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ABSTRACT

The effect of thermal radiation on the solidification of an 

absorbing, emitting, isotropically scattering infinite and finite, semi-

transparent gray medium bounded between two concentric cylinders is 

investigated. The conservation of energy principle employing enthalpy 

and temperature as dependent variables is coupled with a set of moment 

equations which are derived from the radiative transfer equations and 

Marshak type boundary conditions by applying P-1 differential approxima-

tions. 

The transient temperature distribution, interface location of a 

semi-transparent phase change medium, and the local radiative radial and 

axial heat flux has been obtained by using a Gauss-Seidel iterative 

numerical scheme for some typical geometric dimensions and parameters. 

The numerical results for the one-dimensional axisymmetric case of pure 

conduction are verified by comparison with an analytical approximation 

where the change in the internal energy in the solid phase is neglected. 

The results for an optically thick cylindrical medium are obtained, 

analyzed, and displayed in graphs. 
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NOMENCLATURE 

absorption coefficient, 
2 area, m 

-1
m

medium emissive power, n2oT4 , W/m2

specific heat, J/kg K

c* speed of electromagnetic radiation propagation in a vacuum, m/s 

Fr dimensionless radial radiative flux, q /oT 4
r r

Fz dimensionless axial radiative flux, qz/oTr4 

g 

h 

h 
s

acceleration of gravity, 

specific enthalpy, J/kg 

2 m/s 

specific enthalpy of solid at fusion temperature, J/kg 

hsl latent of fusion, J/kg 

h* Planck's constant, 1.381 x 10-23 J/K 

I intensity of radiation, W/m2 

I reference intensity of radiation, W/m2 
r 

Iv spectral intensity of radiation, W/m2 

Ibv spectral Planck's function, or black body intensity, W/m2 

K

K
s

L

thermal conductivity, W/m K 

thermal conductivity of solid at fusion temperature, W/m K 

thermal conductiv~ty of element surfaces at 
OT 

L =Li+ 2 , 1 = 

respectively, W/m K 

n = 2
on , and n =ni +

dimensionless solid/liquid interface, 1;r1 
radius of solid/liquid interface, m 

ir,i0,iz directional cosines, siny cos~ ,sinY sin~, cosY, 

respectively 
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N

p 
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r .. r 

r 
0

R

s

s

t 

T

T
0

u 

V 

z 

z

a

a
s

unit normal vector 

index of refraction 

conduction/radiation paramenter, 
2pressure, kg/ms 

K 8/4oT 3
s r 

integrated radiative heat flux vector, W/m2 

integrated radial radi~tive heat flux, W/m2 

integrated axial radiative heat flux, W/m2 

radial distance, m 

spatial direction vector, see Fig. 3.2, m 

radius of inner cylinder, m 

radius of outer cylinder, m 

dimensionless radius, r/r1 
distance measured along beam of radiation, see Fig. 3.2, m 

dimensionless parameter, KT /4 a p hsl s r s s 
time, s 

temperature, K

inside wall temperature, 

fusion temperature, K 

reference temperature, K 

K

outside wall temperature, K 

specific internal energy, J/kg 

volume, 3
m

integration volume, 

axial distance, m 

3
m

dimensionless axial distance 

thermal diffusivity, m2;s 

thermal diffusivity of solid at fusion temperature, m2;s 
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s 
s* 
y 

-1extinction coefficient, a+w, m 

polar angle, see Fig. 3.4 

polar angle, angle from normal of area 

surface emissivity w

n

0

A

\)

p

a 

T 

* T 

¢ ,¢ 
w

axial optical coordinate variable, (a+w)z 

dimensionless temperature 

scattering parameter, w /(a+w) 

frequency, s-l 

dimensionless time, 

density of mediwn, 

at s2
s

kg/m3

density of solid at fusion temperature, kg/m3

Stefan-Boltzmann constant, W/m2 K4 

radial optical coordinate variable, (a+w)r 

optical depth ins-direction 

azimuthal angle for the intensity direction 

dimensionless Planck functions B/nl and B /nl , respectively r w' r

dimensionless intensity of radiation, I/I r 
¢ dimensionless zeroth moment of intensity 

0

dimensionless first moment of intensity in r-direction r 
¢z dimensionless first moment of intensity in z-direction 

w scattering coefficient, -1
m

w * single scattering albedo, w / ( a+w) 

n solid angle, steradian 

iv 
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1.1 INTRODUCTION 

CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

Because of the recent energy crisis and increase in energy 

prices, energy management has become an enduring concern. One of the 

many ways to manage energy is to store excess energy for use at a 

later time when it becomes necessary. Hence, efficient and reliable 

energy storage systems are of great interest. One of the energy 

storage methods is to use a phase change material as a thermal energy 

storage medium to store and release large amounts of thermal energy 

in the form of latent heat. The formation of fine quality crystals 

[ 3] is also an important phenomenon in which energy transfer 

analysis with phase change plays an important role. 

Energy transfer problems in which one material is transformed 

into another or into another phase with generation or absorption of 

heat have been studied theoretically and experimentally for more than 

a century. Nearly all of these studies, however, have dealt with 

opaque materials and hence, the contribution of thermal radiation 

within the media has been ignored. Some of the investigators [ 3 - 9] 

over the past fifteen years have proved that for the range of para-

meters encountered in the solidification and melting of many optical 

materials, such as the weakly absorbing semi-transparent and partially 

transparent diathermanous solids, the internal radiant transfer has a 

significant effect, and neglecting it in the analysis leads to con-

siderable error in predicted temperature distribution, interface 

position, and energy flux. More applications of this nature arise in 

areas such as freezing or melting of a solid, the growing of large 

-1-



synthetic crystals and vapor films, the burning of solid propellants, 

the heating and cooling of spacecraft and aircraft windows and 

nuclear reactor fuel elements, converting energy in different solar 

devices, and others. 

The analysis of combined energy transfer by conduction and 

radiation in participating materials is sufficiently complex so that 

numerical solutions are almost always required. As a result of the 

nonlinearity of these problems, some advanced and approximate analy-

tical techniques have ~een used to obtain closed form solutions for a 

limited range of geometries and conditions. Although several investi-

gators have dealt with the restricted one-dimensional Stefan problem 

that includes combined conductive and radiative transfer, little 

study, if any, has been devoted to the two-dimensional Stefan problem 

for a concentric cylindrical geometry. 

Computations involving two-dimensional radiative fluxes with 

participating media are formidable. The difficulties arise for the 

following reasons. Quadruple integrals must be computed with respect 

to (1) physical distance, (2) optical thickness, (3) solid angle, and 

(4) wave length in order to obtain the local radiative flux. Even 

with the total band absorptance introduced, integrals with respect to 

(2) and (3) remain inevitable. Therefore, it has been necessary to 

develop some approximate methods for multi-dimensional analysis and 

possible parameterization studies. 

1.2 OBJECTIVE OF INVESTIGATION 

The objective of the present investigation is to develop and 

solve a two-dimensional radial and axial mathematical model to 
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determine the transient temperature distribution and interface loca-

tion of a semi-transparent phase change medium bounded by two finite 

concentric cylinders when internal energy transfer occurs simulta-

neously by conduction and radiation for the solid region. The axial 

and radial local radiative heat fluxes and heat extraction rates from 

the inside pipe for different parameters are computed in order to 

observe the effect of radiation on the phase change medium of the 

system. In order to accomplish this objective, the classical Stefan 

problem [ 1,2] is to be reformulated to include the presence of 

internal radiative transfer, and then _is to be solved by iterative 

numerical finite difference schemes using the appropriate thermal 

boundary/interface conditions. Because of the general lack of pro-

perty data for the high solidification temperature materials, it is 

impossible to determine input parameters and properties specifically 

for a given substance. However, the approximate values of latent 

heat, conductivity, and specific heat with other several parameters for 

the solidification of fluorite (melting temperature of around 1700 K) 

are good enough to analyze and show the radiative effect on the 

present model. The gray medium will be assumed to be in local thermo-

dynamic equilibrium (LTE), homogeneous, and isotropic with constant 

index of refraction within a given phase. This is a reasonable 

approximation in engineering applications [ 49 ]. 

The system, initially at the fusion temperature, is considered to 

be suddenly brought into intimate contact with the cold temperature at 

the inside cylinder. The walls of the enclosure are considered to be 

gray and diffuse and maintained at constant temperatures at the inside 

-3-



end outside cylinder. The interface surface is to be assumed to be a 

diffuse gray surface and both base surfaces of the finite concentric 

cylinder are considered to be perfectly insulated. A schematic of the 

present physical system is shown in Figure 1, representing a heat pipe 

or thermal energy storage system (HP/TES system) for example. 
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CHAPTER 2

LITERATURE SURVEY 

2.1 STEFAN PROBLEM WITH CONDUCTION AND RADIATION 

Even though the solidification and melting of materials by heat 

transfer has been of importance in many technical fields and a subject 

of interest for over a century, considerable effort has been devoted 

to the Stefan problem with combined conductive and radiative transfer 

only over the past fifteen years. 

Abrams and Viskanta [ 3,4] used explicit finite difference 

methods to investigate the effects of energy transfer for the range of 

dimensionless parameters governing phase change that is encountered in 

the melting and solidification of semi-transparent crystals. Consid-

eration was limited to the one-dimensional radiative and conductive 

energy transfer in a region of finite thickness and of infinite 

lateral extent with physical assumptions, such as the absence of 

natural convection, the absence of scattering, isotropic media with 

uniform index of refraction for each phase, diffuse, parallel, and 

planar interfaces and boundaries, and so on. They found that radia-

tion can significantly affect the dynamics of the solidification and 

melting of many optical materials; neglect of radiation can cause the 

temperature profile within the liquid to assume a shape which promotes 

unstable interfacial growth, a finding which is contrary to the idea 

that radiation always exerts a 0 stabilizing influence." 

Habib [ 5,6] employed the approximate heat balance integral 

method to study the effect of the radiative heat transfer on the 

solidification rate and on the temperature distribution in the solid 
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phase of semi-transparent planar and infinite cylindrical media. The 

heat balance integral method of approximate analytical solution was 

developed by Goodman [ 11 ] • Habib used the trial temperature profile 

as the combination of polynomial and logarithmic functions. The 

constants in the trial function were determined from the boundary and 

the interfacial conditions. The significance of the radiative contri-

bution to the process of phase change on the solidification rate and 

on the temperature distribution in the solid phase was presented with 

the results for the cases of absorbing, opaque, and non-participating 

media. 

Ozisik [ 7] investigated the effects of radiation on the melting 

rate of an absorbing, emitting, scattering, semi-infinite, semi-

transparent, homogeneous medium with reflective boundaries by solving 

the phase change and the radiative transfer problems simultaneously. 

Seki, Sugawara, and Fukusako [ 8] observed the phenomenon of back-

melting caused by radiant energy penetrating through the ice layer. 

They experimentally found that the behavior of radiation transfer in a 

cloudy ice layer depends a great deal on the density of the cloudy 

ice, including air bubbles which produce scattering of radiation. 

They also showed that the melting rate of an ice layer can be 

predicted numerically by using the band model of extinction coeffi-

cient for the cloudy ice assumed. 

The combined radiation and conduction problems with phase change 

for one-dimensional solidification of a semi-transparent, semi-

infinite, gray, homogeneous and isotropic material with constant 

thermophysical and optical properties was solved by Chan and 

Albeirutty [ 9 ]. The,B-splines collocation method with optimum 
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choice of collocation points was used to solve a non-linear integro-

differential equation that can hardly be solved by using the available 

analytical methods in the literature. This method employed the 

unknown n-coefficients of the approximating polynomial that were eval-

uated by requiring that the integro-differential equation be satisfied 

at n-2 collocation points. This procedure reduced the nonlinear 

partial differential equation to a set of nonlinear ordinary differen-

tial equations. 

Ortega, Benard, and Gobin [ 10] presented the results of experi-

ments using paraffin wax as a storage medium in a storing wall (Trombe 

wall} leading to a study of the influence of various heat transfer 

modes (radiation, convection, conduction) on the melting process and 

the storage efficiency. The experiments showed a linear correlation 

between the volume of the liquid phase and the stored energy. The 

amount of energy stored by the element during the storage process was 

measured by calorimetry. 

A more general solidification and melting one-dimensional model 

was recently proposed by Chan and Cho [ 12] which accounts for the 

existence of a two phase zone in which partial phase change can occur. 

The two phase zone was attributed to internal solidification or melt-

ing (as opposed to surface solidification or melting) induced by 

internal thermal radiation. Diaz and -Viskanta [ 13] developed an 

analytical model for predicting radiative and thermal conditions 

during radiation induced phase change, as well as liquid/solid inter-

face displacement with time. Energy equations are written separately 

for the two phases and required to meet simultaneous temperature and 

energy balance considerations at a common boundary, the liquid/solid 
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interface. Experimental simulations were conducted, using a high 

intensity tungsten filament lamp to melt both horizontal and vertical 

slabs of a low fusion temperature material (n-octadecane). 

According to the literature surveyed, most of the approximate 

analytical methods and numerical methods that have been developed were 

used to solve one-dimensional Stefan planar problems including radia-

tion and conduction with restrictive boundary conditions and physical 

optical properties. The energy balance has been separately applied 

for each phase and the proper boundary and interfacial conditions that 

couple the two phases. Temperature has been used as_ the dependent 

variable. 

One of the techniques used to solve the Stefan problem is the 

"enthalpy method" which involves both temperature and enthalpy as the 

dependent variables. It was used by S):lamsundar and Sparrow [ 14 J

to solve a pure conduction problem of a two-dimensional solidifying 

liquid that was initially at the fusion temperature. In this 

approach, the energy balance can be applied over the whole domain that 

covers both solid and liquid phases. Reformulation of the describing 

equations in terms of the enthalpy (i.e., the sum of the sensible and 

latent heats) removes the need to directly trace the position of the 

moving boundary and,, hence, eliminates the numerical problems asso-

ciated with the discontinuity of the temperature gradient. The use of 

the enthalpy model to solve the Stefan problem, including combined 

radiative and conductive transfer, has not been reported. 
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2.2 STEFAN PROBLEM 

The formulation of the Stefan problem in one dimension has been 

known for more than a century. Hence, the Stefan literature has been 

concerned primarily with methods of solution rather than formulation. 

During the past years, however, considerable effort [ 15-18] has 

been devoted to formulate and solve the two-dimensional Stefan problem 

even though the analysis of phase change problems in multi-dimensional 

regions is complicated and there is no obvious method to assess the 

reliability of the predictions. When radiation is present, the energy 

equation is nonlinear and the situation is much more complex than for 

pure conduction. Comprehensive surveys on moving interface problems 

appear in references [ 19-21 ]. 

The most popular approximate techniques used in the literature 

include pertubation, variational, heat balance integral, and series 

solution methods. As one of the simplest approaches, Goodman [ 22] 

employed the "integral method." This method requires assumption of a 

functional form of the solution which contains undetermined time-

dependent coefficients. The assumed function is substituted into the 

governing differential equation which, together with the imposed 

boundary conditions, leads to one or more ordinary differential equa-

tions. Solutions of these equations, accomplished numerically in 

general, yield the undetermined coefficients. 

Nonlinear differential equations can be solved by the "pertuba-

tion technique" which employsthe unknown function in the form of 

asymptotic expansions ( 23 ]. Yan and Huang [ 24] obtained pertu-

bation solutions for the one-dimensional phase change problem in a 

finite region subject to convection and radiative boundary conditions 
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at the fixed boundary. Yen and Chung [ 25] used Biot's variational 

method to develop approximate analytical solutions for the location of 

the interface and temperature distribution for the one-dimensional 

phase change problem. The variational method reduces the more compli-

cated nonlinear problem to a much simpler initial value problem which 

is then more easily solved using standard numerical techniques (e.g., 

Yen and Chung used the Runge-Kutta method). 

In the other approach, the energy equation can be converted 

into general integral equations through the use of Green's functions 

[ 26 ]; the latter are solved numerically. The advantage of the 

integral formulation is that the solution can be obtained by ·the 

method of successive substitutions [ 27 ], which is an exact method in 

the sense that results can be computed within an arbitrary degree of 

accuracy. The disadvantage of this method is the excessive computing 

time requirement [ 28 ]. Abrams [ 3] formulated the integral 

equation for the one-dimensional Stefan problem, constant thermal 

conductivity and specific heat, and the same density in two phases, 

including radiation, by using Green's functions. However, practically 

speaking, the scarcity in the literature of numerical solutions to 

much simpler problems, strongly suggested that a numerical approach 

lacked feasibility in his formulation. 

Yimer [ 21] formulated and developed the transient conductive 

analysis of phase change material contained within two coaxial 

cylinders with and without fins. The powerful enthalpy model together 

with the finite difference scheme was employed to compute the tempera-

ture distribution, interfacial location, and heat flux subject to 

various boundary conditions. 
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More recently, some of the work for the Stefan problem included 

natural convection effects along with conduction. Comprehensive 

reviews concerning natural convection effects are found in references 

( 29,30 ]. Yao and Chen [ 31] demonstrated the increasing effect of 

natural convection on the melting process around a heated horizontal 

cylinder by using the regular pertubation series. 

Saitoh and Hirose ( 32] obtained the transient aspects for 

natural convection flow, temperature profiles and melting interfaces 

inside a horizontal circular cylinder capsule, in which n-octadecane 

or water was. used as a phase change material, by using en explicit 

finite difference scheme. A-numerical procedure was developed by Chan 

and Schoukri [ 33] to analyze two-dimensional freezing with natural 

convection at the solid/liquid interface. The problem was divided 

into two parts. The first part solved the natural convection flow in 

the phase change medium using a well-established. finite difference 

method, the simplified marker and cell technique. The second part 

calculated the local freezing rate using a local one-dimensional 

energy balance model. The two parts were coupled at the solid/liquid 

interface. 

Rieger, Projahn, Bareiss, and Beer ( 34] investigated the melt-

ing process of a phase change material enclosed in a horizontal, 

isothermal circular tube by using a numerical mapping technique and 

allowing the melting front to be recorded photographically with time. 

Computations and experiments were performed for Rayleigh numbers in 

the range 105 Ra 106• 
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2.3 COMBINED RADIATIVE AND CONDUCTIVE TRANSFER 

Simultaneous heat transfer by conduction and radiation in semi-

transparent participating media is a subject of considerable technolog-

ical application which has received a great amount of attention parti-

cularly in connection with gray analysis [ 35-39 ]. Comprehensive 

surveys on combined conductive and radiative problems in participating 

media through 1975 appear in references { 3,40 ]. The planar geometry 

with one-dimensional energy transfer has been the subject of much 

study and continues to serve as a standard of comparison. Radiative 

transfer with conduction has been studied in other one-dimensional 

geometries, but very little has been done with multi-dimensional 

geometries. 

Viskanta and Hirleman [ 41] presented an analytical solution for 

the steady-state temperature distribution in a plate of semi-transpar-

ent solid which is irradiated on one side by beam (collimated) and 

diffuse fluxes. The validity of neglecting the interaction of conduc-

tion with radiation in the solid was examined by comparing the heat 

transfer rates predicted with those based on an approximate approach. 

The importance of radiation on the temperature distribution in a semi-

transparent planar solid was reported by Amlin and Korpela [ 42 ] • 

The first-order differential approximation [ 42-47] of radiation 

was combined with conduction analysis to investigate the temperature 

profiles in a plane slab and a rectangular region. The coupled non-

linear partial differential equations were solved numerically by 

either a standard implicit (backward difference in time and central in 

space) or an implicit alternating direction method. The effects of 
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Planck number, boundary emissivity, surface reflectivity, external 

temperature, and optical thickness were reported. 

Heat transfer by simultaneous conduction and radiation in an 

absorbing.., emitting, and anisotropically-scattering material was 

theoretically investigated by Yuen and Wang [ 48 ]. Consideration was 

given to a one-dimensional system bounded by two parallel gray, 

diffuse, and isothermal walls. Assuming a physical model of linear 

anisotropic scattering, the resulting integral-differential equation 

was solved by a successive approximation technique similar to the 

method of undetermined parameters. 

Viskanta and Kim [ 49] presented a model for predicting con-

duction and radiation heat transfer across an irradiated plane layer 

of semi-transparent material at high temperature. A model for the 

prediction of radiative transfer was too complicated for design 

calculations. The validity and accuracy of the model was established 

by comparing the predictions with those reported in the literature. 

Fernandes and Francis [ 50] formulated and solved the problem of 

transient combined conduction and radiation in a gray absorbing, 

emitting, and scattering medium of infinite cylindrical geometry. The 

medium was bounded by gray diffuse surfaces at known temperatures. 

The problem was solved by the Galerkin finite element method using 

linear interpolating functions. The transient terms were handled 

using the Crank-Nicolson scheme with the time steps chosen to avoid 

temperature fluctuations at early times. 

Tsai and Chan ( 51] investigated the transient temperature 

distribution of two semi-infinite media at different temperatures that 

are suddenly brought into contact. The effect of thermal radiation in 
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the hot medium was considered. Solutions were obtained by a hybrid 

technique, using an explicit fourth-order Runge-Kutta method for the 

space variable. A variable grid spacing system utilizing hyperbolic 

sine functions was incorporated to extend the computational boundary 

as well as to minimize the computation time and the number of nodal 

points. 

A one-dimensional combined conduction and radiation heat transfer 

problem between two i$othennal parallel plates, where the intervening 

medium may absorb, emit, and isotropically scatter radiation, was 

considered by Ratzel and Howell [ 52] using the P-1 and P-3 differ-

ential approximations for the intensity distribution. The P-1 and 

P-3 methods yielded results for combined conduction-radiation 

problems which are in close agreement with "exact" solutions for one-

dimensional planar problems. 

Tong, Birkebak, and Enoch [ 53] considered the effect of thermal 

radiation with conduction and convection in vertical rectangular 

enclosures containing a porous medium, radiation having been neglected 

in previous publications. The enclosure was considered to be tall 

enough so that one-dimensional radiation exchange could be assumed to 

take place between the two vertical surfaces. It was further assumed 

that the fluid is non-participative in the radiative transfer process 

whereas the solid matrix emits, absorbs, and scatters thermal radia-

tion. Shih and Chen [ 54] presented a modified version of the flux 

method, called the discretized intensity method, in which the inten-

sity, a variable more primitive than the flux, was introduced to solve 

a two-dimensional system enclosing radiative and conductive media of 

unit depth. This method bypasses the unnecessary use of the 
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integro-differential energy transport equation and accounts for the 

dimensionality of the radiative fluxes. 

Chung and Kim [ 55] presented a two-dimensional analysis of 

combined conductive, convective~ and radiative heat transfer using 

finite elements. The standard Galerkin finite element could be used 

if the product of Reynolds number and Prandtl number was equal to or 

less than 1000. It was shown that the two-dimensional radiation 

function in terms of-space surface and volume integrals could be 

efficiently performed via Gaussian quadrature applied to isoparametric 

finite elements. Numerical results were demonstrated for a diverging 

and converging channel with restrictive boundary conditions. 

Rassaque, Howell, and Klein [ 56] presented the first numerical 

solution of the exact equations of coupled radiative/conductive heat 

transfer and temperature distribution inside a medium, and of the heat 

flux distribution at all the diffuse gray walls of a two~dimensional 

rectangular enclosure with the medium having uniform absorbing/emit-

ting'properties, using the finite element method. The drawback of 

this method, as for most others, is that for very low values of wall 

emissivity and conduction/radiation parameter, it requires a substan-

tial amount of time to achieve convergence. 

Very recently;' a modified finite difference approach to the 

problem of transient combined conduction _and radiation in an absorbing 

and emitting infinite annular medium was presented by Gordaninejad and 

Francis [ 57 ). The energy equation was formulated in a finite 

difference format using the explicit form of the time derivative. 

Simpson's method with the Gauss quadrature (fiv~ points) was used to 

approximate the integrals. 
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2.4 MULTI-DIMENSIONAL AND CYLINDRICAL RADIATIVE TRANSFER 

It has been seen that due to the complexity of coupled radiative 

and conductive heat transfer problems in the two-dimensional geometry, 

most of the work that has been reported in this area is confined to 

the one-dimensional planar radiative case. Nevertheless, since 

general and accurate solutions of the radiative transfer equation 

(RTE) are required now more than ever, especially for multi-dimen-

sional geometries, a wide variety of solution methods have been 

developed. 

Crosbie and Liesenbardt [ 58 ], in their study on the two-

dimensional radiative transfer, have presented a comprehensive 

overview of a number of methods that were used to solve the RTE for 

various physical situations. Most works for multi-dimensional radia-

tive transfer used some approximations [ 59-65] (i.e., the diffusion 

approximation, the discrete ordinates and Fourier transform methods, 

and the six flux approximation). The stochastic models such as Monte 

Carlo technique [ 66,67] and Hottel>s zonal method [ 68-70] have 

been employed. 

An extensive survey of the latest multi-dimensional rectangular 

radiative transfer'models was reported by Howell [ 71 ]. Very 

recently, the radiative transfer in a thr~e-dimensional rectangular 

enclosure containing radiatively participating gases and particles was 

studied using the spherical harmonics approximation by Viskanta and 

Menguc [ 72 ]. Inhomogeneities in the radiative properties of the 

medium as well as in the radiation characteristics of the boundaries 

were allowed in order to obtain the numerical solution of the model 
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equations by using a finite difference scheme. The third order 

spherical harmonics (P-3) approximation was stated as the optimum 

choice for general multi-dimensional radiative transfer calculations, 

both from the accuracy and the computational effort points of view 

[ 71,73 ]. 

Radiative heat transfer in a cylindrical geometry arises in 

numerous problems but has received relatively little attention due to 

its complexities [ 40_]. Starting from the basic RTE, Kuznetsov [ 74 

] and Kesten [ 75] analyzed radiative transfer in an infinitely long 

cylindrical medium bounded by the opaque black walls. In this 

analysis the radiative heat flux was expressed in terms of a second-

order integral equation. Kesten's results are presented in two 

different forms, the latter of which appears to be incorrect due to an 

integral transformation error. Later, Habib and Greif [ 76 ], in 

presenting an analysis on nongray gas effects, used the erroneous 

equation of Kesten [ 75] in their calculations and reported a 

discrepancy between their results and Kesten's. They also developed a 

kernel approximation which used a total band absorptance model for 

radiation. 

Nakra and Smith [ 77) studied the interaction of radiative 

transfer with convection for slug flow in an absorbing-emitting gas in 

a circular tube with an isothermal black wall. They used the zone 

method for their numerical calculations. 

Heaslet and Warming [ 78] developed analytical and numerical 

methods for predicting radiative transfer for a homogeneous medium of 

one-dimensional cylindrical geometry. Although their formulation 

accounted for isotropic scattering, they did not present any exact 
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results for scattering media. Echigo, et al. [ 79] used Heaslet and 

Warming's [ 78] radiation model to study the effect of radiative 

transfer in laminar and turbulent flow of gas particulate suspensions 

in circular tubes. In their analysis, the medium was assumed to be 

gray and non-scattering. 

The first systematic approach for the exact calculation of multi-

dimensional radiative heat flux in a cylindrical emitting-absorbing 

non-isothermal medium'with non-isothermal black bounding walls was 

described by Dua and Cheng [ 80 ] • Numerical results were presented 

for the case of isothermal media bounded by piecewise isothermal 

walls. Bagazitoglu and Higenyi ( 81] introduced a higher-order 

differential approximation, applying it to infinite concentric 

cylinders. The series expansion of the angular distribution of 

radiative intensity needed by the boundary conditions was extended to 

include the number of terms in the P-3 approximation. They [ 82) 

also used the P-1 differential approximation, whose accuracy turns out 

to be very good for optically thick medium, to analyze an axially 

symmetric radiation field for a gray medium within a finite, 

cylindrical enclosure. The medium emits, absorbs, and isotropically 

scatters radiant energy and was subject to a specified heat genera-

tion. Numerical solutions were obtained for the one-dimensional 

radiative,heat flux and emissive power distribution. It was found 

that the accuracy of the differential approximation is of the same 

order for the axially symmetric and one-dimensional problems. 

An exact solution for radiative transfer in a gray, ·emitting, 

absorbing and linear-anisotropically scattering medium of one-

dimensional cylindrical geometry had been developed by Azad and Modest 
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( 83 ]. The exact results were compared with two approximate models, 

viz. (1) the differential approximation, (2) a kernel approximation. 

The first model reduced to the correct optically thick and thin limits 

and also yields reasonable results in the optically intermediate 

range. The second model produced excellent results for the optically 

thin regions and by appropriate choice of two constants it could also 

yield good approximations for the radiative flux at larger values of 

optical thickness. In addition, the results showed that in many 

engineering applications scattering might be neglected without signi-

ficant loss of accuracy. 

The basic RTE in three-dimensional space was expressed in terms 

of three commonly used coordinate systems, namely, Cartesian, cylin-

drical and spherical coordinates by Ou and Liou ( 84 ]. The concept 

of a transformation matrix was applied to the transformation processes 

between the Cartesian system and two other systems. The spherical 

harmonic method was then applied to decompose the RTE into a set of 

coupled partial differential equations for all three systems in terms 

of partial differential operators with the vacuum boundary conditions 

{no inward diffuse intensity). The analytical solutions in terms of 

infinite series were obtained. 

The P-N method was used to compute the partial heat fluxes 

relevant 'to radiative transfer in an anisotropically scattering plane-

parallel medium with specularly and diffusely reflecting boundaries by 

Siewert, Benassi, and Cotta ( 85). They made use of exact particular 

solutions and the spherical harmonics method to compute the partial 

heat fluxes for the same class of problems. 
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Crosbie and Farrel [ 86] recently developed the first exact 

formulations for the source function, flux, and scattered intensity 

normal to the surface in cylindrical coordinates for a three-dimen-

sional, absorbing, emitting, isotropically scattering medium exposed 

to both diffuse and collimated radiation. The collimated and diffuse 

radiation incident on the one side of three-dimensional geometry was 

used without talcing into account boundary reflections. 

2.5 Sm.MARY 

It is concluded from the objective of this investigation and the 

current state of the problem or related areas (unsteady combined 

conductive and radiative heat transfer, Stefan problems, and cylin-

drical radiative transfer) that of prime interest in the present 

investigation is the applications of the "enthalpy method" with the 

divergence of the radiative flux vector. The mathematical formulation 

of the problem with boundary and interfacial conditions is to be 

developed, as is approximate numerical method to determine the 

radiative heat flux, which can be coupled with the principle of energy 

conservation that employs enthalpy, temperature, and radiative heat 

flux as dependent variables. 
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CHAPTER 3

ANALYTICAL APPROACH 

The energy balance including radiant heat flux for a control 

volume is considered by employing the "enthalpy model." The general 

radiative transfer equation for arbitrary geometry is used to develop 

exact expressions for the radiative intensity distribution of a two-

dimensional finite concentric cylindrical geometry with given boundary 

conditions. 

literature. 

This exact formulation has not been reported in the 

3.1 THE LAW OF CONSERVATION OF ENERGY 

In developing the describing equations, a method that uses the 

enthalpy along with the temperature as dependent variables is 

employed. In this approach, the energy equation is applied once over 

the complete domain covering both phases. The location of the solid/ 

liquid interface is eliminated from the formulation and is obtained as 

one of the results of the solution after the temperature distribution 

is found. The equivalence between the enthalpy model and the conven-

tional form of the energy conservation equations where temperature is 

the sole dependent variable is shown by Shamsundar and Sparrow [ 14 ] . 

The development asswnes no energy source, no pressure variation, 

and no external work done on the control volume. Convection within· 

the fluid is neglected. Applying the law of conservation of energy to 

a control volwne, the net rate of energy increase of a control volume 

is equated to the net rate at which heat is conducted and radiated 

into the control volume through its surface area. 
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~t III pud~ =ff K grad T•n dA -JI q•n dA +fi" +/ ( 3. 1) 

A A

net rate of energy net rate at which net rate at which 
[ ] = [ ] + [ ]
increase of control volume heat is conducted heat is radiated 

0 0

a heat 
+ ] +

where e is the local heat source, andµ is the heat production rate by 

viscous dissipation. When the internal energy (u) is replaced by the 

difference between enthalpy and pressure and assuming that 

d 
dt ffJ p dv = 0

Equation (3.1) takes the form 

~t JJI phdv = JI K grad T-~ dA - JJ 
A A
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fht
The above Equation (3.2) includes the conventional interface 

condition, and the verification is shown in Appendix A. 

In the analysis of the two-dimensional case with radial and axial 

* variations, the region of interest (rI r r
0

, 0 z z) is 

subdivided into smaller elements. Each element is a concentric ring 

of width or and depth oz (See Figure 3.1). 

Figure 3.1 Two-Dimensional Element 

Then the average values of the enthalpies, the temperatures, and 

the radiant heat fluxes at the nodal points (r, z) at the centers of 

the elements are studied as function of time. Assuming the tempera-

ture to be uniform over an element, Equation (3.2) for an element 

takes the form 

r or oz +- z +-
d 2 2 

K ar) cit I I (ph)2nrozcr = or • 2n(r + or) oz 1 ar' r +- 2 
r _ or oz 2 

2 z -2
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z- 2

3.2 INTEGRAL EQUATION FORMULATION AND RADIATIVE FLUX 

The equation of radiative transfer theory is derived by making a 

radiant energy balance on an elementary solid angle and accounting for 

all phenomenological transformations experienced by the radiation as 

it passes through a participating medium [ 40,66,86 ]. The spectral 

intensity I ( r,s) defining the radiation field is governed by the 
\)

equation of transfer in the radiant direction along s, i.e. 

1 arv 
-- + s • V'I\) * at C

local and spatial 
[ h . . . t ] c anges in intensi y 

loss by absorption and 
= [ t . ] sea tering 

gain.by scattering 
+ [gain by emission] + [. d' . ]into s- 1rect1on 

wh~re l'; ( \J ,n ,n. ) is the phase function whose physical interpretation 
1 

is· the scattered intensity in a direction, divided by the intensity 
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that would be scattered in that direction if the scattering were 

isotropic, and Ibv (T) is Planck's function 

* 3 [ hv ]-1 = 2nh v • exp (KT) - 1 
c*2 

When the coordinates is placed along the directions, the directional 

derivative ( s · ~) Iv becomes dlv/ds (see Figure 3.2). For most 

applications, it is usually assumed that a steady state condition 

prevails since the speed of propagation c* is very large. Then 

equation (3.4) becomes 

where T~ is the optical depth or opacity when both scattering and· 

absorption are present, or 1"~ = J5 Bvds', and the source function 

S~ (-r~,n) is employed as 

* *S)\,,Q) =
*w

+-4rr J Iv(T:,ni)~(v,n,ni) dni 
Q.=4n 

l 

Equation (3.6) is an integro-differential equation since Iv is within 

the integral of the source function. The integration over the solid 
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angle ell. is an integration of the intensity at s over all possible 
l. 

directions. 

0

Figure 3.2 Radiative Intensity In an Arbitrary Geometry 
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By use of the integrating factor exp T~, Equation (3.6) is 
* Sb integrated over an optical thickness from Tvb = J Bvds' to 

0

+ I *'dT 
V

*Tvb 

*' * where \J is a dummy variable of integration, Iv ( Tvb' nb) is the 

intensity incident on the medium at¾, andQb defines the angular 

dependency with respect to the inward drawn normal to the boundary. 

Iv (T~) can be determined if the source function S~ (T~, Q) is known. 

By substitution of Equation (3.8) for the intensity into the defini-

tion for the source function, Equation (3.7), an integral equation for 

*T 
w* 

\) 

* *'exp [- (T: - -r":0>] dQb +- I I S\)( l\) ' Qi) . 
41T 

*41T T\,'Q 

* 1:')] *'~(v,Q,Qi) exp [- (tv - dtv dQ. 
l 
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For the special case of constant absorption coefficient av and 

neglecting a scattering effect (wv = 0), Equation (3.8) reduces to 

(s - s 1 ) ds' 

+ a n2 J
\) \)

s

The absence of scattering applies to the physical situation where the 

solid phases are either all single crystals or consist of polycrystals 

which are small compared to the wave lengths of the incident radiant 

energy. The scattering of thermal radiation by de-gassed liquids is 

expected to be negligible. 

The net radiative heat flux in the s direction is 

q (s) . += q · (s) - q- (s)

where q+ (s), the component of the flux in the positives direction, 

is given by · 

00 2n
+ I I

exp [-
I I

q (S) = I I I\) ( sb 'Qb) a (s - sb)] µ dQ dv 
\)

0 0 

CX) 2IT s 
2 I I I [ ' ' ' ' I

+ '\,~ Ib\) T(s )] exp [- 8v(s - s )] µ ds dQ d\)
I

o o Sb 
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and q- (s), the negatives component, is given by 

0 0 

CX) 2TT s

+¾~I I J
I 

Ibv [T(s )] exp 
I 

[ - a (s - s ) ]
\)

I I I

µ ds dQ dv 

0 0

The components of the flux along with the hemispheres of integra-

tion are shown in Figure 3.3. The hemisphere indicated in Equation 

(3.11) is the one.marked by"+" in the figure and the hemisphere for 

Equation (3.12) is the one indicated by"-". In either relationship, 

0' is measured from the s direction so that µ' = cos0' > 0. 

In order to determine the exact radiative flux from Equation 

(3.11) and Equation (3.12), knowledge of the radiosities and intensi-

ties, Iv (sh, Qb) and Iv (s~,Q~), are necessary for special geometry, 

interfacial condition, and different boundary conditions. These 
2functions, in turn, depend upon the emission coefficient, nv ¾ (s) 

Ibv [T(s ,t)], the directional distribution of intensity incident upon 

the system from the surroundings, if any, and the manner in which the 

interfaces and boundaries reflect and transmit radiation. The 

(3.12) 

emission coefficient involves IbV' which depends on temperature distri-

bution of a participating medium and, hence, must be obtained by 

solving the energy equation. 

For finite concentric cylinders with the prescribed given condi-

tions in the cylindrical coordinate system, the previous considera-

tions to determine the exact radiative flux using Equation (3.11) and 
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Equation (3.12) with proper boundary conditions suggest that the exact 

treatment of the RTE in multi-dimensional non-planar enclosures is 

very difficult and time consuming because of the long distance nature 

of radiation, the curvature or corner effects of boundary surfaces, 

and the simultaneous treatment of the energy equation with the integra-

ted form of the equation of transfer. 

For an infinite cylindrical annulus of inside radiusr1 and 

outside radius r illustrated in Figure 3.4, the radial local radia-
o

tive flux can be obtained from Viskanta and Anderson [ 40] as 

~(r) 

sin-l (r1/r
0

)

{ f [ ( qic1/rr ) cpl ( r) 
0

+ (q~d~ / n) cp2 (r) + cp3 (r)] * *cos B dS 

where 

. -1 ( )sin r/r
0

cp2 (r) = -D3 [y (r
0

, r)]

r 
cp3 c r) = I

I 

[y(r,r )] dr 
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r 
' I 

+ J I *
F(r , B )

o
2

[y( r , r)] dr 

r 
= J

n2rb, (r') ' ' 
v v o

2
[y(r,r )] dr 

*r sinB 
0

I *
F(r ,8 ) 

I *
r F(r , 8 ) 

Dn(x)

1 

b ,

y(b,a) = J *dn/ F (n,B) 
a

I 

o
2

[y(r ,r)] 

l 

0

I * 1 2 2 * ½ I
F (r ,8) = [r - r

0
sin B] / r av 
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Figure 3.4 

I r, I - I 

Geometrical Coordinates in Infinitely 

Long Cylindrical Annulus 

i Since 4cf represents a diffuse flux leaving (reflected plus 

transmitted,or emitted if the boundary is opaque) the boundary of the 

cylinder, the radiative flux is not completely defined until qid and 

i .f. d q2d are speci ie. This can be accomplished by making radiant energy 

balances for the cylindrical annulus at surfaces 1 and 2. When the 
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inner and outer surfaces are assumed to be gray diffuse and maintained 

at constant temperatures, the radiant energy balances at both surfaces 

yields the following boundary conditions 

qid =Emitted+ Reflected 

4
= e:l oT I + ( 1 - e:l) q ( r I) 

q2d = Emitted+ Reflected 

4
= €:2 o To + (1 - e:2) q ( r o) 

These two boundary conditions in Equation (3.14) and (3.15) are substi-

tuted into Equation (3.13) (see Appendix B). 

3.3 SPHERICAL HARMONICS APPROXIMATION 

In some applications, the radiation, conduction, and/or 

convection within a fluid may equally become significant, and their 

interaction alters the temperature distribution in the medium making 

the analysis additionally complicated. Therefore, various approximate 

methods have been developed. Among the methods for solving the 

transport equations, the Monte Carlo technique [ 66] and Hottel,s 

zone method [ 68-70] are either very difficult or computationally 

expensive, even when the simplification of a gray medium is introduced 

[ 72,82 ]. 

Usually some approximations such as the moment, spherical har-

monics, discrete ordinates methods, or some hybrid formulations are 

preferable to calculate radiative heat flux in multi-dimensional 

enclosures when the flow field must also be considered since they are 
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compatible with finite difference schemes [ 72 ]. It has been shown 

by Krook [ 88] that the moment method, the discrete ordinate method, 

and the spherical harmonics method are closely related and completely 

equivalent. The approximate describing equations for these methods 

are similar, but the physical boundary conditions are different. The 

spherical harmonics approximation, which is as elegant as it is 

tedious, takes its power from its strong mathematical base. It can be 

easily used with the finite difference schemes required for flow field 

calculations and can yield quite accurate radiative heat flux predic-

tions, especially for uni_iY, __ [ 81 ) . 

This method was first suggested by Jeans [ 89] in connection with the 

problem of radiative transfer in stars. A general description of the 

method of spherical harmonics can be found in the books by Kourganoff 

( 93] for radiative transfer application, and by Davidson [ 94] for 

neutron transport applications. 

Assuming that a gray medium is isotropically scattering (phase 

function ~(n, n.) = 1.0) and in local thermodynamic equilibrium within 
l. 

a finite cylindrical enclosure (see Figure 3.5), the describing radia-

tive transport Equation (3.4) is given in the cylindrical coordinate 

system by Uesugi and Tsujita [ 91] and is rewritten in the dimension-

less form 

() n 
Q, d\V - l 2, d\V d\V ') +
r a-r -r 0* < - ae*

*w
+-41T 

Q, d\V + 1l1 =
z an '+' 

*(1-W )¢ 
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where 

00 

<I> = B/nl r 
00 

B - JB dv
0 \)

T =(a+ w)r

n = (a + w) z

w* = w/(a + w) and I is a reference intensity of radiation. r . 

One way of developing the differential approximation of Equation 

(3.16) is by expanding the intensity in a series of ·orthogonal func-

tions--Chebyshev polynomials or spherical harmonics. Chebyshev 

polynomials are limited to one-dimensional problem; hence, spherical 

harmonics are widely used. Then the radiation intensity distribution 

is expanded in an orthogonal series of spherical harmonics of the form 

oo n
(~ ) r L 2n+l pm r,y,cp = 4TI n

n=O m=O 

+ om (r) sin rn cp] n

(cos y) [ Am
n <r) cos m cp 

where A~ (r) and D~ (r) are position-dependent coefficients to be 

determined and P~ (cosy ) are the associated Legendre polynomials of 

the first kind, defined by 

(cosy)= l 

2n I n. 

m
2

(l - cos2 y) 
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Rz = cosy

Ir= sinYcoscp

R.,= sin Y sin cp

d.O= sinYdYdcp

Figure 3.5 
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The intensity distribution is approximated by trJc~ing the series 

after a finite set of terms, n=l and n=3 for the P-1 and P-3 approxi-

mations, respectively. Since the angular distribution of intensity 

for the axisymmetric case is invariant with respect to rotation about 

the axial axis or to a reflection in a plane through the axial axis, 

the P-N approximation reduces to the even function of angle cp. 

n

'V(r,z,y,cp) 
N

= I: E 2n+l Pm 
4n n

(cosy) Am 
n (r,z) cos m cp 

n=O m=O 

In the case of an infinitely long cylinder, the intensity distri-

bution must be invariant under a reflection through every plane 

perpendicular to the z-axis, along with invariance under a rotation 

about the z-axis. Thus another symmetry property modifies Equation 

(3.19) into the equation [ 95] 

N n

\JJ(r,y ,cp) = l: r 2n+l [i + (-l)n+m] Pm Brr n (cosy) A~ (r) cos m cp 

The spatial coefficients A~ in Equations (3.19) and (3.20) can be 

expressed ,in terms of moments of intensity by multiplying both sides 

of each of the equations by powers of Q,r' .Q,G* and Q,z indiv,idually or 

in a combination and integrating over a solid angle of 4n. Various 

moments of intensity are defined as follows 

\Vo(r) = J \J;(r,Q) dQ 
Q 

\JJs. (r) = J 'V(r,Q) £5. dQ 
1 1 

Q 
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lVs.s .(r) = f \JJ(r,Q) Q,5_.Q,5. dQ 
l J l J

Q 

lVsisjsk(r) = f ~(r,Q)tsisjsk dQ 
Q 

where *i, j, k = 1, 2, 3; s 1 = r, s2 = 0 , s 3 = z 

In Equation (3.21), w, the zeroth moment of intensity, divided 
0

by the speed of light, gives radiation energy density; \VS., the first 
l 

moment of intensity, is the radiative energy flux in the i th coordi-

nate direction; and ws.s., which is the second moment of intensity, 
1. J 

divided by the speed of light can be shown to be the radiation 

stress. Higher moments of intensity do not have a direct physical 

interpretation. 

For the P-1 approximation of an axisymmetric case, the angular 

distribution in Equation (3.19) becomes 

1 0 O ~(r,z,y,cp) = 4TI P
0

(cosy) A
0

3 O O( r , z) +
4
n P

1
(cosy) A

1
(r, z) 

3 pl 
+ 4TI 1 (cosy) A1 

1 (r,z) cos cp

Since ir = siny coscp, £0* = siny sincp, £z = cosy, and dD = siny dydcp 

along with the definition of the associated Legendre polynomials of 

the first kind in Equation (3.18), the multiplication of£ and£ and r z 
integration over solid angle 4~ in both sides of Equation (3.22) 

yields 

-1

A~ • (2n) J
1 

3cosy d (cosy) -
4

n 
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2n -1 · 
• Al 

1 J J coscp (1 - cos~)½ d (cosy) dcp 
0 1 

Ao= \Ji (3.23) 
0 0 

and 

2n -1 
l J I siny d (cosy) dcp \Jlr = - 4n \Vo coscp

0 l 
/

21T -1
3 Ao I I coscp cos2y • d (cosy) dcp - 4n 1 

0 l 

2n 1T

3 Al J J cos2cp sin3y dy dcp +-41T 1 
0 0

Al = \V (3.24) 1 r 

Then 

21T 1T

\Vz - L. Ao - 41T o f J siny cosy dy dcp 
0 0

2n -1
3 Ao J J cos2y d (cosy) d cp - 4n 1 

0 1 

2n -1

3 Al J J (1 - cos2y)½ coscp cosy d(cosy) dcp 
- 4n l 

0 l 

Ao 
1 = \Ji z

(3.25) 
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Thus the intensity distribution in terms of moments of intensity 

by P-1 approximation turns out to be 

'''( ) 1 ,,, 3 ,,, 3 siny coscn \JJ o/ r,z,y,cp = 4n o/o + 4n cosy o/z + 4n T r 

Equation (3.26) is multiplied by £2, £ ,Q, and £
2
2

in both,.sides r r z 
and integrated over solid angle 4TI to yield the "closure condition" as 

\JJrr = !TI \JJo J lrir dQ + ~TI Wz J cosy lrlr dQ 
4TI 4TI

+ ~TI \JJr J siny coscp • i/·r dQ 
4TI

Similarly, by employing the Kronecker delta 8ij, the "closure condi-

tion" is rewritten as 

\JJs.s. =
1 J

I w.ts.s. dQ = ½ w o..
Q l J O lJ 

To develop the moment differential equations for the axisymmetric 

finite cylinder case with isotropic scattering, the describing radia-

tive transfer Equation (3.16) reduces to 

** w 
= ( 1 - w ) <I> + 4n \JJ o 

To integrate both sides of Equation (3.28) over solid angle 4n, the 

second term in the left hand side must be carried by using the 

integration by parts technique. Then 
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(3.27) 

(3.28) 



- f f Q,0* dQ =
1 - -
T 

using 

1 - -
T

41T 

u = Q, 
0

dv = a! (\Ji siny) dcp 

n 2n 

J I a¢ 
Q,0* siny acp 

0 0

1T 21T 
1 J f ¢9, sinY +-
T r 

0 0 

1T 21T 

J J i siny crn dy acp 0* ,, 
0 0 

ckp dy 

du = Q, dp r 

V = \J)siny 

= -\J)Q,0* siny 

~d1~ a¢ 
I Q,s* aq; 
41T 

.) r--

2n 
) 

cp=O 

dQ -
\Ji r 

1 

Once the other terms are integrated by using the definition of moments 

of intensity and interchanging integration with differentiation, 

Equation (3.28) becomes 

The multiplication of Q., Q. and integration over solid angle 4n in r z 
Equation (3.28) by employing the same techniques used to develop 

Equation (3.30) yields 

-\Ji r 
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Using the "closure condition" of Equation (3.27}, Equations (3.31) and 

(3.32) produce the directional radiative heat flux in terms of 

intensity, respectively, as 

Substituting Equations (3.33) and (3.34) into Equation (3.30), the 

differential equation 

*3( l - w ) (ip
O

- 4rr~) 

is obtained. The results obtained in Equations (3.33), (3.34), and 

(3.35) are the same as those obtained by Higenyi ( 96 ]. Similarly, 

for an infinite cylindrical symmetry, the radial heat flux and the 

moment differential equation within an emitting, absorbing, isotropi-

cally scattering and gray phase change medium are obtained; these are 

1 dlJ,o
\JJ r = - 3 d-r 

d2ipo l d\J,o *
d-r2 + T dt = 3(1 - w ) (\JJO - 411<1>)

The exact radiative boundary conditions for a general case of 

opaque, diffusively emitting, diffusively and specularly reflecting 

surfaces take the form 
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(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36)

(3.37) 



\JJ(r,Q) ) = F . (r,Q) s1,n 
si,n 

where 

or 

*si = r,0,z 
n = 1,2 

s. -l,n 

(3.38) 

net radiative intensity 

[ t . (i d' t. ] a r 1n 1rec ion 

intensity due 
= [t f .. ] +o sur ace em1ss1on 

intensity due to 

[specular reflection] 

+
intensity due to 

[diffuse reflection] 

Since the above exact boundary condition of Equation (3.38) is not 

appropriate for use with a specified P-N approximation, Marshak [ 97] 

and Mark [ 98] proposed two different approaches. Mark's method 

seeks to satisfy Equation (3.38) at discrete solid angles, the angles 

being obtained from a constraint appropriate to a particular approxi-

mation. Marshak's conditions require, at each boundary surface, a 

balance of the first (N+l)/2 half odd moments of intensity as calcu-

lated from both sides of Equation (3.38). The extension of Mark's 

conditions to cylindrically symmetric and multi-dimensional problems 

is not established. Moreover, it has been stated that Marshak's 

boundary condition yields more accurate results for lower order 

spherical harmonic approximations. The reason for this is that for 

the lower order approximations, the average intensity leaving the 
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boundaries can represent the intensity distribution more realisti-

cally. Marshak's boundary conditions for multi-dimensional 

cylindrical geometry are obtained by talcing the integral of the 

intensity over the appropriate hemisphere such that 

where 

n = 
i = 

_sl = 
k = 
m =

and 

1,2 

1,2,3 

dQ ) = f F (r, Q~i) i~t-l dQ ) 
si,n ° 5i,n 

+ Pdw J
TI

..Q

*

m\V ( r, Q • ) t . dQSl Sl 

r, s2 = 0 ' 53 = z
1,2, .... ' (N +1)/2 

3 - n

Higenyi [ 96] applied this general Marshak type boundary conditions 

to a finite cylindrical geometry and developed the pairs of boundary 

conditions for a P-N differential approximation. Neglecting the 

specularly reflected term in the P-1 approximation, the substitution 
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of Equation (3.26) into Equation (3.39) yields the boundary conditions 

a\V
\V ± Ei __Q_ = 4TT<l> •

o ,h * w1
-r*=-r,n 

El. 2
=3

2-e: . Wl 
e:wi i = r, 2 ,3 ,4 

for the axisymmetric- two-dimensional case. To express Equation (3.40) 

in terms of the zeroth moment of intensity, Equations (3.33) and 

(3.34) are substituted into Marshak type boundary conditions. 

Similarly, Equation (3.39) is transformed into the differential 

equations 

4n<I> •Wl i = 1,2 

for cylindrical symmetry one-dimensional case. Then Equations (3.35) 

and Equation (3.40) are coupled with Equation (3.3) because the 

temperature distribution of a medium must be determined in terms of a 

dimensionless Planck function term <I>.
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CHAPTER 4 

NUMERICAL APPROACH 

The principle of the conservation of energy and the moment 

differential equations are to be reformulated into finite difference 

fonn. The region of interest is subdivided into a number of small 

elements--for example, infinite lateral concentric rings of width er 

for a cylindrical symmetric one-dimensional problem and finite 

annular rings of width er and depth oz for a cylindrical two-

dimensional problem. Then the average value of the enthalpies and 

temperatures at the nodal points (r) or (r,z), placed at the centers 

of the elements, are studied as function of time. And the moment 

differential equations, which yield the intensities and the radiative 

heat flux of each element within an absorbing, emitting, and 

isotropic scattering medium with reflected and emitted boundary and 

moving interfacial conditions are simultaneously solved with the 

energy equation at each time step. 

4.1 AXISyt.NETRIC TWO-DIMENSIONAL FOliMULATION 

Since it is advantageous and convenient to use the dimensionless 

form as a means of identifying pertinent dimensionless variables, the 

following forms of dimensionless variables are introduced in Equation 

(3.3); 

H = l 
p( h-h

5
)

ov pTv III hsl s 
'f/

0
C

5
(T-T f) Ks (T-Tf) 

= hsl = hsl asps 
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-r = r(a+w) , n = z(a+w)

=

where 

a (a+ w) 2 t 
s

H = dimensionless 

0 = dimensionless 

't = dimensionless 

n = dimensionless 

= dimensionless 

F = dimensionless 

F .Sl 
qsi 

= --4 
crTr 

enthalpy 

temperature 

radial optical 

=
'Vs i 

1T

coordinate 

axial optical coordinate 

time 

radiative heat flux. 

si = r, z, 

By employing the above dimensionless variables given above, 

Equation (3.3) becomes 

+

or 
r + 2

oz z +-2

J. or 
r - - 2

oz 
z -2

-48-

or r + 2

or r - - 2

oz 
z + - 2

er 2n(r + 2 ) oz 

cSr 2n(r - -) oz . 2

2nrcr 

2nrczor] 

( 4. 1) 



qr 
+ { - - )

aTr4 

oz
z -2

• 2n(r + 0~) oz+ 2,_) 
or aTr4 

r+ 2

oz 
z + -

2

• 2nror + l.. ) 
aTr4 oz 

z - 2

• 2n(r - or)oz
or 2

r - -2 

• 2nror } aTr4 , 
(4.2) 

K OT dH 
s d; { oT ae

= Kl (l + 2-r) dT ) 
OT 

1' +-2

_ K2 (1 _ OT) ae)
21' dT 01" 

1' - 2

where 

} + { - ( 1 + g~ )Fr )
Qn + QT 

n - 2 2 

OT 
1" - 2

N = K S/4aTr3; conduction and radiation parameter 
s,,

S = K ~.Tr/4a p h 1; parameter 
s s s s . 

B =a+ w; extinction coefficient 

T ; reference temperature in absolute value. r 
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n - 2

} • S. K
N s

(4.3) 



Enthalpy and temperature for different phases of pure substance 

are related as 

h - h =s
K
pa

K
pa for T < T f 

for T > Tf 

To obtain expressions that relate enthalpy with temperature for 

an element, Equations (4.4) and (4.5) are substituted into Equation 

(4.1) as 

H =
1 

psov

Ka 
s

= aK 0
s

aK 
s

0 = Ka H
s

Similarly, 

aK
s

0 = Ka (H - l)
s

K(T-Tf)

ov = c.p h 16v s s 
• ov 

for H < D (solid) 

for H > 1 (liquid) 

When the dimensionless enthalpy takes values between O and 1, 

0 = 0 for O H l (during phase change) 

For different boundary conditions, Equation (4.3) may be 

modified to satisfy specific boundary conditions at a boundary 
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(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 



element. Then Equation (4.3) must be solved simultaneously with 

moment differential Equations (3.33), (3.34), and (3.35) whose 

Marshak type boundary conditions were derived in Equation (3.40). 

These equations are summarized here for completeness as 

32\JJ 
0

+ -- =an2 
1 - a\J)o

F = 'V /n = - - --r r 3n aT

1 a'Vo
. F = \JJ /n = - - --z z 3n an 

4.2 CYLINDRICAL SYMMETRIC ONE-DIMENSIONAL FORMULATION 

If variations in the angular direction and along the longitu-

dinal axis of the system are neglected, the analysis reduces to the 

cylindrical symmetric one-dimensional case. Thus, Equation (4.3) 

reduces to 

+ { - ( 1 + Fr )

T + CT 
2

The moment differential equations were derived as 

F = ~i hr r r =

CT 
T - 2

} . S.K 
N s

whose Marshak type boundary conditions are given in Equation (3.41). 
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(4.9) 

(4.10) 

. (4.11) 

(3.37) 
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4.3 FINITE DIFFERENCE FORMULATION 

The principle of conservation of energy which employs enthalpy 

in its describing equation and the moment differential equations 

developed in the previous sections are first written in the finite 

difference form given below. In the finite difference formulations 

time derivatives are represented by backward differences whereas 

spatial derivatives are represented by forward and central differ-

ences (see Figure 2). Imaginary nodes are generated on the outside 

of each boundary so that the boundary condition equations can be 

included [ 92 ) • 

4.3.l Axisynnnetric Two-Dimensional Case 

When the value of the dimensionless enthalpy is below zero, the 

finite difference representation of the principle of conservation of 

energy takes the form 

m-1 A.•1,J 
mH•.1,J 

m-1 
+ b .. 1,J 0~1 + l,j 

m-1 
+ a .. l,J 

m dm.-1. 0, 1 . +1- ,J l,J 

m-1 + e..1,J 0~ • l + { f. Fm . 1 . + g. Fm . 1 . + p. Fm • •1,J- 1 r,1+ ,J 1 r,1- ,J 1 r,1,J 

and 

where 

m-1 A••1,J 

- DTZ • Fm . . l + DTZ • Fm • . l } • S · Kz,1,J+ z,1,J- N s

m0 ..1,J 

{ K= s

+

=

mH.•1,J 
m-1 o..1,J 

(01?
0~ +

m-1 
K3 • . + ,1,J 

for 

1 
m-1 o..l,J 

mH..1,J < 0

[ (1 + OT) 
2-r

m-1 ]} K4 ..,1,J 
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m-1 
Kl ••,1,J 

OT) + (1 - -2-r

m8i,j+l 

m-1 
K2 ••,1,J 

(4.13) 

(4.14) 



( oT/ of!l~~
K~-~ °'s y = Ks 6~ = l,J 

l,J m-1 Ks o.. . l,J 

P. = ( ch)2 
DTZ

(ch) 2 
- 2T. = 20n l 

l 

bf!l-~ = (1 + OT) Km-~ . 1,J 2T 1,1,J 

m-1 ( l _ OT) Km-1 a .. =1,J 2T 2,i,j 

rn-1 ( OT) 
2 Krn-1 d. . = l,J on 3,i,j 

m-1 (--2.!) 
2 rn-1 e = K4 .. 

i,j on ,1,J 

f. OT (l + .h_)= -21 2Ti 

g. 01' (1 - .h_)= 2l 2Ti 

For the range of dimensionless enthalpy values between O and 1, the 

describing equations in finite difference form can be written as 

and 

rn-1 + e .. l,J 

- DTZ

rn 0. . = 0 l,J 

b
m-1 ,..JTl m-1

+ i,j ~i+l,j + 8i,j 
,..m m-1
tJ. 1 . + d. . 1- ,J 1,J e:1 . 1 1,J+ 

..m { m m~- . 1 + f. F . 1 . + g . F . l . l,J- l r,1+ ,J l r,1- ,J 
m

+ P. F .. l r,1,J 

Fm + DTZ Fm } .?..K.. 1 . . 1 N s2,1,J+ z,1,J-

for 0 Hf!l . l1,J 
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When the values of the dimensionless enthalpy are above 1, the 

finite difference representations 

mmH. •1,J = bm-1 + ..l,J 0. 1 . 
l+ ,J 

m-1-- · ,.JTI Am=-1 
+ 8i,j ~i-1,j + i,j 

m-1 + d. . l,J 
m m-1 8i,j+l + 8 i,j 

m+ P. F .. l r,l,J 

and 

Ef.l .l,J 
H~ . - l 

= 1,J 
o~-~ l,J 

are obtained. 

for 

/ 

fJ!l. . 1 + { f. Fm . 1 •l,J- . l r,1+ ,J 
m

+ g. F • ·· 1 •. l r, 1- , J

mH••
l.' J

> 1 

y

If the system initially is at a uniform temperature above the 

fusion temperature or at the fusion temperature without internal 

thermal radiation, then 

Ef.l . = 0I l,J for all i,j 

0H..l,J =

0
F .. =r,1,J 

where 

0l + D .. l,J 

0F .. z,1,J 

e? . l,J 

= 0

for all i,j 

for all i,j 

01 = initial dimensionless temperature 

When the inside and outside cylinder of the cylindrical annulus 

are maintained at constant temperatures with the insulated end 
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(4.17) 

. (4.18) 

(4.19) 

(4.20) 

(4.21) 



surfaces, the thermal boundary conditions in terms of dimensionless 

temperatures become 

m 0. at r for all j01 . = = rI ,J 1 

m 0 0M . = ,J 0
at r = ro for all j

m m at z 0 for all i0. 1 = 0. 2 = 1,- 1, 

em m * for all i= 0. N at z = z i,N-1 1,-

The dimensionless enthalpy must be again incorporated with the 

dimensionless temperatures depending upon the values of enthalpies. 

For boundary elements with different conditions from Equation (4.22), 

such as a convective boundary condition or an appropriate heat extrac-

tion or supply, Equations (4.13), (4.15), and (4.17) may be modified 

to include the specific boundary conditions. 

The finite difference formulation of the moment differential 

equations then reduces to 

AA~-~ l,J 

m
F ..r,1,J 

m
F ..z,1,J 

m . . =0,1,J 
(1 + §.I_) m

2T- ~o,i+l,j + 
1 

(l - ~~-) ~~,i-1,j 
1 

=

=

m .. 1 + 0,1,J+ 

l 
- 6rr6t 

m
(\jJo i+l J0 

' '

1 
- 6110n 

m
(\jJO i J·+l 

' '

m m-1. . l + BB. . 0,1,J- 1,J 
m

¢ ••1,J 

m- \jJ . . ) 0,1-l,J 

m- \jJ . . 1 ) 0,1,J-
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where 

= 12n(ot) 2 (l - w~m:l) l,J 

For boundary elements, the finite difference representation of 

Marshak type boundary conditions must be substituted into Equation 

(4.23), (4.24), and (4.25) to satisfy the thermal radiative boundary 

conditions. Then, at the inside cylinder of the system, the radia-

tive intensity and heat flux are modified into 

03~ 
\Jim = 2 Wm • + .:_:_J_ (1 - ~)
o,l,j o,2,J 01 21 1 

2
+ ( CT) .m BBm-1

W • 1 + l,J· en o,l,J-
m¢1 . ,J 

Fm 
r,l,j 

Fm 
z,l,j 

where 

oom-~ 
l,J 

01 

03~ J 

=
1 ( .m 03m )

\jJo,l,j - j 

1 m m ) 
= - 6n6n (~o,l,j+l - ~o,l,j-1 

AAm-~ 1 (1 -~) = l,J + 01 2Tl 

El 
= 201 

2 2 - E: •

= 4TI <l>m E. = 3 ( Wl) 
wl,j l. E: •

Wl 
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(4.26) 

(4.27) 
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When the system is initially at the fusion temperature and it is 

being solidified from the inside cylinder, neglecting thermal radia-

tive penetration into the liquid region leads to the modification of 

intensity and heat flux at solid/liquid interface as being given in 

the following paragraphs. 

The number of radial nodes at S/L interface is obtained from 

Figure 4.1: 

LL= i when * CT CT 2

LL= i + 1 when ~.,.* cS-r-
U L > L

2

Then 

m-1 ,1, m
FFLL , J. 't' LL . 

0' 'J 
=

2
+ (i!) ,1,m BBm-1on 't'o,LL,j-1 + LL,j 

F2~ 2 
_J_ m · ( CT) ,1im
Fl + 2 ~o,LL-1,j + 6n 't'o,LL,j+l 

m
¢ LL,j 

Fm l m - F2~) = 6TIF-l • 6-r (\Vo, LL, j r,LL,j J 

Fm . 1 m m = - 6nc5n (\l)o LL j+l - \Vo ,LL, j-1) -z,LL, J ' '

where 

m-1 m-1 (1 + .§.!_) 1
FFLL,j = AALL,j + Fl2-rL 

F2~ = 47T c'Pm
J w2,j 

Fl 
E2

= 2 6-r
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(4.30) 

(4.31) 

(4.32) 



-1...--l---.,,.---==---r- ... .... 
..... .... or* ' .... 

',..., i _S/L INTERFACE---

j-1 i+1 

Figure 4.1 Moving S/L Interface at Fixed Meshes 
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At the left end of the base surface the moment differential 

equations take the forms 

GG~-l \V-m (1 + -2.!...) m ( ch ) m= 'V • 1 1 + l - 2T. 'Vo,i-1,1 1,1 o,i,l 2T. 0,1+ , 
l l

2 G3~ 2
ci!) m (OT) m-1 m+ 2 1 'V • 2 + Gl + BB. l ¢. 1 on 0,1, on 1, 1, 

Fm 
r,i,l 

Fm 
z,i,l 

where 

GG~-l 
1,1 

G3~ =l 

Gl =

1 m m
= - 6TTOT <wo,i+l,l - wo,i-1,1) 

1 m m ) = 6nGl •on (\jjo,i,l - G3. 
l 

AA~-l 
2 1 

= + ( OT) 
Gl 1,1 on 

m
4TI¢ 3 . 1 W , 1, 

E3 
26n

At the right end of the base surface, the finite difference 

representation of the moment differential equations becomes 

PP~-1 ¢m =1,N o,i,N 
(l OT) 'Vm + (l 8T) 'Vm 

+ 2Ti o,i+l,N - 2Ti o,i-1,N 

2
+ 2 (01) 'Vm. on 0,1,N-l 

2 P3~ OT 1 m 1 ( ) BB. -
+ on PY-+ 1,N 

Fm 
r,i,N 

Fm 
z,i,N 

l m m 
= - 6noT (¢0,i+l,N - 'Va,i-1,N) 

1 
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where 

ppf!l-1 AAf!l-l ( o-r) 2 1 = + . -
l, N l., N on Pl 

P3~ =1 
4n c!>m

w4,i,N 

Pl 
E4 

= 2on 

4.3.2 Cylindrical Symmetric One-Dimensional Case 

For the cylindrical symmetric one-dimensional case, Equations 

(4.13) through (4.22) reduce to 

m-1 H~ = YH~-l m-1 m m-1 if.' 1 { m 
A. + b. 0. 1 + a. + + f. F . l 

l l. J. 1 l+ l l- l r,1+ 

+
P _m• t- •

l r,1 

and 

H~ 
IT\ l 

0 i = -/ -m---=-1-
0. 

1 

+ g. Fm .i 1} 
l r, -

for 

. S Krr s

H~ < 0
1 

m m-1 · bm-1 m m-1 mYH YH + 0. l + a. 0. l +i = i i l+ 1 1-

and 

0~ = 0
1 

for 0 H~ l 
l 
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Af!l-l Hf!l YHf!l-l bm-1 m m-1 m m 
= 0. 1 + a. 0. 1 + A. - y

1 1 1 + i l+ 1 1- 1 

+ { f. Fm + P. Fm. + g. Fm • s Kl r,i+l l r,1 l r,i-1 N s

and 

m 1 
0~ 

H. -
H~ 1 for > 1 = m-1 l o. 1 

1 

For boundary nodal points whose conditions are different from 

those given in Equation {4.22), Equations (4.39), (4.41)), and (4.43) 

must be modified to satisfy the appropriate boundary conditions. For 

a case where a constant heat flux is extracted from an opaque inner 

surface of the cylinder, Equation (4.11) on boundary element is 

modified as 

S (l or) F ) - Ste. Ks - N. Ks + 2t r 
+ OT Tl 2

where 

Ste = Stefan Number 

. The finite difference representations of Equation (4.45) are 

obtained, depending upon the phase status of a boundary element, as 

(4.43) 

(4.44) 

(4.45) 

YH~-l + b~-l e; - Ste • Ks· OT + • Ks { fl <~,l+ ~,2) } 

(4.46) 
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and 

em 
1 =

and 

A(m-1) 
l 

and 

em 
l = 

where 

A(m-1) 
1 

Hm 
1 for Hm < 0m-1 1 

01 

for 0 H~ 1

*
bm-1 

Hm YHm-1 bm-1 0m 1 
1 = l + 1 -2 + -m--1-

01 

m 1 Hl -
m-1 for Hm > 1 

01 
1 

m-1 
* al 

Am-1 - m-1 = 1 01 

- Ste· K • o-rs

Equations (3.37) and (4.12) are discretized in a manner similar 

to that employed in the previous section to obtain 

AA~-l m (1 OT m
+ (1 - ~) \Vm + 88~-l <I>~wo,i = + 2T.) llJo,i+l 1 2T. o,i-1 1 1 

l 1 

Fm . 1 rn m
= - 6TIOT (llJo i+l - ¢0,i-l) r,1 

'
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For nodes on the inner surface of the cylinder the substitution 

of the Marshak type boundary condition into Equation (4.49) yields 

00m-l \JJm =
1 o,l 

m D3 2\JJo,2 + Dl 

l 
6TID1•6T 

m(\JJo,l - D3) 

At the solid/liquid interface, the finite difference formulation 

of the moment differential equation is carried out by using the same 

discretization as used in Equation (4.30) to obtain 

FFm-1 ,1im
1 't' o LL 

'

=

=
CT 

(1 + 21)
L

F2 2 ,1,m 88m-l ~m 
Fl+ 't'o,LL-1 + 1 LL 

1 
6nF1·6-r

m
(\JJo,LL - F2) 

4.4 METHOD OF SOLUTION 

The implicit finite difference equations developed in the 

previous section, together with the initial and appropriate boundary 

conditions, form a set of non-linear simultaneous algebraic equations 

for the unknown temperatures, enthalpies, radiative intensities, and 

radiative heat flux. In these equations enthalpies at time level m--1 

are known and the temperatures, radiative intensities, and radiative 

heat flux may be evaluated by using appropriate governing equations. 

The Gauss-Seidel iterative method with successive over-relaxa-

tion ( 92] is used to solve the non-linear simultaneous difference 

equations. This iterative method is attractive because it needs 

little computer memory and it works. 
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For the axisymmetric two-dimensional case, the right hand side of 

Equation (4.13) is first calculated by using the most recently.evalu-

ated enthalpy values and then Equations (4.14), (4.23), (4.24), and 

(4.25) are used to compute the corresponding temperature values, radia-

tive intensities, and radiative heat fluxes. After the sign of H .. is 
l., J 

determined from the previous iteration, the new value of Hi,j is then 

computed using the appropriate equations {Equations (4.13), (4.15) or 

(4.17)) applicable for the different range of enthalpy values. This 

value of H .. is then modified by the over-relaxation factor as 
1,J 

H~. 1,J 
where 

= ORF • H~l. +1,J (1 - ORF) H~o.l,J 

ORF = over-relaxation factor 
m

H.. =1,J 
H~l. =

l.' J

H~o. =1,J 

new value 

value calculated using Equations (4.13), (4.15), or (4.17) 
depending on the range of enthalpy values 

value calculated on previous iteration 

In the successive over relaxation scheme, the speed of conver-

gence is. significantly improved. It should be noted that for ORF= 1, 

the procedure is identical to the Gauss-Seidel method, and for a choice 

of ORF in the range 1 <ORF< 2, the convergence is more rapid. 

The dimensionless temperature is correspondingly modified and 

the radiative intensity and radiative heat flux are computed from the 

temperature distribution in Equations (4.23), (4.24), and (4.25). 

The process described above is repeated for all nodes until the 

change in H~ . between successive iterations satisfy a convergence l,J 
criterion. 
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·M N 
E E IH(!l • - H(!lO. Il,J l,J < ERR 
i=l j=l IH.m. Il,J 

where 

ERR= allowable error tolerance. 

The procedure is then initiated for a new time and the number of 

time steps is extended as long as is required. The whole numerical 

procedure is diagrammed in Figure 4.2. 

When the enthalpy distribution has been calculated with suffi-

cient accuracy, the temperature, radiative intensity, and radiative 

heat flux distribution is obtained. The position of the solid/liquid 

interface is also determined from the enthalpy distribution. The 

location of the interface is where the value of the dimensionless 

enthalpy is zero. This interface location is used as one of the 

boundary surfaces when the internal thermal radiative transfer is 

taken into account. The total conductive and radiative dimensionless 

heat flux at the inner surface of the cylinder at any time mis 

evaluated by 

Ft ,1 ) =
total 

where 

=

qc 1 
~) + Fr,l) 

conductive radiative 

K ae ) • 1 a-r =
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F ) 
t,l total 

= total dimensionless conductive and radiative heat 
flux at the inner wall 

The total volume solidified at any time is also obtained by 

sununing all the masses of the solid elements in phase change 

material. 

4.5 APPROXIMATE ANALYTICAL SOLUTION 

Since the conductive heat transfer problem involving change of 

phase is non-linear, the coupled radiative transfer with conduction 

in a phase change medium yields more non-linearity. Due to the non-

linearity introduced by the moving boundary and the higher power of 

temperature as well as the effects of refraction and reflection and 

the directional and spectral nature of radiation, both the exact and 

approximate analytical treatments and experimental investigations are 

limited and difficult [ 40,90 ]. 

In order to assess the numerical results for the present system, 

whose exact or approximate solutions are not reported in the litera-

ture, approximate analytical solutions for the one-dimensional 

axisymmetric heat conduction equation were obtained after making 

simplifying assumptions. The system initially was assumed to be at 

the fusion temperature and the liquid phase remained at this temper-

ature throughout the process. Further, the change in internal energy 

in the solid phase was neglected. This assumption is reasonable when 

the latent heat of the phase change material is much larger than the 

sensible heat. 
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With the assumptions given above, the governing heat conduction 

equations for the cylindrical symmetric one-dimensional case in 

dimensionless form reduce to 

a20 1 
a0 

s s

aR2 + R 7R = 0 for 1 < R < L 

0 Q, = 0 for 

s2r2 dL 
a0 

s
dE: = 7RI 

for R = L 

The boundary conditions are 

0 (R) = 0 for R = 1 
s 1 

0 (R) = 0 for R = Ls 

L(O = 1 for = 0

The classical solutions of Equations (4.58) and (4.60) that 

satisfy the above boundary conditions are 

L2

2 lnl - ¾ L2 
J = O 

where 

1 • + - )
4
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The numerical solutions for pure conduction obtained using the 

enthalpy approach were compared with the approximate analytical 

solutions given by the simultaneous solution of Equations (4.64) and 

(4.65). In Figure 3 it may be seen that the analytical solution 

predicts slightly smaller values of temperature distribution than the 

numerical solution does. It may also be seen in Figure 4 that the 

interface radius predicted by the numerical solution is slightly 

smaller than that predicted by the analytical solution. The slight 

differences between the two solutions are due to the small amount of 

heat coming from the change in the internal energy of the solid phase 

which was included in the numerical solution and neglected in the 

approximate analytical solution. The difference between two 

solutions became smaller as the latent heat of fusion of the phase 

change medium increased. 

Then the numerical results at the center nodes in radial or 

axial direction for two-dimensional problem were compared with those 

of one-dimensional case. The temperature and interface are compared 

in Figures 35 through 40 and 67 through 73. The agreement between 

the one- and the two-dimensional case is generally very close and, 

hence, reassuring. 

When the internal thermal radiation is coupled with conduction 

for a solid region with a moving interface, the radiation effects on 

the temperature distribution of the phase change medium at any time 

and steady state conditions are in agreement with those reported in 

the literature for a semi-transparent medium without phase change. 

This is expected because the difference between the phase change 
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problem and the problem without phase change is at the solid/liquid 

interface where the latent heat of fusion is included for the phase 

change medium. 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSION 

The results of the present investigation are obtained from 

numerical experiments performed upon the cylindrical symmetric one-

and the axisymmetric two-dimensional solidification problems. Since 

no prior work of the present problem has appeared in the literature, 

the general objective of these experiments is to gain a quantitative 

understanding of the effects of radiative transfer upon the dynamics 

of the phase change process. 

Even though the computer programs (see Appendix C) have been 

developed to account for the temperature dependent conductivities and 

gray optical properties, those properties are assumed independent of 

temperature except for the first one-dimensional case where the 

conductivities are linearly dependent on temperatures for the solid 

region, and, for simplicity, only a liquid phase at the fusion 

temperature is assumed to be initially present. 

Since a large number of independent parameters are involved to 

illustrate the effects of radiation heat transfer in a phase change 

material, results for various combinations of those parameters have 

been obtained. 

For the present investigation, the various combinations of 

different conductivities, inside and outside temperature ratios, wall 

and solid/liquid interface emissivities, and scattering coefficients 

have been employed for an optically thick medium (a~ 4.572 m-1). 

In order to avoid an inaccurate characteristic of the P-1 approx-

imation for an optically thin medium, the internal thermal radiation 

has been taken into account just after the radial optical thickness, 
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a(£ -rI)' became greater than 1.5. This approximation may be 

justified for some real situations since the optical thickness or 

temperature difference of a medium between the inner cylinder and the 

interface becomes small enough to neglect an attenuation of radiation 

or a net radiative heat transfer at the beginning of solidification. 

In the numerical solutions using the iterative scheme, the 

convergence criterion was based on the average of the absolute 

magnitudes of the changes of the enthalpy variable at all the nodes. 

This criterion was presented in Equation (4.56) in Chapter 4. 

For an allowable error tolerance value (ERR) of 0.00001, the 

results of two successive iterations agreed to three significant 

digits. The accuracy of the numerical results was then considered 

adequate. The second parameter, which is critical for the accuracy 

of the results, is the dimensionless time step. Different time steps 

were studied by trial and error in order to find suitable sizes. The 

other parameters examined were the radial and axial mesh sizes. 

Different spatial mesh sizes were used in order to investigate their 

influence on the accuracy of the results. As the mesh size 

decreases, it is necessary to reduce the time step appreciably, 

increasing the C.P.U. time significantly. 

By trial and error, it was found for the final computer runs that 

the number of spatial meshes can be respectively taken as 40 in radial 

direction for one-dimensional and/or two-dimensional cases and 20 in 

the axial direction for the two-dimensional case at d~ = 0.001 for the 

input data without losing the desired accuracy. Convergence has been 

achieved within ten interations at each time step for the combinations 

of different parameters given in the following two sections. 
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5.1 SOLIDIFICATION OF CYLINDRICAL ONE-DIMENSIONAL ANNULUS 

The purposes of this numerical experiment are to determine and 

analyze the significance of the conduction-radiation interaction 

parameter N and the error incurred by neglecting radiative transfer 

in an example representative of the solidification of a semi-

transparent medium in a concentric annulus. A liquid cylindrical 

medium, initially at the fusion temperature is suddenly brought into 

perfect contact with opaque inner surface of a cylinder. The 

temperature of the inner cylinder surface is less than the medium 

solidification temperature and is held constant, while the 

temperature of the outside cylinder is maintained at the fusion 

temperature. The thicknesses of the inside and outside cylinder 

walls are small enough to neglect conduction, and thermal radiative 

penetration into the liquid region from the solid region is assumed 

to be neglected. Both boundaries are diffuse gray and the phase 

change medium is gray with an isotropic scattering coefficient. 

Because of the general lack of property data for the high 

solidification temperature materials, it is impossible to determine 

input parameters and properties specifically for a given substance. 

However, the thermal and optical properties used in this investiga-

tion are approximately for the situation of a fluorite, one of the 

high temperature melting/solidification semi-transparent materials 

[ 3,6 ]. The temperature of the inner cylinder TI has been main-

tained at 810.BK that is lower than the medium solidification 

temperature TF. The reference temperature TR in dimensionless 

variables has been taken same as TF. 
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In Figures 5 through 8,_ the effect of linear dependence of 

thermal conductivity on temperature is shown along with the constant 

thermal conductivity. A broken circle in Figure 8 indicates the 

points where the internal thermal radiation has been taken into 

account. The linearly temperature dependent conductivities do not 

significantly affect the thermal radiation effect on the analysis. 

However, it makes the problem more nonlinear. Thus, constant 

conductivities are used throughout the following results. 

The first quantitative thermal radiation effects on the trans-

ient temperature distribution in the solid phase of the present model 

are shown in Figures 9 through 14. The three different conductivi-

ties are employed in Figures 9, 10, and 11 while the three different 

temperature ratios_ are used in Figures 12, 13 and 14 for some typical 

Stark numbers or the conduction-radiation parameters. In Figures 9 

(N = 0.304) and 14 (N = 0.176), the temperature distribution becomes 

more "S"-shaped (steeper gradient near inner and outer boundary 

surfaces). This is expected for the smaller values of N since the 

medium near the hot wall emits more radiant energy than it absorbs, 

or vice versa, near the cold wall. The medium in the cold region is 

more affected by the thermal radiation of the medium in the hot 

region and/or the hot wall than the opposite case. It may also be 

seen that the relative importance of thermal radiation becomes 

greater as N decreases even though the temperature ratio (TI/TF) is 

constant. 

Thus, the smaller the value of N the larger is the temperature 

gradient at the inner surface of the cylinder for the conduction 

component as compared with the pure conduction case which, in turn, 
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increases the conductive heat extraction rate to maintain the con-

stant inside temperature, as clearly shown in Figures 15, 16, and 17. 

The different conduction-radiation parameters are used for the three 

different conductivities in Figure 15. The conductive heat 

extraction rate for the combined case is greater than that of the 

purely conductive heat transfer case where the internal thermal 

radiation has not been taken into account. The difference in 

conductive and purely conductive heat extraction rate as well as 

between the total heat extraction (conductive and radiative extrac-

tion) and the purely conductive heat extraction becomes slightly 

smaller as N decreases. It can also be seen that the conductive heat 

flux at the inner surface of the cylinder decreases with time, faster 

at earlier times, but the radiative flux becomes almost steady from 

the beginning of solidification [ 99 ]. 

However, for the different inside and fusion temperature ratios, 

the radiative heat transfer effect is significantly increased as N 

decreases as shown in Figures 16 and 17. For TI/TF = 0.4, it is 

noticed that the radiative heat flux decreases as the time increases. 

This shows the fact that the transient effect on the radiative flux 

becomes important for the higher temperature solidifying or melting 

semi-transparent materials. The total and conductive .heat extraction 

rates for the combined case, being compared with the pure conduction, 

are greatly increased for N < 1.0. In Figure 18, the steady state 

heat fluxes at the inner cylinder are illustrated for black surfaces 

and different temperature ratios. It can be seen that although the 

magnitude of the radiative heat flux is small compared to the 

conductive heat flux the effect of taking radiation into account is 
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significant; the conductive flux component is much greater than when 

radiation is neglected. This effect is seen to increase with 

increasing temperature ratio. It should be noted that the difference 

between conduction and pure conduction is bigger than the absolute 

magnitude of radiative heat flux. And this radiative flux 

becomes greater than the purely conductive extraction for TF/TI > 3.5. 

Figures 19 through 23 show the transient radiative heat flux 

distribut'ions in the radial direction in the solid region. The 

magnitude of the radial radiative heat flux initially increases but 

then becomes smaller as time increases. It has a maximum value near 

the center except the case for~ = 3.0 in Figure 22 and~= 1.5, 3.0 

in Figure 23, where some net positive radiative heat flux has 

developed. There is no adequate explanation for the occurrence of 

the large positive radiative heat flux. It shows that the change of 

radiant intensity gradient does not follow the pattern of the other 

cases given in the figures. Recognizing that the divergence of the 

radiative flux vector is negative in the vicinity of the cold 

surface, it is clear that the rate of absorption of radiant energy 

per unit of the volume exceeds the rate of emission. By the opposite 

reasoning, the rate of emission of radiant energy exceeds the rate of 

absorption near the hot interface. This explains why the "S"-shaped 

temperature distributions are formed within the solid region. 

Figures 24 through 26 show an acceleration of the solid/liquid 

interface at different times when the thermal radiation has been 

taken into account in the semi-transparent phase change material. 

The different conductivities in Figure 24 and temperature ratios in 

Figures 25 and 26 are introduced to indicate the internal thermal 
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radiation effect on the dynamics of the solid/liquid interface. An

acceleration of the interface is a consequence of the cooling of the 

liquid by radiation. 

The radiative effect of different wall emissivities on the 

temperature, the radial radiative heat flux, the solid/liquid inter-

face, and the heat flux at the inner cylinder is illustrated in 

Figures 27 through 30. In Figure 27, the slope of the temperature 

distribution decreases near the cold inner surface and increases near 

the hot interface with decrease in emissivity. The absolute magni-

tudes of the radial radiative heat flux and the heat extraction rate 

at the inner cylinder decreases as the emissivity decreases in 

Figures 28 and 30. An influence upon the solid/liquid interface 

location by the different emissivities is shown to be within three 

percent in Figure 29. The radiative effect of different scattering 

coefficient won above four cases for TI/TF = 0.5 and Ks= 3.462 W/mK 

has been found to be within 2% of values for w = 0.5 and is shown in 

Figures 31 through 34 and hence, only single curves for the transient 

temperature distributions and the radial radiative heat fluxes appear 

in Figures 31 through 33. 

5.2 SOLIDIFICATION OF FINITE CYLINDRICAL TWO-DIMENSIONAL ANNULUS 

In the numerical experiments for the finite concentric cylindri-

cal medium, both base surfaces of the finite concentric cylinders are 

assumed to be perfectly insulated. The length of the cylinder is 

taken the same as the radius of the outside cylinder radius (z/r =
0

1) except in Figures 40, 48, 50, and 58 where z/r is 0.5. In 
0

Figures 35 through 40, the transient temperature distributions in the 
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radial direction for different conduction-radiation parameters are 

illustrated at j =N/2 of the inside cylinder (see Figure 2) and 

compared with the results obtained in the numerical experiments for 

the infinite concentric cylindrical medium. Even though the differ-

ence of temperature distribution for the purely conductive case 

between one- and two- dimensional problems is negligible, the differ-

ence for the combined conduction and radiation case between the 

finite and the infinite concentric cylinders becomes greater as N 

decreases (see Figures 35 through 38). This suggests that the 

infinite one-dimensional analysis for the finite two-dimensional 

present model may lead to a significant error as radiative transfer 

becomes increasingly important. It can also be seen that the slopes 

of temperature profiles of the one-dimensional model near the inner 

cylinder becomes steeper than those of the two-dimensional analysis. 

An increase of the steepness produces a greater conductive heat 

extraction rate at the inner cylinder (see Figure 49). The effect of 

emissivities of the walls on temperature distribution is shown in 

Figure 39 where the temperature near the solid/liquid interface is 

mostly affected. This is also seen in the radial radiative heat flux 

at~ = 8. 0 in Figure 53. The change of length in the axial direction 

does not significantly affect the temperature distribution as shown 

by comparing Figures 35 and 40. This is because the magnitude of the 

axial radiative heat flux is less than one-tenth of the radial radia-

tive heat flux for this case as will be shown in Figures 50 and 58. 

The transient radial heat flux distribution in the axial direc-

tion is displayed in Figures 41 through 48 for different parameters. 

As the internal thermal radiation becomes more important, the total 
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heat extraction rate along the axial direction tends to be more non-

uniform for the black surfaces as shown in Figures 41, 42, 43, and 

45. However, more uniform heat flux distributions are established 'in 

Figures 44, 46, and 47 by employing lower surface emissivities. 

Compare Figures 43 and 44 and 45, 46, and 47. In Figure 48, the 

transient radial heat fluxes at the inner cylinder are displayed for 

z/r = 0.5, and it is seen that these are not greatly influenced by 
0

the change of the length (compare with Figure 41). The heat fluxes 

in the radial direction, at j = N/2, at the inner cylinder after 

steady state are plotted with respect to the temperature ratios, 

TF/TI's in Figure 49. The heat fluxes obtained for the finite 

annulus are then compared with those of the infinite model. The 

radial radiative heat flux for the infinite model (B) is overpre-

dicted, being compared with the finite model (A), for TF/TI > 2.0, 

and the discrepancy between these two models increases as TF/TI 

increases. The difference of conductive heat extraction rates for 

the combined case between two analyses continually increases as TF/TI 

increases even though the radiative heat fluxes are close to each 

other until TF/TI = 2.0. The single line is used to show the purely 

conductive heat fluxes for two different models since the difference 

of the results obtained between the infinite and the finite analyses 

is not discernible. Note that the axial radiative heat flux has been 

included for the finite cylindrical problem while only the radial 

radiative heal flux has been considered for the one-dimensional 

problem. 

Figures 50 through 56 show the transient radial radiative heat 

flux distributions at j = N/2 in the solid region. The employment of 
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gray surfaces produces a positive radial radiative heat flux at 

= 8.0 shown in Figure 53 as is in the one-dimensional case. The 

positive quantities in Figure 53 mean that the radiative intensity 

has been increased in the negative r-direction near the solid/liquid 

interface. An increase of the positive divergence of the radiative 

flux vector near the interface yields, being compared to the rate of 

absorption, more emission rate of radiant energy per unit of the 

volume. A similar phenomenon has appeared in Figures 54, 55, and 56 

for N = 0.176. 

In Figures 57 through 66, the transient axial radiative heat 

flux distributions at i/2 are illustrated. It may be seen that the 

axial radiative heat flux for z/r = 0.5 in Figure 58 becomes 
0

slightly larger near both base surfaces than that of z/r = 1.0 shown 
. 0 

in Figure 57. Symmetric axial radiative heat flux effects are 

obtained because of the symmetric geometry of the present model when 

the solid/liquid interface becomes a straight line (Figure 67). A 

schematic sketch of symmetric radiative heat flux is shown in Figure 

5.1 where (A) represents the negative axial flux while (B) represents 

the positive axial flux shown in Figures 57 and 58. Probable reasons 

for the non-symmetric effect on the axial flux at~= 20.0 and 30.0 

in Figure 59 are in the approximation of RTE with Marshak type 

boundary conditions or an error in the numerical computation. 

Figures 60 through 62 show the effects of varying wall and solid/ 

liquid interface emissivities for N = 0.736. The symmetric effect on 

the solid/liquid interface can also be seen 

-80-



(A) (B) 

Figure 5.1 A Schematic Sketch of Symmetric Radiative Heat Flux 

in Figures 70 (N = 0.736), 71 (N = 0.422) and 72 (N = 0.176). Figure 

63 shows the transient axial radiative heat fluxes for N = 0.422. 

Figures 64, 65, and 66 show that the transient axial radiative heat 

fluxes may almost die out if the surface emissivities are diminished. 

In Figures 67 through 72, the transient solid/liquid interfaces 

of the finite concentric cylindrical medium are compared with those 

of the infinite concentric cylindrical medium. The difference 

between one- and two-dimensional cases becomes larger as the time 

increases and the conduction-radiation parameter decreases. The 

movement of the solid/liquid interface locations by the infinite 

model is always predicted to be faster than those of the finite model 

for the various parameters. The effect of wall and solid/liquid 

interface emissivities on the interface is shown in Figure 73. The 

employment of black surface produces a faster solidification process 

than the gray cases. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS AND Sm.NARY 

The effect of internal thermal radiation on the solidification 

and energy transfer within an absorbing, emitting, isotropically 

scattering infinite and finite, semi-transparent gray phase change 

medium bounded by two concentric cylinders has been investigated. 

Since the exact treatment of a coupled heat transfer problem with 

radiation for a finite phase change cylindrical medium is compli-

cated, it has been necessary to employ approximate methods which are 

generally good for multi-dimensional analysis and parameter studies. 

In the present work, the principle of conservation of energy 

which employs enthalpy and temperature as dependent variables has 

been first coupled with a set of moment equations that are derived 

from the radiative transfer equations and Marshak type boundary 

conditions by applying P-1 differential approximations. The 

transient temperature distribution, interface location of a semi-

transparent phase change medium, and the local radiative radial and 

axial heat fluxes have been obtained by using a Gauss-Seidel 

iterative numerical scheme for some typical cases. 

The optically thick solid medium was in local thermodynamic 

equilibrium and gray, homogeneous, and isotropic assumptions were 

employed. Surfaces were assumed to be opaque and diffuse gray. 

The computer programs were developed so that different boundary 

conditions could easily be incorporated--possibly with semi-

transparent surfaces, and spatially dependent thermal and optical 
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properties except density variations within a medium. In the typical 

numerical experiments chosen in this investigation, the solid/liquid 

interface was quantitatively shown to accelerate more as the 

conduction/radiation parameter, N, became smaller, particularly less 

than 1. "S"-shaped temperature distributions (steeper near the inner 

and outer walls than in the central region) were obtained when the 

internal energy transfer occurs simultaneously by conduction and 

radiation. 

As a result of the steeper temperature gradient near the inner 

cylinder for the combined energy transfer analysis, the conductive 

heat extraction rate at the inner cylinder has increased. The 

conductive and/or radiative heat extraction rates at the inner 

cylinder are plotted for different temperature ratios (TI/TF) or Nin 

order to show the effect of varying the fusion temperature. 

It was found that the transient solid/liquid interface and 

temperature distribution for the finite concentric cylinder (TI/TF =

0.5, r 1/r0 
= 0.5, z/r

0 
= 1.0) was very close to that of an infinite 

cylinder when the conductive heat transfer was the only energy trans-

fer mode. However, when the radiative transfer became increasingly 

important, it was shown that the infinite one-dimensional analysis 

for the finite two-dimensional model might lead to a significant 

error. 

For a finite concentric annulus, the solid/liquid interface 

became almost a straight line when N was greater than 1 and at the 

early stages of solidification (see Figures 67 through 70). The 

axial radiative heat flux distributions were nearly symmetric with 

respect to the center line from both base surfaces when solid/liquid 
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interface is a straight line._ The net axial radiative heat flux was 

then close to zero at the center because of the physically symmetric . 

distance effect of the geometry and the assumptions of a gray, 

homogeneous, and isotropic medium together with gray diffuse opaque 

boundary surfaces. When different emissivities of the walls, 

temperature ratios (TF/TI), and conductivities were used for the 

coupled problem, there was some net radiative heat flux development 

where the change of radiant intensity gradient was somewhat different 

from the other cases. An increase of the positive divergence of the 

radiative flux vector near the interface yielded, being compared to 

the rate of absorption, more emission rate of radiant energy per unit 

of volume. More uniform radial radiative heat flux at the inner 

cylinder and a smaller magnitude of the axial radiative heat flux 

were obtained when the gray surfaces for some typical cases were 

employed. 

In the numerical experiments using the iterative scheme, the 

allowable error tolerance value and the time step size were critical 

for the accuracy of the results. As the mesh size decreased by a 

factor of two, it was necessary to reduce the time step appreciably 

so that the C.P.U. time for the axisymmetric two-dimensional cases 

could be kept at a reasonable level. Therefore, the appropriate 

spatial mesh sizes for a specific time step were determined based 

upon two successive computer runs where the difference of these two 

results was within three percent in order to have an economical 

computing time. 
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6.2 FURTHER RECot+mNDED TOPICS 

Although the objective of the present investigation has been 

accomplished, the following areas are recommended for further 

research. 

1. The search must continue for simplified but meaningful 
methods that can determine the radiative heat flux for a 
non-planar multi-dimensional optically thin medium along 
with easy incorporation into the energy equation. 

2. An appropriate model for nongray radiative transfer in semi-
transparent phase change materials can be employed by 
including the weighted mean absorption coefficient that is 
analogous to the Planck and Rosseland mean approximations. 

3. The effects of optical anisotropy and non-homogeneity of a 
semi-transparent medium on radiative transfer may be 
significant and need to be examined. 

4. The radiative heat balance at the semi-transparent non-
planar boundary surfaces and the solid/liquid interface 
must be developed. The effects of surface curvature on the 
refraction of incident radiation and on radiative transfer 
as well as heat transfer, temperature distribution, and 
solid/liquid interface location should be determined. 

5. A convective effect can be included in the liquid region 
and an extension to three-dimensional geometry including 
angular direction is recommended. 

6. Although experimental investigations, particularly at high 
temperature, are challenging and difficult because of the 
complicated and long distance nature of radiation for the 
coupling of radiation with other modes of energy transfer, 
it is reconnnended that some experiments which would verify 
the findings of this investigation be devised. 
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p =2803.2kg/m3, as=0.0307m2/hr,Ks=3.462W/mK 
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Figure 44 HEAT Fl.UX AT INSIDE CYLINDER VS. DIMENSIONLESS AXIAL DISTANCE
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Figure 46 HEAT FLUX AT INSIDE CYLINDER VS. DIMENSIONLESS AXIAL DISTANCE
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Figure 49 
STEADY STATE HEAT FLUX AT INSIDE CYLINDER VS. TEMPERATURE RATIO

- ( HEAT FLUX FOR FINITE ANNULUS IS AT J/2 )

ew1 = ew2=1.0, e w3= e w4=1.0, w=0.0,a=4.572 /m,rt/ro=0.5 
Hs1=465.2kJ/kg, P =2803.2kg/m3, as=0.0307m2/hr,Ks=8.654W/mK
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Figure 50 RADIAL RADIATIVE FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

TI/TFaQ.5, e: w1= e: w2-1.0, e: w3• e: w4-=1.0,a-=4.572 / m
, w=0.5,ri/ ro=0.5,z/ro=0.5,Hsl=465.2kJ /kg 
Ks=17.307W/mK, P=2803.2kg/m

3
, as=0.0307m2 /hr
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DIMENSIONLESS RADIUS,R

RADIAL RADIATIVE FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

TI/TF=0.5, e:w1 = e:w2=1.0, e:w3= e:w4=1.0,a=4.572 /m
w -o.5,ri/ro•0.5,z/ roa:s 1.0,Hsl-465.2kJ /kg 

Ks=3.462W/mK, p=2803.2kg/m 3, as=0.0307m2 /hr
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DIMENSIONLESS RADIUS,R

RADIAL RADIATIVE fLUX VS. DIMENSIONLESS .RADIUS AT J=N/2

TJ/fF•0.5, e:w1- E: w2-1.0, e:w3- e:w4-1.0,am4.572 /m 
w =0.0,ri/ ro=0.5,z/ ro= 1.0,Hsl=465.2kJ /kg 

Ks=B.654W/mK, p=2803.2kg/m 3, as=0.0307m 2/hr 
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Dlt.4ENSIONLESS RADIUS,R

RADIAL RADIA11\/E FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

TI/rf=0.5, e::w1= e::w2=0.2, e:w3= e:: w4=0.2,a=4.572 /m
w=0.0,ri/ro=0.5,z/ro=1.0,Hsl=465.2kJ/kg 

Ks•8.654W/mK, p -2803.2kg/m 3, as•0.0307m 2/hr 
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DIMENSIONLESS RADJUS,R

-RADIAL RADIATIVE FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

Tl/rF=0.286, e:w1 = e: w2=1.0, e: w3= EW4=1.0,o=4.572 /m 
w =0.0,ri/ ro=0.5,z/ ro=1.0,Hs1=465.2kJ/kg 

Ks=8.654W/mK, p =2803.2kg/m3, a:s=0.0307m 2/hr
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DIMENSIONLESS RAOIUS,R

RADIAL RADIATIVE FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

Tl/rF=0.286, e:w1= e:w2=0.5, e:w3= e:w4=0.5,a=4.572 /m 
w=0.0,ri/ ro=0.5,z/ ro= 1.0,Hs1=465.2kJ /kg 

Ks=8.654W/mK, p =2803.2kg/m 3
, as=0.0307m 3/hr 
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DIMENSIONLESS RADIUS,R

RADIAL RADIATIVE FLUX VS. DIMENSIONLESS RADIUS AT J=N/2

TI/rF=0.286, E:W1 = e: w2=0.2, e:w3= e:w4=0.2,a=4.572 /m 
w=0.0,ri/ ro=0.5,z/ ro= 1.0,Hsl=465.2kJ/kg 

Ks-8.654W/mK, p-2803.2kg/m 3
, as-0.0307m 2/hr 
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DIMENSIONLESS AXIAL DISTANCE Z

AXIAL RADIATIVE FLUX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SLl/2

Tt/TF-=0.5, e:w1- e:w2-=1.0, e:w3- e:w4a1.0,a-=-4.572 /m 
w =0.5,rt/ro=0.5,z/ro=1.0,Hsl=465.2kJ/kg 

Ks=17.307W/mK, p=2803.2kg/m 3
• as=0.0307m 2/hr
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Figure 58 AXIAL RADIATNE FLUX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SLl/2

Tl/rf =0.5, e:w1-= e: w2=-1.0, e: w3-=- e:w4-=1.0,a=4.572 /m 
w=0.5,ri/ ro=0.5,z/ro=0.5,Hsl=465.2kJ /kg 

Ks=17.307W/mK, P=2803.2kg/m
3

, as=0.0307m2 /hr 
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Figure 59 AXIAL RADIATIVE R.UX VS. DIMENSIONLESS AXW. DISTANCE AT l=SU/2

Tl/rF=0.5, E:W1= e::w2=1.0, e::w3= E:W4=1.0,a=4.572 /m
w -o.5,ri/ro-0.5,z/ros:s1.0,Hsl-465.2kJ/kg 

Ks=3.462W/mK, p=2803.2kg/m 3
, as=0.0307m 2/hr
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DIMENSIONLESS AXIAL DlSTANCE , Z

AXIAL RADIATIVE FUJX VS. DIMENSIONLESS AXIAL DlSTANCE AT l=SLI/2

TI/TF•0.5, E:w1- E: w2-1.0, e:w3• e:w4-1.0,a•4.572 /m
w =0.0,ri/ro=0.5,z/ro=1.0,Hs1=465.2kJ/kg 

Ks=8.654W/mK, P=2803.2kg/m 3, as=O.D307m 2/hr 
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Figure 61 AXIAL RADIATIVE A..UX VS. DIMENSIONLESS AXlAL DISTANCE AT l=SLI/2

Tl/TF=0.5, E:w1= e:w2=0.5, e:w3= e:w4=0.5,a=4.572 /m 
w =0.0,ri/ro=0.5,z/ro=1.0,Hsl=465.2kJ /kg

Ks~8.654W/mK, p =2803.2kg/m 3
, as=0.0307m2 /hr 
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Figure 62 AXIAL RADIATIVE FLUX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SLI/2

TI/Tf=0.5, e:w1 = e: w2=0.2, e:w3= e: w4=0.2,a=4.572 /m 
w=0.0,ri/ro=0.5,z/ro=1.0,Hsl=465.2kJ/kg 

Ks-B~654W/mK, P aa2803.2kg/m 3
, as-0.0307m 2/hr
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Figure 63 AXIAL RADIATIVE FLUX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SU/2

TI/JF=0.4, e:w1 = e:w2=1.0, e: w3= e:w4=1.0,a=4.572 /m 
w=0.0,r1/ ro=0.5,z/ ro=1.0,Hsl=465.2kJ /kg 

Ks=8.654W/mK, P=2803.2kg/m 3, as=0.0307m 2/hr 
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AXIAL RADlATh'E A.UX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SU/2

11/lF=0.286, e:w1= e:w2=1.0, e:w3= e:w4=1.0,a=4.572 /m 
w=0.0,ri/ ro=0.5,z/ ro= 1.0,Hs1=465.2kJ /kg 

Ke-8.654W/ mK, P -=2803.2kg/m 3
, as-0.0307m 2 /hr
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Figure 65 AXIAL RADIATIVE FLUX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SLI/2

TI/TF=0.286, e:w1= e:w2=0.5, e:w3= e:w4=0.5,a=4.572 /m 
w=0.0,n/ ro=0.5,z/ ro= 1.0,Hsl=465.2kJ /kg 

Ks=8.654W/mK, p =2803.2kg/m 3, as=0.0307m 2/hr 
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Figure 66 AXIAL RADIATrvE Fl.UX VS. DIMENSIONLESS AXIAL DISTANCE AT l=SLl/2

TI/TF=0.286, e:w1= e: w2=0.2, e:w3= e:w4=0.2,a=4.572 /m 
w=0.0,ri/ ro=0.5,z/ ro= 1.0,Hsl=465.2kJ /kg 

Ksaa8.654W/mK, paa2803.2kg/m 3
, cs-0.0307m 2/hr 
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SOLID/LIQUID INTERFACE VS. DIMENSIONLESS AXIAL DISTANCE

Tf/lf s::0.5, E:W1 • e::w2~1.0, e: w3- e:w4-1.0,01:114.572 /m
w =0.5.ri/ro=0.5,z/ ro= 1.0,Hs1=465.2kJ /kg 

Ks=17.307W/mK, p=2803.2kg/m 3
, os=0.0307m 2/hr
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Figure 68 SOLID/LIQUID INTERFACE VS. DIMENSIONLESS AXIAL DISTANCE

11/TF=D.5, e:w1 = e:w2=1.0, e:w3= e:w4=1.0,a=4.572 /m 
w =0.5,ri/ro=0.5,z/ro=1.0,Hs1=465..2kJ/kg 

Ksa3.462W/mK, pcs2803.2kg/m3, as-0.0307m 2/hr 
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SOLID/LIQUID INTERFACE VS. DIMENSIONLESS AXIAL DISTANCE

TI/Tfa0.5, E:W1• e: w2-1.o, e:w3- e:W4•1.0,a•4.572 /m 
w=0.5,ri/ ro=0.5,z/ro=0.5,Hsl=465.2kJ /kg 

Ks=17.307W/mK, P=2803.2kg/m3, as=0.0307m2 /hr
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SOLID/LIQUID INTERFACE VS. DIMENSIONLESS AXIAL DISTANCE

TJ/Tf•0.5, e:w1- e:w2-1.0, e:w3- e:w4-1.0.a-4.572 /m 
w =0.0,ri/ ro=0.5,z/ ro= 1.0,Hs1=465.2kJ /kg 

Ks=8.654W/mK, p =2803.2kg/m 3
, as=0.0307m 2 /hr 
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APPENDIX A 

VERIFICATION OF ENTHALPY MODEL WITH RADIATIVE HEAT FLUX AT INTERFACE 

The equivalence between the enthalpy form and the conventional 

form of the energy equation for the case of a pure conductive sub-

stance with a discrete phase-change temperature has been demonstrated 

by Shamsundar and Sparrow ( 14 ] . The radiative heat flux will be 

included here to show the same equivalence for a semi-transparent 

phase change medium. The principle of conservation of energy for an 

arbitrary control volume was given in Chapter 3, as: 

d 
dt JJJ phdv =

'V

ff
A

.... K grad T • ndA - ff q · ndA

A

Equation (3.2) can be mathematically shown to be equivalent to 

the convential differential form for a single phase region by simply 

applying the divergence theorem to the right hand side of it. For 

the control volume~ which contains the interface as shown in Figure 

A-1, the integral on the left side of (3.2) is investigated. 

At time t, 

J phdV = J (ph) 
5

dV + J (ph\ dV 

'i/ 'i/ s 'i/9., 

= J..., 
"s

( p h) dV + J (p h) Q, dV + JO ( p h) 9., dV 
5 'i/ - 8V VQ, 

and at time t + ot, 

A-1 

(3.2) 

(A-1) 
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Figure ·A-1 Control Volume for a Two Phase Region 
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J phdV = J (Ph) 
5

dV + J (Ph)Q, dV 

'ti 'rf
5

+ 8 V 'rf9_, - oV

= I
'vs

(ph) dV + J
s 0 

V

(Ph) 
5

dV + J (ph ) .Q, dV 

'v.Q, - av 

The left-hand side of Equation (3.2) is obtained by subtracting 

(A-1) from (A-2), dividing by at, and taking the limits as at 

approaches zero. Remembering that as ot + 0, (-Y.Q, - oV) - V 2 , we get 

d I Ph dV d I (Ph) dV + ~t J (Ph)Q, dV dt = dt s
'v rt "19., s

J (Ph) t+ot - (Ph),Q,2t 
+ lim S2 dV 

ot+o ov 6t

As 6t o. the ratio dV/ot at the last term in Equation (A-3) 

approaches ·V~ dI, where V~ is the local velocity of the interfacial 

surface element dL normal to itself and toward the liquid region. 

Also, the space which is enclosed by ov shrinks to the surface L, so 

that the region of integration becomes I. Simultaneously, h
8 

and h9., 

* * approach their saturation values h5 and hi· Hence, 

-d . d 
Ph dV = dt J (Ph)

5
dV + dt J (Ph)i dV 

'vs 't/2

J * * *+ P(h - h9.,) vn d I 
I: s
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Then the substitution of Equation (3.2) into Equation (A-4) for 

the respective single phase region yields the equation 

~t J ph dV = J .... 
K grad T • n dA + J

... 
K grad T • n dA 

- J
.... ... 

J
... 

J *qr • n dA - qr • n dA - phsl vn d r 
As+I: A9.,+r L

where hsl = h* - h* = latent heat of fusion. s 9., 

For the solid region n = n* end for the liquid region n = ~* - n 

·*where n is the local normal to I: toward the liquid region. Then 

split up the integrals of Equation (A-5) and recombine them to get 

d ---a. .. "" 
dt J ph dV = J K grad T • n dA - J qr • n d.A 

A A

(A-5)

+ J [
L

3T * 7( K ) ( q q ) - phsl vn J d I: ( A-6)ant - r,s - r,£ 

where A is the sum of integrals over A
8

and A9.,-

The subtraction of Equation (3.2) from Equation (A-6) produces 

the conventional interface condition 

KlI_)
*an s

A-4 

*= phsl vn (A-7)
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APPENDIX B 

BOUNDARY EMPLOYMENT FOR ONE-DIMENSIONAL RADIATIVE FLUX EQUATION 

For an infinite gray emitting and absorbing cylindrical medium 

of inside radium r 1 and outside radius r
0 

illustrated in Figure 3.4, 

Equation (3.13) is rewritten as 

. -1 sin (rI/ro) 4r 
q(r) 0 { J [ (qi/TT) cpl (r) + (q~iTI) cp2(r) + cp3(r) ] . 

- r 
0 

. -1 (r/r
0

) sin 
*(q~i1T) * * I [ w2(r) + \\J3 ( r)] coss dS cosB dB +

. -1 sin (rI/ro) 

Substitution of Equations (3.14) and (3.15) into Equation (B-1) 

yields 

sin-l (R/R2) 

* }

(B-1) 

4r 
q(r) - / { f [ [ € 1crT~ + (l - € 1) q(r1) ] /n • cpl ( r)

0

* *cosS dS 

+ J

* *cosB dB } (B-2)

Equation (B-2) at r = r1 and r = r
0 

becomes respectively 
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f
0

and 

0

TT/2 

+ f 1T

' *cosB*dS } 

In order to solve the two Equations (B-3) and (B-4) by an 

iterative method for two unknowns q(r1) and q(r
0
), q(r1 ) may be 

expressed in terms of q(r) and vice versa as 
- '0

4(1 - sl) 
= -[--TT I -1

0

B-2 

( B-3)
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[ 4 { J

1T/2 

+ J

and 

= - [

[ 
4r

0

J. ...
l 

+

0

. -1sin 
(' 

J

0

E: oT
4

2 o
1T

* *+ cosS dS 

J
0

(rI/ro) 

The simultaneous solution of Equations (B-5) and {B-6) gives the 

local radiative heat flux in Equation (B-2). It may be seen that the 

employment of this local radiative heat flux in the energy equation, 

which includes the moving solid/liquid interface, is neither economi-

cal nor appropriate for the present investigation. 
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******************************************************************* 

ONE-DIMENSIONAL COMPUTER PROGRAM 

THIS PROGRAM CALCULATES THE TRANSIENT TEMP. DISTRIBUTION 
AND ENTHALPY DISTRIBUTIONS IN THE RADIAL DIRECTION ONLY 
FOR ONE-D CONCENTRIC CYLINDERS IN THE STEFAN PROBLEM 
WITH CONDUCTION IN WHOLE REGION AND RADIATION IN SOLID 
REGION. THE LOCATION OF THE S/L INTERFACE, SOLIDIFIED 
VOLUME, AND HEAT EXTRACTED CAN BE OBTAINED AFTER SOME TIME 
STEPS. THE ENTHALPY MODEL EQUATION HAS BEEN SOLVED SIMUL-
TANEOUSLY WITH RTE THAT HAS BEEN TRANSFORMED INTO CONVEN-
IENT DIFFERENTIAL EQUATIONS BY USING P-1 APPROXIMATIONS. 

111111111111111111111111111111111111111111111111111111111111111111 

DESCRIPTION OF MAIN PARAMETERS 

A = ABSORPTION COEFFICIENT 
BETA = EXTINCTION COEFFICIENT 
Cl,C2 = CONDUCTIVITY OF MEDIUM 
CND = CONDUCTIVITY OF SOLID AT FUSION TEMPERATURE 
DEN = DENSITY OF SOLID AT FUSION TEMPERATURE 
DIF = DIFFUSIVITY OF SOLID AT FUSION TEMPERATURE 
ERR = ALLOWABLE ERROR 
EW1,EW2 = EMISSIVITY OF WALL 
H = DIMENSIONLESS ENTHALPY 
HSL = LATENT HEAT 
IM = MAXIMUM ITERATIONS 
IP = FLAG FOR PRINTING 
NR = NUMBER OF RADIAL NODES 
ORF = OVER RELAXATION FACTOR 
PHI = DIMENSIONLESS EMISSIVE POWER 
QF = DIMENSIONLESS RADIATIVE FLUX 
RCP = RADIATION/CONDUCTION PARAMETER 
RF = SOLID/LIQUID INTERFACE 
s = DIMENSIONLESS RADIATIVE INTENSITY 
SCAT = SCATTERING COEFFICIENT 
SLI = DIMENSIONLESS SOLID/LIQUID INTERFACE 
TAU = DIMENSIONLESS OPTICAL RADIUS 
TF = TEMPERATURE OF FUSION 
TH _, DIMENSIONLESS TEMPERATURE 
TSTP = TIME STEP 

******************************************************************* 
C-1 



REAL TH(0:200),QF(0:200) 
REAL TAU(200),S(200) 
REAL TAU1(200) 
REAL PHI(200),SI(200),PHII(200),QFI(200) 
REAL Cl(200, C2(200), H(200), T(200), DF(200), AK(200), PH(200) 
REAL C5(200),C6(200),C7(200),C8(200),C9(200),Cl0(200) 
REAL TFR(200) 
INTEGER I,LL 
LOGICAL Ll 
CALL BTIME 
READ(20,*) DIF,CND, DEN, TF, HSL 
READ(20,*)A,SCAT,BETA1 
READ(20,*)EW1,EW2 
READ(20,*) TI,TO 
READ(20,*)RI,RO 
READ(20,*)0RF,ERR 
READ(20,*)HO,TSTP 
READ(20,*)NR,MNTS 
READ(20,*)IM,IP,ID,ICTRP 
WRITE(21,*)' ' 
WRITE(21,*)' OUTPUT OF CROPlT (P-1)' 
WRITE(21,*)' ' 
WRITE(21,*)' 
WRITE(21,100) DIF,CND, DEN, TF, HSL 
WRITE(21,105) A,SCAT 
WRITE(21,107) EW1,EW2 
WRITE(21,110) TI,TO 
WRITE(21,120)RI,RO 
WRITE(21,130)0RF,ERR 
WRITE(21,140)HO,TSTP 
WRITE(21,150)NR,MNTS 
WRITE(21,160)IM,IP,ID 
WRITE(21,*)' RADIATION TAKEN INTO ACCOUNT AFTER FOLLOWING NODES' 
WRITE(21,*)JCTRP 
IC=O 
NTS=O 
IP5=IP*10 
SIGMA=0.1712E-08 
AR=DIF*DEN*HSL/CND 
TR=T0+460 
BETA=A+SCAT 
TAUI=RI*BETA 
TAUO=RO*BETA 
TAU(O)=TAUI 
DTAU=(TAUO-TAUI)/NR 
WRITE(21,*)' DTAU BECOMES' 
WRITE(21,*)DTAU 
DTAUS=DTAU*0.5 
THl=CND*(TI-TF)/DIF/DEN/HSL 
TH2=CND*(TO~TF)/DIF/DEN/HSL 
WRITE(21,*)' DMLESS INSIDE AND OUTSIDE WALL TEMPS. ARE:' 
WRITE (21,*) TH1,TH2 
DRT=DTAU*DTAU/TSTP 
M=NR+l 
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* 
* 

DO 10 I=l,M 
AK(I)=CND 
Cl( I) =CND 
C2(I)=CND 

10 CONTINUE 
IF(ID.LT.l)GO TO 20 
WRITE(21,700) (Cl(I), I=l,M) 
WRITE(21,700) (C2(I), I=l,M) 

20 CONTINUE 
DO LOOP TO INITIALIZE TEMPERATURE, ENTHALPY, AND INTENSITY AT 

ZERO TIME 
DO 30 I=l,M 
DF(I)=l. 
TH(I)=H0-1. 
T(I)=TH(I)*DIF*DEN*HSL/CND+TF+460. 
PH(I)=TH(I)*DF(I)+l. 
H(I)=PH(I) 
S(I)=O. 
QF(I)=O. 

30 CONTINUE 
IF (ID.LT.I) GO TO 35 
WRITE(21,700) (Cl(I),C2(I), I=l,M) 
WRITE(21,700) (H(I), I=l,M) 
WRITE(21,700) (PH(I), I=l,M) 
WRITE(21,700) (TH(I), I=l,M) 
WRITE(21,700) (S(I),I=l,M) 
WRITE(21,700) (QF(I),I=l,M) 

35 CONTINUE 
WRITE(21, *)' 
WRITE(21,*)' 
WRITE(21,*)' 
WRITE(21,700) 
WRITE(21,*)' 
WRITE(21,700) 
WRITE(21,*)' 
WRITE(21,700) 
WRITE(21,*)' 
WRITE(21,*)' 

INITIAL DMLESS TEMP DISTRIBUTIONS ARE:' 
(TH(I),I=l,M) 
INITIAL DMLESS ENTHALPY DISTRIBUTIONS ARE:' 

(PH(I), I=l,M) 
INITIAL DMLESS INTENSITY DISTRIBUTIONS ARE:' 

(S(I),I=l,M) 
'

RCP=0.25*CND*BETA/SIGMA/TR**3 
SR=CND**2*TR/DIF/DEN/HSL/4. 
WRITE(21,*)' CONDUCTION AND RADIATION INTERACTION PARAMETER IS' 
WRITE(21,*) HCP 
WRITE(21,*)' SR PARAMETER BECOMES' 
WRITE(21,*) SR 
WRITE(21,*)' 
WRITE(21,*)' 
DO 38 I=l,M 
TAU(I)=TAUI+(I-l)*DTAU 
TAUl(I)=TAU(I)/TAUI 
C5(I)=CND*DRT+l. /DF(I)*( ( l.+O. 5*DTAU/TAU(I) )*Cl ( I)+(l .-0. 5*DTAU/ 

TAU(I))*C2(I)) 
CS( I)= ( 1. +DTAU/2. /TAU( I) )*Cl ( I) 
C7(I)=(l.-0.5*DTAU/TAU(I))*C2(I) 
C8(I)=-0.5*DTAU*(L+0.5*DTAU/TAU(I)) 
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C9(I)=-0.5*DTAU*DTAU/TAU(I) 
ClO(I)=0.5*DTAU*(l.-0.5*DTAU/TAU(I)) 

38 CONTINUE 
WRITE(21,*)' DMLESS RADIUS CO-ORDINATES FOR EACH NODE BECOME:' 
WRITE(21,700) (TAUl(I),I=l,M) 
WRITE(21,*)' ' 
LL=l 
LLI=l 
RF=TAUI 
TW2=T0+460 
TWl=TI+460 
PHWl=(TWl/TR)**4 
PHW2=TW2**4/TR**4 
PI=4.*ATAN(l.) 
El=2./3.*(2.-EW1)/EW1 
E2=2./3.*(2.-EW2)/EW2 
Fl=E2*0.5/DTAU 
F2=4.*PI*PHW2 
Dl=0.5*El/DTAU 
D3=4.*PI*PHWl 
ALAMDA=SCAT/(A+SCAT) 
AA=3.*(l.-ALAMDA)*DTAU*DTAU+2. 
BB=l2.*PI*(l.-ALAMDA)*DTAU*DTAU 
DD=AA+(l.-0.S*DTAU/TAU(l))/Dl 

40 IT=O 
95 CONTINUE 

EN=O 
ED=O 
DO 15 I=l,M 
IF(I.EQ.l.AND.LL.EQ.l)TH(I)=THl 
IF( I. EQ. l) THEN 
TH(I)=THl 
TH(I-1)=2.*THl-TH(I+l) 
H(I)=TH(I)*DF(I) 
OH=H(I) 
GO TO BOO · 
END IF 
IF( I. EQ.M) THEN 
TH(I+l)=2.*TH2-TH(I-1) 
TH(I)=TH2 
END IF 
OH=H( I) 
11=.FALSE. 
IF( I. GT. LL) THEN 
H(I)=(CND*DRT*PH(I)+C6(I)*TH(I+l)+C7(I)*TH(I-l))/C5(I) 
11=. TRUE. 
END IF 
IF(Ll) GO TO 65 
GO TO 910 
IF(LL.GE.2 . .t\ND.I.EQ.LL) THEN 
TH(I-l)=(TH(I)*(DTAU+DTAUS)-DTAU*TH2)/DTAUS 
END IF 

910 CONTINUE 
IF(I.EQ.LL.AND.LL.NE.LLI) QF(I+l)=O. 
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H(I)=(CND*DRT*PH(I)+c6(I)*TH(I+l)+c7(I)*TH(I-l)+SR/RCP*(C8(I)* 
QF(I+l)+C9(I)*QF(I)+clO(I)*QF(I-1)))/C5(I) 

65 CONTINUE 
IF(H(I).LT.O.) GO TO 25 
H(I)=PH(I)+(C6(I)*TH{I+l)+c7(I)*TH(I-1))/CND/DRT 
IF(H(I}.LT.O.) GO TO 25 
IF(H(I).LE.l.) GO TO 111 
H(I)=(PH(I)*CND*DRT+C6(I)*TH(I+l)+c7(I)*TH(I-l)+C5(I)-CND*DRT) 

/C5(I) 
TH(l)=(H(I)-1)/DF(I) 
GO TO 106 

111 TH(I)=O. 
GO TO 106 

25 IF(OH.LT.O.) H(I)=ORF*(H(I)-OH)+oH 
TH(I)=H(I)/DF(I) 
GO TO 800 
IPl=IP-1 
IF(IC.LT.IPl) GO TO 800 
WRITE(21,*)' DMLESS ENTHALPY AND TEMP ARE:' 
WRITE(21,*) H(I),TH(I) 

800 CONTINUE 
T(I)=TH(I)*DIF*DEN*HSL/CND+TF+460. 
PHI(I)=(T(I)/TR)**4 
IF(LLI.GE.ICTRP.AND.I.LE.LLI) GO TO 60 
GO TO 106 

60 CONTINUE 
Ll=.FALSE. 
IF(I.EQ.1) THEN 
S(I)=(2.*S(I+l)+D3/Dl*(l.-0.5*DTAU/TAU(I))+BB*PHI(I))/DD 
QF(I)=-1./6./DTAU/Dl*S(I)+D3/6./DTAU/Dl 
QF(I)=QF(I)/PI 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
IF(I.EQ. LLI) THEN 
FF=AA+(l.+0.5*DTAU/TAU(I})/Fl 
S(I)=((l.+0.5*DTAU/TAU(I))*F2/Fl+2.*S(I-l)+BB*PHI(I))/FF 
QF(I)=-F2/Fl/DTAU/6.+S(I)/6./Fl/DTAU 
QF(I)=QF(I)/PI 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
S( I)=( ( 1. +O. 5*DTAU/TAU( I) )*S( I+l)+( 1.-0. 5*DTAU/TAU(I) )*S(I-1 )+ 

BB*PHI(I))/AA 
QF( I)=-1. /6. /DTAU*(S(I+l)-S( I-1)) 
QF(I)=QF(I)/PI 

106 CONTINUE 
EN=EN+ABS(H(I)-OH) 
ED=ED+ABS(H(I)) 

15 CONTINUE 
IF(EN.LT.ED*ERR) GO TO 90 
GO TO 900 
WRITE(21,*)' WRITE ERROR AND ED*ERR FOR EACH ITERATION' 
WRITE(21,*) EN,ED*ERR 
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880 CONTINUE 
WRITE(21,*)' DMLESS TEMPS,ENTHALPY,INTENSITY,HEAT FLUX' 
WRITE(21,700) (TH(I),I=l,M) 
WRITE(21,700) (H(I),I=l,M) 
WRITE(21, 700) (S(I), I=l,M) 
WRITE(21,700) (QF(I),I=l,M) 

900 CONTINUE 
IT=IT+l 
IF(IT.LT.IM) GO TO 95 
WRITE(21,*)' CONVERGENCE HAS NOT BEEN ACHIEVED WITHIN ITERATIONS' 
CALL EXIT 

90 CONTINUE 
Ml=M-1 

C THIS IS DO LOOP TO FIND SOLID/LIQUID INTERFACE 
Ll=.FALSE. 
DO 50 I=l,Ml 
IF(H(I).LT.O .• AND.H(I+l).GE.O.)THEN 
Hil=H(I+l)-H(I) 
RF=(TAU(I)*H(I+l)-TAU(I+l)*H(I))/Hil 
DTAUS=RF-TAU(I) 
LL=I 
LLI=I 
IF(DTAUS.GT.0.5*DTAU) LLI=I+l 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 45 

50 CONTINUE 
IF(H(Ml-1).LT.0 .. AND.H(Ml).LT.O.)THEN 
WRITE(21,*)' SOLIDIFICATION HAS BEEN COMPLETED' 
Ll=.TRUE. 
CALL ETIME2(ISEC) 
WRITE(21,*)' THE ACCUMULATED CPU TIME BECOMES IN MSEC' 
WRITE(21,*) !SEC 
END IF 
IF(Ll) CALL EXIT 

45 CONTINUE 
NTS=NTS+l 
IC=IC+l 
IF(IC.LT.IP) GO TO 2 
SM=O. 
HE=O. 
DO 1 I=l,M 
HI=HO 
HJ=AMAXl(O.,H(I)) 
SM=SM+TAU(I)*DTAU*(HI-HJ) 
HE=HE+TAU(I)*DTAU*(HI-H(I)) 

1 CONTINUE 
ER=EN/ED 
TP=TSTP*NTS 
TPl=TP*BETA1**2/BETA**2 
SLI=RF/TAUI . 
QCI=-AR*BETA*CND*(TH(3)-TH1)*0.5/DTAU/SIGMA/TR**4 
QCRI=QCI+QF(l) 
WRITE(21,400) TP,IT,ER 
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WRITE(21,*)' EQUIVALENT DMLESS TIME BECOMES' 
WRITE(21,*) TPl 
WRITE(21,500} RF 
WRITE(21,510) SLI 
WRITE(21,*)' LAND DTAUS BECAME THE FOLLOWING ' 
WRITE(21,*), LLI,DTAUS 
WRITE(21, *)' DMLESS TEMP DISTRIBUTIONS ARE ·' 
WRITE(21,700) (TH(I),I=l,M,3) 
DO 6 I=l,M 
TFR(I)=TH(I)*AR/TR 

6 CONTINUE 
WRITE(21,*)' DMLESS TEMP (T-TF)/TR ARE:' 
WRITE(21,700) (TFR(I),I=l,M,3) 
WRITE(21,*)' DMLESS ENTHALPY DISTRIBUTIONS ARE·' 
WRITE(21,700) (H(I),I=l,M,3) 
WRITE(21,*)' DMLESS RADIATIVE INTENSITIES BECOME:' 
WRITE(21,700) (S(I),I=l,M,3) 
WRITE(21,*)' DMLESS RAD. HEAT FLUX DISTRIBUTIONS ARE:' 
WRITE(21,700) (QF(I),I=l,M,3) 
WRITE(21,*)' DMLESS HEAT FLUXES FOR COND. ONLY,RAD. ONLY, AND

: COND. & RAD. CASES AT INSIDE CYLINDER BECOME: ' 
WRITE(21,*) QCI,QF(l),QCRI 
TIME=TP*BETA**2/DIF 
WRITE(22,*) TPl,SLI 
IF(TP.EQ.0.5*IP5*TSTP) THEN 
DO 9 K=l,M,3 
WRITE(58,*)TAUl(K) ,QF(K) 
WRITE(59,*)TAUl(K),TFR(K) 

9 CONTINUE 
END IF 
IF(TP.EQ.IP5*TSTP) THEN 
WRITE(21,710) IP5*TSTP 
DO 4 K=l,M,3 
WRITE(23,*) TAUl(K),TFR(K) 
WRITE(50,*) TAUl(K),S(K) 
WRITE(51,*) TAUl(K),QF(K) 

4 CONTINUE 
WRITE(21,700) (TFR(I),I=l,M,3) 
END IF 
IF(TP.EQ.2.0*IP5*TSTP) THEN 
DO 11 K=l ,M, 3
WRITE(60,*)TAUl(K),QF(K) 
WRITE(61,*)TAUl(K),TFR(K) 

11 CONTINUE 
END IF 
IF(TP.EQ.4*IP5*TSTP) THEN 
WRITE(21,710) 3*IP5*TSTP 
DO 5 K=l,M,3 
WRr'TE(24,*) TAUl(K),TFR(K) 
WRITE(52,*) TAUl(K),S(K) 
WRITE(53,*) TAUl(K),QF(K) 

5 CONTINUE 
WRITE(21,700) (TFR(I),I=l,M,3) 
END IF 
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IF(TP.EQ.5*IP5*TSTP) THEN 
DO 7 K=l,M,3 
WRITE(28,*) TAUl(K),TFR(K) 
WRITE(54,*) TAUl(K),S(K) 
WRITE(55,*) TAUl(K),QF(K) 

7 CONTINUE 
END IF 
IF(TP.EQ.6*IP5*TSTP) THEN 
DO 8 K=l,M,3 
WRITE(29,*) TAUl(K),TFR(K) 
WRITE(56,*) TAUl(K),S(K) 
WRITE(57,*) TAUl(K),QF(K) 

8 CONTINUE 
END IF 
WRITE(25,*) TP1,QCI*3.1546*SIGMA*TR**4 
WRITE(26,*) TP1,QF(l)*3.1546*SIGMA*TR**4 
WRITE(27,*) TP1,QCRI*3.1546*SIGMA*TR**4 
IC=O 

2 DO 3 I=l,M 
PH(I)=H(I) 

3 CONTINUE 
IF(NTS.LT.MNTS)GO TO 40 

100 FORMAT(' DIFFUSIVITY=',Fl0.3,'CONDUCTIVITY=',Fl0.3,'DENSITY=', 
C Fl0.3,'FUSION TEMP=',Fl0.3,'LATENT HEAT=',Fl0.3) 

105 FORMAT(' ABSORPTION COEFF.=',Fl0.3,'SCATTERING COEFF.=',Fl0.3) 
107 FORMAT(' EMISSIVITY AT INSIDE WALL=',Fl0.3,' EMISSIVITY AT S/L 

: INTEHFACE=',Fl0.3) 
110 FORMAT(' INSIDE TEMP=',Fl0.3,'0UTSIDE TEMP=',Fl0.3) 
120 FORMAT(' INSIDE RADIUS=',Fl0.3,'0UTSIDE RADIUS=',Fl0.3) 
130 FORMAT(' ORF=',Fl0.4,'ALLOWABLE ERROH=',Fl0.7) 
140 FORMAT(' INITIAL ASSUMED ENTHALPY=',Fl0.4t'TIME STEP=',Fl0.6) 
150 FORMAT(' NUMBER OF NODES=',17,'MAX NO TIME STEP=',17) 
160 FORMAT(' MAX ALLOWABLE INTER=',15,'IPTH PRINT=',15,'CONTROL TO 

CPRINT=',I5) 
200 FORMAT(5I5) 
400 FORMAT(lHl,'DMLESS TIME=',F8.4,3X,'ITERATIONS WITHIN CURRENT 

:TIME STEP=',I4,3X,'RELATIVE ERROR=',El2.5) 
460 FORMAT(lHl, ITEH=',I4,3X,'EHROR=',El2.5) 
500 FORMAT(' SOLID/LIQUID INTERFACER IS ',Fl0.4) 
510 FORMAT(' DMLESS S/L INTERFACE RF/RI BECOME: ',Fl0.4) 
700 FORMAT(lH ,16F8.4) 
710 FORMAT(' DMLESS TEMP (T-TF)/TR AT DMLESS TIME ',FB.4,' BECOME') 

CALL ETIME2(ISEC) 

EOF .. 

WRITE(21,*)' THE ACCUMULATED CPU TIME BECOMES IN MSEC' 
WRITE(21,*) !SEC 
STOP 
END 

C-8 



******************************************************************* 

TWO-DIMENSIONAL COMPUTER PROGRAM 

THIS PROGRAM CALCULATES THE TRANSIENT TEMP. DISTRIBUTION 
AND ENTHALPY DISTRIBUTIONS IN THE RADIAL/AXIAL DIREC-
TION FOR TWO-D CONCENTRIC CYLINDERS IN THE STEFAN 
PROBLEM WITH CONDUCTION IN WHOLE REGION AND RADIATION IN 
SOLID REGION. THE LOCATION OF THE S/L INTERFACE, SOLIDIFIED 
VOLUME, AND HEAT EXTRACTED CAN BE OBTAINED AFTER SOME TIME 
STEPS. THE ENTHALPY MODEL EQUATION HAS BEEN SOLVED SIMUL-
TANEOUSLY WITH RTE THAT HAS BEEN TRANSFORMED INTO CONVENIENT 
DIFFERENTIAL EQUATIONS BY USING P-1 APPROXIMATIONS. 

1111111111111111111111111111111111111111111111111111111111111111111 

A =
BETA =
Cl,C2 
C3,C4 =
CND =
DEN =
DIF =
ERR =
EW1,EW2 
EW3,EW4 =
H =
HSL - · 
IM =
IP =
NR =
NZ =
ORF =
PHI =
QFR =
QFZ =
RCP =
RF =
s =
SCAT =
SLI =

.TAU =
TF =
TH =
TSTP =
z =

DESCRIPTION OF MAIN PARAMETERS 

ABSORPTION COEFFICIENT 
EXTINCTION COEFFICIENT 

CONDUCTIVITY OF MEDIUM 
CONDUCTIVITY OF SOLID AT FUSION TEMPERATURE 
DENSITY OF SOLID AT FUSION TEMPERATURE 
DIFFUSIVITY OF SOLID AT FUSION TEMPERATURE 
ALLOWABLE ERROR 

EMISSIVITY OF WALL 
DIMENSIONLESS ENTHALPY 
LATENT HEAT 
MAXIMUM ITERATIONS 
FLAG FOR PRINTING 
NUMBER OF RADIAL NODES 
NUMBER OF AXIAL NODES 
OVER RELAXATION FACTOR 
DIMENSIONLESS &MISSIVE POWER 
DIMENSIONLESS RADIAL RADIATAIVE FLUX 
DIMENSIONLESS AXIAL RADIATIVE FLUX 
RADIATION/CONDUCTION PARAMETER 
SOLID/LIQUID INTERFACE 
DIMENSIONLESS RADIATIVE INTENSITY 
SCATTERING COEFFICIENT 
DIMENSIONLESS SOLID/LIQUID INTERFACE 
DIMENSIONLESS OPTICAL RADIUS 
TEMPERATURE OF FUSION 
DIMENSIONLESS TEMPERATURE 
TIME STEP 
AXIAL DISTANCE 

******************************************************************* 
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REAL TH(0:50,0:50),QFR(0:50,0:50),QFZ(0:50,0:50) 
REAL TAU(50),TAU1(50),ETA(50),ETA1(50) 
REAL PHI(50,50),S(50,50) 
REAL Cl(50,50),C2(50,50),DF(50,50),AK(50,50) 
REAL H(50,50),T(50,50),PH(50,50) 
REAL C5(50,50),C6(50,50),C7(50,50),C8(50,50),C9(50,50),Cl0(50) 
REAL RF(50),C3(50,50),C4(50,50),C11(50,Cl2(50) 
REAL G3(50),P3(50),F2(50) 
REAL TFR(50,50),SLI(50),QCI(50),QCRI(50) 
INTEGER LL(50),LLI(50),L2(50) 
LOGICAL Ll 
CALL BTIME 
READ(20,*) DIF,CND, DEN, TF, HSL 
READ(20,*)A,SCAT,BETA1 
READ(20,*)EW1,EW2,EW3,EW4 
READ(20,*) TI,TO 
READ(20,*)RI,RO,Z 
READ(20,*)0RF,ERR 
READ(20,*)HO,TSTP 
READ(20,*)NR,NZ,MNTS 
READ(20,*)IM,IP,ID,ICTRP 
WRITE(21,*)' ' 
WRITE(21,*)' OUTPUT OF CRP12D (P-1)' 
WRITE(21,*)' ' 
WRITE(21,*)' 
WRITE(21,100) DIF,CND, DEN, TF, HSL 
WRITE(21,105) A,SCAT 
WRITE(21,107) EW1,EW2 
WRITE(21,108) EW3,EW4 
WRITE(21,110) TI,TO 
WRITE(21,120)RI,RO,Z 
WRITE(21,130)0RF,ERR 
WRITE(21,140)HO,TSTP 
WRITE(21,150)NR,MNTS,NZ 
WRITE(21,l60)IM,IP,ID 
WRITE(21,*)' RADIATION TAKEN INTO ACCOUNT AFTER FOLLOWING NODES' 
WRITE(21,*)ICTRP 
IC=O 
NTS=O 
IP5=IP*2 
SIGMA=0.1712E-08 
AR=DIF*DEN*HSL/CND 
TR=T0+460 
BETA=A+SCAT 
TAUI=RI*BETA 
TAUO=RO*BETA 
TAU(O)=TAUI 
DTAU=(TAUO-TAUI)/NR 
ETAL=O. 
ETAR=Z*BETA 
DETA=(ETAR-ETAL)/NZ 
DTZ2=(DTAU/DETA)**2 
DTZ=0.5*DTAU**2/DETA 
WRITE(21,*)' DTAU BECOMES' 
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WRITE(21,*)DTAU 
DTAUS=DTAU*0.5 
THl=CND*(TI-TF)/DIF/DEN/HSL 
TH2=CND*(TO-TF)/DIF/DEN/HSL 
WRITE(21,*)' DMLESS INSIDE AND OUTSIDE WALL TEMPS. ARE:' 
WRITE(21,*) TH1,TH2 
DRT=DTAU*DTAU/TSTP 
M=NR+l 
N=NZ+l 
DO 10 I=l,M 
DO 10 J=l,N 
AK(I,J)=CND 
Cl(I,J)=CND 
C2(I,J)=CND 
C3(I,J)=CND 
C4(1,J)=CND 

10 CONTINUE 
IF(ID.LT.l)GO TO 20 
WRITE(21,700) ((Cl(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((C2(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((C3(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((C4(I,J),J=l,N),I=l,M) 

20 CONTINUE 
* DO LOOP TO INITIALIZE TEMPERATURE ,ENTHALPY,AND INTENSITY AT 
* ZERO TIME 

DO 30 I=l,M 
DO 30 J=l,N 
DF(I,J)=l. 
TH ( I, J) =HO-1.
T(I,J)=TH(I,J)*DIF*DEN*HSL/CND+TF+460. 
PH(I,J)=TH(I,J)*DF(I,J)+l. 
H(I,J)=PH(I,J) 
S(I,J)=O. 
QFR(I,J)=O. 
QFZ(I,J)=O. 

30 CONTINUE 
IF (ID.LT.I) GO TO 35
WRITE(21,700) ((Cl(I,J),C2(I,J),C3(I,J),C4(I,J), J=l,N),I=l,M) 
WRITE(21,700) ((H(I,J), J=l,N),I=l,M) 
WRITE(21,700) ((PH(I,J), J=l,N),I=l,M) 
WRITE(21,700) ((TH(I,J), J=l,N),I=l,M) 
WRITE(21,700) ((S(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((QFR(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((QFZ(I,J),J=l,N),I=l,M) 

35 CONTINUE 
WRITE(21,*)' 
WRITE(21, *)' 
WRITE(21,*)' INITIAL DMLESS TEMP DISTRIBUTIONS ARE·' 
DO 31 I=l,M,2 
WRITE(21,700) (TH(I,J),J=l,N,2) 

31 CONTINUE 
WRITE(21,*)' INITIAL DMLESS ENTHALPY DISTRIBUTIONS ARE·' 
DO 32 I=l,M,2 
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WRITE(21,700) (PH(I,J),J=l,N,2) 
32 CONTINUE 

WRITE(21,*)' INITIAL DMLESS INTENSITY DISTRIBUTIONS ARE:' 
DO 33 I=l,M, 2
WRITE(21,700) (S(I,J),J=l,N,2 

33 CONTINUE 
WRITE(21,*)' 
WRITE(21,*)' 
RCP=0.25*CND*BETA/SIGMA/TR**3 
SR=CND**2*TR/DIF/DEN/HSL/4. 
WRITE(21,*)' CONDUCTION AND RADIATION INTERACTION PARAMETER IS' 
WRITE(21,*) RCP 
WRITE(21,*)' SR PARAMETER BECOMES' 
WRITE(21,*) SR 
WRITE(21,*)' 
WRITE(21,*)' 
DO 36 J=l,N 
ETA(J)=ETAL+(J-l)*DETA 
ETAl(J)=ETA(J)/ETAR 

36 CONTINUE 
DO 38 I=l,M 
TAU(I)=TAUI+(I-l)*DTAU 
TAUl(I)=TAU(I)/TAUI 
DO 38 J=l,N 
C5(I,J)=CND*DRT+l./DF(I,J)*((l.+0.5*DTAU/TAU(I))*Cl(I,J) 

+(l.-0.5*DTAU/TAU(I))*C2(I,J)+DTZ2*C3(I~J)+DTZ2*C4(I,J)) 
C6( I .,J)=(l. +DTAU/2. /TAU( I)) *Cl (I, J) 
C7(I,J)=(l.-0.5*DTAU/TAU(I))*C2(I,J) 
C8(I,J)=DTZ2*C3(I,J) 
C9(I,J)=DTZ2*C4(I,J) 
ClO(I)=-0.5*DTAU*(l.+0.5*DTAU/TAU(I))' 
Cll(I)=0.5*DTAU*(l.-0.5*DTAU/TAU(I)) 
Cl2(I)=-DTAU**2*0.5/TAU(I) 

38 CONTINUE 
WRITE(21, *)' 
WRITE(21,700) 
WRITE(21,*)' 
WRITE(21,700) 
WRITE(21,*)' 
DO 39 J=l,N 

DMLESS RADIUS CO-ORDINATES FOR EACH NODE BECOME:' 
(TAUl(I),I=l,M,2) 
DMLESS AXIAL CO-ORDINATES FOR EACH NODE BECOME:' 
(ETAl(J),J=l,N,2) 

'

LL(J)=l 
LLI(J)=l 
RF(J)=TAUI 

39 CONTINUE 
TW2=T0+460 
TWl=TI+460 
PHWl=(TWl/TR)**4 
PHW2=TW2**4/TR**4 
PI=4.*ATAN(l.) 
El=2./3.*(2.-EW1)/EW1 
E2=2./3.*(2.-EW2)/EW2 
E3=2./3.*(2.-EW3)/EW3 
E4=2./3.*(2.-EW4)/EW4 
Fl=E2*0.5/DTAU 
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Dl=0.5*El/DTAU 
D3=4.*PI*PHWl 
ALAMDA=SCAT/(A+SCAT) 
AA=3.*(l.-ALAMDA)*DTAU*DTAU+2.+2.*DTZ2 
BB=l2.*PI*(l.-ALAMDA)*DTAU*DTAU 
DD=AA+(l.-0.5*DTAU/TAU(l))/Dl 
Gl=0.5*E3/DETA 
GG=AA+DTZ2/Gl 
DDG=DD+DTZ2/Gl 
Pl=0.5*E4/DETA 
PP=AA+DTZ2/Pl 
DDP=DD+DTZ2/Pl 

40 IT=O 
95 CONTINUE 

EN=O 
ED=O 
DO 15 I=l,M 
DO 15 J=l,N 
IF(I.EQ.l.AND.LL(J).EQ.l)TH(I,J)=THl 
IF(I.EQ. l) THEN 
TH(I,J)=THl 
TH(I-l,J)=2.*TH1-TH(I+l,J) 
H(I,J)=TH(I,J)*DF(I,J) 
OH=H(I,J) 
GO TO 800 
END IF 
IF(I.EQ.M) THEN 
TH(I+l,J)=2.*TH2-TH(I-l,J) 
TH(I,J)=TH2 
H(I,J)=TH(I,J)*DF(I,J)+l. 
OH=H(I,J) 
GO TO 800 
END IF 
IF(J.EQ.l.AND.I.NE.M) TH(I,J-l)=TH(I,J+l) 
IF(J.EQ.N.AND.I.NE.M) TH(I,J+l)=TH{I,J-1) 
OH=H(I,J) 
Ll=.FALSE. 
IF(I.GT.LL(J)) THEN 
H(I,J)=(CND*DRT*PH(I,J)+C6(I,J)*TH(I+l,J)+C7(I,J)*TH(I-l,J) 

+C8(I,J)*TH(I,J+l)+C9(I,J)*TH(I,J-l))/C5(I.J) 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 65 
GO TO 910 
IF(LL(J).GE.2.AND.I.EQ.LL(J)) THEN 
TH(I-l,J)=(TH(I,J)*(DTAU+DTAUS)-DTAU*TH2)/DTAUS 
END IF 

910 CONTINUE 
IF( I. EQ. LL(J). AND. LL(J). NE. LLI (J)) QFR( I+ 1, J)=O. 
H(I,J)=(CND*DRT*PH(I,J)+C6(I,J)*TH(I+l,J)+C7(I,J)*TH(I-l,J) 

+C8(I,J)*TH(I,J+l)+C9(I,J)*TH(I,J-l) +SR/RCP*(ClO(I)* 
QFR(I+l,J)+Cll(I)*QFR(I,J)-DTZ*QFZ(I,J+l)+DTZ*QFZ(I,J-1))) 
/C5(I,J) 

65 CONTINUE 

C-13 



IF(H(I,J).LT.O.) GO TO 25 
H(I,J)=PH(I,J)+(C6(I,J)*TH(I+l,J)+C7(I,J)*TH(I-l,J)+C8(I,J)* 

TH(I,J+l)+C9(I,J)*TH(I,J-l))/CND/DRT 
IF(H(I,J).LT.O.) GO TO 25 
IF(H(I,J).LE.l.) GO TO 111 
H(I,J)=(PH(I,J)*CND*DRT+C6(I,J)*TH(I+l,J)+C7(I,J)*TH(I-l,J) 

+C5(I,J)-CND*DRT+C8(I,J)*TH(I,J+l)+C9(I,J)*TH(I,J-l)) 
/C5(I,J) 

TH(I,J)=(H(I,J)-1)/DF(I,J) 
GO TO 106 

111 TH(I,J)=O. 
GO TO 106 

25 IF(OH.LT.O.) H(I,J)=ORF*(H(I,J)-OH)+OH 
TH(I,J)=H(I,J)/DF(I,J) 
GO TO 800 
IPl=IP-1 
IF( IC. LT. IPl) GO TO 800 
WRITE(21,*)' DMLESS ENTHALPY AND TEMP ARE:' 
WRITE(21,*) H(I,J),TH(I,J) 

800 CONTINUE 
T(I,J)=TH(I,J)*DIF*DEN*HSL/CND+TF+460. 
PHI(I,J)=(T(I,J)/TR)**4 
IF(LLI(J).GE.ICTRP.AND.I.LE.LLI(J)) GO TO 60 
GO TO 106 

60 CONTINUE 
Ll=.FALSE. 
IF(I.EQ.1) THEN 
IF(J.EQ.l) THEN 
G3(I)=4.*PI*PHI(I,J) 
S(I,J)=(2.*S(I+l,J)+D3/D1*(1.-0.5*DTAU/TAU(I))+2.*DTZ2* 

S(I,J+2)+G3(I)/Gl*DTZ2+BB*PHI(I,J))/DDG. 
QFR(I,J)=-S(I,J)/(6.*PI*Dl*DTAU)+D3/(6.*PI*Dl*DTAU) 
QFZ(I,J)=(-S(I,J)+G3(I))/(6.*PI*DETA*Gl) 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
IF(J.EQ.N) THEN 
P3(I)=4.*PI*PHI(I,J) 
S(I,J)=(2.*S(I+l,J)+D3/D1*(1.-0.5*DTAU/TAU(I))+2.*DTZ2* 

S(I,J-l)+DTZ2*P3(I)/Pl+BB*PHI(I,J))/DDP 
QFR(I,J)=-S(I,J)/(6.*PI*Dl*DTAU)+D3/(6.*PI*Dl*DTAU) 
QFZ(I,J)=(S(I,J)-P3(I))/(6.*PI*DETA*Pl) 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
S(I,J)=(2.*S(I+l,J)+D3/Dl*(l.-0.5*DTAU/TAU(I))+DTZ2*S(I,J+l) 

+DTZ2*S(I,J-l)+BB*PHI(I,J))/DD 
QFR(I,J)=-S(I,J)/(6.*PI*Dl*DTAU)+D3/(6.*P1*D1*DTAU) 
QFZ(I,J)=-(S(I,J+l)-S(I,J-1))/(6.*PI*DETA) 
Ll=. TRUE . . 
END IF 
IF(Ll) GO TO 106 
IF(I.EQ.LLI(J)) THEN 
IF{J.EQ.1) THEN 
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FF=AA+(l.+0.5*DTAU/TAU(LLI(J)))/Fl 
FFG=FF+DTZ2/Gl 
F2(J)=4*PI*PHW2 
G3(I)=4*PI*PHI(I,J) 
S(I,J)=(F2(J)/Fl*(l.+0.5*DTAU/TAU(I))+2.*S(I-l,J)+2.*DTZ2* 

S(I,J+l)+DTZ2*G3(I)/Gl+BB*PHI(I,J))/FFG 
QFR(I,J)=-F2(J)/(6.*PI*DTAU*Fl)+S(I,J)/(6.*PI*DTAU*Fl) 
QFZ(I,J)=-S(I,J)/(6.*PI*DETA*Gl)+G3(I)/(6.*PI*DETA*Gl) 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
IF(J.EQ.N) THEN 
FF=AA+(l.+0.S*DTAU/TAU(LLI(J)))/Fl 
FFP=FF+DTZ2/Pl 
F2(J)=4.*PI*PHI(I,J) 
P3(I)=4.*PI*PHI(I,J) 
S(I, J)= ( ( 1. +0. 5*DTAU/TAU(I) )*F2(J) /Fl +2. *S( I-1, J)+2. *DTZ2* 

S(I,J-l)+DTZ2*P3(I)/Pl+BB*PHI(I,J))/FFP 
QFR(I,J)=-F2(J)/(6.*PI*DTAU*Fl)+S(I,J)/(6.*PI*DTAU*Fl) 
QFZ(I,J)=(S(I,J)-P3(I))/(6.*PI*DETA*Pl) 
Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
FF=AA+( l.+0.5*DTAU/TAU(LLI(J)) )/Fl 
F2(J)=4.*PI*PHI(I,J) 
S(I,J)=((l.+0.5*DTAU/TAU(LLI(J)))*F2(J)/Fl+2.*S(I-l,J)+ 

DTZ2*S(I,J+l)+DTZ2*S(I,J-l)+BB*PHI(I,J))/FF 
QFR(I,J)=(-F2(J)+S(I,J))/(6.*PI*DTAU*Fl) 
QFZ(I,J)=(-S(I,J+l)+S(I,J-1))/(6.*PI*DETA) 
.Ll=.TRUE. 
END IF 
IF(Ll) GO TO 106 
IF(J .EQ. l) THEN 
G3(I)=4.*PI*PHI(I,J) 
S(I,J)=(,(l.+0.5*DTAU/TAU(I))*S(I+l,J)+(l.-0.5*DTAU/TAU(I)) 

*S(I-l,J)+2.*DTZ2*S(I,J+l)+G3(I)/Gl*DTZ2+BB*PHI(I,J)) 
/GG 

QFR(I,J)=(-S(I+l,J)+S(I-1,J))/(6.*PI*DTAU) 
QFZ(I,J)=(-S(I,J)+G3(I))/(6.*PI*DETA*Gl) 
Ll::..TRUE. 
END IF 

. IF(Ll) GO TO 106 
IF (J.EQ.N) THEN 

· P3(I)=4.*PI*PHI(I,J) 
S(I,J)=((l.+0.5*DTAU/TAU(I))*S(I+l,J)+(l.-0.5*DTAU/TAU(I)) 

*S(I-l,J)+2.*DTZ2*S(I,J-l)+DTZ2*P3(I)/Pl+BB*PHI(I,J)) 
/PP 

QFR(I,J)=(-S(I+l,J)+S(I-1,J))/(6.*PI*DTAU) 
QFZ(I,J)=(S(I,J)-P3(I))/(6.*PI*DETA*Pl) 
LI=. TRUE. -
END IF 
IF(Ll) GO TO 106 
S(I,J)=((l.+0.5*DTAU/TAU(I))*S(I+l,J)+(l.-0.5*DTAU/TAU(I))* 

S(I-l,J)+DTZ2*S(I,J+l)+DTZ2*S(I,J-l)+BB*PHI(I,J))/AA 
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QFR(I,J)=(-S(I+l,J)+S(I-1,J))/(6.*PI*DTAU) 
QFZ(I,J)=(-S(I,J+l)+S(I,J-1))/(6.*PI*DETA) 

106 CONTINUE 
EN=EN+ABS(H(I,J)-OH) 
ED=ED+ABS(H(I,J)) 

15 CONTINUE 
IF(EN.LT.ED*ERR) GO TO 90 
GO TO 900 
WRITE(21,*)' WRITE ERROR AND ED*ERR FOR EACH ITERATION' 
WRITE(21,*) EN,ED*ERR 

880 CONTINUE 
WRITE(21,*)' DMLESS TEMPS,ENTHALPY,INTENSITY,HEAT FLUX' 
WRITE(21,700) ((TH(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((H(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((S(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((QFR(I,J),J=l,N),I=l,M) 
WRITE(21,700) ((QFZ(I,J),J=l,N),I=l,M) 

900 CONTINUE 
IT=IT+l 
IF(IT.LT.IM) GO TO 95 
WRITE(21,*)' CONVERGENCE HAS NOT BEEN ACHIEVED WITHIN ITERATIONS' 
CALL EXIT 

90 CONTINUE 
Ml=M-1 

c THIS IS DO LOOP TO FIND SOLID/LIQUID INTERFACE 
DO 50 I=l,Ml 
DO 50 J=l,N 
IF(H(I,J).LT.O .. AND.H(I+l,J).GE.O.)THEN 
Hil=H(I+l,J)-H(I,J) 
RF(J)=(TAU(I)*H(I+l,J)-TAU(I+l)*H(I,J))/Hll 
DTAUS=RF(J)-TAU(I) 
LL(J)=I 
LLI(J)=I 
IF(DTAUS.GT.0.5*DTAU) LLI(J)=I+l 
END IF 

50 CONTINUE 
GO TO 45
IF(H(Ml-1,J).LT.O .. AND.H(Ml,J).LT.O.)THEN 
WRITE(21,*)' SOLIDIFICATION HAS BEEN COMPLETED FOR ONE J' 
Ll=.TRUE. 
CALL ETIME2(ISEC) 
WRITE(21,*)' THE ACCUMULATED CPU TIME BECOMES IN MSEC' 
WRITE(21,*) !SEC 
END IF 
IF(Ll) CALL EXIT 

45 CONTINUE 
NTS=NTS+l 
IC=IC+l 
IF(IC.LT.IP) GO TO 2 
SM=O. 
HE=O. 
DO 1 I=l,M 
DO 1 J=l,N 
HI=HO 
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HJ=AMAXl(O.,H(I,J)) 
SM=SM+TAU(I)*DTAU*(HI-HJ) 
HE=HE+TAU(I)*DTAU*(HI-H(I,J)) 

1 CONTINUE 
ER=EN/ED 
TP=TSTP*NTS 
TPl=TP*BETA1**2/BETA**2 
DO 12 J=l,N 
SLI(J)=RF(J)/TAUI 
QCI(J)=-AR*BETA*CND*(TH(3,J)-TH1)*0.5/DTAU/SIGMA/TR**4 
QCRI(J)=QCI(J)+QFR(l,J) 

· 12 CONTINUE 
WRITE(21,400) TP,ER 
WRITE(21,460) IT 
WRITE(21,*)' EQUIVALENT CMLESS TIME BECOMES' 
WRITE(21,*) TPl 
WRITE(21,500) 
WRITE(21,700) (RF(J),J=l,N,2) 
WRITE(21,510) 
WRITE(21,700) (SLI(J),J=l,N,2) 
WRITE(21,*)' LAND DTAUS BECAME THE FOLLOWING ' 
WRITE(21,200) (LLI(J),J=l,N,2) 
WRITE(21,*)' DMLESS TEMP DISTRIBUTIONS ARE·' 
DO 13 I=l,M 
WRITE(21,700) (TH(I,J),J=l,N,2) 

13 CONTINUE 
DO 6 I=l,M 
DO 6 J=l,N 
TFR(I,J)=TH(I,J)*AR/TR 

6 CONTINUE 
WRITE(21,*)' DMLESS TEMP (T-TF)/TR ARE;' 
DO 70 I=l,M,2 
WRITE(21, 700) (TFR(I,J) ,J=l,N,2). 

70 CONTINUE 
WRITE(21,*)' DMLESS ENTHALPY DISTRIBUTIONS ARE·' 
DO 71 I=l,M,2 
WRITE(21,700) (H(I,J),J=l,N,2) 

71 CONTINUE 
WRITE(21,*)' DMLESS RADIATIVE INTENSITIES BECOME:' 
DO 72 I=l,M,2 
WRITE(21,700) (S(I,J),J=l,N,2) 

72 CONTINUE 
WRITE(21,*)' DMLESS RADIAL RAD. HEAT FLUX DISTRIBUTIONS ARE:' 
DO 73 I=l,M,2 
WRITE(21,700) (QFR(I,J),J=l,N,2) 

73 CONTINUE 
WRITE(21,*)' DMLESS AXIAL RAD. HEAT FLUX DISTRIBUTIONS ARE:' 
DO 74 I=l,M,2 
WRITE(21,700) (QFZ(I,J),J=l,N,2) 

74 CONTINUE 
WRITE(21,*) '· DMLESS HEAT FLUXES FOR COND. ONLY,RAD. ONLY, AND

: COND. & RAD. CASES AT INSIDE CYLINDER BECOME:' 
WRITE(21,700) (QCI(J),J=l,N,2) 
WRITE(21,700) (QFR(l,J),J=l,N,2) 
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WRITE(21,700)(QCRI(J),J=l,N,2) 
TIME=TP*BETA**2/DIF 
IF(TP.EQ.0.5*IP5*TSTP) THEN 
DO 51 J=l,N 
L2(J)=LLI(J)/2 
WRITE(22,*) ETAl(J),SLI(J) 
WRITE(50,*) ETAl(J),QCI(J) 
WRITE(54,*) ETAl(J),QFR(l,J) 
WRITE(58,*) ETAl(J),QCRI(J) 
WRITE(62,*) ETA1(J),QFZ(L2(J),J) 

51 CONTINUE 
DO 52 I=l,M . 
J2=M/2 
WRITE(26,*) TAUl(I),TFR(I,J2) 
WRITE(66,*) TAUl(I),QFR(I,J2) 

52 CONTINUE 
END IF 
IF(TP.EQ.IP5*TSTP) THEN 
WRITE(21,710) IP5*TSTP 
DO 53 J=l,N 
L2(J)=LLI(J)/2. 
WRITE(23,*) ETAl(J),SLI(J) 
WRITE(51,*) ETAl(J),QCI(J) 
WRITE(55,*) ETAl(J),QFR(l,J) 
WRITE(59,*) ETAl(J),QCRI(J) 
WRITE(63,*) ETA1(J),QFZ(L2(J),J) 

53 CONTINUE 
DO ·54 I=l,M 
J2=M/2 
WRITE(27,*) TAUl(I),TFR(I,J2) 
WRITE(67,*) TAUl(I),QFR(I,J2) 

54 CONTINUE 
DO 75 I=l,M,2 
WRITE(21,700) (TFR(I,J),J=l,N,2) 

75 CONTINUE 
END IF 
IF(TP.EQ.2~0*IP5*TSTP) THEN 
DO 55 J=l,N 
L2(J)=LLI(J)/2 
WRITE(24,*) ETAl(J),SLI(J) 
WRITE(52,*) ETAl(J),QCI(J) 
WRITE(56,*) ETAl(J),QFR(l,J) 
WRITE(60,*) ETAl(J),QCRI(J) 
WRITE(64,*) ETAl(J),QFZ(L2(J),J) 

55 CONTINUE 
DO 56 I=l,M 
WRITE (28, *) TAUl( I), TFR( I, J2) 
WRITE(68,*) TAUl(I),QFR(I,J2) 

56 CONTINUE 
END IF 
IF(TP.EQ.3*IP5*TSTP) THEN 
WRITE(21,710) 3*IP5*TSTP 
DO 57 J=l,N 
L2(J)=LLI(J)/2 
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WRITE(25,*) ETAl(J) ,SLI(J) 
WRITE(53,*) ETAl(J),QCI(J) 
WRITE(57,*) ETAl(J),QFR(l,J) 
WRITE(61,*) ETAl(J),QCRI(J) 
WRITE(65,*) ETAl(J),QFZ(L2(J),J) 

57 CONTINUE 
DO 58 I=l,M 
WRITE(29,*) TAUl(I),TFR(I,J2) 
WRITE(69,*) TAUl(I),QFR(I,J2) 

58 CONTINUE 
DO 76 I=l,M,2 
WRITE(21,700) (TFR(I,J),J=l,N,2) 

76 CONTINUE 
END IF 
IC=O 

2 DO 3 I=l,M 
DO 3 J=l,N
PH(I,J)=H(I,J) 

3 CONTINUE 
IF(NTS.LT.MNTS)GO TO 40 

100 FORMAT(lH ,'DIFFUSIVITY=',Fl0.3,'CONDUCTIVITY=',Fl0.3,'DENSITY=', 
C Fl0.3,'FUSION TEMP=',Fl0.3,'LATENT HEAT=',Fl0.3) 

105 FORMAT(lH ,'ABSORPTION COEFF.=',Fl0.3,'SCATTERING COEFF.=',Fl0.3) 
107 FORMAT(lH , 'EMISSIVITY AT INSIDE WALL=' ,Fl0.3, 'EMISSIVITY AT S/L 

: INTERFACE=',Fl0.3) 
108 FORMAT(lH ,'EMISSIVITY AT LEFT SURFACE=',Fl0.3,'EMISSIVITY AT 

"RIGHT S:uRFACE=' , FlO-. 3)
110 FORMAT( lH , 'INSIDE TEMP=' , FlO. 3, 'OUTSIDE TEMP=' , FlO. 3)
120 FORMAT(lH ,'INSIDE RADIUS=',Fl0.3,'0UTSIDE RADIUS=',Fl0.3, 

: 'AXIAL LENGTH OF CYLINDER=',Fl0.3) _ 
130 FORMAT(lH , 'ORF=' ,Fl0.4, 'ALLOWABLE ERROR=' ,Fl0.8) 
140 FORMAT(lH ,'INITIAL ASSUMED ENTHALPY=' ,Fl0.4,'TIME STEP=',Fl0.5) 
150 FORMAT(lH ,'NUMBER OF RADIAL NODES=',17,'MAX NO TIME STEP=',I7, 

: 'NUMBER OF AXIAL NODES=',I7) 
160 FORMAT(lH ,tMAX ALLOWABLE ITER=',I5,'IPTH PRINT=',I5,'CONTROL TO 

CPRINT=',15) 
200 FORMAT( 16!8) 
400 FORMAT(lHl,'DMLESS TIME=',F8.4,3X,'RELATIVE ERROR=,'El2.5) 
460 FORMAT(lH ,'NUMBER OF ITERATIONS WITHIN CURRENT TIME STEP IS ',14) 
500 FORMAT(lH ,'SOLID/LIQUID INTERFACER IS ') 
510 FORMAT(lH ,'DMLESS S/1 , INTERFACE RF/RI BECOME:') 
700 FORMAT(lH ,16F8.4) 
710 FORMAT(' DMLESS TEMP (T-TF)/TR AT DMLESS TIME ',F8.4,' BECOME') 

CALL ETIME2(ISEC) 

EOF .. 

WRITE(21,*)' THE ACCUMULATED CPU TIME BECOMES IN MSEC' 
WRITE(21,*) ISEC 
STOP 
END 
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