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Abstract

Present day manufacturers have invented different memory technologies with

distinct bandwidth, energy and cost tradeoffs. Systems with such heterogeneous

memory technologies can only achieve the best performance and power charac-

teristics by appropriately partitioning process data on OS pages and placing OS

pages in the right memory areas. To achieve effective data partitioning and place-

ment we need to first understand how programs access memory and how those

patterns change at various stages (phases) of program execution. The goal of this

work is to build a framework, design experiments and conduct analysis to under-

stand overall memory usage patterns across many programs.

We use Intel’s Pin dynamic binary translation and instrumentation system for

this work. Our Pin based framework instruments programs at run-time to col-

lect data regarding memory allocations, de-allocations, reads and writes, which

we then analyze using our specialized scripts. We collect and analyze informa-

tion including page access counts, hot page ratio, memory read and write access

patterns and how that varies in different program phases. We also analyze the

similarities regarding memory behavior between distinct phases during program

execution. We also study memory behavior both with cache and without cache

to understand how caches affect the memory access behavior.
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Chapter 1

Introduction

Many new memory technologies and packaging strategies are now available

that offer distinct advantages and tradeoffs to the conventional DRAM memory

technology and placement. Newer storage-class non-volatile memory technolo-

gies such as spin-torque transfer (STT) RAM, phase change memory (PCM), and

resistive RAM (ReRAM) provide byte-addressable storage and lower energy con-

sumption than DRAM since they do not need periodic refresh. However, they

may suffer from poorer read/write latencies, lower bandwidth, and durability as

compared with DRAM, especially at launch. Manufacturers have also invented

memory technologies that offer orders of magnitude higher bandwidth compared

to currently conventional memory systems. High-bandwidth memory (HBM) tech-

nologies include AMD’s HBM interface for 3D-stacked DRAM, Intel and Micron

Technology’s Hybrid Memory Cube RAM interface and MCDRAM [11,15]. While

these technologies can provide fast memory access, they currently support re-

stricted storage capacity.

Several related trends are driving the push towards heterogeneous or hybrid

memory (HM) systems that incorporate multiple distinct memory technologies.
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First, physical limitations are throttling the scaling in conventional DRAM den-

sity and cost [11, 18] even as modern applications like data analytics [5, 22] and

key-value stores [2, 14] with large and growing datasets are demanding exponen-

tially expanding memory capacity to realize their performance goals [4]. Second,

many data-center and desktop applications are now demanding increased memory

bandwidth with lower latency [6] than can be provided by conventional DRAM

and may require high-bandwidth memory that is located closer to the processor,

which along with cost limits its size [20]. Third, several researchers posit that

the best power-performance-cost factor with modern applications and computer

systems can only be achieved by combining multiple memory technologies in a

heterogeneous configuration [16].

Achieving the best power and performance characteristics on next-generation

desktop and server class computers will require a combination of: (a) hardware

that integrates multiple classes of memories in the same system, and (b) system

software that can effectively exploit the underlying hardware for each applica-

tion. For instance, a system build with Intel’s Knights Landing processor can

combine fast MCDRAM, conventional DRAM and non-volatile PCM memories.

It is equally important for system software, including the compiler, the user-level

runtime system and operating system, to have the ability to appropriately locate

the application’s data objects on OS pages and then partition and place the OS

pages on the right memory systems to achieve the best performance and power

benefits.

To realize the best performance and cost tradeoffs, hardware systems should

be designed with the right mix of memory technologies and capacities. Likewise,

software systems need to understand the memory behavior of typical applications
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(for a certain domain) to develop a general model for memory allocation policies

and data movement across memories. However, application memory usage are

still not understood well enough to build such models and policies for program

data partitioning and hardware memory placement. The goals of this work are to

achieve such understanding by: (a) developing a framework to explore memory

allocation and usage behavior of software, and (b) employing this framework to

study and make observations regarding the memory behavior of computer inten-

sive benchmarks in SPEC cpu2006 [7].

We build our framework to explore memory usage properties of programs on

top of Intel’s Pin dynamic binary translation and instrumentation system [12].

Pin allows us instrument programs at run-time to collect data regarding memory

allocation and deallocations and all memory reads and writes. This data is then

analyzed to make observations regarding the general characteristics of memory

usage and behavior across one important class of programs. We study the memory

behavior both with and without caches to better understand how their presence

affect these memory usage properties.

The following is the outline for the rest of this thesis. The next chapter

describes the tools used in this work along with our experimental configurations.

Chapters 3 and 4 presents our results and observations from experiments that

use cache and no-cache configurations respectively. We discuss related works in

Chapter 5. Finally, we present directions for future work and our conclusions in

Chapter 6.
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Chapter 2

Tools and Experimental

Configuration

Pin is a free tool provided by intel which can be used by the programmers as

a program analysis tool. We can write our own pin tool using this software which

can be used to examine a certain program’s behavior. Pin also provides a record or

replay toolkit called Pinplay which is used to capture the execution of a program,

record it as pinballs. These pinballs can be replayed which should provide the

same program behavior that has been recorded while running the program and

can be used further to determine the program behavior, memory access, cache

profiling and so on.

In our experiment we have used Pinplay to record the program behavior of dif-

ferent programs including the SPEC benchmarks to generate the pinballs. Then

we have used these pinballs to generate the memory traces for each of the pro-

grams while its execution for different phases. To divide the program execution

for different phases we have used the concepts of Simpoint. The integration of
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this simpoint with pinplay tool has been named as pinpoints and we have used

these pinpoints to analyze our program behaviors for large applications.

Phase classification while the program executes is one of the primary step that

we followed while performing our experiment. We divided each of the benchmark

execution in five phases consisting of 100000000 instruction for each phases. The

use of phase classification is to detect the program behavior changes for different

stages of the phases. A program execution is not random and it shows repeating

behavior in different stages if examined perfectly. That was the main use of using

Simpoint which is able to identify these similar behavior of two different phases

and our experiment included the analysis of the data that we collected over time.

Our experiment follows the below mentioned steps in order.

• Generating the Pinpoints for different phases (in our case we have found the

statistics for 5 phases).

• For these pinpoints we have found the memory traces while execution of the

SPEC benchmarks. We have written a pin tool which is able to generate

these memory traces.

• The pinpoints are created by the Pinplay record/replay toolkit provided by

Intel. Once the traces has been recorded in the pinpoints, it can be replayed

as many times as the user wants and they can generate the memory trace

files each time for different phases.

• These memory trace files are then analyzed using a script to find the follow-

ing statistics.
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∗ The distinct number of page accesses for different phases.

∗ The number of access for each of the individual page which accessed

the memory.

∗ The number of distinct memory address access for each of the pages.

∗ The number of hot pages for each phases. Hot pages are those which

constitutes 90 percent of total memory access.

∗ Amongst these hot pages we also found the access pattern for each of

them. Access pattern includes the identification whether the pages the

read dominated or write dominated for each phases.

• We also integrated a 3 level cache simulator to our program and found the

memory traces after it access the cache and indicated the different behavior

of phases after the same list of analyses.

• Based on these statistics we have provided the data for the similarity metric,

weighted similarity metric between the phases in a charted list.

• We have also provided some graph for visualization of the statistics in a

better way. The graphs includes the pages access count, distinct memory

access count and a chart graph to generate the hot page vs total page ratio

throughout different phases for all benchmarks.

Generating Pinpoints: Pinpoints is using a combination of Pin and Simpoint.

Each phase is a pinpoint that can be replayed by the user to generate the statistical

data. We need to use a configuration file with the command to run the program

to generate the files.

6



Generating Trace files: For each pinpoints we have generated the memory

traces for each of the phases. For this we have used the replay framework of

pinplay. We have written a pin tool using C++ which is able to find the memory

traces both for read and write access.

Analysis: Now, we have written a script in C++ which can analyze the memory

traces generated by pinplay. Our analysis file contains the following details.

• Number of distinct pages for each phase. Each page size is considered to be

4k.

• We have found count of access for each page.

• Number of distinct memory access by each page.

• Number of pages that constitutes 90 percent of memory access.

We have used this analysis file to get the details of hot pages. We have considered

pages as hot which consists of 90 percent of total number of access. From our

analysis we have found out that if we are considering full memory trace without a

cache the number of total access is a lot higher. Though the number of hot pages

which consists of 90 percent of access is a varying number. For some benchmarks

we have found that the number of hot pages is really less which indicates the

program execution needed a lesser number of distinct page access. But the access

count for individual pages is very high in such cases. We have plotted a graph for

the page access count for each page for individual phases of program execution.
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Chapter 3

Analysis with Cache Integration

Total Memory Access Statistics :

In our pintool we have used a 3 level cache which reduced the access to the main

memory to a large extent. This consists of L1, L2 and L3 cache along with a TLB

and then we are tracing the memory access that are being bypassed after they

miss the last level cache. The trace files generated after running this tool are then

analyzed to provide the details of the memory pages and access patters mentioned

in the description.

As discussed previously, we have considered the slice size to be 1000000000 in

the configuration file while running each benchmarks through pinplay. Each of

the phases will have this many instructions and based on that we will have the

memory traces in our output files which will later be used for analysis purpose.

When we are running our programs with a 3 level of cache integrated with it, the

count of direct memory access will drop to a significant amount and that is what

we can see in the plotted chart 3.1.
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Figure 3.1. Memory Access Statistics

For most of the benchmarks we can examine that the access count is very low,

even lower than 100000 instructions. Which tells us most of the instruction are

processed by cache memory itself. We have 3 level of cache integrated with our

tool which L1, L2, L3. In the cache, hit ratio is higher for most of the bench-

marks which results in a lower cache miss rate and actual access to main memory

percentage becomes low for these benchmarks.

For a few benchmarks namely, 429.mcf, 459.GemsFDTD, 462.libquantum and

470.lbm, we can notice the access count is much higher compared to the all other

benchmarks. Among these 429.mcf and 462.libquantum are Integer benchmarks

whereas 459.GemsFDTD and 470.lbm are floating point benchmarks. So, we can

conclude there is no particular pattern for the execution of Integer or Floating

point benchmarks in terms of cache access. Both of them varies significantly for

various benchmarks and for different phases.
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Hot Page counts ratio :

We have decided to term the pages hot which are comprising 90 percent of the

total page access. We have run it for all the benchmarks and there has been some

similarities among all of them. When we are using cache the page access count

is moderately very low compared to the scenario when there is no cache. The

hot page count access compared to the total number pages count access has a

comparatively larger value in case of testing with the benchmarks. Here are some

of the graphs to provide the idea of how the hot page count is varying for different

benchmarks in each of the phases of program execution.

In this section we have provided the graphs that provides the general idea regard-

ing how the Address count is changing for each pages number. In the provided

graphs, the X-axis represents the Page number of memory access and Y-axis rep-

resents the access count corresponding to each pages. We have provided 5 different

kind of graphs that were generated during the program execution phases in the

next part.

4.2 kind of graphs are not very relevant during our program execution. Few of the

benchmarks including 401.bzip2, 462.libquantum produces this kind of program

behavior for phases where most of the pages have a very near count until the count

reaches very low value for a few of the pages. That is why the curve has a sudden

drop at certain point where the count becomes very low. This also provides us

with the information that is many pages will be considered as hot pages in such

scenario.

4.3 type of graphs are relevant for program execution behavior. As seen from the

figure, it is seen there are very few pages which has a high access count. There

10



Figure 3.2. Type A : Hot Page count

Figure 3.3. Type B : Hot Page count

might be about 2-3 pages which actually shows such behavior where the access

count is very high and rest of them will have an access count that dropped rapidly.

As said earlier, this kind of graphs occurrence is very relevant and it might be

seen for a few phases of most of the benchmarks. Here the hot page count will be

comparatively lower.
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Figure 3.4. Type C : Hot Page count

4.4 kind of graphs are not very common though few benchmarks like 436.Cac-

tusADM, 410.bwaves exhibit this kind of program execution behavior. Here we

can see the count has been varies continuously for different pages throughout the

phase of the program execution. The figure is like a staircase which means for

each of the level we can think the count are nearly constant and then the count

drops significantly for the next step which are some new sets of memory pages,

until it reaches lower value at the end.

Here the number of hot pages will mostly consist of the pages which are at mostly

higher level. For such memory pages the count is relatively higher.

3.5 type of graphs shows a curve like behavior. This means the count for each of

the memory pages are varying continuously. Many benchmarks including 403.gcc,

434.zeusmp, 450.soplex shows this type of page access behavior where the access

count is changing continuously for the whole program execution.

3.6 type of graph behavior is very rare. Here the page count is similar for a few

12



Figure 3.5. Type D : Hot Page count

Figure 3.6. Type E : Hot Page count

pages and then it changes for the next few pages. It also resembles the curve like

graph structure but it is slightly different.

Benchmarks like 453.povray, 473.astar shows this kind of program execution be-

havior.
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The graphs are plotted based on descending order of page access counts for each of

the hot pages. From the graph it is evident that the page access is not excessive

for any of the phase which can take up most of the percentage of total access

count in a particular phase. Rather, the page count is more moderate and almost

similar for a majority of page number. From this observation we can say that

when we are using a cache, we are encountering a majority of pages which can

be considered as hot pages which has a count more or less same for the plotted

graph.

For most of the benchmarks program execution behavior with cache memory con-

sideration has a lower hot page count/ total page count ration as shown in the

graphs.

Now, if we want to put the hot pages in the high bandwidth memory which can

be used for faster access while a program is being executed, we will need to put

most of the pages in such category and we will need a higher memory size to reach

certain goal for that.
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Distinct Memory Address Accessed : Along with the statistics of page

access count, we have provided the details of distinct memory access count for

each pages throughout different phases of program execution.

Let us take a look at some of the graphs that are plotted to depict the distinct

memory count traces along with page number.

Now, from the graphs we can see that the number of distinct memory address

Figure 3.7. Type A : Distinct Memory Address Accessed

referenced by each of the memory page is varying for each of the curves. Our

memory page has 4kb memory which means it can have as much as 4096 distinct

memory address reference for each memory page. In our graphs we can see, in

most of the cases it reaches around the border of 60-100 counts.

For Type A, majority of the memory pages reaches a count of 64. For type B

we can see that there are very few pages consisting of a count as high as 1000

but then it drops significantly. For Type C, we get a curvy structure where the

graphs is gradually increasing in behavior. For Type D, the curve shows a step

15



Figure 3.8. Type B : Distinct Memory Address Accessed

Figure 3.9. Type C : Distinct Memory Address Accessed

like behavior where few of the counts are same for a certain number of pages and

then it again increasing.

This just shows that there is a pattern for distinct memory access count for the

memory pages for each of the phases we have run for our benchmarks.
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Figure 3.10. Type D : Distinct Memory Address Accessed

Hot page / Total page ratio :

Below is a chart that is providing the details of how the hot page/ total page ratio

varies for different benchmarks in our experiment. We have done the plotting for

each of the phases.

The x-axis is the name of the benchmark with the phases and y-axis is the plot

of the ratio which must be a number lesser than 1. Each of the phases has been

identified by different color. From the chart one thing we can notice that almost

for all of the benchmarks the ratio is a bit higher. The ratio is reaching more than

0.5 for almost all phases of most of the benchmarks which means that half of the

pages are being considered as hot pages in such cases. Hot pages are those which

consists 90 percent of total page access count. That means if we want to details

of 90 percent of the access count throughout each phases we have to consider 50

percent of the pages for each of the benchmarks which is a large quantity. As we

have found in the previous part that the page access count is not very high when

we are using a cache before the memory access. That is the reason behind such
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Figure 3.11. Hot Page count ratio for cache

a low ratio for such cases. When we take note of the page access count, most of

the pages exhibit a similar behavior and the count is nearly same. So, to reach

a percentage near 90 we would have to consider most of the pages as hot pages

based on the statistics.
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Access Patterns : (Read-Write Access)

Based on the hot pages statistics, we have tried to find the read and write access

patterns for the memory pages. In this part of the analysis we tried to find the

percentage of read or write dominated pages for each of the phases while program

execution. For this, we are finding the ratio of read only pages count and total

page count in every phases.

Read-Access ratio =
Read only page count

Total page count

Write-Access ratio =
Write only page count

Total page count

If any of the ratio is exceeding 90 percent, which means out of total count, 90

percent of the counts are read only, then we will be term those page as read only.

Same way, if 90 percent of the counts are write access then those page are termed

as write only.

After finding this statistics, the count of total number of pages which can be

termed as read-dominated or write-dominated are found. For each phases we

have found the ratio of read-dominated page count/total number of pages and

write-dominated page count/total number of pages. This ratio for each phases has

been plotted in the two separate charts for read-dominated and write-dominated

access respectively. From the graphs shown previously, we can see that the ratio

for read-dominated pages is larger compared to write dominated pages for most

of the benchmarks. Majority of benchmarks follow an execution pattern where

most of the memory access are read. There are few benchmarks like 444.namd,

458.sjeng.hs, 459.GemsFDTD, 462.libquantum, 471.omnetpp, 482.sphinx for which

the write only memory access ratio is very low or almost 0. So, when we will be
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Figure 3.12. Read-Only Access

Figure 3.13. Write-Only Access

20



working with those benchmarks we can surely work with read-only memory pat-

terns and it should not create a problem.

We can also notice from the graphs is there are few phases for a program exe-

cution which are read-dominated and the next phase is write-dominated. This

is also an interesting criteria to work with. In 456.hmmer, we can notice all the

phases except phase 2 is showing a write dominated access behavior which is quite

interesting. A program behavior can change a lot based on access patterns during

a program execution and that is evident from our findings. As we know in the

DRAM technologies, both the read and write access takes place simultaneously

but in technologies like STTRAM and PCRAM where read access is generally

dominant we can use the read-dominated pages to construct the memories and it

will make the access a lot faster for read dominated program execution.
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Similarities between the phases :

As discussed earlier, the program execution does not change randomly over a pe-

riod of whole execution time. It follows a particular program behavior that falls

under same categories which are called program phases. We have used pinpoints

which is similar to Simpoint but uses pin to generate the memory trace files for

program execution. The phases are being considered as the set of intervals of a

certain slice size where program behavior is considered to be similar. A phase can

occur multiple number of times when a program is being executed.

In this section we have analyzed the similarities between different phases over

the program execution time. As per our configuration file, we have recorded the

program execution for 5 phases for each of the benchmarks.

We have used 3 ways to find this similarities between two phase which are men-

tioned below.

• Similarity Metric : This similarity metric is calculated for the hot pages

for each of the phases over the program execution time. If we consider two

phases named phase1 and phase 2 then similarity metric will be calculated

like the equation below.

Similarity Metric =
Intersection of Number of hot pages in Phase1 and Phase 2

Union of number of hot pages in Phase1 and Phase2

(3.1)

• Weighted Similarity Metric for Hot pages : Weighted Similarity

Metric is calculated for the Hot pages by using the page count as the weight

to calculate the similarity. If we consider two phases named Phase1 and

Phase 2 then Weighted similarity metric for hot pages will be calculated like
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the equation below.

Weighted Similarity Metric (Hot Pages)

=

∑
Count of Intersection of Hot pages in Phase1 and Phase2∑

Count of Union of Hot Pages in Phase1 and Phase2

(3.2)

• Weighted Similarity Metric for All pages : Weighted Similarity

Metric is calculated for all the pages accessed by using the page count as

the weight to calculate the similarity. If we consider two phases named

Phase1 and Phase 2 then Weighted similarity metric for all pages will be

calculated like the equation below.

Weighted Similarity Metric (All Pages)

=

∑
Count of Intersection of all pages in Phase1 and Phase2∑

Count of Union of all Pages in Phase1 and Phase2

(3.3)

In the next part we have provided the tabular structure for different benchmarks

to show the values calculated by the 3 equations mentioned above between all 5

phases.

We have also provided a scattered graph to get the idea of how the phase behavior

changes for different phases for the benchmarks. In the scattered graph, each dot

signifies the similarity ratio value between two phases of program execution.

The graphs are plotted below the table for each scenario. From the graph we

can see that the similarity metric provides the values that varies significantly for

different benchmarks. Even for different phases for the same benchmarks the

similarity metric is changed rapidly for a few of the benchmarks.
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Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.013 0.008 0.014 0.012 0.616 0.712 0.682 0.634 0.71 0.694

401.bzip 0.008 0.696 0.707 NA 0.036 0.001 NA 0.766 NA NA

403.gcc 0.209 0.26 0.187 0.051 0.081 0.093 0.012 0.558 0.011 0.007

410.bwaves 0.563 0 0.567 NA 0.019 0.753 NA 0.037 NA NA

416.gamess 0.106 0.067 0.476 0.077 0.495 0.138 0.565 0.09 0.447 0.085

429.mcf 0.596 0.009 0.764 NA 0.057 0.626 NA 0.008 NA NA

433.milc 0.596 0.588 0.597 0.761 0.33 0.998 0.439 0.329 0.753 0.44

434.zeusmp 0.379 0.562 0.562 0.573 0.744 0.775 0.305 0.623 0.408 0.317

435.gromacs 0.762 0.603 0.056 0.633 0.565 0.057 0.541 0.054 0.767 0.053

436.cactusADM 0.451 0.48 NA NA 0.867 NA NA NA NA NA

437.leslie3d 1 0.999 0.998 0.401 0.999 0.998 0.401 0.999 0.401 0.401

444.namd 0.034 0.108 0.015 0.032 0.127 0.52 0.419 0.1 0.151 0.366

445.gobmk 0.275 0.915 0.257 0.336 0.293 0.496 0.539 0.248 0.346 0.408

447.dealII 0.015 0.006 0.239 0.215 0.001 0.017 0.001 0 0.002 0.065

450.soplex 0.433 0.371 0.437 0.433 0.439 0.272 0.309 0.329 0.325 0.397

453.povray 0.87 0.717 0.601 0.581 0.7 0.604 0.597 0.84 0.783 0.83

454.calculix 0 0 0.027 NA 0.046 0 NA 0 NA NA

456.hmmer 0.371 0.39 0.329 NA 0.297 0.304 NA 0.241 NA NA

458.sjeng.hs 0.536 0.572 0.531 NA 0.547 0.573 NA 0.526 NA NA

459.GemsFDTD 0.412 0.533 0.458 0.44 0.633 0.671 0.611 0.877 0.74 0.739

462.libquantum 0.818 0.798 0.795 NA 0.796 0.792 NA 0.809 NA NA

464.h264ref.hs 0.23 0.356 0.329 NA 0.257 0.242 NA 0.502 NA NA

465.tonto 0.058 0.091 0.107 0.06 0.023 0.406 0.014 0.059 0.421 0.033

470.lbm 0.781 0.868 0.791 0.841 0.717 0.732 0.709 0.795 0.822 0.763

471.omnetpp 0.039 0.832 NA NA 0.047 NA NA NA NA NA

473.astar 0.063 0.177 0.088 NA 0.154 0.13 NA 0.074 NA NA

482.sphinx 0.475 0.569 0.593 0.638 0.403 0.53 0.531 0.643 0.561 0.647

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 3.1. Similarity Metric with Cache traces

The similarities between a few of the phases has a high values as near as 1 which

is the highest value possible. This means these two phases are totally similar

and the number of intersected and union pages are absolutely same which is a

rare phenomenon for our experiment. Weighted Similarity Metric for hot pages

provides a very much similar graph as the previous similarity metric. The slight

differences that are found due to the addition of count to calculate the weighted
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Figure 3.14. Similarity Metric Scattered Graph

Figure 3.15. Weighted Similarity metric for hot Pages Scattered
Graph
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Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.042 0.019 0.041 0.034 0.828 0.863 0.873 0.807 0.854 0.855

401.bzip 0.015 0.82 0.828 NA 0.067 0.002 NA 0.867 NA NA

403.gcc 0.278 0.405 0.312 0.094 0.125 0.145 0.021 0.806 0.021 0.012

410.bwaves 0.929 0 0.92 0.019 0.753 0.037

416.gamess 0.206 0.132 0.644 0.143 0.754 0.277 0.661 0.185 0.555 0.157

429.mcf 0.754 0.058 0.868 NA 0.082 0.741 NA 0.053 NA NA

433.milc 0.694 0.743 0.695 0.861 0.428 0.999 0.54 0.428 0.879 0.542

434.zeusmp 0.55 0.783 0.521 0.809 0.886 0.929 0.518 0.81 0.673 0.531

435.gromacs 0.876 0.818 0.162 0.86 0.698 0.196 0.771 0.14 0.883 0.181

436.cactusADM 0.682 0.73 0.937

437.leslie3d 1 1 0.999 0.595 1 0.999 0.594 0.999 0.595 0.595

444.namd 0.304 0.212 0.319 0.039 0.719 0.908 0.389 0.697 0.307 0.447

445.gobmk 0.405 0.967 0.349 0.473 0.43 0.458 0.687 0.319 0.491 0.358

447.dealII 0.028 0.117 0.374 0.34 0.004 0.035 0.002 0.001 0.039 0.104

450.soplex 0.754 0.646 0.593 0.677 0.733 0.445 0.504 0.559 0.575 0.623

453.povray 0.944 0.833 0.754 0.746 0.824 0.757 0.758 0.929 0.891 0.919

454.calculix 0 0 0.047 0.07 0 0.001

456.hmmer 0.453 0.884 0.84 0.406 0.458 0.739

458.sjeng.hs 0.832 0.816 0.839 0.808 0.877 0.802

459.GemsFDTD 0.598 0.712 0.638 0.624 0.776 0.808 0.76 0.929 0.845 0.845

462.libquantum 0.9 0.888 0.885 0.886 0.884 0.894

464.h264ref.hs 0.4 0.55 0.551 0.426 0.429 0.701

465.tonto 0.142 0.169 0.259 0.138 0.093 0.749 0.106 0.16 0.606 0.145

470.lbm 0.865 0.922 0.905 0.927 0.8 0.836 0.795 0.888 0.914 0.878

471.omnetpp 0.227 0.981 0.122

473.astar 0.217 0.336 0.226 0.294 0.101 0.158

482.sphinx 0.756 0.881 0.889 0.886 0.683 0.817 0.84 0.9 0.899 0.932

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 3.2. Weighted Similarity Metric for Hot pages with Cache
traces

similarity is very negligible. The graph for weighted similarity metric for all

pages has changed a lot compared to the previous two graphs. The main reason

of such changes is the consideration of all the pages that are accessed during the

program execution. There are many pages which are not part of hot pages can be

a part of the intersection set between two phases which will generally make the

ration higher. Also, the opposite can happen as well where the intersection set is

26



Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.234 0.166 0.227 0.206 0.902 0.889 0.913 0.873 0.903 0.888

401.bzip 0.037 0.784 0.839 NA 0.103 0.019 NA 0.912 NA NA

403.gcc 0.407 0.711 0.614 0.121 0.125 0.145 0.021 0.806 0.021 0.051

410.bwaves 0.943 0 0.943 0.052 1 0.051

416.gamess 0.255 0.186 0.653 0.178 0.804 0.36 0.813 0.277 0.634 0.266

429.mcf 0.904 0.053 1 NA 0.081 0.889 NA 0.048 NA NA

433.milc 0.732 0.887 0.733 0.894 0.577 1 0.604 0.578 1 0.605

434.zeusmp 0.72 0.843 0.57 0.827 0.991 0.908 0.689 0.88 0.751 0.688

435.gromacs 0.963 0.883 0.152 0.912 0.774 0.185 0.867 0.133 0.934 0.171

436.cactusADM 0.852 0.857 1

437.leslie3d 1 1 1 0.66 1 1 0.659 1 0.659 0.66

444.namd 0.357 0.315 0.329 0.118 0.736 0.928 0.5 0.709 0.392 0.574

445.gobmk 0.524 0.993 0.431 0.622 0.544 0.567 0.783 0.401 0.648 0.461

447.dealII 0.056 0.133 0.512 0.364 0.005 0.06 0.012 0.018 0.084 0.152

450.soplex 0.915 0.876 0.804 0.833 0.845 0.766 0.809 0.873 0.86 0.81

453.povray 0.991 0.874 0.83 0.827 0.869 0.829 0.825 0.968 0.949 0.973

454.calculix 0 0 0.059 0.123 0.001 0.001

456.hmmer 0.544 0.927 0.881 0.465 0.536 0.771

458.sjeng.hs 0.944 0.962 0.939 0.942 0.942 0.926

459.GemsFDTD 0.873 0.976 0.857 0.864 0.858 0.868 0.87 0.891 0.897 0.948

462.libquantum 1 1 1 1 1 1

464.h264ref.hs 0.416 0.646 0.587 0.439 0.437 0.799

465.tonto 0.221 0.175 0.308 0.146 0.141 0.833 0.122 0.196 0.743 0.151

470.lbm 0.998 1 1 0.999 0.997 0.997 0.996 1 0.999 0.999

471.omnetpp 0.582 0.989 0.505

473.astar 0.238 0.38 0.365 0.428 0.209 0.236

482.sphinx 0.89 0.954 0.955 0.948 0.853 0.933 0.954 0.959 0.962 0.987

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 3.3. Weighted Similarity Metric for All pages with Cache
traces

having a lower value and union set having a higher value making the whole ration

to be a lot lower compared to the previous scenario.

We have also tried to find the similarity trends for the integer benchmark and

floating point benchmarks separately to get any particular format, but that was

not the case or finding. The similarity metric does not follow any particular
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Figure 3.16. Weighted Similarity metric for all Pages Scattered
Graph

pattern in our test case benchmarks. Rather the values that we received were

quite random.

28



Chapter 4

Analysis without Integration of a

Cache

Total Memory Access Statistics :

This is the statistics of the memory traces to the files without the consideration of

a cache. As expected, the count of access in this scenario is a lot higher compared

to the previous discussion with a cache. Our slice size was taken as 100000000 for

each phases and we did the execution for 5 phases. For different phases we have

plotted the access count for the instructions which is the main memory access in

this case.

We can see the count is a lot higher in this case which is what we expected as there

is no consideration of cache access. Another thing to note here is, the program

execution through pin in this scenario is more compared to the scenario where

we used cache. Also, for some benchmarks where the execution time is lesser and

instruction count for execution is less, we have found lesser phases which were

executed. For example, 401.bzip2 has 4 phases and 403.xalancbmk has 1 phase
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compared to 403.gcc which has total 5 phases.

The chart provides us with a proper depiction which provides us an ideal about

our data with which we have started our analysis. Among these we worked with

the hot pages which are most significant for the analysis part.

Figure 4.1. Memory Access Statistics

Hot page count ratio :

Below are a few graphs shown to provide an idea of how the page access count

changes for each benchmarks while program execution without an integration of

cache. Most of the curves generated shows a very similar behavior in this case

compared to the previous section where we discussed about the program behavior

without cache integration. The graphs has Page number in the X-axis and

access count in Y-axis. From the graph we can interpret that there are only a few

pages with a large access count which is nearly at 107 or 106 order. Rest of the

pages have a much lower access count which is almost identical. Now, these pages
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Figure 4.2. Type A : Hot Page count (No Cache)

Figure 4.3. Type B : Hot Page count (No Cache)

with count of 107 or 106 page access constitutes almost all the hot pages which

is comprising of 90 percent of total page access for a few benchmarks. But for

401.bzip2, the number is not quite very low compared to other benchmarks like

403.gcc. For 401.bzip2, the ratio between hot pages and total number of pages for

different phases are 0.220668, 0.241071, 0.257426, 0.178112 whereas for 403.gcc,

the ratio is 0.00564722, 0.0253585, 0.0339744, 0.0107288, 0.00366972 respectively.
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Figure 4.4. Type C : Hot Page count (No Cache)

It is evident that the ratio is much lesser in case of gcc compared to bzip2 which

means, the hot page count for gcc is much lesser compared to bzip2. If we can

identify the pages which are hot and we can find a pattern which is able to

identify the similarity of hot pages for different phases, it can be made useful

while accessing the memory. For example, if we can identify a certain number

of pages are always hot throughout the different phases of program execution,

that means the program is accessing the same pages for the entire program and

the rest of the pages are basically being ignored while program execution. This

can lead to a better usefulness of those hot pages. These hot pages can be used

with the higher bandwidth memory which are being accessed a lot of times by the

program and the rest of the pages can be put into lower bandwidth memory where

the access probability is much lesser. This can lead to a better resourcefulness

for using a memory and can allow the user to use lesser memory for a particular

program execution.
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Distinct Memory Address Accessed :

Our next graph depicts the distinct memory access count for the hot pages. Each

of our page is of size 4K and it can have maximum of 4096 number of memory

access. That means one particular page can have reference of 4096 memory access.

From the figure 4.5 we can see that a good portion of pages are having a distinct

Figure 4.5. Type A : Distinct Memory Address Accessed (No
Cache)

Figure 4.6. Type B : Distinct Memory Address Accessed (No
Cache)
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memory access count close to 4096. These are the pages where all of the page

table entries are accessed fully. There are also some pages with memory access

counts of near to 64, 1024, 2048 as seen in the graphs. For such pages the page

table entries are mostly empty and access count is lower.

For the graph 4.6, we can see there is a steady increase of distinct memory access

count for individual pages. None of the pages for any phases has a memory access

more than 1000 in any of the phases. That indicates most of the page entries will

remain empty for the pages.

Hot page / Total page ratio :

We have previously discussed the ratio of hot pages/ total pages when there is a

consideration of a level 3 cache for a program execution. Here we are providing

the findings of the same thing but without a consideration of a cache.

From previous discussion it is already clear that the access count will be much

larger compared to the scenario with a cache. Here is the chart that shows the hot

page/total page ratio for all the phases for each benchmark. If we compare this

chart with the previous chart, there are some huge differences of the values. For

this chart many benchmark phases exhibit a ratio much smaller compares to the

previous scenario. That means for such cases count of hot pages a relatively low

compared to the total number of pages. There are very few benchmarks which

have a ratio more than 0.5. Also, if we look closely, there are a few benchmarks

which has some phases that has a ratio much higher compared to other phases.

To find the similarity of phases we have done our next experiment.
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Figure 4.7. Hot Page count ratio without cache

Access Pattern :

We have provided a detailed overview of access patterns for the hot pages in

cases of program execution without a cache. Here we will be discussing about

the same topic but without the integration of a cache memory. As there is no

consideration of cache the access count is definitely a lot higher in this case. We

are finding the read-access and write-access ratio of the phases and provided the

chart based on read and write dominated page ratio count to total number of

page access count. From the graphs we can very easily conclude that the ratio of

read-dominated pages is a lot higher compared to the write-dominated pages just

like the previous scenario. Also, one observation that is different from the case

with cache integrated memory access is neither read-only nor write-only pages are

dominating for most of the benchmarks under consideration. If we look closely,

majority of benchmarks have a ratio with lower value for most of the phases

which tells us the program execution for these benchmarks are balanced between

read-only and write-only pages.
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Figure 4.8. Read-Only Access (No Cache)

Figure 4.9. Write-Only Access (No cache)

Similarities Between the phases :

Previously we discussed the similarity between the two phases of program exe-

cution with integrated cache. Here, in this section we will discuss the same for

program execution without integration of a cache. We have used the same equa-

tions that were discussed previously to generate our data for different benchmarks.
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Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.034 0.05 0.039 0.05 0.253 0.464 0.438 0.298 0.392 0.492

401.bzip 0.017 0.397 0.347 0.02 0.012 0.295

403.gcc 0.012 0.02 0.039 0.017 0.003 0.003 0.013 0.053 0.002 0.006

410.bwaves 0.43 0 0.526 0 0.746 0

416.gamess 0.045 0.051 0.015 0.049 0.408 0.279 0.651 0.176 0.5 0.246

429.mcf 0.204 0.006 0.441 0.017 0.125 0.004

433.milc 0.596 0.792 0.51 0.751 0.491 0.539 0.449 0.436 0.876 0.395

434.zeusmp 0.112 0.362 0.044 0.204 0.434 0.698 0.303 0.362 0.304 0.335

435.gromacs 0.206 0.447 0.013 0.705 0.039 0.017 0.105 0.014 0.596 0.008

436.cactusADM 0.037 0.037 1

437.leslie3d 0.988 0.986 0.993 0.783 0.992 0.984 0.784 0.98 0.784 0.782

444.namd 0.036 0.08 0.032 0.017 0.147 0.48 0.279 0.052 0.152 0.357

445.gobmk 0.377 0.659 0.656 0.347 0.514 0.303 0.711 0.455 0.479 0.239

447.dealII 0.007 0.01 0.042 0.033 0 0.02 0.002 0.001 0.001 0.003

450.soplex 0.466 0.531 0.431 0.448 0.43 0.281 0.327 0.376 0.416 0.558

453.povray 0.868 0.8 0.659 0.8 0.821 0.634 0.868 0.789 0.895 0.744

454.calculix 0 0 0.032 0.5 0 0

456.hmmer 0.462 0.67 0.457 0.392 0.263 0.306

458.sjeng.hs 0.806 0.818 0.588 0.657 0.733 0.556

459.GemsFDTD 0.398 0.576 0.417 0.438 0.609 0.581 0.589 0.642 0.724 0.643

462.libquantum 0.733 0.785 0.769 0.723 0.753 0.781

464.h264ref.hs 0.193 0.354 0.266 0.192 0.183 0.377

465.tonto 0.034 0.016 0.069 0.005 0.023 0.5 0.007 0.027 0.242 0.009

470.lbm 0.534 0.523 0.533 0.687 0.451 0.58 0.509 0.767 0.763 0.757

471.omnetpp 0.006 0.007 0.005

473.astar 0.075 0.063 0.002 0.015 0.028 0.005

482.sphinx 0.313 0.407 0.439 0.71 0.545 0.572 0.396 0.798 0.508 0.544

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 4.1. Similarity Metric without Cache traces

Along with the table, we have provided the scattered graph for better understand-

ing of the analyzed data. From the graph we can see that the similarity metric

provides the values that varies significantly for different benchmarks. It is also

different from the scenario where we found the graph for program execution with

cache.
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Figure 4.10. Similarity Metric Scattered Graph (No Cache)

Very few of the phases has a similarity value as near as 1 which is the highest

value possible. Weighted Similarity Metric for hot pages provides a compara-

tively different graph from the previous similarity metric graph. The main change

to notice here is many values are reaching a high value as high as 1 in this case.

This signifies, though most of the pages are not common between such two phases,

when we are using count to find the weighted metric, the numerator value is made

a lot higher and hence the ratio value increases accordingly. It means the hot

pages which are the intersect between two phases have the count very high com-

pared to other hot pages which are not under intersection set. The graph for

weighted similarity metric for all pages has changed a lot as well compared to the

previous two graphs. We can see that most of the numbers are reaching a ratio

as high as 1 in this case. This means the total number of access of pages between

two phases is almost similar and the number of intersected pages is really high
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Figure 4.11. Weighted Similarity metric for hot Pages Scattered
Graph (No Cache)

Figure 4.12. Weighted Similarity metric for all Pages Scattered
Graph (No Cache)
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Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.661 0.61 0.653 0.648 0.902 0.937 0.936 0.91 0.929 0.94

401.bzip 0.735 0.891 0.845 0.761 0.76 0.85

403.gcc 0.135 0.321 0.245 0.226 0.131 0.078 0.124 0.806 0.185 0.121

410.bwaves 0.867 0 0.879 0.378 0.972 0

416.gamess 0.251 0.259 0.248 0.251 0.844 0.863 0.935 0.75 0.881 0.85

429.mcf 0.854 0.534 0.881 0.505 0.744 0.43

433.milc 0.912 0.894 0.896 0.888 0.764 0.957 0.723 0.773 0.946 0.75

434.zeusmp 0.744 0.913 0.631 0.942 0.936 0.937 0.778 0.838 0.894 0.745

435.gromacs 0.887 0.913 0.033 0.977 0.584 0.031 0.875 0.023 0.898 0.024

436.cactusADM 0.976 0.976 1

437.leslie3d 0.998 0.998 0.999 0.989 0.999 0.997 0.989 0.997 0.989 0.989

444.namd 0.612 0.605 0.628 0.439 0.694 0.887 0.619 0.651 0.55 0.689

445.gobmk 0.849 0.926 0.934 0.822 0.927 0.837 0.923 0.837 0.924 0.715

447.dealII 0.512 0.211 0.583 0.466 0.323 0.286 0.469 0.047 0.185 0.122

450.soplex 0.898 0.881 0.827 0.868 0.881 0.747 0.791 0.818 0.863 0.915

453.povray 0.987 0.982 0.945 0.98 0.983 0.947 0.989 0.97 0.99 0.965

454.calculix 0 0 0.251 0.951 0 0

456.hmmer 0.869 0.951 0.909 0.856 0.792 0.864

458.sjeng.hs 0.958 0.966 0.881 0.901 0.953 0.855

459.GemsFDTD 0.715 0.775 0.634 0.715 0.753 0.781 0.773 0.772 0.853 0.803

462.libquantum 0.661 0.879 0.686 0.658 0.916 0.695

464.h264ref.hs 0.81 0.859 0.834 0.813 0.812 0.879

465.tonto 0.397 0.872 0.556 0.751 0.778 0.937 0.702 0.741 0.842 0.682

470.lbm 0.839 0.854 0.86 0.908 0.779 0.843 0.813 0.927 0.938 0.924

471.omnetpp 0.685 0.841 0.672

473.astar 0.186 0.581 0.201 0.811 0.687 0.691

482.sphinx 0.834 0.875 0.889 0.953 0.887 0.899 0.858 0.959 0.904 0.918

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 4.2. Weighted Similarity Metric for Hot pages without Cache
traces

in this case making the numerator a lot higher. The pages which are common

between two phases mostly has a high access count value, making the ratio higher

in this case. So the phases are considered to be more symmetric here.

We have also tried to find the similarity trends for the integer benchmark and

floating point benchmarks separately to find any particular pattern for program
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Benchmarks
Statistics between the Phases

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

400.perlbench 0.799 0.759 0.799 0.798 0.94 0.935 0.944 0.935 0.945 0.938

401.bzip 0.663 1 0.99 0.686 0.688 0.983

403.gcc 0.324 0.42 0.475 0.24 0.259 0.203 0.117 0.846 0.274 0.247

410.bwaves 0.968 0.301 0.968 0.709 1 0.705

416.gamess 0.555 0.507 0.647 0.5 0.92 0.899 0.978 0.841 0.922 0.886

429.mcf 0.923 0.67 1 0.748 0.904 0.564

433.milc 0.978 0.933 0.978 0.951 0.852 1 0.871 0.877 1 0.895

434.zeusmp 0.826 0.946 0.707 0.978 0.996 0.946 0.818 0.896 0.93 0.786

435.gromacs 0.998 0.982 0.097 0.996 0.947 0.094 0.987 0.081 0.988 0.092

436.cactusADM 0.988 0.988 1

437.leslie3d 1 1 1 0.993 1 1 0.993 1 0.993 0.993

444.namd 0.592 0.631 0.581 0.431 0.73 0.904 0.672 0.678 0.61 0.747

445.gobmk 0.955 0.994 0.985 0.965 0.983 0.918 0.994 0.961 0.987 0.925

447.dealII 0.694 0.354 0.873 0.633 0.302 0.643 0.483 0.133 0.341 0.304

450.soplex 0.952 0.921 0.893 0.911 0.914 0.878 0.892 0.936 0.933 0.938

453.povray 1 0.999 0.998 0.999 0.999 0.999 0.999 1 1 0.999

454.calculix 0.005 0.001 0.344 0.991 0.016 0.014

456.hmmer 0.867 0.992 0.985 0.854 0.861 0.951

458.sjeng.hs 1 0.999 0.999 0.999 1 0.997

459.GemsFDTD 0.885 0.952 0.832 0.885 0.848 0.883 0.872 0.873 0.898 0.951

462.libquantum 1 1 1 1 1 1

464.h264ref.hs 0.815 0.904 0.863 0.809 0.811 0.896

465.tonto 0.553 0.896 0.766 0.791 0.834 0.979 0.724 0.876 0.946 0.763

470.lbm 1 1 1 1 1 1 1 1 1 1

471.omnetpp 0.738 0.986 0.726

473.astar 0.918 0.93 0.48 0.969 0.901 0.691

482.sphinx 0.942 0.971 0.973 0.973 0.934 0.955 0.969 0.973 0.98 0.985

483.xalancbmk NA NA NA NA NA NA NA NA NA NA

Table 4.3. Weighted Similarity Metric for all pages without Cache
traces

execution without cache as well. But, as we analyzed we found that, the similarity

metric does not follow any particular trend in our test case benchmarks.
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Chapter 5

Related Works

Several researchers have build tools and explored memory access patterns for

typical programs and application domains. In this chapter we compare our work

to some such existing works.

Understanding and optimizing memory accesses have a long history. Seminal

works in understanding memory access patterns revealed the presence of spatial

and temporal locality in variable accesses and led to the design of caches in modern

machines [21]. Other important works revealed the pattern of object lifetimes in

typical object-oriented programs that show that most objects are short-lived and

led to the design of generational garbage collectors that are common in modern

runtime systems [10]. Such earlier works targeted different problems as compared

to our goal, which is to optimize data placement for hybrid memory systems.

A few recent works have studied software memory access patterns for hybrid

memory systems. One study compared a hybrid hierarchical memory model (fast

DRAM and slow flash/PCM) with the existing flat main memory implementation

and concluded that a hierarchical model has the potential to reduce both cost and

power consumption with low performance overhead [23]. Shen et al. built a new
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benchmark suite for studying the performance and energy impacts of H [19]. They

also developed a new profiling tool to guide manual data placement in heteroge-

neous memory systems. This tool uses Pin-based instrumentation to only detect

frequently accessed or hot arrays and passes that information to the programmers.

Ji et al. developed a profiling tool to identify access patterns of data structure

objects and automate the task co-locating all objects of different data structures

into distinct memory regions and then map them to either DRAM or NVM [4].

Ji et al. developed a fast whole-program profiling approach that combines a fast

online and slow offline profiling pass to understand several aspects of application

memory behavior [8]. Our work differs for these existing works in the memory

characteristics that we study and quantify.

Several other researchers have developed tools and algorithms for effective data

placement on HM systems [1, 3, 9, 13, 17, 24]. We do not yet suggest an approach

that will use our observations to guide automated or manual data placement on

heterogeneous memory systems.
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Chapter 6

Conclusion

As discussed, the recent memory technologies has been advancing a lot and

utilizing the heterogeneous memory systems has been a primary research area

over past few years. To get best performance and power characteristics we need

to place OS pages in proper memory areas and need to appropriately partition

data areas. For this reason, it is necessary to understand the program behavior

and how the memory access is changing over the program phases. In our experi-

ment we have tried to study this program behavior by using Pin dynamic binary

translation and instrumentation system at run-time. We have understood how pin

works and how the program execution time increases a lot while being executed

through pin. The file traces generated are large in size as it has accessed a huge

number of memory pages. Using our analysis script we have tried to generalize the

statistics collected throughout. From our studies we can conclude that the pro-

gram behavior for different benchmarks has changed significantly and the count

for hot pages has varied as well. Also, the read write access pattern studies has

found few benchmarks are having read-dominated access whereas other few had

write-dominated access.
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In our experiment we have collected humongous amount of data over the execution

of separate benchmarks over different phases. Our data collected can be viewed

using the graphs that we have provided with the document. But, we need some

proper techniques for visualizing the data and for that purpose we might use some

data mining or machine learning techniques. These techniques can provide us with

a better understanding about how the execution behavior changes for programs

over a period of time for different phases. We can also have a better ideas about

how the access patterns changes and we can use those statistics to generalize our

data and use to describe program behavior. Apart from that, we can use the con-

cepts of Clustering algorithms to get the details of hot pages. In our experiment

we have used the hot page as those pages with 90 percent of overall access. But,

in some scenario it can be too many hot pages for a single phase execution and

for those cases the actual hot pages count could be a lot lesser. For those analysis

we might use clustering algorithms which can find us a more accurate number of

hot pages for our analysis purpose and we can work with those memory pages.
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Chapter 7

Appendix I

Hot page count graph (With Cache):

This is the Part-I of all the graphs plotted for each benchmarks to find the Hot

pages count.

Figure 7.1. 400.perlbench
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Figure 7.2. 401.bzip2

Figure 7.3. 403.gcc
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Figure 7.4. 410.bwaves

Figure 7.5. 416.gamess
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Figure 7.6. 429.mcf

Figure 7.7. 433.milc
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Figure 7.8. 434.zeusmp

Figure 7.9. 435.gromacs

Figure 7.10. 436.cactusADM
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Figure 7.11. 437.leslie3d

Figure 7.12. 444.namd
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Figure 7.13. 445.gobmk

Figure 7.14. 447.dealII
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Figure 7.15. 450.soplex

Figure 7.16. 453.povray
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Figure 7.17. 454.calculix

Figure 7.18. 456.hmmer
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Chapter 8

Appendix I-B

Hot page count graph (With Cache):

This is the Part-II of all the graphs plotted for each benchmarks to find the Hot

pages count.

Figure 8.1. 458.sjeng.hs
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Figure 8.2. 462.libquantum

Figure 8.3. 464.h264ref.hs
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Figure 8.4. 465.tonto

Figure 8.5. 470.lbm

Figure 8.6. 471.omnetpp
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Figure 8.7. 473.astar

Figure 8.8. 482.sphinx

Figure 8.9. 483.xalancbmk
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Chapter 9

Appendix II

Hot page count graph (Without Cache):

This is Part-I of all the graphs plotted for each benchmarks to find the Hot pages

count without cache integration.

Figure 9.1. 400.perlbench
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Figure 9.2. 401.bzip2

Figure 9.3. 403.gcc
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Figure 9.4. 410.bwaves

Figure 9.5. 416.gamess
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Figure 9.6. 429.mcf

Figure 9.7. 433.milc
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Figure 9.8. 434.zeusmp

Figure 9.9. 435.gromacs

Figure 9.10. 436.cactusADM
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Figure 9.11. 437.leslie3d

Figure 9.12. 444.namd
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Figure 9.13. 445.gobmk

Figure 9.14. 447.dealII
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Figure 9.15. 450.soplex

Figure 9.16. 453.povray
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Figure 9.17. 454.calculix
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Chapter 10

Appendix II-B

Hot page count graph (Without Cache):

This is Part-II of all the graphs plotted for each benchmarks to find the Hot pages

count without cache integration.

Figure 10.1. 456.hmmer
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Figure 10.2. 458.sjeng.hs

Figure 10.3. 462.libquantum
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Figure 10.4. 464.h264ref.hs

Figure 10.5. 465.tonto
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Figure 10.6. 470.lbm

Figure 10.7. 471.omnetpp

Figure 10.8. 473.astar
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Figure 10.9. 482.sphinx

Figure 10.10. 483.xalancbmk
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