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ABSTRACT

The effect of thermal radiation on the solidification of an
absorbing, emitting, isotropically scattering infinite and finite, semi-
transparent gray medium bounded between two concentric cylinders is

~investigated. The conservation of energy principle employing enthalpy
and temperature as dependent variables is coupled with a set of moment
equations which are derived from the radiative transfer equations and
Marshak type boundary conditions by applying P-1 differential approxima-
tions.

The transient temperature distribution, interface location of a
semi-transparent phase change medium, and the local radiative radial and
axial heat flux has been obtained by using a Gauss—Seidel iterative
numerical scheme for some typical geometric dimensions and parameters.
The numerical results for the one-dimensional axisymmetric case of pure
conduction are §erified by comparison with an analytical approximation
where the change in the internal energy in the solid phase is neglected.

The results for an optically thick cylindrical medium are obtained,

analyzed, and displayed in graphs.



NOMENCLATURE

a absorption coefficient, m—-l

A area, m2

B medium emissive powef, n20T4, W/m2

C specific heat, J/kg K

C* speed of electromagnetic radiation propogation in a vacuum, m/s

Fr dimensionless radial radiative flux, qr/OTr4

Fz dimensionless axial radiative flux, qz/OTr4

g acCgleration of gravity, m/s2

h specific enthalpy, J/kg

hs specific enthalpy of solid at fusion temperature, J/kg

hsl latent of fusion, J/kg

n¥ Planck’s constant, 1,381 x 10723 J/K

I intensity of radiation, W/m2

Ir " reference intensity of radiation, W/m2

Iv - spectral intensity of radiation, W/m2

Ibv spectral Planck’s function, or black body intensity, W/m2

K thermal conductivity, W/m K

Ks thermal conductivity of solid at fusion temperature, W/m K

Kl,K2 thermal conductivity of element surfaces at

Kq, Ky { =T+ gl y T= T - gl , N = Mg+ %ﬂ yand n = n; - %ﬂ
respectively, W/m K

L dimensionless solid/liquid interface, Q/rI

'3 radius of solid/liquid interface, m

Qr’ke’kz directional cosines, sinY cos® ,sinY sin¢ , cosY ,

respectively
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unit normal vector

index of refraction

conduction/radiation paramenter, Ks8/4cTr3

pressure, kg/m sz
integrated radiative heat flux vector, w/m2

integrated radial radiative heat flux, W/m2

integrated axial radiative heat flux, W/m2

radial distance, m

spatial direction vector, see Fig. 3.2, m
radius of inner cylinder, m

radigs of outer cylinder, m

dimensionless radius, r/rI

distance measured along beam of radiation, see Fig. 3.2, m
dimensionless parameter, KsTr/4 o Py hsl
time, s

temperature, K

inside wall temperature, K

fusion temperature, K

reference temperature, K

outside wall temperature, K

‘ specific internal energy, J/kg

volume, m3

. . 3
integration volume, m

axial distance, m
dimensionless axial distance

thermal diffusivity, mz/S

thermal diffusivity of solid at fusion temperature, mZ/S

iii



. . . . -1
extinction coefficient, a+w, m

polar angle, see Fig. 3.4
polar angle, angle from normal of area

surface emissivity

axial optical coordinate variable, (a+w)z

dimensionless temperature

scattering parameter, w /(a+w)

frequency, s

dimensionless time, Gst 82

density of medium, kg/m3

density of solid at fusion temperature, kg/m3

Stefan-Boltzmann constant, W/m2 K4

radial optical coordinate variable, (atw)r

optical depth in s—~direction

azimuthal angle for the intensity direction

dimensionless Planck functions B/ﬂIr and Bw/nIr , respectively
dimensionless intensity of radiation, I/Ir

dimensionless zeroth moment of intensity

dimensionless first moment of intensity in r—direction
dimensionleés first moment of intensity in’z—direction
scattering coefficient, m_'1

single scattering albedo, w /(atw)

solid angle, steradian

iv
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 INTRODUCTION

Because of the recent energy crisis and increase in energy
prices, energy management has become an eﬁduring concern. One of the
many ways to manage energy is to store exéess energy for use at a
later time when it beéomes necessary. Hence, efficient and reliable
energy storage systems are of great interest. One of the energy
storage methods is to‘ﬁse a phase change material as a thermal energy
storage medium to store and release large amounts of thermal energy
in the form of latent heat. The formation of fine quality crystals
[ 3] is also an important phenomenon in which energy transfer
analysis with phase change plays an important role.

Energy transfer problems in which one material is transformed
into another or into another phase with generation or absérption of
heat have been studied theoretically and experimentally for more than
a‘century. Nearly all of these studies, however, have dealt with
opaque materials and hence, the contribution of thermal radiation
within the media has been ignored. Some of the investigators {3-9]
over the past fifteen.years have proved that for the range of para;
meters encountered in the solidification and melting of many optical
materials, such as the weakly absorbi;g semi~transparent and partially
transparent diathermanous solids, the internal radiant transfer has a
significant effect, and neglecting it in the analysis leads to con-
siderable error in predicted temperature distribution, interface
position, and energy flux. More applications of this nature arise in

areas such as freezing or melting of a solid, the growing of large
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synthetic crystals and vapor films, the burning of solid propellants,
, the heating and cooling of spacecraft and aircraft windows and
nuclear reactof fuel elements, converting energy in different solar
devices, and others.

The analysis of combined energy transfer by conduction and
radiation in participating materials is sufficiently complex so that
numerical solutions are almost always required. As a result of the
nonlinearity of these problems, some advanced and approximate analy—
tical techniques have been used to obtain closed form solutions for a
limited range of geometries and conditions. Although several investi-
gators have dealt with the restricted one-dimensional Stefan problem
that includes combined conductive and radiative transfer, little
study, if any, has been devoted to the two—dimensional Stefan problem
for a concentric cylindrical geometry.

Computations involving two—dimensional radiative fluxes with
participating media are formidable. The difficulties arise for the
following reasons. Quadruple integrals must be computed with respect
to (1) physical distance, (2) optical thickness, (3) solid angle, and
(4) wave length in order to obtain the local radiative flux. Even
with the total band absorptance introduced, integrals with respect to
(2) and (3) remain inevitable. Therefore, it has been necessary to
develop some approximéte methods for multi-dimensional analysis and

possible parameterization studies.

1.2 OBJECTIVE OF INVESTIGATION
The objective of the present investigation is to develop and

solve a two-dimensional radial and axial mathematical model to
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determine the transient temperature distribution and interface loca-
tion of a semi—transparent phase change medium bounded by two finite
concentric cylinders when internal energy transfer occurs simulta-
neously by conduction and radiation for the solid region. The axial
and radial local radiative heat fluxes and heat extraction rates from
the inside pipe for different parameters are computed in order to
observe the effect of radiation on the phase change medium of the
system. In order to accomplish this objective, the classical Stefan
problem [ 1,2 ] is to be reformulated to include the presence of
internal radiative transfer, and then is to be solved by iterative
numerical finite difference schemes using the appropriate thermal
boundary/interface conditions. Because of the general lack of pro-
perty data for the high solidification temperature materials, it is
impossible to determine input parameters and properties specifically
for a given substance. However, the approximate values of latent
heat, conductivity, and specific heat with other several parameters for
the solidification of fluorite (melting temperature of around 1700 K)
are good enough to analyze and show the radiative effect on the
present model. The gray medium will be assumed to be in local thermo-
dynamic equilibrium (LTE), homogeneous, and isotropic with constant
index of refraction within a given phase. This is a reasonable
approximation in eﬂgineering applications [ 49 ].

The system, initially at the fusion temperature, is considered to
be suddenly brought into intimate contact with the cold temperature at
the inside cylinder. The walls of the enclosure are considered to be

gray and diffuse and maintained at constant temperatures at the inside



and outside cylinder. The interface surface is to be assumed to be a
diffuse gray surface and both base surfaces of the finite concentric

cylinder are considered to be perfectly insulated. A schematic of the
present physical system is shown in Figure 1, representing a heat pipe

or thermal energy storage system (HP/TES system) for example.



CHAPTER 2

LITERATURE SURVEY

2.1 STEFAN PROBLEM WITH CONDUCTION AND RADIATION

Even though the solidification and melting of materials by heat
transfer has been of importance in many technical fields and a subject
of interest for over a century, considerable effort has been devoted
to the Stefan problem with combined conductive and radiative transfer
only over the past fifteen years.

Abrams and Viskanta [ 3,4 ] used explicit finite difference
methods to investigate the effects of energy transfer for the range of
dimensionless parameters governing phase change that is encountered in
the melting and solidification of semi-transparent crystals. Consid-
eration was limited to the one-dimensional radiative and conductive
energy transfer in a region of finite thickness and of infinite
lateral extent with physical assumptions, such as the absence of
natural convection, the absence of scattering, isotropic media with
uniform index of refraction for each phase, diffuse, parallel, and
planar interfaces and boundaries, and so on. They found that radia-
tion can significantly affect the dynamics of the solidification and
melting bf many optical materials; neglect of radiation can cause the
temperature profile within the liquid to assume a shape which promotes
unstable interfacial growth, a finding which is contrary to the idea
that radiation always exerts a "stabilizing influence."

Habib [ 5,6 ] employed the approximate heat balance integral
method to study the effect of the radiative heat transfer on the

solidification rate and on the temperature distribution in the solid
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phase of semi-transparent planar and infinite cjlindrical media. The
heat balance integral method of approximate analytical solution was
developed by Goodman [ 11 }. Habib used the trial temperature profile
as the combination of polynomial and logarithmic functions. The
constants in the trial function were determined from the boundary and
the interfacial conditions. The significance of the radiﬁtive contri-
bution to the process of phase change on the solidification rate and
on the temperature distribution in the solid phase was‘presented with
the results for the/éases of absorbing, opaque, and non—participating
media.

Ozisik [ 7 ] investigated the effects of radiation on the melting
rate of an absorbing, emitting, scattering, semi-infinite, semi-
transparent, homogeneous medium with reflective boundgries by solving
the phase change and the radiative transfer problems simultaneously.
Seki, Sugawara, and Fukusako [ 8 ] observed the phenomenon of back-
melting caused by radiant energy penetrating through the ice layer.
They experimentally found that the behavior of radiation transfer in a
cloudy ice layer depends a great deal on the density of the cloudy
ice, including air bubbles which produce scattering of radiation.

They also showed fhat the melting rate of an ice layer can be
predicted numerically by using the band model of extinction coeffi~-
cient for the cloudy ice assumed.

The combined radiation and conduction problems with phase change
for one-dimensional solidification of a semi-transparent, semi-
infinite, gray, homogeneous and isotropic material with constant
thermophysical and optical properties was solved by Chan and

Albeirutty [ 9 ]. The B-splines collocation method with optimum
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choice of collocation points was used to solve a non-linear integro-
differential equation that can hardly be solved by using the available
analytical methods in the literature. This method employed the
unknown n-coefficients of the approximating polynomial that were eval-
uated by requiring that the integro-differential equation be satisfied
at n-2 collocation points. This procedure reduced the nonlinear
partial differential equation to a set of nonlinear ordinary differen—
tial equations.

Ortega, Benard;’and Gobin [ 10 ] presented the results of experi-
ments using paraffin wax as a storage medium in a storing wall (Trombe
wall) leading to a study of the influence of various heat transfer
modes (radiation, convection, conduction) on the melting process and
the storage efficiency. The experiments showed a 1ingar correlation
between the volume of the liquid phase and the stored energy. The
amount of energy stored by the element during the storage process was
measured by calorimetry.

A more general solidification and melting one~dimensional model
was recently proposed by Chan and Cho [ 12 ] which accounts for the
existence of a two phase zone in which partial phase change can occur.
The two phase zone was attributed to internal solidification or melt-—
ing (as opposed to surface solidification or melfing) induced by
internal thermal radiation. Diaz and Viskanta [ 13 ] developed an
analytical model for predicting radiative and thermal conditions
during radiation induced phase change, as well as liquid/solid inter-
face displacement with time. Energy equations are written separately
for the two phases and required to meet simultaneous temperature and

energy balance considerations at a common boundary, the liquid/solid

-7—



interface. Experimental simulations were conduéted, using a high
intensity tungsten filament lamp to melt both horizontal and vertical
slabs of a low fusion temperature material (n—octadecane).

According to the literature surveyed, most of the approximate
analytical methods and numerical methods that have been developed were
used to solve one-dimensional Stefan planar problems including radia-
tion and conduction with restrictive boundary conditions and physical
optical properties. The energy balance has been separately applied
for each phase and the proper boundary and interfacial conditions that
couple the two phases. Temperature has been used as the dependent
variable.

One of the techniques used to solve the Stefan problem is the
"enthalpy method" which involves both temperature and enthalpy as the
dependent variables. It was used by Shamsundar and Sparrow [ 14 ]
to solve a pure conduction problem of a two-dimensional solidifying
liquid that was initially at the fusion temperature. In this
approach, the energy balance can be applied over the whole domain that
covers both solid and liquid phases. Reformulation of the describing
equations in terms of the enthalpy (i.e., the sum of the sensible and
latent heats) removes the need to directly trace the position of the
moving boundary and, hence, eliminates the numerical problems asso-
ciated with the discontinuity of the temperature gradient. The use of
the enthalpy model to solve the Stefan problem, including combined

radiative and conductive transfer, has not been reported.



2.2 STEFAN PROBLEM

The formulation of the Stefan problem in one dimension has been
known for more tham a century. Hence, the Stefan literature has been
concerned primarily with methods of solution rather than formulation.

During the past years, however, considerable effort [ 15-18 ] has
been devoted to formulate and solvé the two—dimensional Stefan problem
even though the analysis of phase change problems in multi-dimensional
regions is complicated and there is no obvious method to assess the
reliability of the\predictions. When radiation is present, the energy
equation is nonlinear and the situation is much more complex than for
pure conduction. Comprehensive surveys on moving interface problems
appear in references [ 19-21 ].

The most popular approximate techniques used in the literature
include pertubation, variational, heat balance integral, and series
solution methods. As one of the simplest approaches, Goodman [ 22 ]
employed the "integral method."” This method requires assumption of a
functional form of the solution which contains undetermined time-
dependent coefficients. The assumed function is substituted into the
governing differential equation which, together with the imposed
boundary conditions, leads to one or more ordinary differential equa-
tions. Solutions of these equations, accomplished numerically in
general, yield the undetermined coefficients.

Nonlinear differential equations can be solved by the "pertuba-
tion technique" which employsthe unknown function in the form of
asymptotic expansions [ 23 ]. Yan and Huang [ 24 ] obtained pertu—-
bation solutions for the one-dimensional phase change problem in a

finite region subject to convection and radiative boundary conditions
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at the fixed boundary. Yen and Chung [ 25 ] used Biot’s variational
method to develop approximate analytical solutions for the location of
the interface and temperature distribution for the one—~dimensional
phase change problem. The variational method reduces the more compli-
cated nonlinear pfoblem to a much simpler initial value problem which
is then more easily solved using standard numerical techniques (e.g.,
Yen and Chung used the Runge-Kutta method).

In the other app;oach, the energy equation can be converted
into general integral equations through the use of Green’s functions
[ 26 ]; the latter are solved numerically. The advantage of the
integral formulation is that the solution can be obtained by the
method of successive substitutions { 27 ], which is an exact method in
the sense that results can be computed within an arbitrary degree of
accuracy. The disadvantage of this method is the excessive computing
time requirement [ 28 ]. Abrams { 3 ] formulated the integral
equation for the one—dimensional Stefan problem, constant thermal
conductivity and specific heat, and the same density in two phases,
including radiation, by using Green’s functions. However, practically
speaking, the scarcity in the literature of numerical solutions to
much simpler problems, strongly suggested that a numerical approach
lacked feasibility in his formulation.

Yimer [ 21 ] formulated and developed the transient conductive
analysis of phase change material contained within two coaxial
cylinders with and without fins. The powerful enthalpy model togethgr
with the finite difference scheme was employed to compute the tempera-
ture distribution, interfacial location, and heat flux subject to

various boundary conditions.
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More recently, some of the work for the Stefan problem included
natural convection effects along with conduction. Comprehensive
reviews concerning natural convection effects are found in references
[ 29,30 ]. Yao and Chen [ 31 ] demonstrated the increasing effect of
natural convection on the melting process around a heated horizontal
cylinder by using the regular pertubation series.

Saitoh and Hirose [ 32 ] obtained the transient aspects for
natural convection flow, temperature profiles and melting interfaces
inside a horizontal ci}cular cylinder capsule, in which n—octadecane
or water was used as a phase change material, by using an explicit
finite difference scheme. A numerical procedure was developed by Chan
and Schoukri [ 33 ] to analyze two—dimensional freezing with natural
convection at the sclid/liquid interface. The problem was divided
into two parts. The first part solved the natural coﬁvection flow in
the phase change medium using a well-established finite difference
method, the simplified marker and cell technique. The second part
calculated the local freezing rate using a local one-dimensional
energy balance model. The two parts were coupled at the solid/liquid
interface.

Rieger, Projahn, Bareiss, and Beer [ 34 ] investigated the melt—
ing process of a phase change material enclosed in a horizontal,
isothermal circular tube by using a numerical mapping technique and
allowing the melting front to be recorded photographically with time.
Computations and experiments were performed for Rayleigh numbers in

the range 10° < Ra < 10°.
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2.3 COMBINED RADIATIVE AND CONDUCTIVE TRANSFER

Simultaneous heat transfer by conduction and radiation in semi-
transparent participating media is a subject of considerable technolog-
ical application which has received a great amount of attention parti-
cularly in connection with gray analysis [ 35-39 ]. Comprehensive
surveys on combined conductive and radiative problems in participating
media through 1975 appear in references [ 3,40 ]. The planar geometry
with one—dimensional energy transfer has been the subject of much
study and continues to serve as a standard of comparison. Radiative
transfer with conduction has been studied in other one-dimensional
geometries, but very little has been done with multi-dimensional
geometries.

Viskanta and Hirleman [ 41 ] presented an analytical solution for
the steady-state temperature distribution in a plate of semi-transpar—
ent solid which is irradiated on one side by beam (collimated) and
diffuse fluxes. The validity of neglecting the interaction of conduc-
tion with radiation in the solid was examined by comparing the heat
transfer rates predicted with those based on an approximate approach.
The importance of radiation on the temperature distribution in a semi-
transparent planar solid was reported by Amlin and Korpela [ 42 ].

The first-order differential approximation [ 42-47 ] of radiation
was combined with conduction analysis to investigate the temperature
profiles in a plane slab and a rectangular region. The coupled non-
linear partial differential equations were solved numerically by
either a standard implicit (backward difference in time and central in

space) or an implicit alternating direction method. The effects of
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Planck number, boundary emissivity, surface reflectivity, external
temperature, and optical thickness were reported.

Heat transfer by simultaneous conduction and radiation in an
absorbing, emitting, and anisotropically-scattering material was
theoretically investigated by Yuen and Wang [ 48 ]. Consideration was
given to a one-dimensional system bounded by two parallel gray,
diffuse, and isothermal walls. Assuming a physical modél of linear
anisotropic scatteringf the resulting integral—-differential equation
was solved by a successive approximation technique similar to the
method of undetermined parameters.

Viskanta and Kim [ 49 ] presented a model for predicting con-
duction and radiation heat transfer across an irradiated plane layer
of semi-transparent material at high temperature. A model for the
prediction of radiative transfer was too complicated for design |
calculations. The validity and accuracy of the model was established
by comparing the predictions with those reported in the literature.

_Fernandes and Francis [ 50 ] formulated and solved the problem of
transient combined conduction and radiation in a gray absorbing,
emitting, and scattering medium of infinite cylindrical geometry. The
medium was bounded by gray diffuse surfaces at known temperatures.

The problem was solved by the Galerkin finite element method using
linear interpolating functions. The tragsient terms were handled
using the Crank-Nicolson scheme with the time steps chosen to avoid
temperature fluctuations at early times.

Tsai and Chan [ 51 ] investigated the transient temperafure
distribution of two semi-infinite media at different temperatures that

are suddenly brought into contact. The effect of thermal radiation in
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the hot medium was considered. Solutions were obtained by a hybrid
technique, using an explicit fourth—order Runge-Kutta method for the
space variable. A variable grid spacing system utilizing hyperbolic
sine functions was incorporated to extend the computational boundary
as well as to minimize the computation time and the number of nodal
points.

A one—dimensional combined conduction and radiation heat transfer
problem between two isothermal parallel plates, where the intervening
medium may absorb, emit, and isotropically scatter radiation, was
considered by Ratzel and Howell [ 52 ] using the P-1 and P-3 differ-
ential approximations for the intensity distribution. The P-1 and
P-3 methods yielded results for combined conduction-radiation
problems which are in close agreement with "exact" solutions for one-
dimensional planar problems.

Tong, Birkebak, and Enoch [ 53 ] considered the effect of thermal
radiation with conduction and convection in vertical rectangular
enclosures containing a porous medium, radiation having been neglected
in previous publications. The enclosure was considered to be tall
enough so that one—dimensional radiation exchange could be assumed to
take place between the two vertical surfaces. It was further assumed
that the fluid is non-participative in the radiative transfer process
whereas the solid matrix emits, absorbs,nand scatters thermal radia-—
tion. Shih and Chen [ 54 ] presented a modified version of the flux
method, called the discretized intensity method, in which the inten-
sity, a variable more primitive than the flux, was introduced to solve
a two-dimensional system enclosing radiative and conductive media of

unit depth. This method bypasses the unnecessary use of the
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integro-differential energy transport equation and accounts for the
dimensionality of the radiative fluxes.

Chung and Kim [ 55 ] presented a two—-dimensional analysis of
combined conductive, convective, and radiative heat transfer using
finite elements. The standard Galerkin finite element could be used
if the product of Reynolds number and Prandtl number was equal to or
less than 1000. It was shown that the two—dimensional radiation
function in terms of space surface and volume integrals could be
efficiently performed via Gaussian quadrature applied to isoparametric
finite elements. Numerical results were demonstrated for a diverging
and converging channel with restrictive boundary conditions.

Rassaque, Howell, and Klein [ 56 ] presented the first numerical
solution of the exact equations of coupled radiative/conductive heat
transfer and temperature distribution inside a medium, and of the heat
flux distribution at all the diffuse gray walls of a two-dimensional
rectangular enclosure with the medium having uniform absorbing/emit-—
ting properties, using the finite element method. The drawback of
this method, as for most others, is that for very low values of wall
emissivity and conduction/radiation parameter, it requires a substan-
tial gmount of time to achieve convergence.

Very recently, a modified finite difference approach to the
problem qf transient combined conduction and radiation in an absorbing
and emitting infinite annular medium was presented by Gordaninejad and
Francis [ 57 ]. The energy equation was formulated in a finite
difference format using the explicit form of the time derivative.
Simpson’s method with the Gauss quadrature (five points) was used to

approximate the integrals.
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2.4 MULTI-DIMENSIONAL AND CYLINDRICAL RADIATIVE TRANSFER

It has been seen that due to the complexity of coupled radiative
and conductive heat transfer problems in the two-dimensional geometry,
most of the work that has been reported in this area is confined to
the one-~dimensional planar radiative case. Nevertheless, since
general and accurate solutions of the radiative transfer equation
(RTE) are required now more than ever, especially for multi-dimen—
sional geometries, a wide variety of solution methods have been
developed.

Crosbie and Liesenbardt [ 58 }, in their study on the two-
dimensional radiative transfer, have presented a comprehensive
overview of a number of methods that were used to solve the RTE for
various physical situastions. Most works for mulfi—diﬁensional radia-
tive transfer used some approximations [ 59-65 ] (i.e., the diffusion
approximation, the discrete ordinates and Fourier transform methods,
and the six flux approximation). The stochastic models such as Monte
Carlo technique [ 66,67 ] and Hottel’s zonal method [ 68-70 ] have
been émployed.

An extensive survey of the latest multi-dimensional rectangular
radiative transfer models was reported by Howell [ 71 ]. Very
recently,‘the’radiative transfer in a three-dimensional rectangular
enclosure containing radiatively participating gases and particles was
studied using the spherical harmonics approximation by Viskanta and
Menguc [ 72 ]. inhomogeneities in the radiative properties of the
medium és well as in the radiation characteristics of the boundaries

were allowed in order to obtain the numerical solution of the model
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equations by using a finite difference scheme. The third order
spherical harmonics (P-3) approximation was stated as the optimum
choice for general multi-dimensional radiative transfer calculations,
both from the accuracy and the computational effort points of view

[ 71,73 ].

Radiative heat transfer in a cylindrical geometry arises in
numerous problems but has received relatively little attention due to
its complexities [ 40 ]. Starting from the basic RTE, Kuznetsov [ 74
] and Kesten [ 75 ] analyzed radiative transfer in an infinitely long
cylindrical medium bounded by the opaque black walls. 1In this
analysis the radiative heat flux was expressed in terms of a second-
order integral equation. Kesten’s results are presented in two
different forms, the latter of which appears to be incorrect due to an
integral transformation error. Later, Habib and Greif [ 76 ], in
presenting an analysis on nongray gas effects, used the erroneous
equation of Kesten [ 75 ] in their calculations and reported a
discrepancy between their results and Kesten’s. They also developed a
kernel approximation which used a total band absorptance model for
radiation.

Nakra and Smith [ 77 ] studied the interaction of radiative
transfer with convection for slug flow in an absorbing-emitting gas in
a circular tube with an isothermal black wall. They used the zone
method for their numerical calculations.

Heaslet and Warming [ 78 ] developed analytical and numerical
methods for predicting radiative transfer for a homogeneous medium of
one—-dimensional cylindrical geometry. Although their formulation

accounted for isotropic scattering, they did not present any exact
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results for scattering media. Echigo, et al. [ 79 ] used Heaslet and
Warming’s [ 78 ] radiation model to study the effect of radiative
transfer in laminar and turbulent flow of gas particulate suspensions
in circular tubes. In their analysis, the medium was assumed to be
gray and non—scattering.

The first systematic approach for the exact calculation of multi-
dimensional radiative heat flux in a cylindrical emitting—absorbing
non-isothermal medium with non-isothermal black bounding walls was
described by Dua and Cheng [ 80 }. Numerical results were presented
for the case of isothermal media bounded by piecewise isothermal
walls. Bagazitoglu and Higenyi [ 81 ] introduced a higher—order
differential approximation, applying it to infinite concentric
cylinders. The series expahsion of the angular distribution of
radiative intensity needed by the boundary conditions was extended to
include the number of terms in the P-3 approximation. They [ 82 ]
also used the P-1 differential approximation, whose accuracy turns out
to be very good for optically thick medium, to analyze an axially
symmetric radiation field for a gray medium within a finite,
cylindrical enclosure. The medium emits, absorbs, and isotropically
scatters radiant energy and was subject to a specified heat genera-
tion. Numerical solutions were obtained for the one-dimensional
radiative heat flux and emissive power distribution. It was found
that the accuracy of the differential approximation is of the same
order for the axially symmetric and one-dimensional problems.

An exact solution for radiative transfer in a gray, emitting,
absorbing and linear—anisotropically scattering medium of one-

dimensional cylindrical geometry had been developed by Azad and Modest
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[ 83 ]. The exact results were compared with two approximate models,
viz. (1) the differential approximation, (2) a kernmel approximation.
The first model reduced to the correct optically thick and thin limits
and also yields reasonable results in the optically intermediate
range. The second model produced excellent results for the optically
thin regions and by appropriate choice of two constants it could also
yvield good approximations for the radiative flux at larger values of
optical thickness. In addition, the results showed that in many
engineering applications scattering might be neglected without signi-
ficant loss of accuracy.

The basic RTE in three—dimensional space was expressed in terms
of three commonly used coordinate systems, namely, Cartesian, cylin-
drical and spherical coordinates by Ou and Liou [ 84 ]. The concept
of a transformation matrix was applied to the transfofmation processes
between the Cartesian system and two other systems. The spherical
harmonic method was then applied to decompose the RTE into a set of
coupled partial differential equations for all three systems in terms
of partial differential operators with the vacuum boundary conditions
(no inward diffuse intensity). The analytical solutions in terms of
infinite series were obtained.

The P-N methdd was used to compute the partial heat fluxes
relevant to radiative transfer in an anisotropically scattering plane-
parallel medium with specularly and diffusely reflecting boundaries by
Siewert, Benassi, and Cotta [ 85]. They made use of exact particular
solutions and the spherical harmonics method to compute the partial

heat fluxes for the same class of problems.
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Crosbie and Farrel [ 86 ] recently developed the first exact
formulations for the source function, flux, and scattered intensity
normal to the surface in cylindrical coordinates for a three-dimen-
sional, absorbing, emitting, isotropically scattering medium exposed
to both diffuse and collimated radiation. The collimated and diffuse
radiation incident on the one side of three—dimensional geometry was

used without taking into account boundary reflections.

2.5 SUMMARY

It is concluded from the objective of this investigation and the
current state of the problem or related areas (unsteady combined
conductive and radiative heat transfer, Stefan problems, and cylin-
drical radiative transfer) that of prime interest in the present
investigation is the applications of the "enthalpy méthod" with the
divergence of the radiative flux vector. The mathematical formulation
of the problem with boundary and interfacial conditions is to be
developed, as is approximate numerical method to determine the
radiative heat flux, which can be coupled with the principle of energy
conservation that employs enthalpy, temperature, and radiative heat

flux as dependent variables. -
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CHAPTER 3

ANALYTICAL APPROACH

The energy balance including radiant heat flux for a control
volume is considered by employing the "enthalpy model.” The general
radiative transfer equation for arbitrary geometry is used to develop
exact expressions for the radiative intensity distribution of a two—
dimensional finite concentric cylindrical geometry with given boundary
conditions. This exact formulation has not been reported in the

literature.

3.1 THE LAW OF CONSERVATION OF ENERGY

In developing the describing equations, a method that uses the
enthalpy along with the temperature as dependent variébles is
employed. In this approach, the energy equation is applied once over
the complete domain covering both phases. The location of the solid/
1iquid interface is eliminated from the formulation and is obtained as
one of the results of the solution after the temperature distribution
is found. The equivalence between the enthalpy model and the conven-
tional form of the energy conservation equations where temperature is
the solé dependen£ variable is shown by Shamsundar and Sparrow [ 14 ].

The development assumes no energy source, no pressure variation,
and no external work done on the cqntrol volume. Convection within -
the fluid is neglected. Applying the law of conservation of energy to
a control volume, the net rate of energy increase of a c&ntrol volume
‘is equated to the net rate at which heat is conducted and radiated

into the control volume through its surface area.
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(6] 3]
,—cj—gfff oudw =J[ K grad T+n dA - [[ g-A dA +,e/' +/./' (3.1)
¥ A

A

net rate of energy ] [net rate at which [?et rate at which
= ]+
increase of control volume heat is conducted heat is radiated
o o
heat dissipate€d heat
+ + 7
“neration by yiscous effects

where e is the local heat source, and u is the heat production rate by
viscous dissipation. When the internal energy (u) is replaced by the

difference between enthalpy and pressure and assuming that
d
at JJIpav =0

Equation (3.1) takes the form

S [ff ohdw = [f K grad T-n dA - [[ §-A dA (3.2)

v A A

-22-



)
7
The above Equation (3.2) includes the conventional interface
condition, and the verification is shown in Appendix A.
In the analysis of the two-dimensional case with radial and axial

z < z*) is

172N

variations, the region of interest (rI gr ¢ r 0
subdivided into smaller elements. Each element is a concentric ring

of width 6r and depth 8z (See Figure 3.1).

oy 2

1

Figure 3.1 Two-Dimensional Element

Then the average values of the enthalpies, the temperatures, and
the radiant heat fluxes at the nodal points (r, z) at the centers of
the elements are studied as function of time. Assuming the tempera-
ture to be uniform over an element, Equation (3.2) for an element

takes the form

T + st zZ + Sz
& zf 2 on 826 37 8
dt (ph)2nrézdr = Ky 52 ) . & * 2n(r + 5=) &2
r-9 ,_ 82z Z
2 2
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z-7 (3.3)

3.2 INTEGRAL EQUATION FORMULATION AND RADIATIVE FLUX

The equation of radiative transfer theory is derived by making a
radiant energy balance on an eslementary solid angle and accounting for
all phenomenclogical transformations experienced by the radiation as
it passes through a participating medium | 40,66,86 ]. The spectral
intensity I ( ,8 ) defining the radiation field is governed by the

equation of transfer in the radiant direction along §, i.e.

3l w
1 v 2 Y ) dQ.
E¥ 3¢ *tS VL, = -8k, raynylhy tEm IQR;(v’Q’Ql) &

i
(3.4)
local and spatial loss by absorption and
= ]
changes in intensity [scattering

gain by scattering
+ [gain by emission ] +
into s—direction

where I ( V,Q,Qi ) is the phase function whose physical interpretation

is the scattered intensity in a direction, divided by the intensity
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that would be scattered in that direction if the scattering were

isotropic, and Ibv (T) is Planck’s function

* 3 hv -1
_2th v° « [exp (=) - 1]
Ibv(T) = -—E;§— KT

When the coordinate s is placed along the direction s, the directional
derivative (s * V ) Iv becomes dIv/ds (see Figure 3.2). For most
applications, it is usually assumed that a steady state condition
prevails since the speed of propagation C* is very large. Then

equation (3.4) becomes

dI ¥* _ * %*
: + I\) (T\)) = S\) (T\)y Q)
dt
\Y
where T*'is the optical depth or opacity when both scattering and-

v
X

S
v / Bvds’, and the source function

absorption are present, or T

Si (T:,Q) is employed as

*
* * * 2 »* w *
Sultys® = (1 - w)nlI (1)) + e fI\)(T\),S}i)c(\),Q,Qi) df;
Qizﬁﬂ

Equation (3.6) is an integro—-differential equation since I, is within

the integral of the source function. The integration over the solid

—95—

(3.5)

(3.6)
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angle dﬂi is an integration of the intensity at s over all possible

directions.

Figure 3.2 Radiative Intensity In an Arbitrary Geometry



By use of the integrating factor exp Tt, Equation (3.6) is

X S
integrated over an optical thickness from Tb = f b Bvds' to
Q

* s
T, = J Bvds' , i.e.,
0

*

I\)(T:) = IV(T:b » Q) exp [ - (T: - Tvb)]
*
T\) * * ! * * ! * 1!
+ f -S\)(r\),Q)exp[-(rv-rv)] dr,,
b

where T:7 is a dummy variable of integration, Iv ( r:b,szb) is the
intensity incident on the medium at Sb, andS?b defines the angular
dependency with respect to the inward drawn normal to the boundary.
IV (T:) can be determined if the source function St (Tt, ) is known.
By substitution of BEquation (3.8) for the intensity into the defini-

tion for the source function, Equation (3.7), an integral equation for

the source function is obtained, i.e.

o
R\
2 *
*, % * | * * W *
Sv(rv ,Q) = (l-w )QE;:}bv (Tv) * I J Iv(Tvb’Qb) ;(V,Q.Qb) .
4
*
T, ’ ‘
‘ * * w* * * ]
exp [- (, - T\b)] de, +ﬂ-f f* STy » 95)
4m T

* * 1 * 1!
£(v,2,9,) exp [- (1, - T, )] dr, de,
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For the special case of constant absorption coefficient a,, and

neglecting a scattering effect (wv = 0), Equation (3.8) reduces to

S
I,(5) = 1(5,9) exp [-a (s -s)] +ap’[ I [T(s0]exp [-a,
: S
b

(s - s') ds" (3.10)

The absence of scattering applies to the physical situation where the
solid phases are either all single crystals or consist of polycrystals
which are small compared to the wave lengths of the incident radiant
energy. The scattering of thermal radiation by de-gassed liquids is
expected to be negligible.

The net radiative heat flux in the s direction is
q(s) =qg" (s) - q” (s)

where q+ (s), the component of the flux in the positive s direction,

is given by

o 27 : :
q° () = [ [ 1,(5,,9) exp[-a (s-s)]u @ v
c o
© 27 S
sy JIT 1, (1)) exp [- ay(s - s)] p'as'ae' v (3.11)
00S '
b
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and q (s), the negative s component, is given by

@ om
g(s) =1 [ 1,s5,9) exp [-ay(s - s)) pde oy
0 O

I, [Ts )] exp [-a,(s -5 )] 1 ds d2 dv (3.12)

The components of the flux along with the hemispheres of integra-
tion are shown in Figure 3.3. The hemisphere indicated in Equation
(3.11) is the one marked by "+" in the figure and the hemisphere for
Equation (3.12) is the one indicated by "-". In either relationship,
0’ is measured from the s direction so that p' = cos® > 0.

In order to determine the exact radiative flux from Equation
(3.11) and Equation (3.12), knowledge of the radiosities and intensi-
ties, Iv (sé, Qé) and IV (sé,Qé), are necessary for special geometry,
interfacial condition, and different boundary conditions. These
functions, in turn, depend upon the emission coefficient, ng a, (s )
Ibv [T(s ,t)], the directional distribution of intensity incident upon
the system from the surroundings, if any, and the manner in which the
interfaces and boundaries reflect and transmit radiation. The
emission coefficient involves Ibv’ which depends on temﬁerature distri-
bution of a participating medium and, hence, must be obtained by
solving the energy equation.

For finite concentric cylinders with the prescribed given condi-
tions in the cylindrical coordinate system, the previous considera—

tions to determine the exact radiative flux using Equation (3.11) and
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Figure 3.3

Components of Radiative Heat Flux
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Equation (3.12) with proper boundary conditions suggest that the exact
treatment of the RTE in multi-dimensional non-planar enclosures is
very difficult and time consuming because of the long distance nature
of radiation, the curvature or corner effects of boundary surfaces,
and the simultaneous treatment of the energy equation with the integra—
ted form of the equation of transfer.

For an infinite cylindrical annulus of inside radiuer and
outside radius r, illustrated in Figure 3.4, the radial local radia-

tive flux can be obtained from Viskanta and Anderson [ 40 ] as

. =1
sin (rI/rO)

47 i
0 = ( gy /m) @, (1)
q,(r) = — { J'O [ % %av 1!

i * %
+ (q2dv /) ¢, (r) + ¢ (r)] cosB 8

. =1
sin (r/ro)

+J (qidv /m) by (1) + Wy (1)] cos 8" a8 |
. =1 <
sin © (r/r,) » (3.13)

where .
¢, (1) =Dy [y (z, )
¢, (1) = -Dy [v (r, r)]

T 2 ! ' '

" ) o [y(z,r )] dr

gy ()= [ 2E— %

r F(r ,B8%)

0
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T n21 (r') ,

. v'bv D2 [Y(r',r)] dr
F(r',B*)
o .
W2(r) = D, [2¥(r, I, sinB*) + Y(ro,r)] - D; [Y(ro,r)]
T 2: ! . '
Uy (r) = [ n\;?v(: ) D, [v(r,r )] dr
rosine* F(r ,8)
T 2 ! ] t
-] o nilp(r) D, [y(r ,r)] dr
L F(r,8)
s nZI (r') * ! * !
v v by { D, [y(r,r sin8 )] + D, [r ,rgsind )] }dr
rosins* F(r ,8)
1
-xE n-1 -x/¢
on(x) = | & dg u e dJ
et T adt
1 0
b.
y(b,a) = J dn/ F (n,8")
' a

F (r',e*) = [r'2 - rosinZB*] §/ r'av
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Figure 3.4 Geometrical Coordinates in Infinitely

Long Cylindrical Annulus

Since qé represents a diffuse flux leaving (reflected plus
transmitted,or emitted if the boundary is opaque) the boundary of the
cylinder, the radiative flux is not completely defined until qid and
q;d are specified. This can be accomplished by making radiant energy

balances for the cylindrical annulus at surfaces 1 and 2. When the
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inner and outer surfaces are assumed to be gray diffuse and maintained
at constant temperatures, the radiant energy balances at both surfaces

yvields the following boundary conditions

qid = Emitted + Reflected

4
= sloTI + (1 - el) q (rI)

Gy = Emitted + Reflected

= eong + (1 - 82) q (ro)

These two boundary conditions in Equation (3.14) and (3.15) are substi-

tuted into Equation (3.13) (see Appendix B).

3.3 SPHERICAL HARMONICS APPROXIMATION

In some applications, the radiation, conduction, and/or
convection within a fluid may equally become significant, and their
interaction alters the temperature distribution in the medium making
the analysis additionally complicated. Therefore, various approximate
methods have been developed. Among the methods for solving the
transport equations, the Monte Carlo technique [ 66 ]‘and Hottel’s
zone method [ 68-70 ] are either very difficult or computationally
expensive, even when the simplification of a gray medium is introduced
[ 72,82 ].

‘Usually some approximations such as the moment, spherical har-
monics, discrete ordinates methods, or some hybrid formulations are
preferable to calculate radiative heat flux in multi-dimensional

enclosures when the flow field must also be considered since they are
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compatible with finite difference schemes [ 72 ]. It has been shown
by Krook [ 88 ] that the moment method, the discrete ordinate method,
and the spherical harmonics method are closely related and completely
equivalent. The approximate describing equations for these methods
are similar, but the physical boundary conditions are different. The
spherical harmonics approximation, which is as elegant as it is
tedious, takes its power from its strong mathematical base. It can be
easily used with the finite difference schemes required for flow field
calculations and can yield quite accurate radiative heat flux predic-
tions, especially for 9EEESEEAEEEEEEEEEﬂ§£SSESEfEhégﬂggizx;[ 81 ].
This method was first suggested by Jeans [ 89 ] in connection with the
problem of radiative transfer in stars. A general description of the
method of spherical harmonics can be found in the books by Kourganoff
{ 93 ] for radiative transfer application, and by Davidson [ 94 ] for
neutron transport applications.

Assuming that a gray medium is isotropically scattering (phase
function (1, Qi) = 1.0) and in local thermodynamic equilibrium within
a finite cylindrical enclosure (see Figure 3.5), the describing radia-
tive transport Equation (3.4) is given in the cylindrical coordinate

system by Uesugi and Tsujita [ 91 ] and is rewritten in the dimension-

less form
0 n
<
+ = Igw dQ
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where

V= I/1

T
I=[1Idv
0
@/: B/TYII
[e o]
B:IBd\): nona
oV
17=(a +wr
ns= (a+u))Z

(S
"

w(a + w) and I. is a reference intensity of radiation.

One way of developing the differential approximation of Equation
(3.16) is by expanding the intensity in a series of orthogonal func-
tions——-Chebyshev polynomials or sphefical harmonics. Chebyshev
polynomials are limited to one-dimensional problem; hence, spherical
harmonics are widely used. Then the radiation intensity distribution

is expanded in an orthogonal series of spherical harmonics of the form

e ]

" v
a 2n+1 m m >
V(T,y,9) = L ¢ =7 P, (cos ) [ AL () cosmg
n=0 m=0

+ Dg () sinm 9]

where Aﬁ (r) and Dﬁ (*) are position—dependent coefficients to be

determined and P™ (cosY ) are the associated Legendre polynomials of
n

the first kind, defined by

m
1 2 m+nN

- (1 - cos? Y) Q_______EIH
2'n! d (cosy)

pM (cos v) =

2 n
N (cos®y -1)

(3.17)
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f,=cosy

fr = sinYcos®

fg¢= sinYsin g

dg=sinydyYdo

Figure 3.5
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a7

The intensity distribution is approximated by truncating the series
after a finite set of terms, n=1 and n=3 for the P-1 and P-3 approxi-
mations, respectively. Since the angular distribution of intensity
for the axisymmetric case is invariant with respect to rotation about
the axial axis or to a reflection in a plane through the axia} axis,

the P-N approximation reduces to the even function of angle o.

N n
¥(r,z,v,9) =L I 2%%l P: (cosy) Ag (ryz) cosmg
n=0 m=0

In the case of an infinitely long cylinder, the intensity distri-
bution must be invariant under a reflection through every plane
perpendicular to the z—axis, along with invariance under a rotation
about the z—axis. Thus another symmetry property modifies Equation

(3.19) into the equation [ 95 ]

N n
b(r,y,p) = 2 2 Z%%l [1+ (-1)™™ ] P: (cosy) Ag (r) cos m g
n=0 m=0

The spatial coefficients Aﬁ in Equations (3.19) and (3.20) can be
expressed in terms of moments of intensity by multiplying both sides '
of each of the equations by powers of Qr, 29* and Qz individually or
in a combination and integrating over a solid angle Of‘4ﬂ. Various

moments of intensity are defined as follows

Yo(r) = [ v(r,Q) do
Q

Wsi(r) = v(r,9) lsi de
Q
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lpsisj(r) = V(9 Qsiﬁsj do

Q
- 2
Wsisjsk(r) T )) 51558, de
: Q
3 » V *
where 1, Jy k = ly 2, 3; Sl = T, 52 =0 ’ 53 = Z

In Equation (3.21), ¢°, the zeroth moment of intensity, divided
by the speed of light, gives radiation energy density; wsi, the first
moment of intensity, is the radiative energy flux in the ith coordi-
nate direction; and WSisj, which is the second moment of intensity,
divided by the speed of light can be shown to be the radiation
stress. Higher moments of intensity do not have a direct physical
interpretation.

For the P-1 approximation of an axisymmetric case, the angular

distribution in Equation (3.19) becomes

_L o

w(r,Z,Y,@) =41 "o

0 3 0 N a0
(cosy) A, (r,z) + L (cosy) Ay (r,2)

3 1 1
* Pl (cosy) Al (r,z) cos ¢

Since Qr = siny cosq, 2@* = siny sino, Qz = cosy, and df = siny dvydo
along with the definition of the associated Legendre polynomials of
the first kind in Equation (3.18), the multiplication of lr and lz and
integration over solid angle 47T in both sides of Equation (3.22)

vields

-1

0 3 o]
b, = Ao = I Al * (2m) [ cosy d (cosy) - %?
l .

(3.21)

(2.22)



2n -1

. Ai [ [ cose (1 - cos%)% d (cosy) de
o 1
) (3.23)
Ao - wo
and
21 =1
1 .
R TR I [ cosp siny d (cosy) do
0 l A
2n =1
--%5 A? [ | cosg coszy  d (cosy) do
o 1
21 W
3 1 2 .
T Al I ) cos“ o 51n3y dy de¢
o o
Al oy (3.24)
1 ~ 'r .
Then
on M
1l .,O .
by = 7w Ay [ J sinycosy dy de
0o o
2n =1
3 o] 2
- Al I ] cos®y d (cosy) d o
1
21 -1 . .
3 Ai | - cos?y)? cosp cosy d(cosy) do
To4m ‘
o 1
o _ 3.25
Al =Y, ( )

~-40~-



Thus the intensity distribution in terms of moments of intensity

by P-1 approximation turns out to be

- > 2 si 3.26)
W(r,2,Y,9) = 35 ¥, + 77 cOsY ¥, + 77 siny cosy v (

Equation (3.26) is multiplied by QE, Qrgz and Qi in both sides

and integrated over solid angle 47 to yield the "closure condition" as

1 3 2 8
boo=gr Y S eR desZz ¥, [ ocosy 2.8 do
4m 4m

1]

3 s .
* I wr [ siny cose Qrkr do
4T

IT

Similarly, by employing the Kronecker delta $ij, the "closure condi-

tion" is rewritten as

b - %s.s. d0 = & V.. (3.27)
sisj = fQ ] slsJ de 3 Y

To develop the moment differential equations for the axisymmetric
finite cylinder case with isotropic scattering, the describing radia-

tive transfer Equation (3.16) reduces to

*

ap 1 3P 3y * W
') - = = - =
Tot T T R@* 3 * L, an +V=(1-w)o+ 4m llJ0 (3.28)

To integrate both sides of Equation (3.28) over solid angle 4m, the
second term in the left hand side must be carried by using the

integration by parts technique. Then
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T 2n
1 oy 1 3 :
~xl hgw 55 = -2 f% fox Siny do dy
4 0o o
using
u = Q,O N du = Qr dp
dv = 5% (b siny) dp v = ysiny
™ 2n 2m
Loy g, siny dpdy = -4, siny)
T 10 o* o*
0 O ¢=
T 2n T "
1 . 1 oy T
sx T T v siov 00 dY¥- T ey =% (3.29)
0 o 4m

o /

Once the other terms are integrated by using the definition of moments

of intensity and interchanging integration with differentiation,

Equation (3.28) becomes

TR VI

T t3r t Mmoo (1 - w*) (4w - lbo) (3.30)

The multiplication of Qr’ Qz and integration over solid angle 47 in

Bquation (3.28) by employing the same techniques used to develop

Equation (3.30) yields

a"’rr 1 awI‘Z

st T Vrr “bgege) * an “Vr (3.31)
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] CL ayp :
:z N afz . 31'212= -y, (3.32)

Using the "closure condition" of Equation (3.27), Equations (3.31) and
(3.32) produce the directional radiative heat flux in terms of

intensity, respectively, as

-1 o
bo=-3 5T (3.33)
oy
-1 0 3
b, =-3 _an. (3'54)

Substituting Equations (3.33) and (3.34) into Equation (3.30), the

differential equation

2 2
3, L1 3?2- 3, M
3T2 v 3t T an2 =31 -w) (¢0 - lno) (3.35)

is obtained. The resuits obtained in Equations (3.33), (3.34), and
(3.35) are the same as those obtained by Higenyi [ 96 }. Similarly,
for an infinite cylindrical symmetry, the radial heat flux and the
moment differential equation within an emitting, absorbing, isotropi-

cally scattering and gray phase change medium are obtained; these are

oo L % (3.36)
T 3 dt
2

dv, dy, . | |
dTZ + ? HT—- = 3(l -w ) (lpO - 419d) (3.37)

The exact radiative boundary conditions for a general case of
opaque, diffusively emitting, diffusively and specularly reflecting

surfaces take the form
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. ¥*
si =1,0,z

¥(r,2) ) = Foip (1,0 I (3.38)

si,n
where

1 e ' '
Fame = e (o 0,0+ 2 [v (o @} )

ﬂ
S.
“i,n
or
net radiative intensity intensity due intensity due to
= +
at r in { direction to surface emission specular reflection

intensity due to

diffuse reflection

Since the above exact boundary condition of Equation (3.38) is not
appropriate for use with a specified P-N approximation, Marshak [ 97 ]
and Mark [ 98 ] proposed two different approaches. Mark’s method
seeks tp satisfy Equation (3.38) at discrete solid angles, the angles
being obtained from a constraint appropriate to a particular’approxi—
mation. Marshak’s conditions require, at each boundary surface, a
balance of the first (N+1)/2 half odd moments of intensity as calcu-
latedbfrom both sides of Equation (3.38). The extension of Mark’s
conditions to cylindrically symmetric and multi~dimensional problems
is not established. Moreover, it has been stated that Marshak’s
boundary condition yields more accurate results for lower order
spherical harmonic approximations. The reason for this is that for

the lower order approximations, the average intensity leaving the
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boundaries can represent the intensity distribution more realisti-
cally. Marshak’s boundary conditions for mulfi—dimensional
cylindrical geometry are obtained by taking the integral of the
intensity over the appropriate hemisphere such that

n . ,2k-1 m . 2k-1
{a¢(r,gsi) vy 0 de) = F(r, 9g) 85 d2)

si,n o 5i,n

where

) . P
m m dw m
F (r’QSi) = €W©W (I) + pSW W(I,Qsi) + -E— {a w(r,Qsi) QSi dQ

n=1,2
i=1,2,3
. *
4Sl =T, 52 =0 ’ 53 =2

K= 1,2, ceney (N +1)/2

m=3-n
and
U(r,@)) = (T, )5 ¥y =Y, Y, =T=Y

\P(r,Q';) =V¥(r, v, cpn); 9, =9, 9, =T-9

Higenyi [ 96 ] applied this general Marshak type boundary conditions

to a finite cylindrical geometry and developed the pairs of boundary

conditions for a P-N differential approximation. Neglecting the

specularly reflected term in the P-1 approximation, the substitution

-45—-
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of Equation (3.26) into Equation (3.39) yields the boundary conditions

ot Ei—2 - oo . TF =T (3.40)

wi , i=1,2,3,4

for the axisymmetric two-dimensional case. To express Equation (3.40)
in terms of the zeroth moment of intensity, Equations (3.33) and
(3.34) are substituted into Marshak type boundary conditions.
Similarly, Equation (3.39) is transformed into the differential

equations

ll)o + Ei H'T—-' = 470 . y i= 1,2 (3.[31)

for cylindrical symmetry one—~dimensional case. Then Equations (3.35)
and Equation (3.40) are coupled with Equation (3.3) because the
temperature distribution of a medium must be determined in terms of a

dimensionless Planck function term &.



CHAPTER 4

NUMERICAL APPROACH

The principle of the conservation of energy and the moment
differential equations are to be reformulated into finite difference
form. The region of interest is subdivided into a number of small
elements—for examplg, infinite lateral concentric rings of width dr
for a cylindrical symmetric one—-dimensional problem and finite
annular rings of width Sr and depth 8z for a cylindrical two-
dimensional problem. Then the average value of the enthalpies and
temperatures at the nodal points (r) or (r,z), placed at the centers
of the elements, are studied as function of time. And the moment
differential equations, which vield the intensities and the radiative
heat flux df each element within an absorbing, emitting, and
isotropic scattering medium with reflected and emitted boundary and
moving interfacial conditions are simultaneously solved with the

energy equation at each time step.

4.1 AXISYMMETRIC TWO-DIMENSIONAL FORMULATION
Since it is advantageous and convenient to use the dimensionless
form as a means of identifying pertinent dimensionless variables, the

following forms of dimensionless variables are introduced in Equation

(3.3);
po(h=h_)
H= e fff-—h_—i— ov
Ps sl
v
e _ CS(T-TF) - KS (T"Tf.\)
hsl GgsPg hsl
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t= r(a+w) , n= z(a+w)
q Yo
2 si si .
E= a(a+w)” t F . = = —— , si=r,2z, (4.1)
S ! si oTra it
where

H = dimensionless enthalpy

© = dimensionless temperature

T = dimensionless radial optical cpordinate
n = dimensionless axial optical coordinate
£ = dimensionless time

F = dimensionless radiative heat flux.

By employing the above dimensionless variables given above,

Equation (3.3) becomes

oo, , 8
o h_, 2nrdérdz =~ —_— —— 2mwrdzér
s sl dt ps2nr<5r62 4T L. 5z hSl
r-- 2
{k, 3 [ “s (T-T.) ] on(r + L) sz
1 9r aspshsl f . 2
T + —
2
kK, 2 [ s (T-T.) ] on(r - &) sz
2 or Otspshsl f & -2
T -
2
> [ _s ]
+ K, — —_ (T-T.) : 27T8T
3 9z 0‘spshsl F 8z
Z + ——2-



B = a + w; extinction coefficient

Tr s reference temperature in absolute value.

d S
- K [ (T"T)] 2718t } K
4 3z aspshsl f , sz s
2
g
r
+ {- 7 ) -2n(r+6—§) 8z ra) °2n(r-6—£)62
aTr - sr oTr dr
2 r-—=
g 5 2mrér  + p— ) s * 2mrér } oTr ,
T
z+ = z-% (4.2)
dH 8T, 30 STy 98
KSGTEE —{Kl (l+2—.t:)'ﬁ) 5c -K2 (l_‘ZT) 3T 5t
TrTZ T-7Z
61 30 _w ST 29 T Y
+K3}S—r1_3n) . K, s an) 6}+{ (l+2T)r) s
n+ =5 n -3 T+
-3 - F,) L b .Sk
‘ 27T §n 2z n 2 N S
T-72 n+= n- T
(4.3)
where
N = KSB/4cTr3; conduction and radiation parameter
S = K;‘Tr/4aspshsl; parameter



Enthalpy and temperature for different phases of pure substance

are related as

o
1

=
"

C(T-TF) (T—Tf) for T < Te

K

o
I

0
1}

(T-Tf) + hSl for T > Te

To obtain expressions that relate enthalpy with temperature for

an element, Equations (4.4) and (4.5) are substituted into Equation

(4.1) as
p(h-h_) K(T-T.)
R T e el -y e
Ps sl Qs sl v
Kas
=—= 0
aKS !
aKS
@ = -k'a—s' H for H<O (SOlld)
Similarly,
aKS
S

When the dimensionless enthalpy takes values between 0 and 1,

@ =0 for 0 < HZS 1 (during phase change)

For different boundary conditions, Equation (4.3) may be

modified to satisfy specific boundary conditions at a boundary
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element. Then Equation (4.3) must be solved simultaneously with
moment differential Equations (3.33), (3.34), and (3.35) whose
Marshak type boundary conditions were derived in Equation (3.40).

These equations are summarized here for completeness as

2 2
) oY 3"y *
g+-_ll_"a?q+ 8=3(l—w)(¢0-4n¢)
AT an
oy
1 7o
Fro=¥/m = -5 31
oy
1 o]
Fpo=¥/m = -3¢ 7

4.2 CYLINDRICAL SYMMETRIC ONE—DIMENSIONAL FORMULATION

If variations in the angular direction and along_the longitu-
dinal axis of the system are neglected, the analysis reduces to the
cylindrical syvmmetric one-dimensional case. Thus, Equation (4.3)

reduces to

ad Sty 20 - K - Sty 239
K, 81 3t =K 1+ 5 aT) . ,(1 2T) 2)T) o
‘l'+‘—2- L)
81 8t
e F ) F (1 -2HF ) bo Sk
2t 'r 51 2t T 8T N S
T+'é_ T - 2

The moment differential equations were derived as

2
d v dy *

0 1 o _ _ -

5+ T g =3(1 - w) (Y, - 4ne)
dr

dy
1 0

Fr=b/m = =357 &7

whose Marshak type boundary conditions are given in Equation (3.41).
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4.3 FINITE DIFFERENCE FORMULATION

The principle of conservation of energy which employs enthalpy
in its describing equation and the moment differential equations
developed in the previous sections are first written in the finite
difference form given below. In the finite difference formulations
time derivatives are represented by backward differences whereas
spatial derivatives are represented by forward and central differ-
ences (see Figure 2). Imaginary nodes are generated on the outside

of each boundary so that the boundary condition equations can be

included [ 92 ].

4.3.1 Axisymmetric Two—Dimensional Case
When the value of the dimensionless enthalpy is below zero, the
finite difference representation of the principle of conservation of

energy takes the form

m-1 m m-1 m m=1 m

. . « = . . . N . < + . . ) » . d . . .
S UL U0 oV U R O R A A B RN U OO, i PO T O 1
m-1 m m m m
+ei O3t U T Fraa, g+ 9 Frion, * P oy, g
m m
L . . e e F « s . .
DTZ * FD 4 5,1 + 012 Fp g 5] % K,
HY .
and o ., - ol for HT . <O
i, Dm-{ 1,]
i,J
where
2
m-1 (871) 1 Sty , m=1 8ty ,m-1
AT 1 St _ St
i,j = T m-1 [ K55 + W= Ky
i,J
2 2
§7\°  m-1 8t m-1
STy M= ST L
G Kaa,g G K1,y )



2 . KW'% o

_ (81) m=1 i,j s
Y= Ks 3 ! Di,J 0Lm-l K
i,j s
2 2
- (1) _ (81
Pi= = 2y 0 P 7m
m-1 _ Sty M-1
bi’j = 2T) Kl’i,.j
m-1 _ _ 81y m=-1
I T S8
2
m-1 8t m-1
. —_ K, . -
%, j & %313
S
i,] én 4,1,]
- .St St
f‘1 ) (1+ 27
_ St St
95 = 3 (1 - 214

For the range of dimensionless enthalpy values between O and 1, the

describing equations in finite difference form can be written as

A o S e L S L -t

1,57 M5 Y P45 M3t R, tienLg YL L,
m-1 m m . ML
* 813 cg],j-l + 1y Fr,idl,j ¥ 9 Fri-1,5 *7i'r,i,]
ootz AN, L. sOTZE", . }SK
z,1,J3+1 z,i,j-1 ' N S (4.15)
and
m m
Y. = f 0 $H, . <1 (4.16)
61,3 0 or i3
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When the values of the dimensionless enthalpy are above 1, the

finite difference representations

m-1 .m m-1 m=1 m m-1- m=1
LT L = vH™r ™ M =d L AT
1,J 1,J 1,] * 1,] i+1,] ¥ alyJ i-1,] * Als.] Y

m-1 m m-1 ~ m m
di,j 0,541 * ©i, 3 Cq,g-l +{f; Fr,i+l,j * 93 Fr,i;l,J
m m m S,
+ Py Fr i DTZ—i o i,5e *OTZ Fusi) bRk
and
H? -1 .
1,j 7 gl for Hyy >1
1,]

are obtained.
If the system initially is at a uniform temperature above the
fusion temperature or at the fusion temperature without internal

thermal radiation, then

1,5 ° o for all 1i,j
Hg 3 = 1+ D? G for all i,j
’ »J 1,]
Fri,3=Fai, =0 for all 1i,] |
where

@I = initial dimensionless temperature

When the inside and outside cylinder of the cylindrical annulus

are maintained at constant temperatures with the insulated end
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surfaces, the thermal boundary conditions in terms of dimensionless

temperatures become

o’{‘,j = 0, at r =1 for all j
m _ - -
OM,j = OO at r = T, for all j
m m _ .
ei’_l @i,z atz =0 for all 1
QT = a" at z =2 for all i (4.22)

The dimensionless enthalpy must be again incorporated with the
dimensionless temperatures depending upon the values of enthalpies.
For boundary elements with different conditions from Equation (4.22),
such as a convective boundary condition or an appropriate heat extrac-
tion or supply, Equations (4.13), (4.15), and (4.17) may be modified
to include the specific boundary conditions.

The finite difference formulation of the moment differential

equations then reduces to

M3 Vog,y = (e %‘i) DFRITEEICES ol AR

(2—392 V.5 500 ¢ (2—;)2 VAT - B (4.23)
F?,i,j = - g%g? (¢2,1+l’j - wg,i~l,j ) , (4.24)
g = T EE Y05 Vo151 ) (4.25)
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where

2
pal-l o & 2 * m-1
i,] { 2+ 2 (sn) + 3(61') (l- wi’j ) }
BTt - 2 (1 - g1
i3] 127(81)° (1 wi,j )

For boundary elements, the finite difference representation of
Marshak type boundary conditions must be substituted into Equation
(4.23), (4.24), and (4.25) to satisfy the thermal radiative boundary
conditions. Then, at the inside cylinder of the system, the radia-

tive intensity and heat flux are modified into

S Gy - g w4 E 6
* %‘)2 W15t B 9

Frl,j = mﬁ?‘ (V1,5 = %3

F‘;,ln,j = - Wg,l,ju““"g,l,j-l)

where

ool = ATy e gp @ -g{—l
03] = andf 5, Ei=%(2;w?’“)

(4.26)

(4.27)

(4.28)



When the system is initially at the fusion temperature and it is
being solidified from the inside cylinder, neglecting thermal radia—
tive penetration into the liquid region leads to the modification of
intensity and heat flux at solid/liquid interface as being given in
the following paragraphs.

The number of radial nodes at S/L interface is obtained from

Figure 4.1:

LL =1 when G‘r*é -6—%

LL=1+1 when 61*> %

Then

FEM-t M = (1T ﬂ+9¢"‘ e & W
LL,j "o,lL,j 2’ FT 72 %o,LL-1,] g0’ Yo,LL, i+l
+ (%)2 WE,LL,jgl+BBSL_.3j * (L3

s - EErs byt D

F-n;,LL,j = "6'%5 (“’g,u_,ju R STy

where

FFE‘[%j - AAEjj (1+-2‘§%: e
F’2r3.] = 47 qﬂz’j
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—1 T 41

‘f .
/C S<Z! _ _ _s/L INTERFACE

/-—i
i—1q

o7

— .
v =2

j—1 j i+1

Figure 4.1 Moving S/L Interface at Fixed Meshes
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At the left end of the base surface the moment differential

equations take the forms

At the right end of the base surface, the finite difference

representation of the moment differential equations becomes

m=1 .m 8t m
P3N li)o,i,N = 0+ §T;) qJo,i+l,N + (-
m
2 2 P3.
8T m St i m-1
+ 205 VYo ina * @R BTt BBy N
m 1 m m
Fr,i,N - T éndt (wo,i+l,N - wo,i-l,N)
2 = me— (W - P37
z,i,N = GwPI-én 0,1i,N i

-59-

m-1 m _ Sty M St y M
oy, Y,i,1 = 211) Vo,ie1,1 * O - 211) ¥o,i-1,1
m
2 G3" 2
St m i ST m=1 .m
26 Yo,i2% s & BBy %
m 1 m m
Fri,1 = ~&mst (Yo,i41,1 = Yo,i-1,17
Fm _ 1 (qp _ GBm )
z,i,1 671Gl *on 0,i,l i
where
ee™t o ™l & f L
i,1 ~ i,1 on Gl
m m
C3; = 4m%3,1,1
E
Gl = m

81

—) M
2Ti

(I)m
iN

o0,i-1,N

(4.33)
(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



where

m-1 m-1 Lok Ll
PPiN = AN+ Gy Pl
m m
P3; = 4T Gy
E
4
PL = 7on

4.3.2 Cylindrical Symmetric One-Dimensional Case

For the cylindrical symmetric one-dimensional case, Equations

(4.13) through (4.22) reduce to

m-1 m m-1 m-1 .m m-1 £ em o
Ap T Hp=YHp by T O e C?-l + i'r,isl
—m m . §.K
+ Py Fr v 9 Friad T NS
and
m
H. m
m. = HT <0
01 o1 for i
i
- m=-1 oM m-1 .m m p.FM .
YH? = YH? e bj i+l 7Y 01+ { fs Fr,1+l TTTr,i
m S
.« 2K
* 9 Fr,1-l } N s
and
m
m < <
@i '-'-0 fOI‘ O-:Hi=l
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m-1 m m-1 m=1  .m m-1 .M m
Ai Hi = YHi + bl ei+l i Oi-l Ai -Y
m m m S .
A g *P Py g Fri-t b W Ks (4.43)
and
m
HT -1
m 1 m
@i = Em—_—l—- for Hy > 1 (4.44)
i

For boundary nodal points whose conditions are different from
those given in Equation (4.22), Equations (4.39), (4.41)), and (4.43)
must be modified to satisfy the appropriate boundary conditions. For
a case where a constant heat flux is extracted from an opaque inner
surface of the cylinder, Equation (4.11) on boundary element is

modified as

dH _ sty 30 i} Kk -3k asE )
KSGT E® - Ky (1 + >0 o1 ) . Ste <" N s (1 + 52 o N
1t )
(4.45)
where

Ste = —a = Stefan Number
O‘spshsle

The finite difference representations of Equation (4.45) are

obtained, depending upon the phase status of a boundary element, as :

m

(m—l)*
A 1 =

1 H

m-1 m=-1 .m S
T bl ) - ste kst e K fL () )

(4.46)
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L
m 1 m
el = Dm‘l for Hl <0
1
m m-1 m-1 _m S 47
vl = vl bt el - ste s K- st R ) (Flp+Fp2) ) (44D
and
m _ < 4" <
Ol =0 for 0 s Hl £1
* m-1
(m=-1) . m _ m-1 m=1 ~m 1 . .
Al Hl = YH by @2 + el - Ste * K 6T
1
S m m.
2K 4,48
+ Kl Fp PRy w PR D) } (4.48)
and
m
Hy -1
m _ 1 m
o) = ST for H > 1
1
where
: m-1
(m-1)" A
m- m-1 -
Al = Al DT-l

Equations (3.37) and (4.12) are discretized in a manner similar

to that employed in the previous section to obtain

m=1 .m _ 8T m 8t m m=1 4m

AAi Wo’i = (1 + 7?;) ¢0,1+l + (1 - 5?;) wO,i-l + BBi @i (4.49)
m _ 1 m m

Fr,i = = &mst Yo,141 ~ Yo,i-1) (4.50)
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For nodes on the inner surface of the cylinder the substitution

of the Marshak type boundary condition into Equation (4.49) yields

m-1 m m D3 ST m-1 m
DDl \Po,l = 2\1’0,2 * DI (1 - '2-.[—5) + BBl ¢l (4.51)
m _ 1 m ‘
Fr,1 = - @wmrst (Y1 - D3) (4.52)

At the solid/liquid interface, the finite difference formulation
of the moment differential equation is carried out by using the same

discretization as used in Equation (4.30) to obtain

m-1 ,m _ St F2 m m-1 m
FF) wO’LL = (1 + 2TL) FT * 2 wO,LL_l + BB] LL (4.53)
mo. 1 m : .54
Fre = @wrse oo - 72 (4.54)

4.4 METHOD OF SOLUTION

The implicit finite difference equations developed in the
previous section, together with the initial and appropriate boundary
conditions, form a set of non-linear simultaneous algebraic equations
for the unknowﬁ temperatures, enthalpies, radiative intensities, and
radiative heat flux. In these equatiohs enthalpies at time level m-1
are known and the temperatures, radiatiyg intensities, and radiative
heat flﬁx may be evaluated by using appropriate governing equations.

The Gauss-Seidel iterative method with successive over-relaxa-
tion [ 92 ] is used to solve the non-linear simulténeous difference
equations. This iterative method is attractive because it needs

little computer memory and it works.
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For the axisymmetric two—dimensional case, the right hand side of
Equation (4.13) is first calculated by using the most recently evalu-
ated enthalpy values and then Equations (4.14), (4.23), (4.24), and
(4.25) are used to compute the corresponding temperature values, radia-
tive intensities, and radiative heat fluxes. After the sign of H., . is

1,J

determined from the previous iteration, the new value of Hi j is then
s

computed using the appropriate equations (Equations (4.13), (4.15) or
(4.17)) applicable for the different range of enthalpy values. This

value of Hi 3 is then modified by the over-relaxation factor as
]

moo_ o Hm 1 - orRF) HTO,
Hi g = ORF = Hj 5 + ( ) Hi;
where
ORF = over-relaxation factor
H' . = new value
1,J
HTl. = value calculated using Equations (4.13), (4.15), or (4.17)
»J depending on the range of enthalpy values
H?Oj = value calculated on previous iteration

In the successive over relaxation scheme, the speed of conver-
genée is ;ignificantly improved. It should be noted that for ORF = 1,
the procedure is identical to the Gauss-Seidel method, and for a choice
of ORF in the range 1 < ORF < 2, the convergence is more rapid.

' The dimensionless temperature is correspondingly modified and
the radiative intensity and radiative heat flux are computed from the
temperature distribution in Equations (4.23), (4.24), and (4.25).

The process described sbove is repeated for all nodes until the

. m . . . .
change in Hi j between successive iterations satisfy a convergence
s .

criterion.
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