 for our stability analysis of the model).

In order to assess the applicability of GBRT for GHF prediction, we compare its behavior to
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two simpler regression models. First, we consider a linear regression model which we subsequently

show to be inferior to GBRT. Second, since applying constant GHF values to numerical ice sheet

models is still common in glaciology, we include a ‘constant predictor’ which simply predicts a

spatially uniform GHF equal to the mean GHF value of its training data.

3.3.2 GHF prediction performance of GBRT

We use a standard cross validation scheme in which the entire data set is randomly partitioned into

two disjoint sets: a training set used to find the optimal GHF predictor and a validation set on which

the optimal predictor is evaluated. To quantify prediction performance we report two measures of

error. First, we report the normalized root mean squared error (RMSE) between predicted ĜHF

and known GHF values in the validation set. Normalized RMSE is a standard and robust (invariant

to rescaling) measure of error and is defined as

Normalized RMSE =
1

〈GHF〉

√〈∣∣∣GHF− ĜHF
∣∣∣2〉,

where 〈·〉 indicates the average over the validation set. Normalized RMSE can be interpreted as

a relative measure of error; for instance, an error of 0.15 can be understood as an average 15%

relative error in predictions. Second, we report the r2 of linear correlation analysis between ĜHF

and GHF on the validation set (see Supplementary Material, section A.2).

Using the above procedure with 80% of all data points for training and the remaining 20% for

validation, GBRT predicts GHF with high accuracy (RMSE=0.14 and r2=0.75), while predictions

of the linear model have significantly higher error (RMSE=0.21 and r2=0.40) as shown in Figure

3.1.
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Figure 3.1: Performance of GBRT (left panels) and linear regression (right panels) when validation
samples are distributed randomly. For each model, the difference between measurements and
predictions GHF − ĜHF (top panels), and linear correlation analysis between GHF and ĜHF
(bottom panels) are shown.

3.3.3 GHF prediction with limited local data

Since the goal of this work is to predict the heat flow specifically for Greenland, we investigate

whether GBRT is capable of predicting GHF over a region with limited local data. We consider a

region of interest (ROI) over which we wish to predict GHF. To quantify the abundance of local

training data we define the notion of local training density for an ROI as:
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ρROI =
no. of training samples in ROI

area of ROI
.

We then pose our question regarding GHF prediction with limited local data as follows: given a

ρROI and a radius R, what is the expected error in GHF prediction over an arbitrary circular ROI of

radius R?

We answer the above question by modifying the cross validation procedure described in the

previous section. For a given ROI and a local training density ρROI we randomly pick a subset

of all available data points within the ROI as the local training set. These points together with all

data points lying outside the ROI constitute the training set while the remaining samples within

the ROI constitute the validation set (Figure 3.2). For each R and ρROI we report the average value

of normalized RMSE and r2 over 50 random choices of ROI center in North America and West-

Central Europe; the choice of these regions is due to the large number of GHF measurements that

are located in these regions (see Supplementary Material, section A.2).

Using the above evaluation scheme we find that regardless of the location of the circle, GHF

predictions have high RMSE (∼0.25) and low r2 values (∼0.4) when all samples from the ROI

are excluded from the training set (i.e. ρROI = 0). This shows that GBRT performs poorly over

a region with no local training data (top row in Figure 3.2). If an area is completely removed

from the training procedure, GBRT cannot spatially extrapolate and predict GHF over an ROI with

no local training data, highlighting the importance of regional geology and tectonics in predicting

GHF. Therefore, we investigate the extent to which this reduction in prediction performance relates

to the density ρROI of training samples within the ROI as well as the ROI radius R.

We run two sets of experiments for assessing the local performance of GBRT; corresponding

results for linear regression and constant predictors are also included for comparison. In the first

set of experiments we fix the ROI radius R = 1300 km (size of Greenland) and vary ρROI in each

experiment from 5 to 50 samples per 106 km2. Increasing ρROI leads to lower RMSE and higher

r2 values for GBRT indicating increasing quality of prediction with increasing density of local

training samples (Figures 3.2 and 3.3). Conversely, the linear model shows marginal reduction
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in RMSE and insignificant increase in r2 with increasing ρROI (Figure 3.3). We conduct similar

procedures for North America and West Europe separately and find near-identical trends in RMSE

and r2 (as in Figure 3.3) which shows that the model uncertainty does not depend on tectonic

settings and local geology.
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Figure 3.2: Step-wise improvement of GBRT predictions with increasing ρROI shown over an
arbitrary ROI of radius 1300 km. In each map grey dots indicate training data, colored dots indicate
validation points, and the grey circle is the ROI. For three densities (0, 10, and 50 per 106 km2) the
difference between measurements and predictions (right panels) and their linear correlation (left
panels) are shown.
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Figure 3.3: Normalized RMSE (left) and r2 of linear correlation (right), for GBRT (solid blue
lines), linear regression (solid red lines), and constant predictor (dashed black lines) for different
densities. For each model and density, the cross validation procedure of Figure 3.2 is used and
average errors on 50 ROIs of radius 1300 km are reported. The blue and red regions show one
standard deviation.

In the second set of experiments, we fix the local training density ρROI ∼ 10 per 106 km2

(corresponding to the availability of training samples in Greenland, see section 3.3.4) and vary the

radius, R, of the ROI from 500 to 4000 km. Our results show that the RMSE of GBRT predictions

remains unchanged with increasing values of R, while the corresponding r2 continuously increases

(Figure A.3). In both sets of experiments, our results strongly confirm that GBRT performs signif-

icantly better than linear regression for predicting GHF with limited local data.

3.3.4 GHF points for Greenland

There are only 9 direct GHF measurements/inferences in Greenland; with R=1300 km, these mea-

surements roughly constitute ρROI=2 per 106 km2 on a 1 by 1 degree cell basis. With such sparse

GHF measurements, our analysis shows that GBRT results in low r2 values of 0.5 and RMSE of

0.2 (Figure 3.3). In order to compensate for the paucity of GHF points in Greenland, we assume

that the regions surrounding each of the 9 direct measurements in Greenland can be represented

by a Gaussian kernel of the form GHFx = GHF × e−x2/d2
where GHFx is the Gaussian-fit GHF
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at distance x from the ice core location. We assume an influence radius of 150 km for GHF near

ice cores. For all GHF measurements in Greenland, we use the large value of d = 1000 km which

essentially results in a nearly planar distribution of GHF around the measurement location (e.g.,

∼2% decrease within 150 km radius for 30 mW m−2 measurement, Figure A.7). The exception is

at NorthGRIP ice core. Because the inferred GHF at NorthGRIP is anomalously high (Table A.1),

we assume the high GHF is a very local process (see section 3.2.1) and thus we chose d = 200

km for the Gaussian kernel to make GHF drop more rapidly from high GHF values. By fitting

the Gaussian kernel around ice cores, we increase the number of known GHF values in Greenland

from 9 to more than 60 which is equivalent to ρROI=11.3 per 106 km2 for R = 1300 km. Based on

the performance analysis shown in Figure 3.3, our GHF prediction for Greenland is expected to be

within 15% of correct values (RMSE=0.15, r2=0.6).

3.4 Results and Discussion

3.4.1 GHF prediction for Greenland

In order to train GBRT for predicting the GHF in Greenland, we include the entire global GHF

dataset in addition to the points that we add for Greenland using the Gaussian kernel (Figure A.7).

We perform the prediction for Greenland using three GHF values at the NorthGRIP ice core: Dahl-

Jensen et al. (2003) estimate an upper and lower bounds of 160 and 90 mW m−2, respectively,

based on modeling the age of ice layers in radar echograms, and Greve (2005) calculates that the

GHF of 135 mW m−2 is the GHF required to match the measured and modeled basal melt rate at

the NorthGRIP site. The GHF predictions using these three GHF values at NorthGRIP are shown

in Figure 3.4.

The predictions show that apart from the anomalously high heat flux near the NorthGRIP ice

core, a relatively large northern region that spreads from the interior east and west has a similarly

high GHF value. Changing the magnitude of the prescribed GHF at the NorthGRIP ice core loca-

tion alters the magnitude of predicted GHF in this region, but the spatial pattern and extent remain
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Figure 3.4: GHF predictions of GBRT for Greenland. Direct GHF measurements from the coastal
rock cores, inferences from ice cores, and additional Gaussian-fit GHF data around ice core sites
are used as training samples within the ROI leading to ρROI = 11.3 per 106 km2. Predictions are
shown for three different values prescribed at NorthGRIP: 160 mW m−2 (left) as the upper limit
(Dahl-Jensen et al., 2003), 135 mW m−2 (middle) suggested by Greve (2005), and 90 mW m−2

(right) as the lower range suggested by Dahl-Jensen et al. (2003). The white dashed region roughly
shows the extent of elevated heat flux and a possible trajectory of Greenland’s movement over the
Icelandic plume.

unchanged.

Our model predicts a region with relatively low GHF in south Greenland, which is consistent

with the GHF measurements and age of the North Atlantic Craton. The extent of this low heat

flux region (GHF values less than 40 mW m−2) corresponds well with the suggested extent of the

North Atlantic Craton (Dawes, 2009, Fig. 1). In addition, GHF measurements across the Labrador

Sea, on the Canadian region of the North Atlantic Craton show low GHF values of about 25 mW

m−2, comparable to our predictions in south Greenland (Mareschal & Jaupart, 2004, Fig. 4).

There are a number of distinguishable features in our predicted GHF map. First is the slightly-

elevated predicted GHF which forms a path from northwest to central-east Greenland (white

dashed line in Figure 3.4). This path closely follows the span of Icelandic plume tracks suggested

by Rogozhina et al. (2016, Fig. S8). Other notable features are the two pockets of high GHF in

central-west Greenland, which persist regardless of the choice of GHF for NorthGRIP. This region
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is at the center of the catchment that is drained by Jakobshavn Isbræ. It is important to note that

there are no GHF measurements/observations in this region. The closest GHF measurement is the

location of the GAP project (Harper et al., 2011) which has a low GHF of 30 mW m−2. Similar

regions of elevated GHF exist in the northeast region, close to the margin of the ice sheet, near the

terminus of Nioghalvfjerdsfjorden (79North). There is no nearby GHF measurement in this region

either, and therefore, these predictions are independent of the prescribed GHF values in Greenland.

3.4.2 Interpretation of GBRT predictions

A standard technique in probing additive models is to first take the total amount of reduction

in prediction error provided by each feature as its importance in an individual tree. Then the

average error reduction over all trees provides a relative measure of importance for each feature

(see Supplementary Material section A.3.1). Our model predicts topography, distance to young

rifts, distance to trench, depth of lithosphere-asthenosphere boundary, and depth to Moho as the

top five important features, respectively (Figure A.5).

The relative importance of the top 10 features are very close to each other which hinders a

straightforward association of the observed GHF patterns to individual geologic features. Further-

more, summarizing the importance of each feature in a single number will mask the importance of

features that are somehow correlated with each other. In our feature vector, for example, distance

to volcanoes is likely correlated with distance to hotspots and rifts. Including strongly correlated

features in the feature vector only marginally improves the model performance, but the relative

importance of correlated features will get distributed (Figure A.5). A robust interpretation or sim-

plification of the GBRT model presented here is beyond the scope of current study and is a potential

avenue for future work (see Supplementary Material, section A.3.2).
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3.5 Conclusion

Using the Gradient Boosted Regression Tree (GBRT) algorithm, we present a robust statistical

relationship between a large group of geologic and tectonic features and global GHF. We combine

the global GHF measurements on the continental crust with GHF inferences from ice cores, and

few available GHF measurements on exposed coastal rock in Greenland and train GBRT to predict

the GHF for the entire unsurveyed land mass of Greenland.

Our predicted GHF map shows a notable contrast between the regions south and north of ∼

67◦ with south having significantly lower GHF than north. The GHF map predicts a large region

with high GHF in central-north Greenland close to the NorthGRIP ice core site, where other studies

suggest thin lithosphere and trajectory of crust movement over the Icelandic plume as the cause

of elevated GHF. This trajectory is also captured by our model in central-east Greenland. Finally,

our GHF map shows slightly elevated GHF in central-west Greenland (upstream of Jakobshavn

Isbræ), near the terminus of Nioghalvfjerdsfjorden in northwest, and small pockets in the northern

regions.

The model’s performance evaluation shows that the performance of GBRT will be signifi-

cantly improved if any additional GHF measurements become available in Greenland, and thus,

resolve the need for logistically expensive field measurements for the entire ice sheet.

51



Chapter 4

Constraining the geothermal heat flux in Greenland:

comparing ice cores, radar observation, and numerical models
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Abstract

The spatial distribution of temperate ice is a critical parameter for numerical ice sheet

models. Current estimates of the basal melt distribution beneath the Greenland Ice

Sheet (GrIS) contain large uncertainties due to poorly constrained boundary condi-

tions, primarily from geothermal heat flux (GHF). Several methods have been de-

veloped that estimate the GHF for Greenland. However, these GHF models often

contradict each other and implementing them in numerical ice sheet models cannot

reproduce the measured temperatures at ice core locations. In this study, we utilize

two radar datasets that detect basal water in Greenland to constrain the GHF at regions

with a thawed bed. Using the three-dimensional ice sheet model SICOPOLIS, we it-

eratively adjust the GHF to find the minimum heat flux required to reach the bed to

the pressure melting point, GHFpmp, at locations of radar-detected basal water. We

identify parts of the central-east, south, and northwest regions that have significantly

high GHFpmp. Conversely, we find that the majority of low-elevation regions of west

Greenland and parts of northeast have very low GHFpmp. We compare the estimated

constraints with the available GHF models for Greenland and ice core information and

show that the majority of GHF models do not satisfy the estimated constraints. Our

results highlight the need for community effort to reconcile the discrepancies between

radar data, GHF models, and ice core information to better constrain the basal thermal

state of the GrIS.

53



4.1 Introduction

Basal ice temperature plays an important role in controlling ice velocity and consequently, ice

sheet geometry and discharge. If basal ice is at the pressure melting point, basal water is gener-

ated, which can enhance the sliding velocity. At temperatures lower than the melting point, ice

temperature affects ice stiffness and deformational velocity. Therefore, estimating the basal tem-

perature of ice sheets is critical for generating realistic results using numerical ice sheet models.

However, our current knowledge of basal temperature is poorly-constrained by observations and

in situ measurements.

The amount of heat generated at the base of an ice sheet governs the basal ice temperature.

This heat can derive from three major sources: heat generated from the internal deformation of

ice, heat produced from the friction of ice with the glacier bed, and geothermal heat flux from the

Earth’s interior (GHF). The effect of each of these components on basal conditions varies spatially,

primarily based on ice thickness, velocity, and tectonic setting. Among these sources, GHF has the

largest uncertainty range; apart from a handful of deep ice cores, direct measurements of GHF are

not available under the ice sheet.

The importance of spatial variations in GHF on subglacial hydrology and ice sheet dynamics

has been discussed in several studies (e.g. Larour et al., 2012a; Rogozhina et al., 2012; Pittard

et al., 2016). Modeling studies show that GHF not only affects the basal thermodynamic condition

but also alters the thickness and surface geometry of ice sheets (Greve & Hutter, 1995; Larour

et al., 2012a). Therefore, understanding the spatial distribution of GHF is important for enhancing

the robustness of ice sheets models.

At ice core locations, GHF can be inferred from the measured vertical temperature gradient

in the basal ice layer and the thermal conductivity of ice.Measurements from ice cores reveal

large variations in GHF over short distances in the Greenland Ice Sheet (GrIS). For example, the

estimated GHF from the NGRIP ice core (∼140 mW m−2, Dahl-Jensen et al., 2003) is more than

50% higher than GHF measurements at the GRIP ice core, located roughly 300 km away (51.3 mW

m−2, Dahl-Jensen et al., 1998). In addition, GHF estimates at the onset of the Northeast Greenland
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Ice Stream (NEGIS) are possibly an order of magnitude higher than at the GRIP ice core, only 200

km away (Fahnestock et al., 2001). In south Greenland, at the location of the Dye 3 ice core, the

modeled GHF suggests low values of roughly 20 mW m−2 (Gundestrup & Hansen, 1984; Greve,

2005). At the base of paleo ice sheets, radiometric measurements from till and glacially eroded

bedrock reveal GHF values that range from 30 to 83 mW m−2 over distances less than 100 km

(Naslund et al., 2005). Although spatial variations in GHF are shown to have significant effects on

the thermodynamics of basal ice, they remain largely unknown in Greenland.

Direct measurements of GHF of the GrIS are limited to a few deep ice core sites. To overcome

this limitation, several methods have been developed to predict the spatial patterns of GHF. For

example, Fox Maule et al. (2009) use remotely-sensed magnetic data to calculate the Curie depth,

from which the GHF can be inferred (Fig. 4.1a). The analysis of magnetic data is advanced by

Martos et al. (2018) who use spectral analysis to estimate depth of Curie isotherm in Greenland

from high resolution magnetic anomaly data (Fig. 4.1b). Recently, Rezvanbehbahani et al. (2017)

train a machine learning algorithm by combining the global GHF measurements and geologic and

tectonic properties to predict the GHF in Greenland (Fig. 4.1c). In addition, seismic tomography

models, based on structural similarity functionals, are used to estimate the global GHF (Shapiro &

Ritzwoller, 2004) (Fig. 4.1d), and Greve (2005) modifies the empirical GHF estimates of Pollack

et al. (1993) to match the modelled and measured basal temperatures in Greenland ice cores.

Seismic and magnetically-derived maps of Shapiro & Ritzwoller (2004) and Fox Maule et al.

(2009) have been used in thermomechanical ice sheet models to estimate the basal temperature of

the GrIS (e.g. Larour et al., 2012a; Rogozhina et al., 2012; Seroussi et al., 2013); however, the

calculated basal temperatures often do not match deep ice core measurements. Using spatially

uniform GHF values in numerical ice sheet models may yield more accurate results for surface

elevation reconstructions and temperature profiles at ice core sites than other GHF models (e.g.

Rogozhina et al., 2012). Consequently, applying a spatially uniform GHF for GrIS is still common

in modeling studies.

Radar surveys are pivotal in identifying regions with temperate bed or ponded water. Basal
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Figure 4.1: The GHF maps that are used in this study from (a) Fox Maule et al. (2009), (b) Martos
et al. (2018), (c) Rezvanbehbahani et al. (2017) (ML refers to machine learning), and (d) Shapiro
& Ritzwoller (2004). The fifth GHF map is spatially uniform GHF of 56 mW m−2. Ice cores sites
are shown with triangles with blue and red colors indicating observed frozen and thawed basal
conditions, respectively. The Camp Century ice core is denoted by CC.

water or temperate bed is not explicitly a boundary condition in modeling ice sheet behavior.

However, the existence of basal temperate ice sets an important constraint on the thermal boundary

condition of the bed; it implies that the GHF must be larger than a critical value below which

the bed would be frozen (referred to as GHFpmp). Therefore, numerical ice sheet models can

implement the spatial distribution of radar-detected basal water to estimate GHFpmp. Such results

are necessary to evaluate the reliability of current GHF models.

This study seeks to improve our understanding of basal thermal conditions of the GrIS by

constraining the spatial variations of GHF according to the extent of thawed basal state, predicted

by radar data. We use two datasets that independently predict the location of basal melt or frozen

bed of the GrIS. The first dataset is from Oswald et al. (2018) where they use the reflection intensity

of radar signals (Oswald & Gogineni, 2008) to delineate regions where subglacial water likely

exists. This dataset identifies thawed regions with substantial basal water thickness (∼3 cm). The

second dataset is from Jordan et al. (2018), who use a “bed-echo reflectivity variability” method to

detect wet-dry transitions in the basal material. Both datasets are purely based on radar data and are

independent of numerical or GHF models. Note that in both datasets, not detecting temperate ice
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or ponded water at the bed does not imply that the bed is frozen. In other words, the implemented

criteria to determine the basal condition is a necessary condition, but not sufficient.

Here we use the three-dimensional thermomechanical ice sheet model SICOPOLIS (Greve

& Hutter, 1995; Greve, 1997) to iteratively estimate the GHF at locations where basal water is

detected. By adjusting the value of GHF at thawed points, we constrain the GHF of the ice sheet

so that the basal condition matches the predictions of both of these radar studies. We then compare

the GHFpmp values with the available GHF maps in Greenland, namely, magnetically derived

(Fox Maule et al., 2009, MAG), seismically derived (Shapiro & Ritzwoller, 2004, SEIS), machine

learning-based (Rezvanbehbahani et al., 2017, ML), and the GHF from spectral analysis of high

resolution magnetic data (Martos et al., 2018, MAR).

A similar approach has been conducted by Van Liefferinge & Pattyn (2013) and Van Lief-

feringe et al. (2018) in order to identify the possible locations with a frozen bed in East Antarctica

in search for the oldest ice. Because the regions that are investigated in those studies are in the

interior regions of East Antarctica (with balance velocities less than 2 m yr−1), vertical 1D models

would suffice. However, because some of the regions of interest in our study are near the margins,

the effect of horizontal heat advection and thermo-mechanical coupling becomes important and a

3D model is necessary.

The structure of this study is as follows: we first introduce the thermal component of the

numerical ice sheet model, SICOPOLIS, which is used to perform the simulation (section 4.2.1).

Then, we explain the two radar datasets of Oswald et al. (2018) and Jordan et al. (2018) (section

4.2.2), followed by the description of simulation set up (section 4.2.3). We present the results of

adjusting the GHF at the locations of radar-detected basal water in section 4.3.1 and 4.3.2 and

compare the estimated constraints and the GHF models in section 4.3.4. We then discuss the

uncertainty of the estimates, as well as an in-depth comparison with ice core data (section 4.4).

Finally, we investigate the importance of such constraints on the total melt-water production at the

base of the ice sheet (section 4.4.2).
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4.2 Data and Methodology

4.2.1 Ice sheet model

We use the SImulation COde for POLythermal Ice Sheets (SICOPOLIS version 3.3) to iteratively

solve for GHF. SICOPOLIS simulates the dynamic and thermodynamic evolution of ice sheets us-

ing the Shallow Ice Approximation (SIA, Hutter, 1983). Glacier ice is treated as a heat-conducting

incompressible fluid with power-law rheology (Glen, 1955), modified to compensate for infinite

viscosity at the ice surface (Greve & Blatter, 2009). Given a time-dependent external forcing (cli-

mate conditions), SICOPOLIS simulates the temporal evolution of ice thickness, temperature, and

velocity field. The thermodynamic schemes in SICOPOLIS allows for tracking the cold-temperate

transition surface (CTS). Because our focus is the thermal model in SICOPOLIS, we present the

fundamental equations for energy conservation and thermal boundary conditions. Mathematical

details of SICOPOLIS are explained in detail in Greve & Hutter (1995) and Greve (1997).

4.2.1.1 Thermal model

We model the thermal evolution of GrIS using the enthalpy method (e.g. Aschwanden et al., 2012).

This method has the advantage of including temperature and water content in a single thermal

enthalpy parameter, h. The specific enthalpy is a function of temperature, T , and water content, W ,

and is written as:

h(T,W ) =

ˆ T

T0

c(T̂ )dT̂ +LW, (4.1)

where L is the latent heat of fusion (3.35×105 J kg−1) and T0 = 273.15 K. For cold ice W = 0, and

at CTS, where ice is at the pressure melting point, the enthalpy becomes only a function of Tpmp

(which is itself a function of overburden pressure, Nb), hence,

hpmp(Tpmp,W = 0) =
ˆ Tpmp

T0

c(T̂ )dT̂ (4.2)
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and Tpmp is calculated as Tpmp = T0−βNb, with β = 9.8× 10−8 K Pa−1 the Clasius-Clapeyron

constant. The overburden pressure is calculated through the conventional equation, Nb = ρgH,

with g the gravitational acceleration of 9.81 m s−2, H as the ice thickness, and ice density ρ = 910

kg m−3.

By knowing the specific enthalpy, one can calculate T and W through

T =


T (h), h < hpmp

Tpmp(Nb), h≥ hpmp,

(4.3)

W =


0, h < hpmp

h−hpmp
L , h≥ hpmp.

(4.4)

Similar to balance laws for temperature, the balance equation for enthalpy can be written as

∂h
∂ t

=−~v.∇h+
∂

∂ z

(
kc,t

∂h
∂ z

)
+

Q
ρ

(4.5)

where the enthalpy diffusivity for cold ice is kc =
κ

ρc and for temperate ice is kt =
ν

ρ
with ν the

diffusivity of water in temperate ice. In equation (4.5), ~v denotes the three dimensional velocity

field and diffusion is assumed significant only in the vertical z-direction. Strain heating is denoted

by Q and is calculated as the trace of the product of the Cauchy stress tensor and effective strain-

rate tensors.

At the CTS, the temperature and enthalpy of cold (denoted by a ‘+’ superscript) and temperate

zones (denoted by a ‘−’ superscript) must be equal due to continuity considerations. Therefore,

h+ = h− = hpmp. (4.6)

Similar to temperature gradients at the CTS, normal enthalpy gradients must also be equal in cold

and temperate zones, therefore the continuity of sensible heat flux reads
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∇h+ ·n = ∇h− ·n. (4.7)

At the surface of the ice sheet, temperature is applied as a constant Dirichlet-type boundary

condition and at the base, GHF is included as a constant Neumann-type heat flux. A Weertman-

type sliding law is implemented everywhere in the basal layer. At regions with a frozen bed,

sub-temperate sliding is introduced following Hindmarsh & Le Meur (2001). The applied sliding

relation reads

vb(Tb) =−Cbexp(
Tb

γ
)

τ p

Nq
b
, (4.8)

where p and q are sliding parameters chosen as 3 and 2, respectively. Basal temperature relative

to the pressure melting point is denoted by Tb, Cb is the sliding coefficient, γ = 1◦C is the sub-

melt-sliding parameter, and basal drag is shown by τb. Sub-temperate sliding is added to avoid

singularity in calculation of velocity field at the transition between frozen and thawed bed regions.

Frictional heating is included in the thermal boundary condition as the product of sliding velocity

and basal shear stress (which in the case of SIA equals the driving stress).

In order to simulate the thermal evolution of the ice sheet, we follow the one-layer melting-

CTS enthalpy scheme of SICOPOLIS. This approach utilizes the CTS boundary condition (equa-

tion 4.7) by enforcing it explicitly on the upper most temperate layer of any ice column that con-

tains CTS. For details of this method see Blatter & Greve (2015) and Greve & Blatter (2016).

We use a spatial resolution of 20 km which leads to a grid of 140 × 82 in the stereographic

plane. Sigma coordinates are used in the vertical direction (z) and the cold ice-column is mapped

into [0,1] intervals and discretized by 81 vertical grid points. For modeling the thermal conduction

in underlying bedrock we use 41 layers in the thermal lithosphere. The creep enhancement factor

is chosen as a constant value of 1 for Holocene ice (<11 ka) and 3 for Pleistocene ice (>11 ka)

(similar to Greve, 2005; Rogozhina et al., 2012). The rest of the physical parameters are the same

as those of Greve & Herzfeld (2013, Table 1). Since the simulations are not in steady-state condi-
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tion, a model for the glacial isostatic adjustment must be included to simulate the changes in bed

elevation due to changes in the ice load. We use the Local-Lithosphere-Relaxing-Asthenosphere

model (LLRA) with a time lag of 3000 years for relaxing the asthenosphere (following Le Meur

& Huybrechts, 1996).

4.2.1.2 Paleoclimate set-up

Input parameters to the model include average annual and monthly surface temperatures, annual

surface mass balance, global sea level, and GHF. Paleoclimate temperature variations across the

ice sheet are modelled by implementing a time-dependent temperature anomaly function ∆T (t),

such that

Tma(S,φ ,λ , t) = T present
ma (S,φ ,λ )+∆T (t),

Tmj(S,φ ,λ , t) = T present
mj (S,φ ,λ )+∆T (t)

(4.9)

where Tma and Tmj represent present-day’s mean annual and July temperatures (from Fausto et al.,

2009); φ and λ denote latitude and longitude, respectively, and S is the surface elevation of the ice

sheet. Temperature anomaly function is reconstructed using δ 18O records from the NorthGRIP ice

core since the last interglacial at −120 ka until −4 ka (Andersen et al., 2004). The time series is

extended to the previous glacial maximum at about −140 ka by ∆T linearly decreasing to −20◦C.

From −4 ka to present the parameterization of Kobashi et al. (2011) the GRIP ice core is used

(Dansgaard et al., 1993). The climate anomaly function is shown in Fig. 4.2 and is spatially

uniform. For global sea level history, we use the reconstruction from the SPECMAP marine δ 18O

records provided by Imbrie et al. (1984).

4.2.2 Datasets for radar-detected basal thaw

The spatial distribution of the basal thermal state is determined from two sources. The first dataset

from Oswald et al. (2018, hereafter OSW) is essentially based on the character of reflected radar

signals from the ice-bed interface (after Oswald & Gogineni, 2008). Basal state determinations
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Figure 4.2: Time series for the temperature anomaly (∆T ) used in equation (4.9). The last 4 ka
years (marked by light-red region) are reconstructed from Kobashi et al. (2011) while the rest of
the anomaly is from the NorthGRIP ice core δ 18O records (Andersen et al., 2004).

based on radar data (provided by Center for Remote Sensing of Ice Sheets, CReSIS during 1999-

2003; Gogineni et al., 2001) are made approximately every 200 m along each radar flight line;

melt detections are separated along the flight path by one ice thickness and the conditions for

melting are assumed to be effectively continuous between melt detections. Circles are then drawn

on the effectively continuous melting or frozen path segments, and an assumption of isotropy of

the basal state distribution is used to infer the probable state across the flight path. This means that

determinations from neighboring flight paths can be used in support of interpolated basal states

and the effect of random detection errors is minimized. This technique allows for larger scale

interpolation of the basal state of the ice, as opposed to narrow radar flight paths. The detected

basal water using this method represents ‘ponded’ basal water that is thicker than ∼3 cm. The

rest of the regions could be frozen or temperate with a thinner layer of basal water. The spatial

distribution of basal ‘ponded water’ from Oswald et al. (2018) is shown in Fig. 4.3a.

The second dataset is from Jordan et al. (2018, hereafter JOR) who develop a new diagnostic

method for inferring basal thermal state from radio echo sounding data. Their method, termed
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“bed-echo reflectivity variability”, combines reflectivity with additional metrics such as specular-

ity and bed-echo abruptness to identify the locations where rapid transition between wet-dry bed

occurs. Jordan et al. (2018) show that their method is not affected by spatial variability in attenu-

ation and can be adjusted to be used with different radar systems employed in different Operation

IceBridge surveys. They interpret their results as ‘basal water distribution’ and every pick corre-

sponds to a circle with 5 km diameter as the effective resolution of their method (Jordan et al.,

2018, Fig. ). The spatial distribution of basal water from Jordan et al. (2018) is shown in Fig. 4.3b.

In order to apply the scattered points from the two datasets into a 20 km SICOPOLIS grid, we

cluster all the individual picks from both studies with an aggregate distance of 100 km to represent

data in a spatial 2D domain (rather than individual points along flight tracks). Then, the nodes from

SICOPOLIS grid points that fall within the created polygons are chosen as the targeted thawed

points in SICOPOLIS. This method over-interprets the locations of basal water, since not all the

radar points in a 20 km pixel are necessarily inferred to be thawed. The uncertainties associated

with such interpretation are discussed in section 4.4.

The focus of this study is to set constraints on the GHF based on the spatial distribution of

thawed or frozen beds, predicted by these two studies. Assessing the causes of the observed dif-

ferences between the two datasets is beyond the scope and aim of the current work. However, it is

worth mentioning that since the absence of thaw determination in neither of these datasets indicate

a frozen bed, they are not mutually exclusive. Therefore, their differences are not necessarily con-

tradictions; they rather show the strength or weakness of one of the radar techniques compared to

the other.

4.2.3 GHF adjustment and simulation setup

In numerical ice sheet models, GHF is applied as a boundary condition to the thermal model,

which itself is strongly tied to the mechanical model. Therefore, inversion for GHF in thermo-

mechanically coupled ice sheet models is very challenging. Studies have attempted to formulate

and solve the inverse problem for GHF (e.g. Zhu et al., 2016). However, their analysis is limited to
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Figure 4.3: Spatial distribution of radar-detected basal water from (a) Oswald et al. (2018)-OSW,
and (b) Jordan et al. (2018)-JOR. The datasets provided by the two authors are grouped in 100 km
polygons and then sampled at 20 km spacing to represent the spatial resolution of SICOPOLIS that
is used in this study.

a cold ice sheet with a no-slip basal condition. This assumption makes their method unsuitable for

the current study, because frictional heating is an important heat source especially near the margins

of the ice sheet. Therefore, we apply an iterative scheme that incrementally adjusts the GHF in a

forward model.

In this study we start the paleoclimate simulations at −134 ka and all simulations are com-

posed of three steps:

1. First, the present-day geometry of GrIS provided by Bamber et al. (2013) is relaxed for 100

years to create smoothed geometry of the ice sheet.

2. From −134 ka to −9 ka, the ice sheet freely evolves given the initial and boundary condi-

tions. Enhanced basal sliding is implemented in the first 5 ka of this step.
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3. From −9 ka to present, the results of step (2) are used as initial conditions and ice sheet

geometry is continuously nudged to result in the relaxed geometry produced in step (1).

Because the goal is to estimate the GHF required to reach the bed to the pressure melting

temperature, at the end of step (3) we check the basal thermal conditions at the locations of radar-

detected basal thaw: if Tpmp is smaller than−0.1◦C, we increase the GHF by 5%. Otherwise, if the

basal melt rate Ṁb at these locations is larger than 0.001 m yr−1, we decrease the GHF by 5%. We

terminate the simulations after 50 iterations of steps (1) through (3) when the majority of regions of

interest have met the pressure melting point’s criteria. Note that throughout the iterative procedure,

we assume that basal water is due to basal melting at the same location (and not generated in other

places and transported to that region), nor does it derive from surface water that has reached the

bed.

Since SICOPOLIS is thermo-mechanically coupled, the thermal properties at the locations

where GHF is not adjusted impacts the flow field, and hence they impact the thermal properties

of all regions. Therefore, we estimate GHFpmp for both radar detections of basal thaw, using five

independent simulations with different initial GHF models; four simulations are with the GHF

models shown in Fig. 4.1, and one simulation with a spatially uniform GHF of 56 mW m−2

(denoted by U56, corresponding to the average GHF value of the North American plate, Sclater

et al., 1980). It is important to note that the points being considered for adjustment are not treated

individually. Because adjustment of GHF at one location affects the velocity field and temperature

profile of its surrounding area, it is important that the GHF adjustment takes into account all the

points simultaneously.

4.3 Results

We calculate GHFpmp at the locations of basal thaw predicted by OSW and JOR separately. For

each of these datasets, we perform 5 different simulations with all the GHF models considered in

this study: at the locations where GHF is not being adjusted (referred to as ‘background’ GHF),
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the GHF values remain fixed as prescribed by each GHF model.

4.3.1 GHFpmp at Oswald et al. (2018) thawed points

Figure 4.4 shows the estimated GHFpmp values at the thawed bed-predictions by Oswald. In every

row, the left panel shows the calculated GHFpmp; the middle and right panels show the concomitant

offset of initial and final surface elevation and surface velocity maps, respectively. For the majority

of the ice sheet, the initial surface elevation and velocity maps have been preserved, confirming

that the present-day ice sheet is reproduced. The melting point criteria (i.e. Tb > −0.1◦C relative

to the pressure melting point or Ṁb < 0.001 m yr−1) are satisfied for all simulations with the OSW

dataset.

Although GHFpmp estimates vary based on what is the ‘background’ GHF, there are several

regions where GHFpmp estimates are relatively consistent. In the central-east region, southeast of

GISP2 and GRIP ice cores, nearly all simulations show that GHFpmp is between 70-90 mW m−2.

Near the NGRIP ice core site, our estimates show that GHF of about 70 mW m−2 is sufficient to

thaw the bed. Slightly downstream of NGRIP site towards the northeast region, GHFpmp is smaller

with values near 40-50 mW m−2. In the northwest region close to the Camp Century ice core

site, despite the extent of basal thaw being rather small, the GHFpmp is relatively high with values

greater than 85 mW m−2.

An example of a region with different GHFpmp estimate based on the ‘background’ GHF is in

the south near the Dye-3 ice core; with the background of GHF-ML is between 90-110 mW m−2,

while it is between 70-80 mW m−2 using the other background GHF models. Also, the scattered

points in the northern regions have a relatively consistent GHFpmp of about 60-70 mW m−2 with

exception of magnetic GHF as the background; if the magnetic GHF is used as the background

map, these locations require a higher GHFpmp around 80-90 mW m−2.
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Figure 4.4: Estimating GHFpmp at locations of basal thaw provided by Oswald et al. (2018) using
five different GHF maps and the resultant elevation and surface velocity offset after GHF iterations
with respect to the initial geometry. Each row shows the GHFpmp with a different ‘background’
GHF maps; (a-c) Fox Maule et al. (2009), (d-f) Martos et al. (2018), (g-i) Rezvanbehbahani et al.
(2017), (j-l) Shapiro & Ritzwoller (2004), and (m-o) uniform GHF of 56 mW m−2.
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4.3.2 GHFpmp at Jordan et al. (2018) thawed points

The estimated GHFpmp at the locations of JOR dataset and different initial GHF models are shown

in Fig. 4.5. The GHF constraints in the northern parts of interior regions close to the NGRIP ice

core site are within the range of 55-75 mW m−2. In contrast, the estimated GHFpmp decreases

downstream of NGRIP towards the northeast region of the ice sheet and upstream of the 79North

glacier to values as low as 10 mW m−2. These regions, despite having such low GHFpmp values

still experience basal melt rates higher than our cut-off criterion (i.e. Ṁb < 0.001 m yr−1). The low

GHFpmp values in the entire western flank of the ice sheet are similar to those of the downstream

reaches of the northeast Greenland. Apart from a few scattered points, the low GHFpmp persists in

the entire low-elevation regions in western Greenland.

In contrast to the low GHFpmp regions, two regions stand out in terms of having notably high

GHFpmp values using the JOR dataset. In central east and northern parts of the GrIS, GHFpmp

values as high as 100-120 mW m−2 are estimated. At several of these points, the cut-off criterion

for basal temperature relative to the pressure melting point (i.e. Tb > −0.1◦C) was not achieved

and the simulation was terminated after 50 iterations (see section 4.2.3).

4.3.3 Simplified sensitivity analysis

The simulations presented here contain paleoclimate simulations that are enforced based on climate

reconstructions of ice cores and marine δ 18O records. Therefore, they carry uncertainties that can

alter the present results. Given the computational expense of the iterative simulations presented

here, performing sensitivity analysis on climatic parameters is extremely costly. Therefore, we

analyze the sensitivity of GHFpmp estimates at several anomalous locations with a 1D analytical

solution of the temperature profile of ice sheets. We use the solution provided in Chapter 2 of this

work which is an improvement to the Robin (1955) analytical solution and allows estimating the

GHFpmp given the surface temperature, ice thickness, and surface mass-balance rate. Although the

solution is obtained in steady-state conditions (unlike the SICOPOLIS simulations presented here),

it facilitates analyzing the sensitivity of GHF constraints on a wider range of climatic variables.
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Figure 4.5: Same as Fig. 4.4, with GHF adjustments at the locations of basal water detected by
Jordan et al. (2018).
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We assess the sensitivity of high GHFpmp estimates near CC, Dye-3, and central east regions of

the GrIS.

The CC and Dye-3 ice cores are near ice divides and the horizontal velocities are small.

Therefore, the conditions are suitable to use a 1D analytical solution for the vertical temperature

near this site. Thickness of the CC and Dye-3 ice cores are ∼1400 m and 2000 m, respectively.

In the central-east region of the ice sheet where the GHFpmp estimates from SICOPOLIS are high,

thickness values range from a few hundred to about 1000 m. Because the analytical solution

is in steady-state, we use a range of input variables for surface mass-balance rate and surface

temperature to calculate the GHFpmp.

During the 1960-1990 period (during which net accumulation matched the net ablation, Van

den Broeke et al., 2009), the surface mass balance from regions obtained from RACMO2/GR

(Ettema et al., 2010) ranges between ∼0.4 to 0.8 m yr−1 ice equivalent with surface temperatures

around −30 to −20◦C for all the three regions of interest. We use a wider range of surface mass-

balance rate values (0.1-1 m yr−1), as well as surface temperatures ranging from −40 to −10◦C.

The GHFpmp calculations from the 1D analytical solution are shown in Fig. 4.6. Fig. 4.6a,b

represent the central-east regions; Fig. 4.6c and d correspond to CC and Dye-3 ice core regions,

respectively. This simple sensitivity analysis confirms that the central-east region requires a signifi-

cantly higher GHF to thaw the bed. It also shows that at the CC ice core site, where RACMO2/GR

reports surface temperature of −25◦C and surface mass balance-rate of ∼0.4 m yr−1, the GHF

value of roughly 90 mW m−2 is needed to thaw the bed (Fig. 4.6c). The value of GHFpmp drops to

∼60 mW m−2 for Dye-3 with surface mass balance-rate of ∼0.65 m yr−1 and surface temperature

of −19◦C. Considering that both these ice cores have measured basal temperatures about −13◦C,

the actual GHF is likely much less than GHFpmp estimates in this section.

4.3.4 Comparing GHFpmp vs. GHF models

The GHF constraints calculated here are the lower limits of GHF to produce basal thaw, and so

the GHF models must be larger than the constraints if they are to properly simulate the detections
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Figure 4.6: GHFpmp calculated from the 1D analytical solution provided by Rezvanbehbahani
et al. (2019). The GHFpmp is calculated for 4 thickness values of (a) 500 m, (b) 1000 m, (c)
1400 m, and (d) 2000 m and a range of surface temperature values Ts from −10 to −40◦C. The
x-axis represents the surface mass balance, Ṁ. The thickness ranges of (a) and (b) are chosen to
represent the central-east region of the GrIS, while (c) is chosen to represent the CC ice core, and
(d) represents the Dye-3 ice core.

of basal thaw. Figs. 4.7 through 4.10 show the difference between GHFpmp and GHF models at

locations of basal thaw for both radar datasets; green and blue colors refer to regions that satisfy the

constraints (GHF>GHFpmp) and red colors mark the regions of disagreement (GHF<GHFpmp).

Because the uncertainties in all GHF models are relatively high, the colorbar is chosen such that

±2 mW m−2 difference appears as a reasonable range on the comparison maps.

There are several locations where the GHF models satisfy their lowest constraint imposed by
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GHFpmp. The most notable of all are the downstream regions of almost the entire western margin

of the ice sheet where JOR dataset predicts extensive basal thaw. Our estimated GHF constraints

are very small and all GHF models satisfy the constraints. Other notable regions are the northeast

of the NGRIP ice core (from OSW dataset) and approximate location of the downstream of NEGIS

upstream of 79North glacier (from JOR dataset).

In contrast, several regions from both datasets result in very high GHF constraints that are not

satisfied in any of the GHF models. The most prominent one is the central-east region at 30◦W,

70◦N and to the north at about 30◦W, 73◦N. The GHF models in this region are substantially

smaller than the required heat flux to thaw the bed. Other regions of disagreement are around the

CC ice core (from both radar datasets), scattered points near Dye-3 (Figs. 4.7a to 4.10a) and the

northern margin of the ice sheet (Figs. 4.7b to 4.10b).

Figure 4.7: Comparing the GHF constraints at thawed points of (a) OSW and (b) JOR with respect
to magnetically-inferred GHF of Fox Maule et al. (2009).
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Figure 4.8: Same as Fig. 4.7 but with respect to GHF derived by Martos et al. (2018).

Figure 4.9: Same as Fig. 4.7 but with respect to GHF derived by Rezvanbehbahani et al. (2017).
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Figure 4.10: Same as Fig. 4.7 but with respect to GHF derived by Shapiro & Ritzwoller (2004).

4.4 Discussion

4.4.1 General discussion

There are regions of basal thaw in the central-east catchment of the ice sheet where the GHFpmp

values are estimated to be very high. There are no deep ice cores in this area to confirm or reject

such high GHF estimates. Nearly all GHF models predict elevated GHF values in the eastern

edge of Greenland (at 70◦N,30◦W, Fig. 4.1), but except for the magnetically-derived GHF map of

Fox Maule et al. (2009), none of the maps predict GHF values as high as 100 mW m−2. The GHF

reconstruction of Rogozhina et al. (2016) does predict such high values; however, their analysis

has not been included in this study, since it is only limited to the northern half of Greenland. This

region is suggested to have lower lithosphere viscosity as well as a higher temperature compared

to rest of the cratonic regions in Greenland (Mordret, 2018). Therefore, the extensive basal thaw

in the central-east region may be associated with GHF variations due to the remnant of Icelandic

plume.

Among the six deep ice cores shown in Fig. 4.3, only two of them contain evidence of basal
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thaw: NGRIP (Dahl-Jensen et al., 2003) and NEEM (Dahl-Jensen, private communication with

R. Greve). However, the two radar datasets used in this study suggest the existence of basal thaw

near the site of several ice cores. Oswald et al. (2018) detect ponded water underneath NGRIP,

southeast of GISP2, and at close proximity to CC and Dye-3 sites. The extent of basal thaw near

CC is much greater in the JOR dataset, while they detect no temperate zone near Dye-3.

The basal temperature at the GISP2 and GRIP ice core sites are reportedly cold at about−9◦C

(Dahl-Jensen et al., 1998). Both radar datasets detect water a few tens of kilometers to the east of

these ice cores. The GHF to match the basal temperature measurements at the GRIP ice core site

is 51 mW m−2 (Greve, 2005). The value of GHFpmp at the basal thaw determinations in these

regions is estimated to be close to the continental average (∼ 70 mW m−2). Given that the distance

between GRIP/GISP2 ice core sites and the closest cluster of basal water determinations from the

two datasets is about 30-40 km, we suggest that the observed basal thaw in this region can be

associated to spatial variations in the GHF.

Radar determinations of basal thaw or ponded water near Dye-3 and CC ice core sites are

surprising. The basal temperatures at Dye-3 and CC ice cores are both near−13◦C (Gundestrup &

Hansen, 1984; Dansgaard et al., 1969), far below the pressure melting temperature. The matching

GHF to reproduce these basal temperatures in SICOPOLIS are 32 mW m−2 for Dye-3 and 47 mW

m−2 for CC (Greve 2018, in press). Our results show that GHFpmp ranges between 70-90 mW

m−2 near Dye-3 and is over 100 mW m−2 near the CC ice core site (Figs. 4.4 and 4.5). Com-

parison between the GHF models and estimated GHFpmp shows that neither of the GHF models

predict such high GHF values in these regions (see section 4.3.4). The closest cluster of basal thaw

determinations from Jordan et al. (2018) dataset is about 5 km away from the CC ice core and the

closest cluster of ponded water from Oswald et al. (2018) is more than 10 km away. The contrast

between the GHF at ice cores and GHFpmp in close vicinity of the core sites indicates that the basal

thermal conditions could vary over much shorter spatial scales than commonly assumed. While

there is no standard expected length-scale for spatial variations in GHF, it is unlikely that GHF can

vary so drastically in such small spatial scales.
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The apparent contradiction between detection of basal thaw from radar data and very low

basal temperatures from ice cores cannot be reconciled without considering other local mecha-

nisms that can alter the local heat flux at the bed. Van der Veen et al. (2007) show that variations

in topography (such as troughs and valleys) alter the local GHF so that topographic lows experi-

ence enhanced heat fluxes at edges, while the topographic highs have lower heat flux peaks. Given

the rough nature of subglacial topography (especially in the central east regions, Rippin, 2013),

it is possible that such high GHF fluctuations do actually occur at such small spatial scales. Ad-

ditional mechanisms have been suggested that influence the net heat flux at the base of the ice

sheet. Gooch et al. (2016) suggest that during the retreat phase of the ice sheets, the vertical water

discharge from sedimentary aquifers in the subglacial environment can add to the net heat budget

at the base of the ice sheet. In Greenland, geophysical surveys have identified regions of satu-

rated till at the bed (e.g., Christianson et al., 2014); however, the study of subglacial aquifers has

gained little attention. The third mechanism to elevate the GHF is due to the ‘vug-wave’ fluid

migration processes (Phipps Morgan & Holtzman, 2005); due to the loading and unloading during

the glacial and inter-glacial phases, Stevens et al. (2016) show that molten magma at depth can

migrate through faults and dyke emplacement which can substantially augment the basal heat flux.

All these three mechanisms occur at a much smaller spatial scale than the GHF models presented

here. Therefore, special attention should be dedicated to small-scale processes that can result in

significant and short-scale variations of GHF.

Our results indicate that the lower elevation region of western Greenland, even with low GHF

values of 10 mW m−2, undergoes substantial basal thaw (Figs. 4.7b to 4.10b). This indicates

that there is a very high certainty that these regions are almost entirely temperate. It is surprising,

however, that radar data analysis does not show a continuous determination of basal water (see

Jordan et al. (2018, Fig. 6) and Oswald et al. (2018, Fig. 11)). Our findings demonstrate that

the extent of basal thaw in these regions is significantly larger than what is inferred from radar

data. This confirms Jordan et al. (2018)’s note that their criterion for basal thaw is necessary but

insufficient (and that their results only show “rapid spatial transitions” in basal condition). We
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suggest that this region can serve as a proper location for improving the analysis of radar data,

because according to the analysis presented here, it is likely extensively thawed at the bed.

4.4.2 Catchment-wide Ṁb estimates

The GHF models for Greenland analyzed in this study bear almost no resemblance to each other

(Fig. 4.1). Without direct borehole measurements and some indirect geologic and glaciologic

proxies (e.g. the onset location of the Northeast Greenland Ice Stream, NEGIS, or the possible

trajectory of the Icelandic plume), there is no straightforward way to confirm or reject the current

models. These GHF models undoubtedly lead to different spatial distributions of basal thaw in

Greenland (e.g., Rogozhina et al., 2012). It is crucial, however, to investigate whether these differ-

ent models and their ‘modified’ versions (which include the GHFpmp estimates in this study) result

in substantial differences in terms of the amount of basal water generated in Greenland.

In order to evaluate the impact of GHF differences and the calculated constraints on the net

basal melt rate in Greenland, we calculate the annual rate of basal melt-water produced in each

catchment of Greenland with a) all 5 GHF maps (as in Fig. 4.1 and U56), b) modified GHF models

in Fig. 4.1 by setting the GHF values to GHFpmp at the regions of disagreement (section 4.3.4)

according to OSW dataset, and c) same as case b) but modified according to the distribution of

JOR dataset. In other words, the ‘modified’ GHF maps are GHFmod=max(GHF, GHFpmp).

Comparison between the values of total basal melt rate show that although the spatial distri-

bution of temperate bed may vary substantially depending on the GHF model, the total magnitude

of basal melt-water remains relatively unchanged (Table 4.1). The net basal melt rate of GrIS using

different GHF models is about 15-20 km3 yr−1. This number is roughly 25 times smaller than the

range of surface melt-water generated in Greenland (Fettweis et al., 2013, ∼400 GT yr−1 equiv-

alent to ∼436 km3 yr−1). However, it has important implications for estimating the continuous

year-round discharge from the base of outlet glaciers.
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Table 4.1: Basal melt rate in km3 yr−1 for individual catchments of the GrIS. Three sets of basal
melt rates are reported (first column). First the basal melt rate for each catchment using all GHF
maps prior to any adjustment at locations of thawed bed. Second, the basal melt rates for all
catchments with all GHF maps are reported after modifying the GHF at OSW thawed locations,
and the third set of simulations are after modifying the GHF at JOR thawed points. The modified
heat flux is defined as GHFmod=max(GHF, GHFpmp). Catchment boundaries are chosen similar to
Csathó et al. (2014), and ΣṀ is the sum of basal melt rate in all catchments.

Simulation GHF JAX CE N NE NW SE SW ΣṀb

before GHF adjustment

magnetic 2.16 1.14 0.84 0.37 3.00 7.27 2.85 17.65
Martos 2.38 0.70 0.91 0.78 3.69 6.86 2.76 18.09

ML 2.15 0.33 0.9 0.85 3.57 5.09 1.38 14.27
seismic 2.09 0.47 0.54 0.34 3.12 7.12 2.87 16.46

U56 2.29 0.43 0.85 0.66 3.79 6.38 2.45 16.85

with GHFmod at OSW

magnetic 2.17 1.09 0.88 0.35 2.96 7.26 2.87 17.60
Martos 2.39 0.89 1.02 0.85 3.86 7.31 2.76 19.10

ML 2.16 0.37 0.97 0.87 3.61 5.29 1.37 14.65
seismic 2.10 0.50 0.60 0.40 3.18 7.14 2.87 16.81

U56 2.30 0.46 0.89 0.68 3.82 6.44 2.46 17.06

with GHFmod at JOR

magnetic 2.18 1.22 0.96 0.50 3.30 7.57 2.87 18.62
Martos 2.39 0.90 1.02 0.86 3.86 7.31 2.76 19.10

ML 2.16 0.62 1.04 3.68 3.78 5.82 1.44 18.56
seismic 2.11 0.71 0.72 0.49 3.40 7.55 2.87 17.87

U56 2.30 0.69 0.96 0.75 3.96 7.00 2.45 18.13

4.4.3 Modeling shortcomings

Throughout the iterative procedures in all the simulations of this study, the aim has been to keep

the GrIS geometry intact. Because the iterations using Oswald et al. (2018) dataset involved fewer

points, the geometry and surface velocity has been reconstructed relatively well (Fig. 4.4). How-

ever, the spatial extent of the basal thaw based on Jordan et al. (2018) is much larger. Therefore, the

substantial adjustments to the GHF alter the geometry of the ice sheet; these alterations are more

notable towards the margins and insignificant in the interior regions (Fig. 4.5). Due to thermo-

mechanical coupling of the ice flow, local enhancement of GHF changes the flow and geometry,

specifically in the low velocity regions (Pittard et al., 2016). Changes in the velocity profile of
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the ice sheet alter the rate of advection from upstream, therefore altering the thermal field of the

neighboring points. Therefore, it is not surprising that the GHFpmp based on either OSW or JOR

datasets varies depending on the initial choice of GHF map.

The effective resolution of JOR dataset is about 5 km, and the internal consistency method of

OSW results are provided in 1 km spatial scale. Due to the huge computational cost of performing

the iterative procedure in 5-10 km spatial resolution, we clustered the locations of basal thaw from

the two datasets into 20 km spatial resolution. This clustering is an exaggeration of the extent

of thaw for both basal water datasets. The determinations of temperate basal ice from the radar

data could be associated to enhanced localized heat flux (e.g., Van der Veen et al., 2007) or a

complex distribution of subglacial water (e.g., Schroeder et al., 2013; Chu et al., 2018). In order

to reconstruct such small scale details of basal heat and direction of subglacial water flow, higher

resolution models coupled with a dynamic hydrologic component must be considered (e.g. Dow

et al., 2018).

Despite undeniable improvements of the numerical ice sheet modeling community, reconcil-

ing the differences between their results requires more effort. Specifically for modeling the basal

thermal state of the GrIS, the ensemble results of SeaRISE models show sharp contrasts, despite

applying similar initial and boundary conditions to the models. This is perfectly demonstrated in

the synthesis of MacGregor et al. (2016, Fig. 3) where the SeaRISE ensemble models are used

as one of the components to identify likely locations of frozen or thawed bed. Therefore, we urge

the community for a more in-depth analysis of the causes of differences between the thermal com-

ponent of the numerical ice sheet models with the aim of reconciling the sharp contrasts between

models themselves to increase the confidence in the modeling the basal thermal state of ice sheets.

4.5 Conclusion

We use the locations of basal water in Greenland, detected by two radar datasets to constrain the

GHF in Greenland using SICOPOLIS numerical model. The GHF at these locations is iteratively

adjusted so that the basal temperature or basal melt rates become near zero, hence finding the
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minimum GHF that requires to reach the bed to the melting point (GHFpmp). We conduct the

iterative simulations with different initial GHF models of Greenland to resolve the uncertainty

associated with the initial basal thermal condition on the final constraints. Although there are

locations whose GHF constraints differ depending on the initial GHF model, there are persistent

regions where the constraints are anomalously high or low. The most prominent regions with

anomalously low GHFpmp values include a large part of the low-elevation regions of the western

flank of the ice sheet, as well as in the northeast region, downstream of NEGIS.

We find several regions with GHFpmp values as high as 100 mW m−2. The largest region

with high GHFpmp is in the central-east of the ice sheet east of GISP2 and GRIP ice cores; in

all simulations the estimated GHFpmp is about 100-120 mW m−2, but we suggest that due to the

geologic history of this region such high GHF values are plausible.

Our results highlight sharp contrasts between low basal temperature readings from CC and

Dye-3 ice cores and prediction of basal water by both radar datasets. We argue that the existence

of water in close proximity to these ice cores cannot be explained by the spatial variability of GHF;

we posit that such sharp contrasts can be better explained by the effect of elevated heat flux near

the topographic edges (Van der Veen et al., 2007), the interplay between the glacial loading and the

volcanism in the underlying crust (Stevens et al., 2016), or the discharge of groundwater aquifers

into the subglacial environment and elevating the basal heat flux (Gooch et al., 2016). These

mechanisms are not currently incorporated in GHF or glaciologic models and can help resolve the

current discrepancies between modeled and observed basal thermal state of the GrIS. Finally, we

show that despite all these difference in GHF maps and uncertainties in reconciling observations

with our model, the net basal melt-water production does not significantly differ depending on the

GHF model.
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Chapter 5

Concluding Remarks and Future Work

5.1 Summary

Since 1955 when Gordon Robin presented his analytical solution for the 1D vertical energy

conservation equation for ice sheets, it has been frequently used as a ‘back-of-the-envelope’ means

for calculating ice temperatures. Modifications to the Robin (1955) solution have been suggested,

for example, by Zotikov (1986) or Hindmarsh et al. (2009) that incorporate basal melt to the

solution. However, the accuracy of the Robin solution had not been previously examined. In

Chapter 2, we show that his solution substantially underestimates the temperature profile of ice

sheets. Instead, we provide an alternative solution that produces more accurate temperature profiles

in the interior of the ice sheets. We highlight the importance of strain heating on estimating the

basal temperature and suggest a simple approach to include strain heating in the analytical solution.

Finally, we compare the difference in basal temperature estimates from the analytical solution and

a numerical 2D model and roughly prescribe the regions in Greenland and Antarctica where the

new analytical solution can be applied.

We present the first geology-based machine learning-derived map of geothermal heat flux

(GHF) in Greenland. The new map is based on the compilation of global GHF measurements and

a large number of geologic and tectonic features that are related to GHF. The predicted GHF map

captures the trajectory of the movement of the North American plate over the Icelandic plume by

predicting a narrow swath of elevated heat flux in central-west Greenland. In addition, the new

map suggests several locations with elevated GHF values including the central-west region of the

GrIS and upstream of Jakobshavin Isbræ. Locations with high GHF are also predicted upstream
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of a few other fast-flowing glaciers such as Nioghalvfjerdsfjorden and Petermann glaciers in the

northeast and north Greenland, respectively. The elevated heat flux and fast flow of these glaciers

suggests a possible link between enhanced basal melting, warm deformable ice, and high glacier

speeds. The onset location of fast-flowing ice in both Greenland and Antarctica has been associated

with regions of elevated heat flux and basal water (e.g. Fahnestock et al., 2001; Bell et al., 2007;

Langley et al., 2014), consistent with our findings in Chapter 3.

Ice cores provide valuable information about the basal thermal condition of the GrIS. Apart

from direct temperature readings at the bed, the GHF at ice core sites can be inferred from measur-

ing the temperature gradient at the bottom layers. However, due to their extremely high financial

costs and logistic constraints, there are only a few deep ice cores in Greenland. Therefore, radar-

based observations are essential to infer information about the spatial distribution of basal thaw

in Greenland. In Chapter 4, we use the results of two recent studies (that have used radar data

to infer basal water) to constrain the GHF at thawed locations. We iteratively adjust the value of

GHF at thawed locations in a large-scale numerical ice sheet model SICOPOLIS to reach the bed

just to the pressure melting point. The estimated heat flux (GHFpmp) is the minimum GHF that is

required to keep the bed thawed.

Our estimates of GHFpmp show substantial spatial variability in Greenland. The western

part of the GrIS, in general, can be thawed with relatively small GHF values of around 10 mW

m−2. The GHF constraints are small in the northeastern part of the ice sheet, downstream of the

Northeast Greenland Ice Stream (NEGIS). In contrast, we find several regions where GHFpmp

estimates are surprisingly high (>100 mW m−2). In particular, near Camp Century and Dye-3

ice core sites where cold basal temperatures have been measured (∼ −13◦C), radar observations

report the existence of basal water. Our estimates show that GHF must be at least 2 times greater

than the inferred GHF at ice cores sites to thaw the bed.

The central-east region also has anomalously high GHFpmp values. Our estimates show that

GHFpmp values greater than 100 mW m−2 are required to thaw the bed. Such anomalously high

GHF values are not reported in almost any of the current GHF models for Greenland, and our
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comparison shows that none of the current GHF models leads to such extensive thawed bed in the

central-east region. We propose three major mechanisms that could lead to sharp local enhance-

ments in the basal heat budget as an explanation for such high estimates.

5.2 Future Work

This dissertation poses several questions to our current understanding of the basal ther-

mal state of the GrIS that require further investigation. First, from a modeling perspective, the

analytical solution presented in Chapter 2 does not incorporate horizontal velocities. Therefore, it

is applicable only in the low-velocity regions. Further work can be done to solve the 2D energy

conservation equation using velocity components in the horizontal direction, obtained from the

shallow ice approximation. The 2D solution can greatly simplify studying the sensitivity of ice

sheets’ temperature fields farther from the interior regions.

Our predicted GHF map in Greenland shows that several regions of high GHF are upstream

of the fast flowing glaciers in Greenland. Associating the location of fast-flowing glaciers with

regions of elevated heat flux is a widely-accepted theory in glaciology. However, little work has

been done to examine the causality between these two processes. Therefore, further diagnostic

modeling work must be pursued to simulate the effect of the produced basal melt-water on the ice

flow. The modeling study must be coupled with a subglacial hydrologic model, in order to properly

establish the relationship between elevated heat flux, basal melting, and fast flow of glaciers.

The final chapter of this dissertation reveals several issues with the current GHF models and

radar analysis techniques that need further investigation. We find a consistent region in the entire

west flank of Greenland that requires very low GHF values to be thawed at the base, implying that

the region is likely extensively thawed. Given that radar picks of basal water are very scattered

in this region, we propose that analysis of radar data can be further improved to provide a more

contiguous basal water pick in this region. Finally, the striking inconsistency between all the GHF

maps calls for additional field surveys and borehole measurements that are specifically designed

to measure the GHF (e.g. Fisher et al., 2015). Without direct borehole measurements, none of the
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GHF models can be either confirmed or rejected.
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Appendix A

Supplementary Information for Chapter 3

A.1 Model Description

In this section we describe the gradient boosted regression tree (GBRT) model used to produce

the GHF predictions presented in the main text. Since GBRT is not a well-known technique in

geospatial statistics, we also provide a brief overview of its inner workings.

A.1.1 Problem Setting

Our problem is a typical standard regression problem in which we wish to predict a continuous

variable, here GHF, from a vector of continuous or categorical features. The training data is a

collection of observations of the form (x,y), called samples, where x = (x1, . . . ,xp) is a feature

vector belonging to a p-dimensional feature space and y is the quantity of interest for prediction.

In our case, x contains p geologic features and y is the GHF value at a given latitude and longitude.

Given n such observations: {
(x1,y1), . . . ,(xn,yn)

}
,

we wish to find a predictor f : Rp→R relating feature vectors to the quantity of interest y. This is

achieved by formulating the problem of finding f as an optimization problem over a pre-specified

family, F, of possible predictors. In other words, we seek an optimal (in a sense to be determined)

function f in F.
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For a given predictor f we denote its predictions over the training data by

ŷ = (ŷ1, . . . , ŷn) :=
(

f (x1), . . . , f (xn)
)
,

which we will refer to as the prediction vector. Goodness of fit is formulated in terms of a loss

function L : Rn→ R+ which assigns a measure of error L(ŷ) to the prediction vector with respect

to observed values y = (y1, . . . ,yn). We will be using the common sum of squares loss function,

also commonly used in linear regression, which is given by:

L(ŷ) =
n

∑
k=1
|ŷk− yk|2.

Finally, our task for fitting a predictor f to the given samples is to solve the optimization problem:

min
f∈F

L(ŷ) = min
f∈F

n

∑
k=1
|yk− f (xk)|2.

The description of a statistical model includes the specification of the family F of predictors

together with an algorithm that finds the optimal predictor f in F with respect to L. In the remainder

of this section we describe ordinary regression trees and GBRT as such models. For this discussion,

we will assume a fixed set of n training samples {(xk,yk)}n
k=1 is given.

A.1.2 Regression Trees

A regression tree partitions the feature space into a collection of box-like regions Di and assigns a

constant value ŷi to each region. In other words, each such region is the subset of the feature space

constrained by conditions of the form xk > T or xk < T where each xk is an individual feature.

It is important to note that once a region Di is chosen, the optimal constant value ŷi is directly

determined from the expression of the loss function L. For instance when using sum of squares

loss, the optimal constant assignment to Di is simply the average value of y in Di.

Here, the predictor family F is the collection of all such piecewise constant functions. An
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Figure A.1: Schematic depiction of a one dimensional regression tree (i.e. x contains a single
feature) after one (left) and two (middle) iterations. Arbitrarily small training loss can be attained
(right) by a regression tree which is overfit to training data.

individual predictor f ∈ F is identified by the specification of its box-like regions as well as the

value it assigns to each region. In general, minimizing the loss function over the entire family F

is intractable and instead, an approximating algorithm is typically employed which motivates its

interpretation as a regression tree (RT; algorithm 1). The heuristic proceeds as follows: Starting

with a single region (Rp, ŷ) and until a certain depth is achieved, grow a tree by partitioning some

region D by some condition xk < T and replacing the corresponding node in the tree with a feature

comparison question node ”xk > T ?” with two child nodes:

D< = D∩{xk < T}, D> = D∩{xk > T}

At any time the constant regions of the predictor are simply the terminal nodes of the tree and are

all candidates for being partitioned. The contribution of each such partition over feature k of a

region D is a reduction in error given by

e2(D,k,T ) = L(ŷD)− [L(ŷD<)+L(ŷD>)]

where each loss term L(·) is evaluated over its corresponding region D,Dk,<,Dk,>. Predictors

produced by this heuristic can be viewed as decision trees in which each internal (non-terminal)

node is a question of the form ”xk > T ?”. When a given predictor calculates the prediction for a
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given feature vector x = (x1, . . . ,xp) it descends down a path, starting from the root and arriving

at a terminal node, by answering the comparison question posed at each internal node and moving

to either of its children based on the answer for the given feature vector x. The terminal nodes are

simply the regions Di and are assigned constant values ŷi (Figure A.1).

Since individual features are treated separately in Algorithm 1, it is clear that regression trees

pose no difficulty when the feature set contains both continuous and categorical variables.

Algorithm 1 RT (Ordinary Regression Tree)

1 f = {(Rp, ŷ)} . The starting region is the entire feature space

2 while True do

3 D,k,T ← optimal choice maximizing the reduction e2(D,k,T ) in error

4 D<,D>← partition D along the xk axis with threshold T

5 ŷ<, ŷ>← optimal constants for regions D<,D>

6 D← comparison question ”xk > T ?”

7 Children of D← (D<, ŷ<),(D>, ŷ>)

8 if depth( f )> J then . J is the maximum tree depth

9 return f

10 end if

11 end while

A.1.3 Boosted Regression

Boosting is a general heuristic in statistical learning which proposes combining multiple predictors,

referred to as weak learners, into a stronger predictor (Friedman, 2001). Given a family F, a

boosted predictor F based on F is a linear combination of predictors in F, that is F = α1 f1 +

. . .+αm fm for some fi ∈ F and αi ∈ R. When the family F is closed under scalar multiplication

(as is the case with regression trees), we can simplify the general form of a boosted predictor to

F = f1 + . . .+ fm for some fi ∈ F. One can describe the problem of training a boosted model in

similar terms as before: we seek the optimal predictor F in the boosted predictor family
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span(F) =
{

F = f1 + . . .+ fm ;m ∈ N, fi ∈ F
}

such that the training loss L(ŷ) of the prediction vector ŷ =
(
F(x1), . . . ,F(xn)

)
is minimized. In

a boosted regression tree model the underlying predictor family F consists of ordinary regression

trees. However, there are many algorithms for approximating the optimal boosted predictor. GBRT

(Algorithm 2) is one such algorithm which is shown to contain many earlier boosting algorithms

as a special case. In gradient boosting with sum of squares loss, at each stage a weak learner fi is

fit to the current residual vector which is the difference between known values y and the current

prediction vector ŷ produced by f1 + . . .+ fi−1.

Our statistical model can thus be summarized as follows; GBRT (Algorithm 2) is used to

approximate the optimal boosted regression tree f1 + . . .+ fM, where fi are regression trees of

maximum depth J, that minimize the sum of squares loss over corresponding residuals ri. Typical

values for J are between 2 and 9 (Friedman et al., 2001, section 11.9.2). In all plots presented in

the main text and here we have used J = 4 and M = 1000 (see Figure A.2) with the exception of

Figure 5 of main text (feature importances) for which J = 8 was used to avoid a handful of features

(limited by the number of internal nodes in the tree) controlling all partitions in all trees.

Algorithm 2 GBRT (Gradient Boosted Regression Tree with sum of squares loss)
1 i← 0 . number of weak learners trained so far

2 r← y . n-dimensional vector of residuals

3 while i < M do . M is the number of weak learners to be trained

4 f ← RT(r) . train a RT (weak learner) with
{
(x1,r1), . . . ,(xn,rn)

}
5 fi = ν f . regularization via shrinkage (see section A.1.4)

6 i← i+1

7 r← r−
(

fi(x1), . . . , fi(xn)
)

. update residuals

8 end while

9 return f1 + f2 + . . .+ fM
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Boosting has proved to be a fruitful strategy in various settings for multiple reasons. First,

by extending the family of predictors from F to span(F), it allows for lower bias and variance.

For instance, if F is the very limited family of step functions (i.e regression trees of depth 1), the

extended class span(F) can approximate any function arbitrarily closely. However, this comes

with the risk of overfitting which is mitigated through regularization and controlled using cross-

validation (see section A.1.4). Furthermore, through the statistical power of averaging, boosting

has been shown to increase robustness to noise (see section A.1.6).

A.1.4 Controlling for Overfitting

A crucial difference between optimization problems and statistical modelling is the risk of overfit-

ting. In fact, typically one can find predictors that drive the total training loss to zero (Figures A.1

and A.2). Therefore, the total loss of a predictor on training data is not a good measure of error

since it evaluates a predictor based on samples for which it has already been optimized. Instead,

the standard procedure is to use a cross-validation scheme in which all available samples are split

randomly to a validation set

V =
{(

x(v)k ,y(v)k

)}m

k=1

and a training set

T =
{(

x(t)k ,y(t)k

)}n−m

k=1
.

To evaluate a given model (i.e. a predictor class F), one "trains the model" on T , that is, the optimal

predictor f ∈ F is obtained by minimizing the loss on the training set:

min
f∈F

n−m

∑
k=1

∥∥∥ f
(

x(t)k

)
− y(t)k

∥∥∥2

which is then evaluated on the validation set V by comparing its predictions f
(

x(v)k

)
to known

values y(v)k for k = 1, . . . ,m. We report two measures of error for any predictor on the validation set
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V . The main measure of error is normalized Root Mean Square Error (RMSE) which is a standard

scale-invariant measure of error and is consistent with the sum of squares loss function L used to

train both GBRT and linear regression. Normalized RMSE is defined to be:

Normalized RMSE =
1

〈y(v)k 〉k

√〈∣∣∣ f (x(v)k

)
− y(v)k

∣∣∣2〉
k
,

where 〈·〉k indicates the average of a quantity over different values of the specified index. There-

fore, for instance, a normalized RMSE of 0.15 can be interpreted roughly as an average 15% error

in predictions. As a more intuitively accessible but less interpretable measure of error we also

report r2 of linear correlation between the m predicted values {ŷ(v)k }
m
k=1 and known true values

{y(v)k }
m
k=1.

A.1.5 Regularization

The standard scheme for constraining the effects of overfitting (also known as regularization) for

regression trees is to place an upper bound J on individual tree depth. In gradient boosted trees,

two additional regularization strategies are typically simultaneously used: 1) an upper bound M

on the number of descent steps (discussed above) and 2) shrinkage which is used to scale down

the contributions calculated in each gradient descent step by a parameter 0 < ν ≤ 1 (line 5 of

Algorithm 2). A choice of ν = 1 implies no shrinkage, i.e. non-regularized gradient descent, and

smaller values of ν slow down the march towards arbitrarily small training losses, hence limiting

the risk of overfitting. Here we have used ν = 0.05 (Friedman et al., 2001, section 11.9.2.).

A.1.6 Stability

An important desired characteristic of a statistical model is its stability, namely its robustness to

noise. This is crucial in the case of predicting GHF in Greenland; the GHF ‘measurements’ in

Greenland, specifically at ice core locations, are often inferred using Monte Carlo simulations or

estimated by matching modeled and measured basal temperatures. Therefore, it is valid to assume
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Figure A.2: Testing the possibility of overfitting by GBRT. Normalized RMSE of GBRT over
training (green) and validation (red) samples is shown for 50 random ROIs (thin lines) and averaged
across ROIs (thick lines) as the number of trees (model complexity) increases (x-axis). Overfitting
occurs when training loss continues to decrease but validation error increases as model complexity
increases. This plot shows that GBRT with the parameters used here is immune to overfitting.
Furthermore, validation error does not decrease significantly beyond 1000 trees which justifies our
choice of 1000 estimators for all reported results.

that the GHF inferences in Greenland are highly noisy. We wish our statistical model to be such

that small perturbations in known labels y1, . . . ,yn does not lead to large perturbations in the trained

predictor. This is another domain where boosted regression trees are superior to ordinary regression

trees: single trees are known to be unstable while boosted trees tend to be fairly stable as shown in

section A.2.2 (see Friedman et al., 2001, section 10.13.1 and Table 10.1).
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A.2 Evaluation of GHF Predictions with Limited Local Data

A.2.1 Evaluation of Prediction Error

Our end goal is to predict GHF in Greenland with limited local data, that is, with limited training

samples within the ROI. To better capture the performance of predictors with limited local data,

we extended the cross-validation scheme described in section A.1.4 with the following parameters:

1. The center C of ROI specified as a latitude-longitude pair.

2. The radius R of ROI.

3. The density ρROI of training samples in the ROI:

ρROI := #
{
(x(t)k ,yk) ∈ T such that x(t)k within distance R of C

}/
πR2

Given a choice of C,R, and ρROI , the training set T contains all samples outside the ROI

together with a random collection of nROI samples within ROI such that:

nROI

πR2 ≈ ρROI

Once training-validation partitions are produced, each model (GBRT, linear regression, or the base-

line constant predictor) is evaluated exactly as described in section A.1.4 and resulting measures

of error (normalized RMSE and r2) are averaged over all training-validation partitions.

We evaluate the performance of each model with varying ρROI and ROI radius R. To assess

the effect of ρROI we fix the radius to R = 1300 km (matching the ROI radius of Greenland) the

results of which are shown in Figure 4 of the main text. To assess the effect of R we fix ROI density

to ρROI = 11.3×10−6km−2 (matching ROI density of Greenland) the results of which are shown

in Figure A.3.
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Figure A.3: Performance of GBRT (solid blue lines), linear regression (solid red lines), and con-
stant predictor (dashed black lines) for different values of ROI radius. For each radius the three
models are evaluated using the cross validation procedure described in text on 50 randomly chosen
ROIs with ρROI = 11.3× 10−6 km−2. Two measures of error are reported for each model and
each radius: normalized RMSE (left) and r2 of linear correlation between GHF and ĜHF (right),
both averaged over the 50 ROIs. As ROI radius increases linear regression predictions deteriorate
in quality as indicated by higher normalized RMSE values (left) and smaller values of r2 (right).
In contrast, GBRT predictions maintain their normalized RMSE (left) and show increasing linear
correlation with true GHF values (right). The blue and red regions show the standard deviation of
the 50 ROIs for GBRT and linear regression, respectively.

A.2.2 Evaluation of Stability

Due to uncertainties associated with GHF inferences in Greenland, we investigate the stability

of GBRT by assessing the sensitivity of its predictions when increasingly large perturbations are

applied to GHF values in the training stage. We repeat a similar procedure as described above

but with the addition of random noise to training GHF values. Here, we fix the parameter values

R = 1300 km and ρROI=11.3 ×10−6km−2 (corresponding to Greenland ROI values). We then

consider N = 50 randomly chosen ROI centers and for each center train the model by adding

increasing amounts of random noise η to GHF values. The noise signal is zero-mean Gaussian with

varying standard deviation (and hence varying mean absolute value). The relative noise amplitude
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0≤ A≤ 1 is defined to be:

A =
E[|η |]
〈y(t)k 〉

where the numerator is the expected absolute value of Gaussian noise signal η and the denominator

is the average value of y in the training set T (the extreme case A = 0 corresponds to unperturbed

training data). For each value of A, the standard deviation of the zero-mean Gaussian noise is set

such that the mean absolute value of noise E[η |] takes the required value of A〈y(t)k 〉:

Var[η ] =
π(A〈y(t)k 〉)

2

2

To quantify the effect of noise a baseline predictor f0 is obtained from noise-free training

data, namely with A = 0. Then, for each relative noise amplitude value A a predictor fA is obtained

from proportionally noisy data:

TA =
{(

x(t)k ,y(t)k +ηk

)}n−m

k=1

where:

ηk ∼N

(
0,

π(A〈y(t)k 〉)
2

2

)
The noise-induced perturbation in predictions for each ROI is measured through the normalized

root mean square difference between f0 and fA:

1

〈y(v)k 〉k

√〈∣∣∣ fA

(
x(v)k

)
− f0

(
x(v)k

)∣∣∣2〉
k

which is then averaged over all N ROIs (Figure A.4).

Our analysis clearly demonstrate that GBRT is a stable model in the sense that small pertur-

bations in training GHF values do not lead to large perturbations or ‘blow-ups’ in GHF predictions

(Figure A.4).
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Figure A.4: Sensitivity of GBRT (left) and linear regression (right) to perturbations in training
GHF. For each ROI, Gaussian noise signals with increasing variance (and hence increasing mean
absolute value) are added to training GHF values and the resulting GHF predictions are compared
to noise-free GHF predictions on validation samples. Relative magnitude of noise is proportional
to the standard deviation as well as the mean absolute value of the applied Gaussian noise. This
procedure is repeated for 50 randomly chosen ROIs (thin grey lines) with radius 1300 km and
ρROI = 11.3× 10−6 km−2, averaged over ROIs (black line), and repeated for Greenland (green
line). This plot demonstrates the stability of GBRT predictions from noisy training data; namely,
that perturbations in training GHF lead to comparable, or smaller, perturbations in predicted GHF.

A.3 Interpretation and Feature Importances

A natural question in interpreting predictive statistical models is whether it is possible to gain an

understanding of those features on which variations in GHF depends the most as well as the nature

of these dependencies. Also, a geologic interpretation may require reducing the large number of

features to a smaller subset of features that can predict the GHF with similar accuracy of what is al-

ready obtained. Alternatively, one might merely wish to assign a measure of relative importance in

the predictions to each feature. The extent to which one can progress in either approach is generally

limited by three issues. First, the number of subsets of features to be evaluated as candidates for

‘influential features’ grows exponentially with the number of features. This poses a prohibitively

demanding computational task unless the model is simple enough (e.g. linear regression) such that
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contributions of different features are readily decomposable. Second, when using any statistical

model, linear or not, one is prone to misinterpreting the relevance of subsets of features with latent

(or hidden) correlations among themselves. Finally, although the relevance of each feature can

be gauged through some variation of the amount of variance it explains, these measures are more

difficult to interpret in additive models like GBRT since such models are essentially averages of

simpler predictors (e.g. GBRT predictions are averages across predictions of individual regression

trees).

A.3.1 Relative feature importances

At each partitioning step while training a single regression tree, the contribution of the chosen

feature to the reduction in loss is e2(D,k,T ) (see line 3 of Algorithm 1). One can thus define

a measure of importance Ik for feature k in tree j defined as the sum of all reductions in error

provided by feature k:

I2
k ( f j) = ∑

D,k,T
e2(D,k,T )

where the sum is over all internal nodes D of tree f j that partition over xk with threshold T . This,

when summed over all trees f j and normalized such that ∑k Ik = 1, is refered to as the relative

feature importance vector for GBRT (Friedman et al. (2001, section 10.13) and Friedman (2001,

section 8))

I2
k =

〈I2
k 〉

∑k〈I2
k 〉
,

where the averages are over j indexing individual trees f j. This is exactly what is plotted in Figure

A.5.

A.3.2 Further work

One technique that is more robust to potentially hidden correlations among features is to view

partial dependence or conditional expectation plots of the predicted variable, here the GHF, against

feature subsets of interest (Friedman, 2001; Goldstein et al., 2015). The partial dependence of GHF

115



Figure A.5: Relative importance of different features in the trained GHF prediction model, aver-
aged over 50 random ROI with radius 1300 km and ρROI = 11.3 per 106 km2. The importance
of each feature in each ROI is the average reduction in prediction error over all regression trees
provided by that feature (see section 3.1 of Supplementary Material for details). All values above
are normalized such that the sum of relative importances is 1 and error bars show the standard
deviation across the 50 ROIs.

on a single feature is a function (and not merely a single number) that shows for each value of the

feature of interest the average value of GHF over all values of all other features. Partial dependence

of the GHF on all subsets of size k can uncover interactions of order at most k among the features

(Friedman, 2001). However, partial dependences can only be visually examined for prohibitively

small subsets of features.

Alternatively, one can limit the exponentially large number of feature subsets by a greedy

heuristic known as recursive feature elimination where in each round the least important feature

(according to the relative importances described above) is excluded and the model is retrained using

the remaining subsets until a small number of predictive features remain (Guyon et al., 2002).
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Figure A.6: Spatial distribution of global GHF point measurements (top map) averaged in 1 degree
latitude-longitude cells. The corresponding histogram is shown in bottom right and the histogram
of all the GHF measurements before averaging is shown the bottom left.
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Figure A.7: Location and magnitude of the prescribed GHF values in Greenland that are included
in the training set. The circles contain the points within 150 km away from GHF measurements
whose GHF are prescribed with the Gaussian distribution around ice core measurements.

A.4 Data

A.4.1 Distribution of global GHF measurements

The 35,000 points measurements of GHF on the continents are averaged into 1 by 1 degree latitude-

longitude cells. A low-pass filter is applied to the data to remove the short-scale spatial variability

of data. Figure A.6 shows the spatial distribution of smoothed points, as well as histograms before

and after the averaging and smoothing are applied.
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Table A.1: GHF measurements or inferences in Greenland. The location of the GAP Project is
visually chosen from georeferencing Meierbachtol et al. (2015, Fig. 1). and the average value of 31
mW m−2 is used. Superscripts i and b denote ice-core and borehole measurements, respectively.

Borehole Name Latitude (◦N) Longitude (◦W) GHF (mW m−2) Reference
iGRIP 72.58 -37.64 51.3 Dahl-Jensen et al. (1998)

iGISP2 72.60 -38.50 60 Petrunin et al. (2013)
iNorthGRIP 75.10 -42.32 90 & 135 & 160 Dahl-Jensen et al. (2003); Greve (2005)

iDye 3 65.18 -43.82 20 Greve (2005)
iCamp Century 77.18 -61.13 50 Greve (2005)

bSASS1 61.40 -48.16 43 Sass et al. (1972)
bSASS2 60.98 -45.98 32 Sass et al. (1972)

bLangseth 60.73 -45.75 51 Langseth et al. (1972)
bGAP Project1 66.50 -50.33 34.8 & 27.2 Meierbachtol et al. (2015); Harper et al. (2011)

A.4.2 Available GHF measurements in Greenland

In total 9 measurements of GHF are available in Greenland that are listed in Table S1. The map

of the measurements and the additional points added with the Gaussian kernel around the points is

shown in Figure A.7.

A.4.3 Rock type conversions

Table S2 shows the conversion of global lithology map to rock-type. Hartmann & Moosdorf (2012)

do not include rock type of Greenland bedrock, therefore we use the map of geologic provinces

of Dawes (2009), modified by Dyke et al. (2014) to identify the rock-types in Greenland. We use

GEUS geologic map of the coasts of Greenland (Henriksen et al., 2009) to interpret the rock-types

associated with Dawes (2009) geologic provinces (Table S3).

The geologic basins from Dawes (2009) do not indicate the general rock type. Therefore, we

generalized the rock types by assigning the similar rock type provided in maps of exposed coastal

rocks provided by GEUS (Henriksen et al., 2009).
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Table A.2: Conversion of Hartmann & Moosdorf (2012) lithology to general rock type

Hartmann & Moosdorf (2012) lithology Rock type
Unconsolidated Sediments (SU) Sedimentary

Siliciclastic Sedimentary Rocks (SS) Sedimentary
Mixed Sedimentary Rocks (SM) Sedimentary

Carbonate Sedimentary Rocks (SC) Sedimentary
Pyroclastics (PY) Volcanic
Evaporites (EV) Sedimentary

Metamorphic Rocks (MT) Metamorphic
Acid Plutonic Rocks (PA) Volcanic

Intermediate Plutonic Rocks (PI) Volcanic
Basic Plutonic Rocks (PB) Volcanic
Acid Volcanic Rocks (VA) Volcanic

Intermediate Volcanic Rocks (VI) Volcanic
Basic Volcanic Rocks (VB) Volcanic

Table A.3: Conversion of Dawes (2009) suggested Greenland geologic provinces, modified by
Dyke et al. (2014), to general rock type.

Dawes (2009) geologic provinces Rock type
Caledonian Belt Metamorphic

Cambrian to Silurian Basins Sedimentary
Devonian to Paelogene Basins Sedimentary

Ellesmerian Fold Belt Sedimentary
Ketilidian Ellesmere Inglefied Paleoproterozoic Volcanic

North Atlantic Craton Metamorphic
Paleogene Volcanics Volcanic
Proterozoic Basins Sedimentary

Proterozoic Mobile Belts Metamorphic
Victoria Melville Archaean Metamorphic
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