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Abstract. Convolutional neural network (CNN)-based approaches have received state-of-the-art results in
scene classification. Features from the output of fully connected (FC) layers express one-dimensional semantic
information but lose the detailed information of objects and the spatial information of scene categories. On the
contrary, deep convolutional features have been proved to bemore suitable for describing an object itself and the
spatial relations among objects in an image. In addition, the feature map from each layer is max-pooled within
local neighborhoods, which weakens the invariance of global consistency and is unfavorable to scenes with
highly complicated variation. To cope with the above issues, an orderless multi-channel mid-level image rep-
resentation on pre-trained CNN features is proposed to improve the classification performance. The mid-level
image representation of two channels from the FC layer and the deep convolutional layer are integrated at multi-
scale levels. A sum pooling approach is also employed to aggregate multi-scale mid-level image representation
to highlight the importance of the descriptors beneficial for scene classification. Extensive experiments on
SUN397 and MIT 67 indoor datasets demonstrate that the proposed method achieves promising classification
performance. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.2.023018]
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1 Introduction
Scene classification is a challenging task in computer vision,
since most of the scenes are the collections of entities organ-
ized in a highly variable layout. Many available methods for
scene classification are based on the appearance of local
descriptors.1–10 Generally speaking, image representation
can be categorized into three levels: low-level, mid-level,
and high-level.11 Low-level features such as color, texture,
or shape information of images describe appearance at the
pixel point in an image and can be retrieved directly from
images without any external knowledge. Although great
progress has been achieved with the invention of low-level
features,1–3 low-level features-based methods cannot provide
sufficient semantic information to scene recognition since
they depend mainly on corner points. As a result, some
researchers have investigated high-level features that are
already impregnated with semantic information to increase
the generalization ability.4–6 For instance, Li et al.6 proposed
that the scenes can be regarded as a series of goals (e.g.,
objects) and some combination of them can represent a cer-
tain kind of scene. They constructed feature vectors with a
series of multi-scale corresponding maps of target detection
descriptors and achieved promising performance. However,
extracting high-level features requires a large amount of
training data and semantic entities which are ambiguous and
less discriminable. The problem raised considerable interest
in the subject of mid-level features,7–10 due to its superiority
of the human visual mechanism over low-level features
and minor training data over high-level features. Mid-level

visual elements, which are clusters of image patches rich
in semantic meaning, were proposed by Singh et al.9 They
adopted discriminative clustering to train support vector
machines (SVM) for discovery of mid-level image patches
and utilized these patches to perform scene classification.
All of the aforementioned approaches based on mid-level
features use rudimentary features that represent only local
information about images and throw away much of the dis-
criminative information in the image.12 To cope with the
problem, a convolutional neural network (CNN) is used to
extract global representation of images and has achieved
state-of-the-art results in image classification,13–15 object
detection,16–18 and semantic segmentation.19–21

Most current solutions take activations of the fully con-
nected (FC) layer as the image representation,13–15,18 which
have a general description for images. However, the activa-
tion of the FC layer loses detailed information of the objects
in comparison to the features of the convolutional layers,
since objects and scenes are closely related and the objects
can be helpful for recognition.22 In addition, in the architec-
ture of CNN, feature maps from the convolutional layer are
pooled within local neighborhoods. As a result, the structure
of CNN reduces the invariance to geometric transformations
in all cases. As shown in Ref. 23, the reconstructed image of
the output of the fifth convolutional layer is similar to the
original one, which will hurt performance for scene images
with high spatial variability. Compared with orderless Bag
of Features (BoF),24 CNN activations are “globally ordered”
spectra for image representation, which is negative for scene
classification.
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Inspired by Ref. 25, to increase the invariance of global
deformations, we sample a set of multi-scale mid-level image
patches22,25–27 as orderless inputs to the CNN extractor and
aggregate the descriptors of patches to represent the whole
image. Different from Ref. 25, we combine the deep convo-
lutional features and FC features to obtain a more compre-
hensive representation. In addition, Ref. 28 emphasized
objects of interest that tend to be located close to the geo-
metrical center of an image and proposed a simple center
prior based on the sum pooling method for image retrieval.
However, this method is not adaptable to scene classification,
since scenes can be seen as a combination of some certain
objects, instead of one primary object. As a result, we pro-
pose an importance-weighted aggregation method based on
sum pooling (IWA-SP) for deep convolutional features of the
combined channels. The main contributions of this paper are
as follows. First, we propose a solution to generate compre-
hensive image representation by combining multi-channel
features. Second, the proposed multi-scale mid-level image
representation mechanism increases the invariance of geo-
metric transformation and prevents the representation from
lacking the ability for depicting relationships of different
regions in an image. Third, a pooling method, called IWA-
SP, is proposed to highlight the contribution of region
descriptors to be beneficial for recognition.

The remaining part of this paper is organized as follows.
In Sec. 2, we introduce related work on scene recognition
and descriptors aggregation methods. The proposed method
is elaborated in Sec. 3. Section 4 presents extensive experi-
ments and results on the MIT 67 indoor and SUN397 data-
sets. Finally, this paper is concluded in Sec. 5.

2 Related Work
Learning mid-level representation using CNN has shown
effective performance.13,25,26,29,30 Oquab et al.29 proposed
learning and transferring mid-level representation by using
a trained ImageNet CNN. Li et al.13 presented a learning dis-
criminative mid-level representation approach by extracting
CNN features to recognize scenes. Generally speaking, these
approaches combine multiple scales that are pooled using
vector of locally aggregated descriptors (VLAD)25 or Fisher
vector (FV)26 encoding. Gong et al.25 proposed an orderless

pooling method for the patches’ output of the FC layer to
increase invariance of representations for scene recognition.
In general, these works use CNN to extract the FC layer’s
activations as generic representations of images. However,
the activation of the FC layer is quite limited, which contains
one-dimensional semantic information and loses detailed
information of objects and destroys the property of spatial
characteristics among objects. Objects and scenes are closely
related, so knowledge about objects can be helpful for rec-
ognizing scenes. Features from the convolutional layers have
a natural interpretation as descriptors of local image regions
corresponding to receptive fields of the particular features.
Therefore, in our work, we integrate two channel features
from the FC layer and the convolutional layer to represent
images. To aggregate patches’ descriptors of convolutional
layer, we propose an aggregation method based on sum pool-
ing, which assigns weights to the local descriptors to high-
light the benefits for recognition. Recently, Herranz et al.22

proposed a model that trains a CNN architecture for each
scale level of images with two types of networks (i.e.,
ImageNet CNN and Places CNN), to increase objects infor-
mation in scene images and effectively combine two types of
features. Different from the proposed method, we train one
ImageNet CNN for all scales and combine the Places CNN
for full images with single scale. In Sec. 4, we also adopt
their idea to expand our experiments.

3 Proposed Method

3.1 Framework
To learn more effective image representation, in this paper,
we propose a solution by constructing a CNN framework
of multi-channel and multi-scale mid-level representation.
Figure 1 shows the proposed framework, which consists
of three stages: first, multiple scale mid-level image patches
are selected as the inputs to CNN by sliding windows. Then,
the deep convolutional features and the FC activations are
extracted across each scale level. For deep convolutional fea-
tures, the IWA-SP is utilized to form the final descriptors.
For FC activations, the improved optimal VLAD is applied
to obtain image representation. Finally, we concatenate the
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Fig. 1 The framework of our proposed method. A raw image is first divided into multi-scale levels of mid-
level patches, then these patches are fed to ImageNet to obtain feature maps from the convolutional layer
and one-dimensional semantic vectors of patches from the FC layer, respectively. We adopt improved
optimal VLAD encoding for semantic vectors of patches from the FC layer and importance-weighted sum
pooling for feature maps from the convolutional layer. Finally, two complementary representations are
concatenated to train the SVM.
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above two descriptors at multiple scale levels to train a
linear SVM.

3.2 Descriptors of Mid-level Patches
As mentioned above, mid-level patches are employed as the
inputs to the pre-trained CNN to extract features. The output
of the convolutional layer is a set of feature maps, with each
of them describing a local region (spatial unit).31 These fea-
ture maps meet the spatial relation of objects in an image.
Through the FC layer, the feature map is transformed into
a feature vector, containing more semantic information in
comparison to the deep convolutional features. During this
process, the spatial information is lost, as each feature vector
corresponding to a spatial unit is unable to be reproduced
through the FC layer. Feature vectors can be regarded as
semantic representation of the whole image, which is benefi-
cial to scene classification. Therefore, to generate compre-
hensive image representation, we concatenate both of two
kinds of features, the spatial units and the feature vectors,
as the inputs to the orderless pooling.

3.3 Pooling Methods
3.3.1 Improved optimal VLAD encoding

After obtaining the above-mentioned descriptors, we
combine them into a global representation. For the FC
feature, we adopt the VLAD encoding (a soft assignment
version32). Given a collection of image patches, we first learn
a separate codebook c ¼ fc1; : : : ; ckg through k-means.
Here, we set k ¼ 100 in our experiments. Assign each
patch pi to its r nearest cluster centers rNNðpiÞ and aggre-
gate the residuals of the patches minus the center. The VLAD
descriptor is constructed using

EQ-TARGET;temp:intralink-;e001;63;388X¼
" X
i∶c1∈rNNðpiÞ

wi1ðpi − c1Þ; : : : ;
X

i∶ck∈rNNðpiÞ
wikðpi − ckÞ

#
;

(1)

where wik is the Gaussian kernel similarity between pi and
ck as follows:

EQ-TARGET;temp:intralink-;e002;63;300wik ¼ expðkpi − ckk∕2σ2Þ; (2)

where σ is the width value of function. Given a set of width
σi, i ¼ 1; 2; : : : ; n randomly, train the SVM for each σi and
compute the classification error rate, then, choose the width
value corresponding to the smallest error rate. However, the
values of σi are difficult to determine and are always deter-
mined by experience. In our experiments, we apply a scheme
to determine σi, which is relying on the multiples of median
distance between support vectors. Through training SVM,
we obtain the discriminant function of an optimal separating
hyperplane. The function consists of support vectors, which
has no relation with other training samples. Therefore, the
distance between support vectors is adopted to determine
the range of width values of a Gaussian kernel. Take a binary
classification as an example: first, an approximate σ0 deter-
mined by median distance between training samples of
two classes is given to train the support vector machines.
Then, the median distance dmed between the support vectors
of two classes is computed to obtain a set of width values
σ2i ∈ f1∕8d2med; 1∕4d2med; 1∕2d2med; d

2
med; 2d

2
med; 4d

2
med; : : : g.

Since the median distance depicts spatial characteristic of
support vectors to a certain extent, in comparison to the
traditional cross-validation method, the above scheme can
reduce computational burden thanks to less times of
validation.

The whole process for VLAD can be divided into two
parts, i.e., embedding and aggregation. The first step is map-
ping each image patch descriptor into a higher dimensional
vector. In the second step, we sum the difference between pi
and ck. Here, we represent the descriptor by the difference of
the FC feature and the clustering center in each dimension,
instead of the nearest cj representing this vector, such as
BoF, which contains more detail information by considering
each dimension.

Following Ref. 33, the VLAD descriptor X is sub-
sequently L2-normalized. However, the dimension of vector
obtained from this method is usually high. Given 500-dimen-
sional patch descriptors from the FC layer after principle
component analysis (PCA) and 100-dimensional k-means
centers, we obtain a 50,000-dimensional vector, which is
too high for large-scale patches. To increase the efficiency,
we adopt PCA to reduce the pooled vectors to 4096
dimensions and obtain the image global representation.
Note that applying PCA is a standard practice in previous
works.34,35

For deep convolutional features, the dimension of which
is higher than the FC features, it is not suitable to map each
patch descriptor into a higher dimensional vector for its large
computational cost. Babenko and Lempitsky28 proved that
a simple sum pooling aggregation applied on raw local
descriptors can provide a better performance compared
with high-dimensional embedding. This method simplifies
the descriptors of the fifth convolutional layer, leading to
more efficient and reliable compact descriptors for image
retrieval.

However, their center prior method based on sum pooling
is not suitable for scene classification, since a complex
scene usually contains multiple objects distributed across
the whole image. Therefore, we propose a weighted method
for sum pooling to satisfy the importance of different
descriptors to scene image.

3.3.2 IWA-SP

Given an image patch p with a certain number of feature
maps fðx; yÞ extracted from the last convolutional layer,
where ðx; yÞ represents the spatial position of the feature
in the map stack, the sum pooling feature is represented
as follows:

EQ-TARGET;temp:intralink-;e003;326;220Ω ¼
XH
y¼1

XW
x¼1

fðx; yÞ; (3)

where H, W represent the height and the weight of feature
maps, respectively.

Most existing feature encoding methods treat each local
descriptor with equal importance. However, some descrip-
tors containing background or other irrelevant objects add
noise to the global image descriptor and some descriptors
containing objects representative for a certain kind of scene
are possibly neglected. Thus, both situations affect classifi-
cation accuracy. In this section, we propose a scheme that
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gives a descriptor Ω an importance weight wðΩÞ that would
determine its contribution toward the global image descrip-
tor. Our idea is to learn a classifier, which distinguishes dis-
criminative features from others and derive the weight using
the predicted confidence value. Random forest is used to
implement the task and the number of trees is set to 500.
We select one kind of scene image descriptors as positive
examples and other kinds as negatives for training. Given
a descriptor Ω, the posterior probability pðΩÞ is predicted
by the forest using the empirical distribution of the labels
of the training examples assigned to the predicted leaf.
Finally, a sigmoid is used to threshold this probability in
a soft manner.

By assigning different weights to the descriptors, Eq. (3)
can be rewritten as

EQ-TARGET;temp:intralink-;e004;63;587ψ1ðPÞ ¼ ωðΩÞ
XH
y¼1

XW
x¼1

fðx; yÞ; (4)

where we define

EQ-TARGET;temp:intralink-;e005;63;525ωðΩÞ ¼ 1∕½1þ e−αpðΩÞþβ�: (5)

The dimension C of ψ1ðPÞ equals the number of output
maps from the fifth convolutional layer. The final represen-
tation ψðPÞ is subsequently L2-normalized, then PCA and
whitening are employed to reduce the dimension

EQ-TARGET;temp:intralink-;e006;63;454ψ2ðPÞ ¼ diagðs1; s2; : : : ; sNÞ−1MPCAψ1ðPÞ; (6)

whereMPCA is the rectangular PCA-matrix and si is the asso-
ciated singular value. The dimension of C is much lower than
the corresponding descriptors from embedding. Thus, it
takes much less data to obtain the PCA matrix than the
VLAD and reduces the risk of overfitting.

Finally, the whitened vector is L2-normalized

EQ-TARGET;temp:intralink-;e007;63;356ψSPOCðPÞ ¼
ψ2ðPÞ

kψ2ðPÞk2
: (7)

4 Experiments
The proposed approach is evaluated on two well-known
benchmarks: SUN397 and MIT 67 indoor datasets perform-
ing on GPU980Ti. In our experiments, we further compare
image representation obtained from convolutional layers.
Experiments are divided into four parts: the first one is a
comparison of mid-level image representation against global
activations of full images; the second compares a single
channel feature (FC) against two channel features (DCF
+FC); the third is a comparison of two encoding methods
against other competitive methods; and the last one is an
experiment by introducing the Places CNN.

4.1 Datasets
The SUN39736 dataset is the largest dataset to date for scene
classification, which consists of 397 scene categories and a
total of 108,754 images. Each category has less than 100
images. We use a subset of the dataset that contains 50
training images and 50 testing images per class as a partition,
choose 10 times partitions and report the average classification

accuracy. The evaluation settings are well-established over
the SUN397 dataset.

The MIT dataset4 consists of 15,620 images, with 67
scene categories, divided into subway, bathroom, closet,
and so on. The standard training/test images for the dataset
consists of 80 training and 20 test images per class. The
evaluation settings are also well-established over the MIT
dataset.

4.2 Experimental Parameters
For the size of mid-level patches, we choose 64, 128, and
256, respectively. FC features and deep convolutional fea-
tures are extracted, respectively, relying on the ImageNet
CNN. Dimensions of the FC features are first reduced to
500 dimensions. The k-means center here is 100 and the
nearest cluster center is 5 in the VLAD pooling process.
The final VLAD pooling dimension is set to 4096. For
DCF, the number of feature maps is C ¼ 256 and the spatial
size of the fifth layer isW ×H ¼ 6 × 6. In the IWA-SP proc-
ess, the dimension is also set to 4096. For the SUN dataset,
the best result with the IWA-SP is obtained with α ¼ 10, β ¼
0.3 and for the MIT dataset, α ¼ 20, β ¼ 0.8.

4.3 Results
4.3.1 Mid-level image representation versus global

activation of CNN

We perform experiments using the global CNN activation
from different layers for scene classification on full images.
Results are listed in Table 1, where DCF represents the deep
convolutional features, FC6 refers to the sixth FC ones, and
FC7 denotes the seventh FC ones. As shown in Table 1, the
result of FC7 features is better than that of FC6 features.
Therefore, in our following experiments, we utilize FC fea-
tures to represent the seventh FC layer features. It is also evi-
dent that when two channel features work together, the
accuracy is better than that of the random single channel
feature.

Table 2 shows the results on the mid-level image repre-
sentation across the three scales. Single FC channel results
are the same as Ref. 25, which is called Mop. We choose the
same pooling method (VLAD) for both two channel features
for the fairness of comparing the results of different chan-
nels. For the same dataset, the accuracy of the left column
in Table 2 using mid-level representation of a single FC is
much higher than that in Table 1 using the global activation,
which proves the effectiveness of the mid-level image rep-
resentation. Our method increases the invariance to geomet-
ric transformations, for example, for classes having an object
in the center in Fig. 2(a), the classification results are correct
using global activation of CNN.

However, for classes that have high spatial variability in
Fig. 2(b), the classification results using global activation of

Table 1 The average accuracy of global activation of DCF and the
FC features on SUN397 and MIT67.

Global activation DCF (%) FC6 (%) FC7 (%) DCF+FC7 (%)

SUN397 38.53 41.30 42.61 44.80

MIT67 53.80 56.51 58.40 61.52
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CNN are incorrect in comparison to results using mid-level
image representation. Notice that different scales of mid-
level image representation achieve different results. The
best result is achieved by combining all three scales. Our
method is based on pre-trained AlexNet provided by the
CAFFE package.37

4.3.2 Multi-channel features versus FC feature

We extract deep convolutional features and visualize each
convolutional layer of CNN. As shown in Fig. 3, it is evident
that from conv1 to conv5, the information is changed from
image edge to abstract corresponding responds. The output
of layer 5 corresponds to the patches of the image and it
is more representative for the corresponding category.
Combine some feature maps randomly sampled from the 256
feature maps in conv5 and for better visualization, we over-
lay them on the original images. Figure 4 shows the visuali-
zation result. It is obvious that the activated regions of the

sampled feature maps (highlighted in red color) from the
fifth layer also have semantically meaningful information.
For example, the activated region of dinette is a part of chairs
which is also a chair-part of dinette.

Compared with the FC features, the proposed method
obtains better performance in terms of accuracy on the
SUN397 dataset and MIT 67 indoor dataset. It is evident
that a single FC feature loses sensitive information for
scene classification. In order to demonstrate its performance,
we list some scenes of misclassification on the MIT 67
indoor dataset utilizing single FC features, as shown in
Fig. 5, where labels are listed below the images. The bottom
left is the result using single FC features and the upper right
is the result using two channel features if it is not the same as
labels. It is obvious that for some cluster scenes, a single FC
representation probably fails in recognizing the bar, focusing
on the desks and chairs in general but ignoring the wines on
the table and their spatial relations. The computation time of
FC and DCF+FC is also listed in Table 2, from which we can

Table 2 Results of one single FC channel and the two channel combinations (DCF+FC) on SUN397 and MIT 67 indoor datasets. For each scale
level, computational time is listed in this table. VLAD encoding (-V) is employed in this experiment.

Combined levels SUN397 dataset (-V) MIT67 indoor dataset (-V)

Channel FC (%) Time (s) DCF+FC (%) Time (s) FC (%) Time (s) DCF+FC (%) Time (s)

Level 1 39.67 2.23 40.56 3.01 53.97 2.18 54.69 2.96

Level 2 45.45 2.10 48.42 2.97 65.72 2.05 67.83 2.85

Level 3 40.28 1.92 43.27 2.80 62.34 1.83 63.94 2.72

Level 1 + level 2 50.10 2.28 51.19 3.18 66.84 2.19 68.75 3.21

Level 2 + level 3 49.75 2.17 50.35 3.05 68.04 2.04 69.12 2.91

Level 1 + level 2 + level 3 52.12 2.32 52.72 3.27 68.98 2.21 70.90 3.1

Fig. 2 MIT67 indoor classes. (a) For classes where there is a main object in the center, the classification
results are correct using global activation of CNN. (b) For classes that have high spatial variability, the
classification results are negative, while our method yields correct results.
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see that DCF+FC costs more time than FC (Mop), since the
dimensions of the DCF features are high.

4.3.3 IWA-SP versus VLAD

To verify the proposed IWA-SP method, we compare the two
orderless pooling methods. Table 3 lists the results of

concatenating multi-channel descriptors obtained by two
pooling schemes, IWA-SP for DCF and VLAD pooling
for the FC features, i.e., DCF-IWASP+FC-VLAD. From
Tables 2 and 3, we can see that the performance of the pro-
posed method (DCF-IWASP+FC-VLAD) increases 2.08%
in comparison to the results on the SUN397 dataset and
1.2% on the MIT 67 indoor dataset in Table 2. The

Fig. 3 Visualization of convolutional layers. From (a) conv1 to (d) conv5, information from edge, texture
to more abstract and specific object. Output of (d) responds to a kind of certain image category.

Fig. 4 Activated field of feature maps extracted from the fifth layer of a CNN on SUN397 dataset.
(a) Dinette, (b) arch, (c) palace, and (d) supermarket. All of the activated regions are meaningful for
scene categories.

Fig. 5 Classification results using single FC features and two channel features. The ground truth labels
are listed below the images; the classification results using single FC features are shown at the bottom
left corner; and the results using two channel features are shown at the upper right corner if they are not
the same as the ground truth.
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computational time of the concatenated method is shown in
Table 3. By comparing the results in Table 2, we can find that
the computational time using IWA-SP to encode the deep
convolutional features is much lower than that using
VLAD encoding. The computational time of DCF-IWASP
+FC-VLAD is close to that of Mop using single channel
features.

Tables 4 and 5 demonstrate the comparative results on the
MIT 67 indoor dataset and SUN 397 dataset. On the MIT 67
indoor dataset, the method of semantic Fisher vector25 is a
little bit higher than our method, since they use the inputs
to soft-max layer as image patch descriptors and then com-
pute a semantic FVas a Gaussian mixture FV in the space of
these natural parameters, increasing the semantic informa-
tion of image. Dual hybrid22 achieved the highest accuracy
on both datasets, since it uses a hybrid CNN architecture for
each scale level of images with two types of networks (i.e.,
ImageNet CNN and Places CNN); the dual hybrid is more
complex than our model which utilizes only one ImageNet
CNN. The Dual hybrid model can supplement more objects’

information in scene images by training CNN architectures
for each scale image, which is helpful for recognition. Our
model is also able to capture main objects information by
encoding deep convolutional features. As shown in Fig. 3,
all of the activated regions are meaningful for scene catego-
ries. In the next section, similar to Ref. 22, we also present
the experimental results by combining two types of networks
in our experiments.

4.3.4 Framework with Places CNN

Our work focuses on generating representation on objects for
scene images. Zhou et al.38 proposed a more direct CNN
based on the “Places” dataset without using the ImageNet
CNN, aiming at scene classification. The type of features
learned from the Places CNN is different from those from
the ImageNet CNN. The responds of Places CNN have
more receptive fields that look like landscapes and are a
holistic representation of scenes, whereas the ImageNet
CNN have more receptive fields that look like object-blobs
and can be seen as a specific representation of the objects.
Therefore, the Places CNN is incorporated into our frame-
work to extract the whole image features, as a complement
to our method.

The accuracy can be increased by utilizing a pre-trained
CNN relying on a large scale scene dataset. In Table 6, “com-
bined I” is the results obtained by combining ImageNet CNN
and Places CNN. On the SUN397 dataset, results of simple
combination are almost the same as the Places CNN,
whereas on the MIT 67 indoor dataset, our results are higher
than those of the Places CNN with an increase of 3.86%.
Inspired by Ref. 22, we also combine Places CNN and

Table 3 Results of concatenating multi-channel descriptors obtained
by two pooling methods, i.e., IWA-SP for the DCF (DCF-IWASP) and
VLAD pooling for the FC features (FC-VLAD).

Combined
levels

SUN397 (%)
(DCF-IWASP
+FC-VLAD) Time (s)

MIT67 indoor
(%) (DCF-
IWASP+FC-

VLAD) Time (s)

Level 1 40.90 2.53 58.47 2.23

Level 2 50.73 2.12 69.50 2.16

Level 3 44.50 2.05 65.82 1.95

Level 1 + level 2 53.70 2.37 69.87 2.30

Level 2 + level 3 52.32 2.30 70.20 2.16

Level 1 + level 2
+ level 3

54.80 2.45 72.10 2.37

Table 4 Accuracy over MIT 67 indoor dataset. (V) represents VLAD
encoding for both two channels, (V+IWA-SP) represents two encod-
ing methods, i.e., IWA-SP for the DCF and VLAD pooling for the FC
features.

Method
Accuracy

(%) Method
Accuracy

(%)

Object bank6 37.60 Mop25 68.88

Patches9 38.10 MDPM13 69.69

ISPR5 50.10 Semantic FV26 72.86

SPP14 56.3 Dual hybrid22 78.28

Coarse-to-fine
sparselets15

59.87 to
64.36

Our method-(V) 70.90

Mode seeking10 65.10 Our method-(V
+IWA-SP)

72.10

Table 5 Classification results on SUN397.

Method Accuracy (%)

Xiao et al.36 38.00

Mop25 51.98

Semantic FV26 54.40

Dual hybrid22 64.10

Our method-V 52.72

Our method-(V+IWA-SP) 54.80

Table 6 Comparison results of combining two types of networks.

Method MIT67 indoor (%) SUN397 (%)

Our method-(V+IWA-SP) 72.10 54.80

Places FC738 68.24 54.32

Dual hybrid22 78.28 64.10

Combined I 75.60 58.18

Combined II 79.15 63.90
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ImageNet CNN in a similar way to supplement our experi-
ments, see “combined II” in Table 6. Different from com-
bined I with single-scale for the Places CNN, we adopt a
multi-scale and multi-channel mid-level representation
mechanism in combined II. As listed in Table 6, combined
II achieves approximately the same performance as Ref. 22
on the MIT67 indoor dataset and SUN397 dataset, which
demonstrates the effectiveness of our method.

5 Conclusion
In this paper, we have proposed to use discriminative mid-
level image representation to increase the performance of
global activation of CNN. The FC features from the CNN
FC layer contain more one-dimensional semantic informa-
tion, regardless of the detail information and spatial relation
among objects. Deep convolutional features have been
proved to be effective. We adopt two channel features for
scene classification. For the FC features, VLAD, which con-
tains two processes of embedding and aggregation, is per-
formed for achieving global representations of multi-scale
image patches. For the DCF, embedding is not required
and as a result, we adopt the proposed IWA-SP to aggregate
the DCF. Finally, we combine these two kinds of descriptors
and train linear SVMs for scene recognition. The proposed
method achieves the comparable performance on both the
MIT67 indoor dataset and SUN397 dataset, especially when
the Places CNN is incorporated.
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