THE UNIVERSITY OF KANSAS

COMPUTATIONAL ANALYSIS FOR TIME DEPENDENT TWO DIMENSIONAL FLOW OF AN INCOMPRESSIBLE HOMOGENEOUS NEWTONIAN FLUID (SPIN UP PROBLEM)

by
KWANG S. KIM
B.S.M.E., Hanyang University, 1978, Korea

October 1982

Submitted to the Department of Mechanical Engineering and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science

Redacted Signature

Professor in Charge
Redacted Signature

Redacted Signature
Committee Members
Redacted Signature
For the Depaytment

ABSTRACT

A digital computer method and a program which employs optimized successive overrelaxation were developed to solve certain problems involving time-dependent two-dimensional flow of an incompressible homogeneous Newtonian fluid.

Bubble sort techniques were used in a boundary field and a vectorization of the inner-most Do-loops of the program was carried out using a CRAY-1 computer. A polygon region was selected for analysis purposes.

As a test program, "Spin-up problem" for a circular region with rotating solid boundary conditions was analyzed. The results of computations using a fine mesh were in good agreement with analytical results.

Finally, a flow contained in an infinite cylinder with part-moving boundaries is examined. It is to be applied to an analysis of a flow in a circular cavity.
TABLE OF CONTENTS
Page
Abstract i
Table of Contents ii
List of Figures iii
Nomenclature vi
Acknow ledgments viii
Chapter
I. Introduction 1
II. Governing Equations 3
III. Computational Approach 7

1. Procedure Methodology 7
2. Finite Difference Equation 10
3. Classification of Mesh Points 17
4. Treatment of Points According to Catagory 19
5. Boundary Treatment 20
IV. Analytical Approach for a Test Problem 26
V. Numerical Results and Discussion 39
List of References 41
Appendix
A. Figures for Mesh Treatment and Results 44
B. Program for Analytical Solution 68
C. Computer Program for Numerical Solution 72

LIST OF FIGURES

Figure Page
3.1.1 Main Program 9
3.3.1 Classification of Mesh Points 17
3.3.2 Moving Points Around a Polygon 18
3.4.1 Treatment of Points 19
3.5.1 Method of Handling 3-Points 21
3.5.2 Point Near a Moving Wall 21
3.5.3 Relation Between ψ and ξ at w 22
3.5.4 Formula of Thom for a Curved Wall 24
4.4.1 Rotating Infinite Cylinder Filled with a Fluid 26
4.4.2 Thin Layer of Thickness 31
4.4.3 Dimensionless Peripheral Velocity vs. Dimensionless Radius 34
A Set Up 50 Mesh Spaces in Spin Up Problem 44A $_{1} \quad$ Mesh Layout at Boundary Points with 20Vertices for Spin Up Problem (Upper-HalfRegion in Polygon)45
B Dimensionless Streamfunction vs. DimensionlessTime at Center of Cylinder in Spin Up Problem-Comparison of Bessel Function Solution andNumerical Solution46
C Dimensionless Vorticity vs. Mesh Point at26th Column at Various Dimensionless Time($\mathrm{Re}=1, \theta=360^{\circ}$) -Comparison of Bessel FunctionSolution and Numerical Solution47
D Dimensionless Vorticity vs. Number of Time
Step at Center $(\operatorname{Re}=1, \theta=360$, 1 Time Step 0.0002) 48
E Dimensionless Vorticity vs Number of Time Steps at Center ($\operatorname{Re}=3.16, \theta=180^{\circ}$, 1 Time Step=0.0007) 49

LIST OF FIGURES (continued)

Figure
Page
F Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=10, \theta=180^{\circ}\right.$, I Time Step $=0.002$)

50
G Dimensionless Vorticity vs. Number of Time Step at center ($\operatorname{Re}=31.6, \theta=180^{\circ}$, 1 Time Step=0.004)51

H Dimensionless Vorticity vs. Number of Time Step at Center ($\operatorname{Re}=100, \theta=180^{\circ}$, 1 Time Step=0.008)52

I Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=316, \theta=180^{\circ}\right.$, 1 Time Step=0.008)53

J Dimensionless Vorticity vs. Number of Time Step at Center ($\mathrm{Re}=1000, \theta=180^{\circ}$, 1 Time Step=0.01)54

K Dimensionless Vorticity vs. Number of Time Step at Center ($\mathrm{Re}=3160, \theta=180^{\circ}$, 1 Time Step=0.01)55

L Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=100, \theta=90^{\circ}, 1\right.$ Time Step $=0.006$)

Dimensionless Vorticity vs. Number of Time Step at Center ($\operatorname{Re}=316, \theta=90^{\circ}$, 1 Time Step $=0.008$)57

N Dimensionless Vorticity vs. Number of Time Step at Center ($\operatorname{Re}=1000, \theta=90^{\circ}$, 1 Time Step=0.01)58

0 Dimensionless Vorticity vs. Number of Time Step at Center ($\operatorname{Re}=3160, \theta=90^{\circ}$, 1 Time Step $=0.009$) 59

Duration for Convergence(T) vs. Reynolds Number in Logarithmic Scale at $\theta=90^{\circ}, 180^{\circ}$,

Ultimate Dimensionless Vorticity vs. Mesh Points at 26 th Column $\left(\operatorname{Re}=100, \theta=180^{\circ}\right)$. .
$R \quad$ Ultimate Dimensionless Vorticity vs. Mesh Points at 26 th Column $\left(\operatorname{Re}=1000, \theta=180^{\circ}\right)$. . .

LIST OF FIGURES (continued)

Figure Page
S Ultimate Dimensionless Vorticity vs. Mesh Points at 26 th Column $\left(\operatorname{Re}=3160, \theta=180^{\circ}\right)$. . 63

T Ultimate Dimensionless Vorticity at Center vs. Reynolds Number in Logarithmic Scale $\left(\theta=90^{\circ}, 180^{\circ}\right)$ 64

U Ultimate Dimensionless Vorticity at Center of Vortex vs. Reynolds Number in Logarithmic scale $\left(\theta^{\circ}=90^{\circ}, 180^{\circ}\right)$ 65

V Dimensionless Equivorticity Line at $\mathrm{R}=100$ and $\theta=180^{\circ}$66
w $\quad \begin{aligned} & \text { Dimensionless Equivorticity Line at } R=316 \\ & \text { and } \theta=90^{\circ} \cdot \operatorname{~P~.~.~.~.~.~.~.~.~.~.~.~} 67\end{aligned}$

NOMENCLATURE

β	aspect ratio
Y	unit weight of a fluid, $1 \mathrm{lb} / \mathrm{ft}^{3}$.
8	grid space
∇	vector operator $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ for two-dimensional problem
6	thin layer of a fluid thickness, ft.
θ	polar angle in circular flow
θ_{1}	angular horizontal geometric coordinate
λ	mutual overlap, ft.
4	dynamic (absolute) viscosity of a fluid, lb. sec./ft ${ }^{2}$.
2)	kinematic viscosity of a fluid, $f t^{2} . / \mathrm{sec}$.
π	a polygon
P	fluid density, $1 \mathrm{bm} . / \mathrm{ft}^{3}$.
σ	boundary of a region of a two dimensional flow
ψ	stream function, $f t^{2} . / \mathrm{sec}$.
ψ_{p}	stream function at point $P, f t^{2} . / \mathrm{sec}$.
ψ_{W}	stream function at the wall, $\mathrm{ft}{ }^{2} . / \mathrm{sec}$.
\forall	"at all points"
ξ	vorticity, sec ${ }^{-1}$

ACKNOWLEDGEMENT

I would like to express my sincere thanks to the people and advisors who have provided me with valuable help throughout this research. I would like to thank Dr. Charles Groth who originated this study, and provided great assistance. I also extend my deep appreciation to Dr. Bedru Yimer, Dr. John Crisp, and Dr. Louis Burmeister for their help and guidance in completing this work. Invaluable run time on a CRAY-1 computer was provided by United Compüting Systems, Kansas City', Missouri. I want to thank the Ministry of National Defence of Korean Government, who has supported me in various ways.

Finally, I wish to thank my parents and my wife, Jin for their motivation and support. The completion of this research would not have been possible without the patience and encouragement of all the people mentioned.

CHAPTER 1
 INTRODUCTION

- The computational techniques of a computer program which seems to be effective for time-dependent two-dimensional viscous fllow problems will be developed. The analysis is applied to a polygon region with solid moving or fixed boundary conditions. The method is outlined in Chapter 3, and more details concerning the test program are given in Chapter 4.

Mathematically, the problem is that of solving numerically a system of nonlinear partial differential equations. It is known that, even without the added complications of time variation or non-linearity, numerical techniques for multi-order equations tend to require substantial computer time. The presence of non-linear terms may not only accentuate the computer time problems, but may also tend to induce computational instabilities.

As might be expected from their potential importance, viscous flow computations have received considerable attention in the literature (Fromm\& Harlow (4) ; Dix (2) ; Hellums \& Churchill (5) ; Wilkes (15) and Thompson (14) ; Pearson (9), etc). In general, it appears that there have been difficulties with one or another of computational speed, stability, accuracy, or the ability to handle correct boundary conditions. In a problem of this general difficulty, it seems worth while to
begin with the simplest possible problem possessing realistic boundary conditions. In this research, a rotating flow contained in an infinite cylinder, with moving boundaries (test program) and part-moving boundaries is treated.

In the process of developing computational techniques and a computer program, the treatment of boundary fields, which are very important in recent computational fluid dynamics is utilized. By employing the curvature term in the formula of Thom (12) and the computer programming algorithm (Bubble Sort, etc), the accurate calculations of the vorticities and stream functions are resolved and are in good agreement with those of analytical works in a test program. A vectorization in a xelaxation loop which is the most time-consuming operation and in the other inner-most Do-loops results in an increase in speed by a factor of three on the CRAY-1 Computer. As an application, which can be used for the analysis of a flow in a circular cavity with part of its wall moving, the problems for the fluid in a part-rotating infinite cylinder of radius, a, are investigated. These computations are converged and stabilized after reaching the time desired, even though the exact analytical results are unknown. Throughout this research, calculations of pressure are omitted.

GOVERNING EQUATIONS

In terms of vector notations and time \bar{E}, the NavierStokes equations are derived from Newton's second law of motion in the case of incompressible fluids ($\bar{\rho}$ and $\bar{\mu}$ are constant):

$$
\begin{align*}
& \vec{F}=m \vec{a} \tag{1}\\
& -\overline{\operatorname{grad}} \bar{p}-\bar{Y} \overline{g r a d} \hbar+\bar{\mu}^{2} \bar{\nabla}^{2} \overrightarrow{\bar{u}}=\bar{\rho} \frac{D \stackrel{\rightharpoonup}{u}}{D t} \tag{2}
\end{align*}
$$

Where $\bar{\rho}$ is density, $\bar{\gamma}$ is unit weight, \bar{h} is elevation from a datum line and $\bar{\mu}$ is dynamic viscosity; $\frac{D}{D \bar{t}}$ is substantive derivative.

Applying the principle of conservation of mass, the equation of continuity may be written in the following form,

$$
\begin{equation*}
\bar{\nabla} \cdot \stackrel{\overrightarrow{\mathrm{u}}}{ }=-\frac{1}{\bar{\rho}} \frac{\mathrm{D} \bar{\rho}}{\mathrm{D} \bar{E}} \tag{3}
\end{equation*}
$$

In Cartesian coordinates (\bar{X}, \bar{y}), the equations relating pressure \bar{p}, and velocity components (\bar{u}, \bar{v}) for two-dimensional incompressible flow are

$$
\begin{equation*}
-\overline{\operatorname{grad}} \overline{\mathrm{p}}+\bar{\mu} \bar{\nabla}^{2} \overrightarrow{\overrightarrow{\mathrm{u}}}=\bar{\rho} \frac{D \overrightarrow{\bar{u}}}{\overline{\mathrm{t}}} \tag{4}
\end{equation*}
$$

or

$$
\begin{align*}
& \bar{\rho}\left(\bar{u}_{t}+\bar{u}_{x} \bar{u}+\bar{u}_{y} \bar{v}\right)=-\bar{p}_{x}+\bar{\mu}\left(\bar{u}_{x x}+\bar{u}_{y y}\right), \tag{5}\\
& \bar{\rho}\left(\bar{v}_{t}+\bar{v}_{x} \bar{u}+\bar{v}_{y} \bar{v}\right)=-\bar{p}_{y}+\bar{\mu}\left(\bar{v}_{x x}+\bar{v}_{y y}\right), \tag{6}
\end{align*}
$$

Tor two-dimensional incompressible flow the continuity equation nay be written as

$$
\begin{equation*}
\bar{u}_{x}+\bar{v}_{y}=0 \tag{7}
\end{equation*}
$$

Where subscripts denote partial differentiation, and the overbars represent dimensional quantities. A stream function that satisfies equation (4) may be defined in the following manner.

$$
\begin{equation*}
\overline{\mathrm{u}}=\bar{\psi}_{\mathrm{y}}, \quad \overline{\mathrm{v}}=-\bar{\psi}_{\mathrm{x}} \tag{8}
\end{equation*}
$$

Where $\bar{\psi}$ is the stream function. The vorticity $\bar{\xi}$ is defined by

$$
\begin{equation*}
\bar{\xi}=2 \bar{\omega}=-\left(\bar{u}_{y}-\bar{v}_{x}\right)=-\left(\bar{\psi}_{x x}+\bar{\psi}_{y y}\right) \tag{9}
\end{equation*}
$$

where $\overline{\mathcal{W}}$ is angular velocity. Then Poisson's equation is

$$
\begin{equation*}
\bar{\nabla}^{2} \bar{\psi}(x, y)=-\bar{\xi}(x, y) \tag{10}
\end{equation*}
$$

Taking the curl of equation (4) yields

- curl $\overline{\operatorname{grad}} \bar{p}+\operatorname{cur} 1 \bar{\mu} \bar{\nabla}^{2} \overrightarrow{\vec{u}}=\operatorname{cur} 1 \vec{\rho} \frac{D \vec{u}}{D \vec{t}}$

$$
\begin{equation*}
\bar{\mu} \operatorname{cur} 1 \bar{\nabla}^{2} \overrightarrow{\bar{u}}=\bar{\rho} \operatorname{cur} 1 \frac{D}{D \bar{E}} \overrightarrow{\vec{u}} \tag{12}
\end{equation*}
$$

$\bar{\mu} \bar{\nabla}^{2} \operatorname{cur} 1 \overrightarrow{\bar{u}}=\bar{\rho} \frac{D}{D E} \operatorname{cur} 1 \overrightarrow{\bar{u}}$,

$$
\begin{equation*}
\bar{v} \bar{\nabla}^{2} \xi=\frac{D}{D \bar{E}} \bar{\xi} \tag{14}
\end{equation*}
$$

$0:$

$$
\begin{equation*}
\frac{\partial \bar{\xi}}{\partial \bar{t}}=-\dot{\bar{u}} \cdot(\bar{\nabla} \bar{\xi})+\bar{\nu} \bar{\nabla}^{2} \bar{\xi} \tag{15}
\end{equation*}
$$

where $\bar{V}=\bar{\mu} / \bar{\rho}$ is the kinematic viscosity. Equation (14), the parabolic vorticity transport equation, can be thought of as the condition that a pressure function p exist, by taking the divergence of equation (4). An equation for p, the pressure equation, may be obtained from equation (4):

$$
\begin{align*}
& \bar{\nabla} \cdot\left(-\overline{g r a d} \bar{p}+\bar{\mu} \bar{\nabla}^{2} \overrightarrow{\bar{u}}=\bar{\rho} \frac{D \stackrel{\rightharpoonup}{u}}{D \bar{t}}\right) \tag{16}\\
& -\bar{\nabla}^{2} \bar{p}+\bar{v}^{2} \bar{\nabla}^{2}\left(\bar{u}_{x}+\bar{v}_{y}\right) \\
& =\frac{\partial}{\partial \bar{t}}\left(\bar{u}_{x}+\bar{v}_{y}\right)+\bar{u}_{x} \bar{u}_{x}+\bar{u}_{y} \bar{v}_{x}+\bar{u} \frac{\partial}{\partial x}\left(\bar{u}_{x}+\bar{v}_{y}\right) \\
& \quad+\bar{v}_{x} \bar{u}_{y}+\bar{v}_{y} \bar{v}_{y}+\bar{v} \frac{\partial}{\partial y}\left(\bar{u}_{x}+\bar{v}_{y}\right) \tag{17}
\end{align*}
$$

$$
\begin{equation*}
\bar{\nabla}^{2} \bar{p}=-\left(\bar{u}_{x}^{2}+2 \bar{u}_{y} \bar{v}_{x}+\bar{v}_{y}^{2}\right) \tag{18}
\end{equation*}
$$

The normalizing system used throughout the analysis is based on the advective time scale \bar{L} / \bar{U}_{0}, where \bar{L} is a characteristic length and \bar{U}_{0} is a characteristic velocity of the problem. The dimensionless quantities are defined as follows,

$$
\begin{array}{ll}
u=\bar{u} / \bar{U}_{0}, & v=\bar{v} / \bar{U}_{0} \\
x=\bar{x} / \bar{L}, & y=\bar{y} / \bar{L} \\
\xi=\bar{\xi} /\left(\bar{U}_{0} / \bar{L}\right), & t=\bar{E} /\left(\bar{L} / \bar{U}_{0}\right) \tag{20}
\end{array}
$$

Combining equations (15) and (10) yields

$$
\begin{align*}
\frac{\partial \xi}{\partial t} & =-\nabla \cdot(\vec{u} \xi)+\frac{1}{\operatorname{Re}} \nabla^{2} \xi \tag{21}\\
\nabla^{2} \psi & =-\xi \tag{22}
\end{align*}
$$

where Re is Reynolds number,

$$
\begin{equation*}
\operatorname{Re}=\bar{U}_{o} \overline{\mathrm{~L}} / \overline{\mathrm{D}} \tag{23}
\end{equation*}
$$

CHAPTER 3

COMPUTATIONAL APPROACH

- Procedure Methodology

Initially the fluid is at rest and the rotating boundary element assumes its rotational speed instantaneously. Thus, for the first time step the values of all variables, ψ, ξ, u, and v are zero with the exception of the finite velocities at mesh points on the rotating boundary. This constitutes the initial solution. A small time increment, Δt, is chosen according to equation (32) (Roach (12)). Then the computational cycle begins as the finite difference equation (FDE) form of the continuum equation for vorticity transport, equation (21), is used to calculate an approximation to $\frac{\partial \xi}{\partial t}$ at all interior points in the computational field. The new values of ξ are calculated at a new time level, increased by an increment Δt, by "marching" the vorticity transport equation forward in time. The next step in the computational cycle is to solve the FDE form of equation (22), Poisson's equation, for new value of the stream function ψ, using the new interior values of ξ. Since this Poisson solution for new ψ does not depend on the boundary values for new ξ, which are not yet known, the fact that the solution for the new ψ is itself iterative with the optimized successive over-relaxation factor is employed.

At this point, new velocity components can be evaluated by finite difference analogs of equation (8). Then the new values of ξ on the boundaries of the computational region are calculated as a last step. The computational cycle is repeated until the desired time is reached. The new values of vorticity, ξ, at all boundary points maybe calculated with high accuracy, using the appropriate form of the formula of Thom including the curvature term, and "Bubble Sort" techniques. The calculation of ψ for all interior points at each time step, which required the iteration of equation (10), is the most time consuming operation and in order to reduce computing time to a minimum successive over-relaxation is used to increase the speed of convergence of the iterative procedure, and a vectorization is carried out there. As in the point successive over-relaxation (S.O.R.) iterative process, the new value of ψ at each node is computed from the most recent values available at adjacent nodes, as indicated by equation (28). Schematically, the whole procedure is illustrated in Figure 3.1.1.

2 - Finite Difference Equation

In the following analysis the governing equations are written in finite difference form. In finite difference formulations, spatial derivatives are represented by centered differences, whereas time derivatives are represented by forward differences (forward time and centered space method: FrIS) except at the advection terms. A one-step, explicit, two-time-level method which achieves static stability of the advection terms involves the use of one-sided, rather than spacecentered, differencing. Backward differences are used when the velocities are positive, and vice-versa (Upwind Differencing Method: Lilly (8)). The governing differential equation (15) with symmetric "legs" is formulated in finite difference form as follows:

$$
\begin{aligned}
& \xi^{n+1}(i, j)=\xi^{n}(i, j)+\Delta t\left(\nu \nabla^{2} \xi-\vec{u} \cdot \overrightarrow{g r a d} \xi\right) \\
& =\xi^{n}(i, j)+V \Delta t\left(\nabla^{2} \xi-\frac{1}{V} u \xi_{x}-\frac{1}{V} v \xi_{Y}\right) \\
& =\xi^{n}(i, j)+\frac{\Delta t}{\delta^{2} R}\left[\xi^{n}(i+1, j)+\xi^{n+1}(i-1, j)+\xi^{n+1}(i, j+1)\right. \\
& \left.+\xi^{n}(i, j-1)-4 \xi^{n}(i, j)\right]-\Delta t\left(\bar{u} \xi_{x}+\overline{\operatorname{V}} \xi_{y}\right) \\
& =\xi^{n}(i, j)+\frac{4}{R} \Delta t \frac{\langle\xi\rangle_{\text {sur }}-\xi^{n}(i, j)}{\delta^{2}} \\
& -\Delta t\left(u \xi_{x}+v \xi_{y}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\xi^{n}(i, j)+H 1\left[\xi^{n}(i+1, j)-\xi^{n}(i, j)+\xi^{n}(i, j-1)\right. \\
& -\xi^{n}(i, j)-\xi^{n}(i, j)+\xi^{n}(i+1, j)-\xi^{n}(i, j) \\
& \left.+\xi^{n+1}(i, j+1)\right]-H 2\left\{\left[\psi_{(i, j-1)}^{n}-\psi_{(i, j+1)}^{n}\right.\right. \\
& \left.+\left|\psi_{(i, j-1)}^{n}-\psi^{n}(i, j+1)\right|\right]\left(\xi_{(i, j)}^{n}-\xi_{(i+1, j))}^{n}\right. \\
& +\left[\psi_{(i, j-1)}^{n}-\psi_{(i, j+1)}^{n}\right. \\
& \left.-\mid \psi_{(i, j-1)}^{n}-\psi_{(i, j+1)}^{n}\right]\left(\xi^{n+1}(i-1, j)-\xi^{n}(i, j)\right) \\
& +\left[\psi_{(i+1, j)}^{\mathrm{n}}-\psi_{(i-1, j)}^{\mathrm{n}}\right. \\
& \left.+\mid \psi_{(i+1, j)}^{n}-\psi_{(i-1, j) \mid}^{n}\right]\left(\xi^{n}(i, j)-\xi^{n+1}(i, j+1)\right) \\
& +\left[\psi_{(i+1, j)}^{n}-\psi_{(i-1, j)}^{n}-\mid \psi_{(i+1, j)}^{n}-\psi_{(i-1, j) \mid}^{n}\right] \\
& \left.\left(\xi^{n}(i, j-1)-\xi^{n}(i, j)\right)\right\} \tag{24}
\end{align*}
$$

where: $\delta=$ grid space,

$$
\begin{aligned}
& H 1=\frac{\Delta t}{\delta^{2} R}, \\
& H 2=\frac{\Delta t}{4 \delta^{2}}
\end{aligned}
$$

and ξ^{n+1} denotes the value at time $t+\Delta t$. The subscripts i, j refer to points in the region of flow such that in the general coordinate system $X_{i}=i \Delta X, Y_{j}=j \Delta Y$. Then the governing differential equation (15) with assymmetric "legs" is

$$
\begin{align*}
& \left.\xi^{n+1}(i, j)=\xi^{n}(i, j)+\frac{\Delta t}{R} \nabla \psi\right)-\frac{\Delta t}{2}\left(2 u \xi_{X}+2 v \xi_{Y}\right), \\
& \xi^{n+1}(i, j)=\xi^{n}(i, j)+H 5 * \operatorname{ATLED} \\
& - \text { Ht }\left\{\frac{\psi_{(i, j+1)}^{n}-\psi_{(i, j-1)}^{n}}{\delta_{2}+\delta_{4}}\right. \\
& \left.+\left|\frac{\psi_{(i, j+1)}^{n}-\psi_{(i, j-1)}^{n}}{\delta_{2}+\delta_{4}}\right|\right]\left[\frac{\xi^{n}(i, j)-\xi(i-1, j)}{\delta_{3}}\right. \\
& +\frac{\psi_{(i, j+1)}^{n}-\psi_{(i, j-1)}^{n}}{\delta_{2}+\delta_{4}} \\
& \left.-\left|\frac{\psi_{(i, j+1)}^{n}-\psi_{(i, j-1)}^{n}}{\delta_{2}+\delta_{4}}\right|\right]\left[\frac{\xi_{(i+1, j)}-\xi^{n}(i, j)}{\delta_{1}}\right] \\
& +\left[\frac{\psi_{(i-1, j)}^{n}-\psi_{(i+1, j)}^{n}}{\delta_{1}+\delta_{3}}+\left|\frac{\psi_{(i-1, j)}^{n}-\psi_{(i+1, j)}^{n}}{\delta_{1}+\delta_{3}}\right|\right] \\
& {\left[\frac{\xi^{n}(i, j)-\xi(i, j-1)}{\delta_{4}}\right]+\left[\frac{\psi_{(i-1, j)-\psi_{(i+1, j)}^{n}}^{\delta_{1}+\delta_{3}}}{\left[\frac{V_{2}}{n}\right.}\right.} \\
& \left.\left.\left|\frac{\psi_{(i-1, j)}^{n}-\psi_{(i+1, j)}^{n}}{\delta_{1}+\delta_{3}}\right|\right]\left[\frac{\xi_{(i, j+1)}-\xi^{(i, j)}}{\delta_{2}}\right]\right\} \tag{25}
\end{align*}
$$

where: $\quad H 5=\frac{\Delta t}{R}$,

$$
\mathrm{H} 6=\frac{\Delta t}{2}
$$

$$
\begin{aligned}
\text { ALTED } & =\frac{2 \xi(i+1, j)}{\delta_{1}\left(\delta_{1}+\delta_{3}\right)}+\frac{2 \xi(i, j+1)}{\delta_{2}\left(\delta_{2}+\delta_{4}\right)} \\
& +\frac{2 \xi(i-1, j)}{\delta_{3}\left(\delta_{1}+\delta_{3}\right)}+\frac{2 \xi(i, j-1)}{\delta_{4}\left(\delta_{2}+\delta_{4}\right)} \\
& -2\left[\frac{1}{\delta_{1}\left(\delta_{1}+\delta_{3}\right)}+\frac{1}{\delta_{2}\left(\delta_{2}+\delta_{4}\right)}+\frac{1}{\delta_{3}\left(\delta_{1}+\delta_{3}\right)}+\frac{1}{\delta_{4}\left(\delta_{2}+\delta_{4}\right)}\right] \xi(i, j)
\end{aligned}
$$

The expression of new or old values of time in the neighborhood OE vorticities is omitted, since the scanning of the boundary points is different from that of the interior points. Bubble Sort techniques are used for the computation of vorticities at boundary points, using the formula of Thom (see Chapter 3.5 Boundary Treatment).

For the calculation of the stream functions in the grid centers, the iterative method of successive overrelaxation (SOR) was selected in order to have a very fast asymptotic rate of convergence. A five-point difference equation Which represents the Poisson equation (10) can be found by expanding $\psi(x, y)$ in a Taylor series and substituting back into Poisson's equation. Neglecting terms with coefficients of order δ^{2} or higher, the finite difference approximation is:

$$
\begin{align*}
& \frac{1}{\delta_{2}}[\psi(i+1, j)+\psi(i, j+1)+\psi(i-1, j)+\psi(i, j-1) \\
& -4 \psi(i, j)]=-\xi(i, j) \tag{26}
\end{align*}
$$

Rearranging, we have

$$
\begin{equation*}
\psi(i, j)=\langle\psi\rangle_{\text {sur }}+\frac{\xi \delta^{2}}{4} \tag{27}
\end{equation*}
$$

where " $\left\rangle_{\text {sur }}\right.$ " denotes the average of surrounding points. Hockney (6) describes the method of odd/even SOR, in which the points on the grid mesh are corrected in a particular order: First to be corrected are all the points for which i+j.are even, followed by all points with i+jodd.

At each point, the corrected form of the stream function is

$$
\begin{equation*}
\psi^{n+1}(i, j)=\operatorname{ORF}\left[\langle\psi\rangle_{\text {sur }}+\frac{\delta^{2}}{4} \xi^{n+1}(i, j)\right]+\left(1-\operatorname{ORF} \psi^{n}(i, j)\right. \tag{28}
\end{equation*}
$$

ORF is called the over-relaxation factor, $1<0 R F<2$, and it can be adjusted in order to speed up convergence of the system. In this analysis, one more program was formulated which may calculate the optimized ORF with the calculations of the minimized error, being defined as

$$
\begin{equation*}
E=\sum_{i=1}^{N X} \sum_{j=1}^{N Y}\left|\psi^{n+1}(i, j)-\psi_{(i, j)}^{n}\right| \tag{29}
\end{equation*}
$$

where:
$N X$ is the number of x divisions, and $N Y$ is the number of y divisions.

Since the approach of Frankel (3) for the Dirichlet problem in a rectangular domain of size (i - $1 \Delta x$ by (j-1 Δy with constant Δx and Δy it may be shown that

$$
\begin{equation*}
\mathrm{ORF}=2\left(\frac{1-\sqrt{1-\eta}}{\eta}\right) \tag{30}
\end{equation*}
$$

where:

$$
\eta=\left[\frac{\cos \left(\frac{\pi}{i-1}\right)+\left(\frac{\Delta x}{\Delta y}\right)^{2} \cos \left(\frac{\pi}{j-1}\right)}{1+\left(\frac{\Delta x}{\Delta y}\right)}\right]
$$

The ORF may be approximated as an initial value for the program. Since $i=j$ and $\beta=\Delta x / \Delta y=1$, then

$$
\begin{equation*}
\mathrm{ORF}=2\left(\frac{1-1-\cos \left(\frac{\pi}{i-1}\right)}{\cos \left(\frac{\pi}{i-1}\right)}\right) \tag{31}
\end{equation*}
$$

Let $i-1$ be large. Then, using $\cos \left(\frac{\pi}{i-1}\right) \approx 1-\frac{\left(\frac{\pi}{j-1}\right)^{2}}{2!}$,

The initial guess (IORF ≈ 1.91 for 50 by 50 grid system), which is decreased by small decrements in order to get the minimized error may be thus obtained.

Using this program, the optimum over-relaxation factor was determined for the rectangular coordinates 50 by 50 grid system. The optimum over-relaxation factor was found to be ORF $=1.87$ with the value of error $E=8.5 \times 10^{-31}$.

Because of the odd/even fashion of stepping through the grid, the SOR routine can be put into vectorized form for use on the CRAY-1 computer. Vectorizing on the CRAY-1 refers to arranging the FORTRAN code in such a way that the computer can take advantage of its parallel processing capabilities, meaning that calculations normally done sequentially are done concurrently. Vectorizing is possible because the calculation of any single odd/even point does not depend on the previously computed odd/ even point on that row. Vectorizing SOR results in an increase in speed by a factor of 3 on the CRAY-1. The program listed in Appendix C is the vectorized version.

A finite-difference equation is said to be stable if its solution remains bounded as $t \rightarrow \infty$. Furthermore, it is said to be convergent if the solution of the difference equation converges to the solution of the corresponding differential equation as the spatial and time increments tend to zero. Lax and Richtmeyer (7) show that stability implies convergence if the difference equations are consistent with the differential equations, i.e. if the truncation errors tend to zero as the spatial and time increments tend to zero. In this project, an analysis of a fluid filled rotating infinite cylinder was resolved with an error of $\mathrm{E} \doteq 0.1 \%$, which is in very good agreement with the computations of analytical work. (see Figure B in Appendix A). The convergence of a flow in a circular cavity with part of wall moving is attained for Reynolds numbers 3.16,

10, $31.6,100,316,1000$, and 3160. Considering the application of upwind differencing with diffusion terms in two-dimensional incompressible flow, Roach (12) showed that the time step, Δt, which is required for stability, is

$$
\begin{equation*}
\Delta t \leq \frac{1}{\frac{2}{R e}\left(\frac{1}{\Delta x}+\frac{1}{\Delta y}\right)+\frac{|u|}{\Delta x}+\frac{|v|}{\Delta y}} . \tag{32}
\end{equation*}
$$

Fox CRAY-1, the half value of the time step, calculated in equation (32), was used in order to obtain the solution.

3 - Classification of Mesh Points

A polygon, π, was setup and periodic meshes covered, with matual overlap (λ), by π (see Figure 3.3.1).

Figure 3.3.1 Classification of Mesh Points

Each mesh point is classified according to its relationship to π. Subroutine CLOSE takes as its input a point x in the plane, and an N sided polygon π in the plane, of vertices $\left[\vec{x}_{i}\right]$. It returns an output ICLOSE of " 2 " if $\overrightarrow{\mathrm{x}}$ is inside \mathbb{T}, and an ontput ICLOSE of " 1 " if $\overrightarrow{\mathrm{x}}$ is outside π (see Figure 3.3.2).

Figure 3.3.2 Moving Points Around a Polygon.
\vec{x}_{1}, shown in Figure 3.3 .2 is both the start and the finish point for p as p moves around π. Subroutine NEAR determines whether a point p is near a polygon T. By "near" is meant within the small distance, using the matrix $|\Delta x|+|\Delta y|=d *$ of a vertex, or using the standard matrix $\sqrt{\Delta x^{2}+\Delta y^{2}}=d *$ and requiring that a vertical line from p intersects the side. With the help of these two subroutines, there may be 4 catagories, $1, b, 2$, and 3 (see Figure 3.3.1),
where:
1 : mesh points outside π
b : mesh points on π
3 : mesh points inside π but with a neighbor either on or outside π

2 : mesh points inside π all of whose neighbors are also inside π.

4 - Treatment of Points According to Category

The mesh points on and outside of π were skipped. At mesh points inside π but with a neighbor either on π or outside a stream function, ψ, is computed by assymetrical finite difference approximation to Poisson's equation (see Figure 3.4.1).

Figure 3.4.1 Treatment of Points
The length of the shortened "legs" are computed by subroutine POINT. The values of ψ at the "feet" of the shortened legs are given by the boundary conditions, $\psi=\psi(s)$ on π. The computation of the finite difference approximation to Poisson's
equation is accomplished by subroutine SIGMA.
A vorticity, ξ, is computed by the use of the no slip boundary condition according to the formula of Thom (Roach(12)). At strictly interior points (interior points with interior neighbors), a stream function is computed from symmetric finite difference approximation to Poisson's equation by the method of relaxation. A vorticity, ξ, is computed using weather differenced finite difference approximation to the vorticity transport equation (15).

5 - Boundary Treatment

For each boundary point (3-point) the arc length measured counter-clock-wise from the first vertex of π to the base of the normal from the boundary point to π is computed using the subtoutine APROCH, augmented by the subroutine VARC computing the arc length of the vertices (see Figure 3.5.1). In order to apply Bubble Sort technique along the perimeter of a polygon in the counter-clock-wise sence, the subroutine PRANK gives the rank from smallest to largest of the arc lengths. By employing this method, a more accurate analysis may occur because the lengths of 1 and n in the formula of Thom ($1 \neq \mathrm{n}$) are differentiated.

S: ARCNOR
T: ARCLEG
Figure 3.5.1 Method of Handling 3-Points
Vorticity at N is determined from the formula of Thom. Vorticity at L is determined by linear interpolation between such points as N, using the subroutine PERINT. The formula of Thom may be restated for no-slip conditions at a straight wall. Let point P be at a distance δ from an impermeable wall which moves at speed U_{W} (see Figure 3.5.2). Let y be the coordinate normal to the wall ($\mathrm{y}=0$ on w).

$\longrightarrow U_{W}$
Figure 3.5.2 Point Near a Moving Wall

Let the stream function at the wall be ψ_{w} and let the stream function at P be ψ_{p}. Let the fluid velocity be $U(y)$. Due to the no slip condition,

$$
\begin{equation*}
U(0)=U_{W} \tag{33}
\end{equation*}
$$

Consider first the case of zero vorticity, in which

$$
\begin{equation*}
\mathrm{U}(\mathrm{y})=\mathrm{U}_{\mathrm{w}} \quad \forall \mathrm{y} \tag{34}
\end{equation*}
$$

where " V " means "at all points."
Eq. (34) states that the fluid between w and P is all flowing parallel to the wall at speed U_{W} as shown, in figure 3.5.3a.

(a)

(b)

(c)

Figure 3.5.3 Relation Between ψ and ξ at w
Then the flow between W and P is given by

$$
\begin{equation*}
\psi_{\mathrm{p}}-\psi_{\mathrm{w}}=U_{\mathrm{w}} \delta \tag{35}
\end{equation*}
$$

Consider next the case where $U(y)$ is not constant but is linear according to

$$
\begin{equation*}
U(y)=U_{W}+k y \tag{36}
\end{equation*}
$$

where k is constant. Clearly

$$
\begin{equation*}
k=U^{\prime}(y)=-\xi \tag{37}
\end{equation*}
$$

where ξ here is assumed constant. Integrating Eq. (36) gives

$$
\begin{align*}
\psi_{\mathrm{p}}-\psi_{\mathrm{w}} & =\int_{0}^{\delta} u(y) d y \\
& =U_{w} \delta-k \frac{\delta^{2}}{2} \tag{38}
\end{align*}
$$

solving for ξ gives

$$
\begin{equation*}
\xi=\frac{2}{\delta^{2}}\left[\left(U_{w} \delta\right)-\left(\psi_{p}-\psi_{w}\right)\right] \tag{39}
\end{equation*}
$$

which is called the formula of Thom. The first term in brackets in equation (39), $U_{W} \mathcal{O}$, is recognized from equation (35) as the flow between P and w which would occur if the velocity were constant at U_{w}. The second term, $\left(\psi_{p}-\psi_{w}\right)$, is the flow which actually occurs. The formula of Thom, equation (39), implies that if there is more flow between w and P than would be
provided by a constant velocity, then the vorticity will be negative (see Figure 3.5.3b). If there is less flow than $U_{W} \delta$, then the vorticity will be positive (see Figure 3.5.3c). The formula of Thom may also be derived for a curved wall (see Figure 3.5.4).

Figure 3.5.4 Formula of Thom for a Curved wall
From the definition of vorticity, equation (9),

$$
\begin{aligned}
\xi & =v_{x}-u_{y} \\
& =\frac{U_{w} d \theta}{d x}-\left(\psi_{y}\right)_{y} \\
& =U_{W}\left(\frac{d \theta}{d x}\right)-\left(\frac{\psi_{p}-\psi_{w}}{\delta}-U_{W}\right) / \delta / 2
\end{aligned}
$$

Rearranging:

$$
\begin{equation*}
\xi=\frac{U_{W}}{a}+\frac{2}{\delta 2}\left[\left(U_{W} \delta\right)-\left(\psi_{p}-\psi_{w}\right)\right] \tag{40}
\end{equation*}
$$

Where a is the radius of curvature, or

$$
\begin{equation*}
a=\frac{\left(1+y_{x}^{2}\right)^{3 / 2}}{y_{x x}} \tag{41}
\end{equation*}
$$

CHAPTER 4

ANALYTICAL APPROACH FOR A TEST PROBLEM

Acylinder of internal radius, a, and infinite length is filled with a fluid of kinematic viscosity V. Initially the fluid is at rest. At time zero the internal wall starts moving at peripheral speed U_{W} (Figure 4.4.1).

Figure 4.4.1 Rotating Infinite Cylinder Filled with a Fluid

The overbars are omitted for representing dimensional quantities in this section. The problem shall be formulated in terms of stream function and vorticity. Due to rotational symmetry these may be written, respectively, as $\psi(r, t)$ and $\xi(r, t)$, the ϕ being neglected. The differential equations for stream function and vorticity are, respectively

$$
\begin{equation*}
\psi_{r r}+\frac{1}{r} \psi_{r}=-\xi \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu\left(\xi_{r r}+\frac{1}{r} \xi_{r}\right)=\xi_{t}+\vec{u} \cdot \operatorname{grad} \xi^{0} * \tag{43}
\end{equation*}
$$

'The boundary condition on the peripheral velocity $q(r, t)$ is

$$
\begin{equation*}
q(a, t)=\left(-\psi_{r}\right)_{@ r}=a=U_{W} \tag{44}
\end{equation*}
$$

The initial condition of rest is given by

$$
\begin{equation*}
\psi(r, o)=0 \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi(r, o)=0 \tag{46}
\end{equation*}
$$

The problem of pinup is considered solved if $q(r, t)$ are determined for all r and t. Starting with the vorticity equation (14) and applying separation of variables in $\xi(r, t)$, according to

$$
\begin{equation*}
\xi(r, t)=R(r) T(t) \tag{47}
\end{equation*}
$$

yields, upon substitution into equation (43),

$$
\begin{align*}
& V\left(R_{r r} T+\frac{1}{r} R_{r} T\right)=R T_{t} \\
& V\left(\frac{R_{r r}}{R}+\frac{1}{r} \frac{R_{r}}{R}\right)=\frac{T_{t}}{T}=K=\text { const. } \tag{48}
\end{align*}
$$

$* \overrightarrow{\mathrm{u}} \cdot \operatorname{grad} \xi=(\underset{\mathrm{v}}{\mathrm{ur}})^{0} \cdot($ $\left(\begin{array}{l}\xi_{r} \\ \xi_{\theta} \\ \xi_{\theta}\end{array}=0\right.$

This clearly resulted in two ordinary differential equations,

$$
\begin{equation*}
R_{r r}+R_{r}-\left(\frac{K}{V}\right) r R=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{t}-K T=0 \tag{50}
\end{equation*}
$$

Equation (50) has the general solution

$$
\begin{equation*}
T=c e^{k t} \tag{51}
\end{equation*}
$$

The vorticity is required to be bounded as $t \rightarrow \infty$ and therefore $\mathrm{K} \leq 0$. Then,

$$
\begin{equation*}
k=-h ; \quad h \geq 0 \tag{52}
\end{equation*}
$$

Equation (49) is Bessels equation of order m, which is

$$
\begin{equation*}
x y_{x x}+x y_{x}+\left(x^{2}-m^{2}\right)=0 \tag{53}
\end{equation*}
$$

To transform equation (49) into equation (53) r is nondimensionlized according to

$$
\begin{equation*}
r_{n}=r / L \tag{54}
\end{equation*}
$$

Transformation of equation (49) to the dimensionless radius r_{n} proceèds as follows.

$$
\begin{align*}
& r_{n} L R_{r_{n}} r_{n} \frac{1}{L^{2}}+R_{r_{n}} \frac{1}{L}-\frac{k}{V} r_{n} L R=0 \\
& r_{n} R_{r_{n} r_{n}}+R_{r_{n}}+\left(L^{2} \frac{h}{\nu}\right) r_{n} R=0 \tag{55}
\end{align*}
$$

Selecting

$$
\begin{equation*}
I=\sqrt{\frac{V}{h}} \tag{56}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(L^{2} \frac{h}{D}\right)=1 \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n}^{2} R_{r_{n} r_{n}}+r_{n} R_{r_{n}}+r_{n}^{2} R=0 \tag{58}
\end{equation*}
$$

Comparison of equation (58) with equation (53) shows equation (49) to be a Bessel equation of order zero. With the aid of equation (54) and equation (56) solution of equation (49) may be written as

$$
\begin{equation*}
R=J_{o}\left(r_{n}\right)=J_{o}\left(\sqrt{\frac{h}{V^{2}}}\right) \tag{59}
\end{equation*}
$$

The desired solution of the vorticity equation is given by an expansion, in terms of the form (47), as follows.

$$
\begin{equation*}
\xi=\sum_{i=0}^{\infty} c_{i} e^{-h_{i} t} J_{o}\left(\sqrt{\left.\frac{h_{i}}{V} r\right)}\right. \tag{60}
\end{equation*}
$$

The constants $\left[c_{i}\right]$ and $\left[h_{i}\right]$ must be chosen so as to satisfy the boundary and initial conditions to determine the constants, an expression for the peripheral verocity $q=-\psi_{r}$ is derived. The equation for ψ, Eq. (42), may be written as

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \psi_{r}\right)=-\xi \tag{61}
\end{equation*}
$$

The space dependent portion of each term of (60) is the form $J_{0}\left(\alpha_{i} r\right)$ so

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r \psi_{r}^{i}\right)=-J_{0}\left(\alpha_{i} r\right) \tag{62}
\end{equation*}
$$

which is integrated as follows.

$$
\begin{aligned}
r \psi_{r}^{i} & =-\int_{0}^{r} r J_{0}\left(\alpha_{i} r\right) d r \\
& =-\frac{1}{\alpha_{i}^{2}} \int_{0}^{r}\left(\alpha_{i} r\right) J_{0}\left(\alpha_{i} r\right) d\left(\alpha_{i} r\right) \\
& =-\frac{1}{\alpha_{i}^{2}} \int_{0}^{\alpha_{i} r} \theta J_{0}(\theta) d \theta \\
& =-\frac{1}{\alpha_{i}^{2}}\left(\alpha_{i} r\right) J_{1}\left(\alpha_{i} r\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\psi_{r}^{i}=-\frac{1}{\alpha_{i}} J_{1}\left(\alpha_{i} r\right) \tag{63}
\end{equation*}
$$

from which

$$
\begin{equation*}
\left.q(r, t)=-\psi_{r}=\sum_{i=0}^{\infty} c_{i} e^{-h_{i} t} \sqrt{\frac{\nu}{h_{i}}} J_{1} \sqrt{\frac{h_{i}}{\nu}} r\right) \tag{64}
\end{equation*}
$$

Now equations (44) and (60) are used to compute the constants [h_{i}]. Near the wall at early times the velocity jumps from 0 to U_{W} over a very thin layer of thickness \in (Figure 4.4.2).

- Figure 4.4.2 Thin Layer of Thickness \in

In that layer, for $y=0$ and $x=r$,

$$
\begin{equation*}
\xi=v_{x}-u_{y}=0\left(\frac{U_{w}}{E}\right)-0\left(\frac{U_{w}}{a}\right) \approx v_{r} \tag{65}
\end{equation*}
$$

so

$$
\begin{equation*}
U_{w}=\int_{a-\epsilon}^{a} \xi d r=\text { const.; } \tag{66}
\end{equation*}
$$

where $O\left(\frac{U_{W}}{\epsilon}\right)$ means the order of U_{W} / ϵ.
Thus, it can be seen that the vorticity distribution across the friction layer has a constant integral, U_{W}. The rate of change of that integral with respect to time is given by

$$
0=\frac{d}{d t} U_{w}=\frac{d}{d t} \int_{a-\epsilon}^{a} \xi d r=\left[\begin{array}{l}
\text { vorticity rate of } \\
\text { increase in layer }
\end{array}\right]
$$

$$
\begin{align*}
& =\left[\begin{array}{c}
\text { vorticity diffusing } \\
\text { into the layer from } \\
\text { the wall at } r=a
\end{array}\right]-\left[\begin{array}{c}
\text { vorticity diffusing } \\
\text { out of the layer at } \\
\text { inside edge of layer }
\end{array}\right] * \\
& =\nu\left(\frac{\partial \xi}{\partial r}\right)_{r=a}-\nu\left(\frac{\partial \xi}{\partial r}\right)_{r=a-\epsilon} \tag{67}
\end{align*}
$$

For $r \leq a-\in$ the vorticity and all its derivatives are extremely small by equation (46) so equation (67) becomes

$$
0=\nu\left(\frac{\partial \xi}{\partial r}\right)_{r=a}-\nu \cdot 0
$$

and

$$
\begin{equation*}
\left(\frac{\partial \xi}{\partial r}\right)_{r=a}=0 \quad \forall \operatorname{small} t \tag{68}
\end{equation*}
$$

Equations (50) and (68) can only hold for all small t if

$$
\frac{d}{d r} J_{0}\left(\sqrt{\frac{h_{i}}{\nu}} r\right)=0 \quad \text { @r }=a
$$

which implies that

$$
\begin{equation*}
J_{1}\left(\sqrt{\frac{h_{i}}{\nu}} a\right)=0 \quad \forall i \tag{69}
\end{equation*}
$$

Thus the values of $\sqrt{\frac{h_{i}}{\nu}}$ a are zeros of J_{1} :

$$
\begin{align*}
\sqrt{\frac{h_{i}}{\nu}} a= & 0 ; 3.8317 ; 7.0156 ; 10.1735 ; 13.3237 ; 16.4706 ; \\
& \ldots \ldots \tag{70}
\end{align*}
$$

* This form of equation (14) is same as that of the energy equation.

From equation (70) the leading term of equation (64) is seen to be indeterminate. That term is evaluated by taking the limit as

$$
\sqrt{\frac{h_{0}}{V}} a \rightarrow 0
$$

thus

$$
\begin{equation*}
\lim _{h_{0} \rightarrow 0}\left[\frac{J_{1}\left(\frac{h_{0}}{\nu} r\right)}{\sqrt{h_{0} / \nu}}\right]=\lim _{\alpha \rightarrow 0}\left[\frac{J_{1}(\alpha r)}{\alpha}\right]=\frac{r}{2} \tag{71}
\end{equation*}
$$

Exom (64) and (71),

$$
q(r, t)=\sum_{i=0}^{\infty} c_{i} e^{-h_{i} t} \frac{1}{\sqrt{h_{i} / \nu}} J_{1}\left(\sqrt{\frac{h_{i}}{\nu}} r\right)
$$

OL

$$
\begin{equation*}
q(r, t)=c_{0} \frac{r}{2}+\sum_{i=1}^{\infty} c_{i} e^{-h_{i} t} \sqrt{\frac{\nu}{h_{i}}} J_{1}\left(\sqrt{\frac{h_{i}}{\nu}} r\right) \tag{72}
\end{equation*}
$$

At $r=a, q=U_{w}$ and $J_{1}\left(\sqrt{\frac{h_{i}}{V}} r\right)=0$
so equation (72) gives

$$
\begin{equation*}
c_{o}=\frac{2 U_{W}}{a} \tag{73}
\end{equation*}
$$

The dimensionless peripheral velocity q' is defined as follows.

$$
\begin{equation*}
q^{\prime}=q / U_{W} \tag{74}
\end{equation*}
$$

From equation (72) to equation (74)

$$
\begin{equation*}
q^{\prime}\left(r^{\prime}, t^{\prime}\right)=r^{\prime}-\sum_{i=1}^{\infty} a_{i} e^{-\alpha_{1}^{2} t^{\prime}} J_{1}\left(\alpha_{i} r^{\prime}\right) \tag{75}
\end{equation*}
$$

where the $\left[\alpha_{i}\right]$ are the zeros of $J_{1}, a_{i}=-\frac{c_{i}}{U_{w}} \sqrt{\frac{\nu}{h_{i}}}$, and the dimensionless radius and time are given by

$$
\begin{equation*}
r^{\prime}=r / a \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{\prime}=\frac{t \mathcal{V}}{a^{2}} . \tag{77}
\end{equation*}
$$

Clearly as t ' $\rightarrow \infty$ equation (75) gives the correct limiting peripheral velocity which is that of rigid body rotation (see curve labeled ∞ in Figure 4.4.3).

Figure 4.4.3 Dimensionless Peripheral Velocity vs. Dimensionless Radius.

There remains the task of computing the coefficients [a_{i}] so that equation (75) will give the correct peripheral velocity at $t^{\prime}=0$ (see curve labeled 0 in Figure 4.4.3). Substituting $t^{\prime}=0$ into equation (75) gives

$$
\begin{equation*}
q^{\prime}\left(r^{\prime}, 0\right)=r^{\prime}-\sum_{i=1}^{\infty} a_{i} J_{1}\left(\alpha_{i} r^{\prime}\right) \tag{78}
\end{equation*}
$$

or

$$
\begin{align*}
& \sum_{i=1}^{\infty} a_{i} J_{1}\left(\alpha_{i} r^{\prime}\right)=r^{\prime}-q^{\prime}\left(r^{\prime}, 0\right) \\
& =q^{\prime}\left(r^{\prime}, \infty\right)-q^{\prime}\left(r^{\prime}, 0\right) \\
& =\left[\begin{array}{l}
r^{\prime} ; r^{\prime}<1 \\
0 ; r^{\prime}=1
\end{array}\right. \tag{79}
\end{align*}
$$

The coefficients $\left[a_{i}\right]$ are obtained classically by convoluting equation (79) with successive components and applying the orthogonality conditions for Bessel functions. Thus both sides of equation (79) are multiplied by $r^{\prime} J_{1}\left(\alpha_{j} r^{\prime}\right)$ and integrated between 0 and 1.

$$
\begin{align*}
& \sum_{i=1}^{\infty} a_{i} \int_{0}^{I} r J_{1}\left(\alpha_{i} r^{\prime}\right) J_{1}\left(\alpha_{j^{\prime}} r^{\prime}\right) d r^{\prime} \\
& \quad \int_{0}^{1}\left(r^{\prime}\right)^{2} J_{1}\left(\alpha_{j^{\prime}} r^{\prime}\right) d r^{\prime} \tag{80}
\end{align*}
$$

Now applying the orthogonality conditions

$$
\int_{0}^{1} r J_{1}\left(\alpha_{i} r\right) J_{1}\left(\alpha_{j} r\right) d r=\left[\begin{array}{ll}
0 & ; i \neq j \tag{81}\\
\frac{1}{2}\left(J_{1} \cdot\left(\alpha_{i}\right)\right)^{2} ; i=j
\end{array}\right.
$$

to equation (80) gives

$$
\begin{equation*}
\frac{1}{2} a_{j}\left(J_{1} \cdot\left(\alpha_{j}\right)\right)^{2}=\int_{0}^{1}\left(r^{\prime}\right)^{2} J_{1}\left(\alpha_{j} r^{\prime}\right) d r^{\prime} \tag{82}
\end{equation*}
$$

The orthogonality equation has effectively isolated a single coefficient a_{j} for computation. The derivative $J_{1}{ }^{\prime}\left(\alpha_{j}\right)$ may be evaluated by use of the familiar Bessel function relationship

$$
\frac{d}{d x}\left(x^{m} J_{m}(x)\right)=x^{m} J_{m-1}(x)
$$

Thus setting $m=1$ yields

$$
\begin{aligned}
& \frac{d}{d x}\left(x J_{1}(x)\right)=x J_{1}^{\prime}(x)+J_{1}(x)=x J_{0}(x) \\
& \alpha_{j} J_{1}^{\prime}\left(\alpha_{j}\right)+J_{1}\left(\alpha_{j}\right)=\alpha_{j} J_{0}\left(\alpha_{j}\right)
\end{aligned}
$$

But $J_{1}\left(\alpha_{j}\right)=0$ so

$$
\alpha_{j} J_{1}^{\prime}\left(\alpha_{j}\right)+0=\alpha_{j} J_{0}\left(\alpha_{j}\right)
$$

and

$$
\begin{equation*}
J_{1}\left(\alpha_{j}\right)=J_{0}\left(\alpha_{j}\right) \tag{84}
\end{equation*}
$$

The integral appearing in equation (82) may be evaluated by another application of equation (83). Setting m = 2 yields

$$
\frac{d}{d x}\left(x^{2} J_{2}(x)\right)=x^{2} J_{1}(x)
$$

which, upon integration yields

$$
\int_{0}^{\alpha} x^{2} J_{1}(x) d x=\alpha^{2} J_{2}(\alpha)
$$

thus

$$
\begin{align*}
& \int_{0}^{1}\left(r^{\prime}\right) J_{1}\left(\alpha_{j} r^{\prime}\right) d r^{\prime}=\frac{1}{\alpha_{j}^{3}} \int_{0}^{1}\left(\alpha_{j^{\prime}} r^{\prime}\right)^{2} J_{1}\left(\alpha_{j} r^{\prime}\right) \alpha\left(\alpha_{j} r^{\prime}\right) \\
& =\frac{1}{\alpha_{j}^{3}} \int_{0}^{\alpha_{j_{x J_{1}}}(x) d x=\frac{1}{\alpha_{j}^{3}} \alpha_{j}^{2} J_{2}\left(\alpha_{j}\right)} \\
& =\frac{1}{\alpha_{j}} J_{2}\left(\alpha_{j}\right) \tag{85}
\end{align*}
$$

From equations (82), (84), and (85) we write

$$
\begin{equation*}
a_{j}=\frac{2}{\alpha_{j}} \frac{J_{2}\left(\alpha_{j}\right)}{\left(J_{0}\left(\alpha_{j}\right)\right)^{2}} \tag{86}
\end{equation*}
$$

Manipulation of the formal series for the Bessel function, Which is

$$
\begin{align*}
J_{m}(x)= & \left(\frac{x}{2}\right)^{m} \frac{1}{m!}\left\{1-\frac{(x / 2)^{2}}{(1)[(m+1)]}+\frac{(x / 2)^{4}}{(1 \cdot 2)[(m+1)(m+2)]}\right. \\
& \left.-\frac{(m+2)^{6}}{(1 \cdot 2 \cdot 3)[(m+1)(m+2)(m+3)]}+\ldots \ldots\right\} \tag{87}
\end{align*}
$$

easily provides the relationship

$$
\begin{equation*}
J_{2}\left(\alpha_{i}\right)=-J_{0}\left(\alpha_{i}\right) \tag{88}
\end{equation*}
$$

Equation (88) simplifies equation (86) to

$$
\begin{equation*}
a_{j}=\frac{-2}{\alpha_{j}{ }_{0}\left(\alpha_{j}\right)} \tag{89}
\end{equation*}
$$

substitution of equation (89) into equation (75) gives

$$
\begin{equation*}
q^{\prime}\left(r^{\prime}, t^{\prime}\right)=r^{\prime}+\sum_{i=1}^{\infty} \frac{2 e^{-\alpha_{i}^{2} t^{\prime}}}{i} \frac{J_{1}\left(\alpha_{i} r^{\prime}\right)}{J_{0}\left(\alpha_{i}\right)} \tag{90}
\end{equation*}
$$

Ey assembling several of our results we may write the following expressions for the dimensionless vorticity and stream function.

$$
\begin{align*}
& \xi^{\prime}=\frac{\xi}{\left(2 U_{w} / a\right)}=1+\sum_{i=1}^{\infty} e^{-\alpha_{i}^{2} t^{\prime}} \frac{J_{0}\left(\alpha_{i} r^{\prime}\right)}{J_{0}\left(\alpha_{i}\right)} \tag{91}\\
& \psi^{\prime}=\frac{\psi}{\left(U_{w} a / 2\right)}=\left(1-r^{\prime 2}\right)-4 \sum_{i=1}^{\infty} \frac{e^{-\alpha_{i}^{2} t^{\prime}}}{\alpha_{i}^{2}}\left[1-\frac{\left.J_{0} \alpha_{i} r\right)}{J_{0}\left(\alpha_{i}\right)}\right] \tag{92}
\end{align*}
$$

A "Bessel" program is listed in Appendix B, which calculates values of q^{\prime}, ξ^{\prime}, and ψ^{\prime} at various values of r^{\prime} and t', using three subtoutines, SPEED which computes equation (90), VORT which computes equation (91), and FLOW which computes equation (92). The "Bessel" program was run on the Honeywell 66, using IMSL routines.

CHAPTER 5

NUMERICAL RESULTS AND DISCUSSION.

The stream function at center of cylinder in a test problem is plotted with respect to time. A comparison between Bessel function solution and numerical solution is shown in Figure B in Appendix A. Agreement is very good with the approximate error of 0.1%. There was a discrepancy due to omitting the curvature term in Thom's formula since the errors associated with the polygonal approximation propogate into the interior of the flow. The vorticities of the 26 th column with 40 vertices are shown in Figure C in Appendix A. The results of Bessel function solution are shown by broken lines. It may be seen that the vorticity lines are becoming horizontal when time is increased, as is expected. The final value of vorticity at center is obtained after approximately 1600 time steps of 0.0002 each with the total dimensionless time of 0.32 secs (see Figure D in Appendix A).

The final values of vorticity at center, with respect to time steps, of a half-moving solid boundary problems $\left(\theta=180^{\circ}\right)$ are shown in Figure E to Figure K in Appendix A for the dimensionless Reynolds numbers, 3.16, 10, 31.6, 100, 316, 1000, and 3160 with the total dimensionless time, being converged. The cases of a quarter-moving solid boundary problems ($\theta=90^{\circ}$) are plotted in Figure I to Figure O shown in Appendix A for the dimensionless Reynolds numbers, $100,316,1000$, and 3160 with
the total dimensionless time, being converged. The duration for convergence with respect to the dimensionless Reynolds numbers in logarithmic scale (see Figure P in Appendix A) may be calculated. Ultimate vorticities at column 26 are resolved in Figure Q, Figure R, and Figure S in Appendix $A(\operatorname{Re}=100,1000$, and $3160, \theta=180^{\circ}$). Some final vorticities at center of circle and at center of vortex are shown in Figure T and Figure S in Appendix A. The advection effects may be seen from the equivorticity lines in Figure V and Figure W, and furthermore, these data would become valuable in analyzing more delicate and complicated phenomena.

LIST OF REFERENCES

(1) Courant, R. and Hilbert, D., Methods of Math. Phys., vol. I, Interscience Pub., N.Y., 1937.
(2) Dix, D. M., J. Fluid Mech., vol. 15, 449, 1963.
(3) Frankel, S. P., "Convergence Rates of Iterative Treatments of Partial Differential Equations, Math. Tables and other Aids to Computation, vol. 4, pp. 65-75, 1950.
(4) Fromm, J. E. and Harlow, F. H., Phys. of Fluids, vol. 6, 975, 1963.
(5) Helliums, J. D. and Churchill, S. W., Proc. Int. Heat Transf. Conf., $985,1961$.
(6) Hockney, R. W., "The Potential Calculation and Some calculations", Methods in Computational Physics, vol. 9, eds. B. Alder, S. Fernbach, and M. Rotenberg, Academic Press, N.Y., 1970.
(7) Lax, P. D. and Richtmeyer, R. D., "Survey of the Stability of Linear Finite - Difference Equations", Comm. Pure Appl. Math., vol. 9, 267, 1956.

LIST OF REFERENCES (continued)

(8) Lilly, D. K., "On the Computational Stability of Numerical Solution of Time-Dependent Non-Linear Geophysical Fluid Dynamics Problems", U.S. Weather Bureau Monthly Weather Review, vol. 93, No. 1, pp. 11-26, 1965.
(9) Pearson, C. E., A Computational Method for Viscous Flow Problems, Sperry Rand Research Center, 1964.
(10) Peirce, B. O., A Short Table of Integrals, Dinn and Co., Boston, 1956.
(11) Reddick, H. W., and Miller, F. H., Adv. Math. for Engineers, John Wiley, N.Y., 1938.
(12) Roach, P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1972.
(13) Schlichting, H., Boundary Layer Theory, McGraw-Hill, N.Y., 1979 .
(14) Strawbridge, D. R. and Hooper, G. T. J., "Numerical solutions of the Navier - Stokes Equations for axisymmetric Flow", J. of Mechanical Engineering Science, vol. 10, No. 5, 1968.

LIST OF REFERENCE (continued)

(15) Thompson, P.D., Numerical Weather Analysis and Prediction, MacMillan, N.Y., 1961.
(16) Wilkes, J.O., Thesis, Univ, of Michigan, 1963.

APPENDIX A
FIGURES FOR MESH TREATMENT AND RESULTS

Figure A. Set Up 50 Mesh Spaces in Spin Up Problem.

- BOUNDARY POINTS

Figure A_{1}. Mesh Layout at Boundary Points with 20 Vertices for Spin-Up Problem(Upper-Half Region in Polygon).

Figure B. Dimensionless Streamfunction vs. Dimensionless Time at Center of Cylinder in Spinup ProblemComparison of Bessel Function Solution and Numerical Solution.

Figure C. Dimensionless Vorticity vs. Mesh Point at 26th Column at Various Dimensionless Time ($\operatorname{Re}=1, \theta=360^{\circ}$)Comparison of Bessel Function Solution and Numerical Solution.

Figure D. Dimensionless Vorticity vs. Number of Time Step at Center (Re=1, $\theta=360^{\circ}$, 1 Time Step $=0.0002$).

Figure E. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=3.16, \theta=180^{\circ}\right.$, I Time $\operatorname{Step}=0.0007$).

Figure F. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=10, \theta=180^{\circ}\right.$, 1 Time Step=0.002).

Figure G. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=31.6, \theta=180^{\circ}\right.$, 1 Time Step $=0.004$).

Figure H. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=100, \theta=180^{\circ}\right.$, 1 Time Step $=0.008$).

Figure I. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=316, \theta=180^{\circ}\right.$, 1 Time Step $=0.008$).

Figure J. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=1000, \theta=180^{\circ}, 1\right.$ Time Step=0.01).

Figure K. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=3160, \theta=180^{\circ}\right.$, 1 Time Step=0.01).

Figure L. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=100, \theta=90^{\circ}\right.$, 1 Time Step=0.006).

Figure M. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=316, \theta=90^{\circ}, 1\right.$ Time Step=0.008) .

Figure N. Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=1000, \theta=90^{\circ}\right.$, 1 Time Step $=0.01$).

Figure 0 . Dimensionless Vorticity vs. Number of Time Step at Center $\left(\operatorname{Re}=3160, \theta=90^{\circ}\right.$, 1 Time Step=0.009).

\oplus
Figure P. Duration for Convergence(T) vs. Reynolds Number in Logarithmic Scale at $\theta=90^{\circ}, 180^{\circ}, 360^{\circ}$.

Figure Q. Ultimate Dimensionless Vorticity vs. Mesh Points at 26th Column $\left(\operatorname{Re}=100, \theta=180^{\circ}\right)$.

Figure R. Ultimate Dimensionless Vorticity vs. Mesh Points at 26th Column $\left(\operatorname{Re}=1000, \theta=180^{\circ}\right)$.

Figure S. Ultimate Dimensionless Vorticity vs. Mesh Points at 26th Column $\left(\operatorname{Re}=3160, \theta=180^{\circ}\right)$.

Figure T. Ultimate Dimensionless Vorticity at Center vs. Reynolds Number in Logarithmic $\operatorname{Scale}\left(\theta=90^{\circ}, 180^{\circ}\right)$.

Figure U. Ultimate Dimensionless Vorticity at Center of Vortex vs. Reynolds Number in Logarithmic Scale $\left(\theta=90^{\circ}, 180^{\circ}\right)$.

Figure V. Dimensionless Equivorticity Line at $R=100$ and $\theta=180^{\circ}$.

Figure W. Dimensionless Equivorticity Line at $\mathrm{R}=316$ and $\theta=90^{\circ}$.

APPENDIX B

COMPUTER PROGRAM FOR ANALYTICAL SOLUTION

The program which calculates the dimensionless stream function and vorticities for the two-dimensional incompressible spin up problem $\left(\theta=360^{\circ}\right.$, $\left.\operatorname{Re}=1\right)$ by analytical works is listed below. The principal symbols used in the program and their definitions are as follows:

ALPHA (100)	zeros of J_{1}
ALPJO (100)	$J_{0}(\alpha)$
ALPJOR(100,20)	$J_{0}\left(\alpha_{r}\right)$
ARGO	argument of $J_{0}(\alpha r)$
MMBSJO	Bessel function of order 0
MMBSJI	Bessel function of order 1
PI	π the geometry constant
R	radius
XJJO	temporary value of $J_{0}(\alpha r)$
XJJI	temporary value of $J_{0}(\alpha)$
XJO	

```
    DIMENSION ALPHA(100),R(21),ALPJO(100),ALPJOR(100,21)
    DOUBLE PRECISION ALPHA,ARGO,XJJI,XJJO,XJO,PI,R
    &,MMBSJO,MMBSJI,ARG
    DATA PI,T/3.14159D0,0.0/
    EXTERNAL MMBSJ1,MMBSJO,SPEED,VORT,FLOW
    DATA ALPHA/3.8317DO,7.0156DO,10.1735D0,13.3237DO,
    &16.4706DO,19.6159DO,22.7601DO,25.9037DO,29.0468DO,
    &32.1897DO,35.3323DO,38.4748DO,41.6171DO,44.7593DO,
    &47.9015DO,51.0435DO,54.1856DO,57.3275DO,60.4695DO,
    &63.6114DO,66.7532D0,69.8951DO,73.0369DO,76.1787DO,
    &79.3205DO,82.4623DO,85.6040DO,88.7458DO,91.8875DO,
    &95.0292DO,98.171DO,101.3127DO,104.4544DO,107.5961DO,
    &110.7378DO,113.8794DO,117.0211D0,120.1628DO,123.3045DO,
    &126.4461D0,60*1.00DO/
    DO 30 II=1,60
    ALPHA (40+II) =ALPHA (39+II) + PI
    CONTINUE
    R(1)=0.0
    DO 20 NNN=1,20
    R(NNN+1)=R(NNN ) +. 05DO
    CONTINUE
    DO 50 N=1,100
    ARG=ALPHA(N)
    XJO=MMBSJO(ARG,IER)
    ALPJO(N) =XJO
    CONTINUE
        DO 55 LL=1,100
        DO 55 LLL=1,21
        ARGO=ALPHA (LL)*R(LLL)
        XJJO=MMBSJO(ARGO,IER)
        ALPJOR(LL,LLL) =XJJO
    CONTINUE
        DELTIM=. 01
        DO 60 IMET=1,15
        CALL SPEED(R,T,ALPJO,ALPHA)
        CALL VORT(R,T,ALPJOR,ALPJO,ALPHA)
        CALL FLOW(R,T,ALPJOR,ALPJO,ALPHA)
        T=T+DELTIM
        CONTINUE
        STOP
        END
        SUBROUTINE SPEED(R,T,ALPJO,ALPHA)
        DIMENSION ALPJO(100),ALPHA(100),R(21)
        DOUBLE PRECISION ALPHA,R,XJJ1,ARG1,MMBSJ1.
        EXTERNAL MMBSJI
        DO 80 K=1,21
        VELSUM=0.0
```

```
    DO 85 KK=1,100
    ARG1 =ALPHA(KK)*R(K)
    XJJI =MMBSJI (ARG1,IER)
    EXARG=ALPHA (KK)*ALPHA (KK)*T
    IF(EXARG.LE.88.0)GO TO 83
    VEL=0.0
    GO TO }8
```

 VEL=(2.*EXP(-EXARG)/ALPHA(KK)*(XJJI/ALPJO(KK))
 VELSUM=VELSUM+VEL
 CONTINUE
 VELTOT=VELSUM+R(K)
 WRITE(5,86)T,R(K),VELTOT
 FORMAT('T=',F8.2,'R=',F8.2,' VELOCITY=',F20.8)
 CONTINUE
 RETURN
 END
 SUBROUTINE VORT(R,T,ALPJOR,ALPJO,ALPHA)
 DIMENSION R(21),AIPJOR(100,21),ALPJO(100),ALPHA(100)
 DOUBLE PRECISION ALPHA,R
 DO 90 J=1,21
 VORSUM=0.0
 DO 95 JJ=1,100
 AXARG=ALPHA (JJ)*ALPHA (JJ)*T
 IF(AXARG.LE.88.0)GO TO }9
 VORTT=0.0
 GO TO }9
 VORTT=EXP(-AXARG)*(ALPJOR(JJ,J)/ALPJO(JJ))
 VORSUM=VORSUM+VORTT
 CONTINUE
 VORTOT=1. +VORSUM
 WRITE(5,100)T,R(J),VORTOT
 100 FORMAT('T=',F8.2,' R=',F8.2,' VORTICITY=',F20.8)
90 CONTINUE
RETURN
END
SUBROUTINE FLOW(R,T,ALPJO,ALPHA)
DIMENSION R(21),ALPJOR(100,21),ALPJO(100),ALPHA(100)
DOUBLE PRECISION ALPHA,R
DO 110 I=1,21
PSISUM=0.0
DO 120 III=1,100
BXARG=ALPHA(III)*ALPHA(III)*T
IF(BXARG.IE.88.0)GO TO 103
PSI=0.0
GO TO 104
103 PSI=(EXP(-BXARG)/(ALPHA(III))**2.)*(1.-ALPJOR(III,I)
\&/ALPJO(III))

```

104 PSISUM=PSISUM+PSI
120 CONTINUE
PSITOT=(1.-(R(I))**2.)-4.*PSISUM
WRITE(5,130)T,R(I),PSITOT
130 FORMAT('T=',F8.2,' R=',F8.2,' STREAM FCN=',F20.8)
110 CONTINUE
RETURN
END

\section*{APPENDIX C}

COMPUTER PROGRAM FOR NUMERICAL SOLUTION

The program which calculates the dimensionless stream functions and vorticities for the two-dimensional incompressible spin up problem by computational works is listed below. The principal symbols used in the program and their definitions are as follows:
\begin{tabular}{|c|c|}
\hline ARCLEG ( \(\mathrm{K}, \mathrm{L}\) ) & arc length from the 1 st vertex to the Lth leg of Kth 3 point \\
\hline \multirow[t]{3}{*}{\(\operatorname{ARCNOR}(J)\)} & arc length from the 1 th vertex to the bases \\
\hline & of the normals of the 3 points in computer- \\
\hline & clock-wise order around \\
\hline \multirow[t]{2}{*}{\(\operatorname{ARCNOR}(\mathrm{K})\)} & arc length from the lst vertex to the Kth \\
\hline & normal \\
\hline \multirow[t]{2}{*}{ARCVER ( I )} & arc length from the lst vertex to the Ith \\
\hline & vertex \\
\hline DCALL (L) & 4 distances for calling SUBROUTINE SIGMA \\
\hline DELTA & mesh space \\
\hline DELTAT & time increment \\
\hline \multirow[t]{2}{*}{\(\operatorname{DSIG}(\mathrm{K}, \mathrm{L})\)} & distances to \(\pi\) right of, above, leftof, and \\
\hline & below the Kth point near 6 (boundary) \\
\hline I & grid-point subscript \\
\hline \multirow[t]{2}{*}{ICLASS (I,J)} & classification of mesh points 1-out; 2-in; \\
\hline & 3 -on 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline IDISPLY(51) & mesh display matrix \\
\hline IPOFR(J) & integer position of occurance in the mesh scan of the Jth 3 -point going C.C.W. around \(\pi\) (position of ranks \(J\) ) \\
\hline IROFP (I) & ranks of the Ith element of ARCNOR \\
\hline ISSIG(K,L) & side index to right of, above, to left of, and below the \(k\) th point near \(\sigma\) according as whether \(L\) is respectively \(1,2,3\) and 4 \\
\hline J & grid-point subscript \\
\hline K & boundary point index \\
\hline L & mesh points leg index \\
\hline NSIG & number of points near \(\sigma\) \\
\hline NTS & number of time steps \\
\hline NV & number of vertices \\
\hline NX & number of columns in space mesh \\
\hline NY & number of rows in space mesh \\
\hline OMEGA (I, J) & mesh vorticity \\
\hline OMNEW (I, J) & mesh vorticity storage place \\
\hline OMWALL ( I ) & vortivity at base of normal of the Ith 3point C.C.W. around \(\pi\) \\
\hline PSI(I, J) & mesh stream function \\
\hline R & Reynolds number \\
\hline SCALL (L) & 4 stream functions for calling SUBROUTINE SIGMA \\
\hline SMALI & 0.25 DELTA \\
\hline SPI ( I ) & stream function on \(\pi\) \\
\hline SRTRN & value of stream function returned by \\
\hline
\end{tabular}

\section*{SUBROUTINE SIFMA}

SSIG(K,L) stream function on right of, above, left of, and below Kth point

UPI(I) velocity on \(\pi\)
VCALL value of OMEGA(I,J) for calling SIGMA
VOR3L(L) vorticity at the Lth leg of a 3-point either from an interior point or interpolated at a boundary

VORSUR(L) surrounding vorticity at the Lth leg of a temporary assymetric spider

WL
XPI(I) vertex coordinates of \(\pi\)
YMAX greatest \(y\)-coordinates reached by \(\pi\)
YMIN least \(y\)-coordinates reached by \(\pi\)
YPI(I) vertex coordinates of \(\pi\)
```

 DIMENSION DSIG(2000,4),ISSIG(2000,4),SSIG(2000,4),ARCLEG(2000,4)
 DIMENSION DCALL(4),ISCALL(4),VORSUR(4),SCALL(4)
 DIMENSION H3(2000),H4(2000), ARCNOR(2000), OMWALL(2000)
 DIMENSION ARCALL(2000),IPOFR(2000),IROFR(2000)
 DIMENSION XPI(200),YPI(200),UPI(200),SPI(200),ARCVER(200),RO(200.
 DIMENSION PSI(51,49),OMEGA(51,49),PSINEW(49)
 DIMENSION JSTART(600),JEND(600)
 COMMON/COM1/OMNEW (51,49)
 DIMENSION ISIG(2000),JSIG(2000)
 COSH(S)=0.5*(EXP(S)+EXP(-S))
 SINH(S)=0.5*(EXP(S)-EXP(-S))
 5 FORMAT(8I10)
 10 FORMAT(8F10.5)
 15 FORMAT(1H ,125I1)
 20 FORMAT(1H-)
 25 FORMAT(1HO)
 30 FORMAT(1H1)
 32 FORMAT(38H STREAM FUNCTION AFTER INITIALIZATION:)
 35 FORMAT(22H STREAM FUNCTION AFTER,15,12H TIME STEPS:)
 37 FORMAT(32H VORTICITY AFTER INITIALIZATION:)
 40 FORMAT(16H VORTICITY AFTER,15,12H TIME STEPS:)
 50 FORMAT(1H, 8I10)
 60 FORMAT(1H , 8F12.7)
 65 FORMAT(16H WALL VORTICITY:)
 70 FORMAT(26H BOUNDARY POINT VORTICITY:)
 75 FORMAT(30H PRINCIPAL VORTICITY DIAGONAL:)
 80 FORMAT(35H ANTI-PRINCIPAL VORTICITY DIAGONAL:)
 TIME1 =SECOND(EARLY)
 C READ 5,NPI,NX,NY,NTS,NRELAX,INTDIS,IE
READ (5,5)NPI,NX,NY,NTS,NRELAX,INTDIS,IE
READ 10,WL,R,YSTART,DELTAT,ORF
READ (5,10)WL,R,YSTART,DELTAT,ORF
PRINT 50,NPI,NX,NY,NTS,NRELAX,INTDIS,IE
PRINT 60,WL,R,YSTART,DELTAT,ORF
C READ 10,XPI(I),YPI(I),UPI(I),SPI(I),RO(I)
DO 100 I=1,NPI
XPI(I)=1.+COS(6.283185*(I-I)/NPI)
YPI(I)=1.+SIN(6.283185*(I-1)/NPI)
UPI(I)=0.
IF(I.LE.IE)UPI(I)=1.
SPI(I)=0.
RO(I)=1.
100 PRINT60,XPI(I),YPI(I),UPI(I),SPI(I),RO(I)
CALL VARC(NPI,XPI,YPI,ARCVER)
PRINT 60,(ARCVER(I),I=1,NPI)
PERIM=ARCVER(I)
DELTA =WL/(NX-1)

```
```

 SMALL=DELTA*. }2
 H1 =DELTAT/(DELTA*DELTA*R)
 H2=DELTAT/(DELTA*DELTA*4.)
 H5=DELTAT/R
 H6=DELTA *. }
 ORFTG=ORF*DELTA*DELTA/4.
 ORFD4=ORF/4.
 ORFM1 =ORF-1.
 Y=YSTART
 DO 720 J=1,NY
 X=0.
 DO 710 I=1,NX
 CALL CLOSE(NPI,XPI,YPI,X,Y,IRTRN)
 IF(IRTRN.EQ.0)GO TO 700
 CALL NEAR(NPI,XPI,YPI,X,Y,SMALL,NYE)
 IF(NYE.NE.O)GO TO 700
 ICLASS(I,J)=2
 GO TO 710
 700 ICLASS (I,J)=1
710 X=X+DELTA
720 Y=Y-DELTA
DO 730 I=1,NX
IF(ICLASS(I,I).EQ.2)ICLASS(I,I)=3
IF(ICLASS(I,NY).EQ.2)ICLASS (I,NY)=3
730 CONTINUE
NYMI =NY-1
DO 740 J=2,NYM1
DO }740\mathrm{ I=1,NX
IL=I-1
IF(IL.LT.I)IL=NX
IR=I+1
IF(IR.GT.NX)IR=1
IF(ICLASS(I,J).EQ.2.AND.(ICLASS(IR,J).EQ.1.OR.ICLASS
\&(I,J-1).EQ.I
+ .OR.ICLASS(IL,J).EQ.I.OR.ICLASS
\&(I,J+1).EQ.1))
+ ICLASS(I,J)=3
7 4 0 CONTINUE
DO 745 I=1,NX
JSTART(I)=0
DO }745\textrm{J}=1,N
IF(ICLASS(I,J-1).NE.2.AND.ICLASS(I,J).EQ. 2)JSTART(I)=J
IF(ICLASS (I,J+1).NE.2.AND.ICLASS(I,J).EQ.2)JEND(I)=J
745 CONTINUE
DO 750 J=1,NY
PRINT 15,(ICLASS(I,J),I=1,NX)
7 5 0 ~ C O N T I N U E ~

```
```

 GO TO 758
 PTINT }2
 JBELOW=NY-10
 DO }755\mathrm{ J=JBELOW,NY
 PRINT 15,(ICLASS(I,J),I=1,NX)
 7 5 5 CONTINUE
758 K=0
AA=DELTA/10000.
BB=10000.*DELTA
X=0.0
DO 840 I=1,NX
Y=YSTART
DO 820 J=1,NY
IF(ICLASS(I,J).NE.3)GO TO }81
K=K+1
ISIG(K)=I
JSIG(K)=J
CALL APROCH(DELTA,X,Y,NPI,YPI,L,DSQ,ARCN)
H3(K)=2./DSQ
H4(K)=SPI(L)+UPI(L)*(SORT(DSQ) +1./(RO(L)*H3(K)))
IF(I.NE.1)ARCN+ARCVER(L)
ARCNOR(K)=ARCN
ARCALL(K)=ARCN
CALL POINT(AA,BB,X,Y,NPI,XPI,YPI,DCALL,ISCALL,SCALL)
CALL NEAR(NPI,XPI,YPI,X,Y,AA,NR)
DO 760 L=1,4
DSIG(K,L)=DCALL(L)
ARCADD=0.
IF(ISCALL(I).NE.I)ARCADD=ARCVER(ISCALL(I))
ARCLEG(K,L)=SCALL(L) +ARCADD
II=ISCALL(I)
ISSIG(K,I)=II
SSIG(K,I)=SPI(II)
7 6 0 ~ C O N T I N U E
IF (NR.EQ.O)GO TO 770
ISSIG(K,I)=-ISSIG(K,1)
GO TO 810
770 I1=I+1
IF(II.GT.NX)II=1
IF(ICLASS(II,J).NE.1)ISSIG(K,I)=0
IF(J.EQ.1)GO TO 790
IF(ICLASS(I,J-1).NE.1)ISSIG(K,2)=0
790 I3=I-1
IF(I3.IT.1)I3=NX
IF(ICLASS (I3,J).NE.1)ISSIG(K,3)=0
IF(J.EQ.NY)GO TO 810
IF(ICLASS(I,J+1).NE.1)ISSIG(K,4)=0

```
```

810 Y=Y-DELTA
8 2 0 ~ C O N T I N U E ~
830 X=X+DELTA
840 CONTINUE
NSIG=K
CAIL PRANK(NSIG,ARCAIL,IPOFR,IROFP)
PRINT 50,(ISIG(IPOER(K)),K=1,NSIG)
PRINT 50,(JSIG(IPOFR(K)),K=1,NSIG)
PRINT 50,(IPOFR(I),I=1,NSIG),(IROFP(I),I=1,NSIG)
PRINT 50,NSIG
DO 850 L=1,20
PRINT 860,(DSIG(I,J),J=1,4),(ISSIG(L,J),J=1,4),(SSIG(I,J),
\&J=1,4)
PRINT 60,H3(I),ARCNOR(L)
PRINT 860,(ARCLEG(I,J),J=1,4)
850 CONTINUE
860 FORMAT(IH..,4F7.3,4I3,4F7.3)
DO }853\textrm{K}=1,NSI
853 ARCALL(K)=ARCNOR(K)
DO }857\textrm{K}=1,NSI
857 ARCNOR(K)=ARCALL(IPOFR(K))
Y=YSTART
CPSI=.033333333
DO 880 J=1,NY
BIGPSI=Y*(-1.+Y*(1.3333333-.44444444*Y))
S=3.1622777*(1.-Y)
HYPSNS=SINH(S)
F=-. 1468*HYPSNS-.03392*S*COSH(S)
X=0.0
DO 870 I=1,NX
PSI(I,J)=0.0
OMEGA (I,J)=0.0
OMNEW (I,J)=0.0
GO TO 870
COSINE =-COS (3.1622777*X)
XT=X+WL *. }
YT=Y
CALL RETRO(XT,YT)
OMEGA(I,J) =2.6666667*(YT-1.)
PSI(I,J)=BIGPSI+CPSI*F*COSINE
OMNEW(I,J)=PSI(I,J)
870 X=X+DELTA
880 Y=Y-DELTA
GO TO 1031
DO 1030 IRIX=1,500
DO }930\textrm{I}=1,N
II=1 +MOD(I,NX)

```
```

 I3=NX-MOD(NX+1-I,NX)
 JS=JSTART(I)
 IF(JS.EQ.O)GO TO 930
 JE=JEND(I)
 JSBLAC=JS
 JSRED=JS +1
 JEBLAC=JE-MOD(JE-JS,2)
 JERED=JE-1 +MOD (JE-JS, 2)
 DO 910 J=JSBLAC,2
 910 PSINEW(J)=ORFD4*(PSI(II,J) +PSI(I,J+1)+PSI(I3,J)+PSI(I,J-1))
++ORFIG*OMEGA(I,J)-ORFM1 *PSI(I,J)
DO }920\mathrm{ J=JSBLAC,JEBLAC,2
920 PSI(I,J)=PSINEW(J)
DO 923 J=JSRED,JERED,2
923 PSINEW(J)=ORFD4*(PSI(II,J)+PSI(I,J+1) +PSI(I3,J)+PSI(I,J-1))
++ORFTG*OMEGA(I,J)-ORFMI *PSI(I,J)
DO 927 J=JSRED,JERED,2
927 PSI(I,J)=PSINEW(J)
9 3 0 ~ C O N T I N U E ~
DO 1020 K=1,NSIG
I=ISIG(K)
J=JSIG(K)
II =1 +MOD(I,NX)
I3=NX-MOD(NX+1-I,NX)
IF(ISSIG(K,1).GE.0)GO TO 950
PSI(I,J)=SSIG(K,I)
GO TO 1020
9 5 0 ~ D O ~ 1 0 1 0 ~ L = 1 , 4 ~
IF(ISSIG(K,I).EQ.O)GO TO 960
DCALL(L)=DSIG(K,L)
SCALL(L)=SSIG(K,L)
GO TO 1010
960 DCALL(L)=DELTA
GO TO(970,980,990,1000),工
970 SCALL(L)=PSI(II,J)
GO TO 1010
980 SCALL(L)=PSI(I,J-I)
GO TO 1010
990 SCALL(L)=PSI(I3,J)
GO TO 1010
1000 SCALL(L)=PSI (I,J+1)
1010 CONTINUE
VCALL =OMEGA (I,J)
CALL SIGMA(DCALL,SCALL,VCALL,SRTRN)
PSI(I,J)=SRTRN
1020 CONTINUE
1030 CONTINUE

```
```

1031 CONTINUE
DO 1035 J=1,NY
DO 1032 I=1,NX
OMNEW (I,J) =OMEGA (I,J)
1032 CONTINUE
1035 CONTINUE
PRINT 30
PRINT }3
CALI DISCRA(NX,NY,2,1,1,.001)
PRINT 30
PRINT }3
DO 1440 J=1,NY
DO 1445 I=1,NX
OMNEW(I,J)=PSI(I,J)
1445 CONTINUE
1440 CONTINUE
CALL DISCRA(NX,NY,2,1,1,.001)
TIME 2 =SECOND (LATER)
ELAPSE=TIME 2-TIMEI
PRINT 1447,ELAPSE
1447 FORMAT(40H TIME FOR INPUT,MESH,AND INITIALIZATION=,E1O.3)
DO 3000 ITS=1,NTS
TIME1 =SECOND (EARLY)
DO 1532 I=1,NX
II = 1 +MOD(I,NX)
I3=NX-MOD(NX+1-I,NX)
JS'=JSTART(I)
IF(JS.EQ.O)GO TO 1532
JE=JEND(I)
DO 1530 J=JS,JE
J2=J-1
J4=J+1
U2D=PSI(I,J2)-PSI(I,J4)
V2D=PSI(I3,J)-PSI(I1,J)
OMEGAO=OMEGA (I,J)
OMEGA1 =OMEGA (II,J)
OMEGA 2=OMEGA (I.J2)
OMEGA 3=OMEGA (I3,J)
OMEGA4 =OMEGA (I,J4)
OMXD1 =OMEGA1 -OMEGAO
OMXD3 =OMEGA 0-OMEGA 3
OMTD2 =OMEGA 2-OMEGAO
OMYD4=OMEFAO-OMEGA4
U4DP=U2D +ABS (U2D)
U4DM=U2D-ABS(U2D)
V4DP=V2D+ABS(V2D)
V4DM=V2D-ABS(V2D)
OMNEW (I,J) =OMEGAO

```
```

 ++H1*(OMXD1 +OMYD2-OMXD 3-OMYD4)
 +-H2*(U4DP*OMXD3 +U4DM*OMXD1 +V 4DP*OMYD4 +V 4DM*OMYD 2)
 1530 CONTINUE
1532 CONTINUE
DO 1535 K=1,NSIG
I=ISIG(K)
J=JSIG
OMWALL(IROFP(K))=H3(K)*(H4(K)-PSI(I,J))
1535 CONTINUE
DO 1780 K=1,NSIG
I=ISIG(K)
J=JSIG(K)
II =1 +MOD(I,NX)
I3 =NX -MOD (NX+I-I,NX)
IF(ISSIG(K,I).GE.0)GO TO 1550
OMNEW (I,J)=OMWALL (IROFP (K))
GO TO 1780
1550 DO 1610 L=1,4
IF(ISSIG(K,L).EQ.0)GO TO }156
DCALL(L) =DSIG(K,L)
SLEG =ARCLEG (K,L)
CALL PERINT(NSIG,PERIM,ARCNOR,OMWALL,SLEG,VLEG)
VORSUR(L)=VLEG
SCALL(L)=SSIG(K,L)
GO TO 1610
1560 DCALL(L)=DELTA
GO TO(1570,1580,1590,1600),I
1570 VORSUR(L) =OMEGA (II,J)
SCALL(L)=PSI(I1,J)
GO TO 1610
1580 VORSUR(L)=OMEGA (I,J-1)
SCALL(L) =PSI(I,J-1)
GO TO 1610
1590 VORSUR(L)=OMEGA (I3,J)
SCALL(L) =PSI(I3,J)
GO TO 1610
1600 VORSUR(L)=OMEGA (I,J+1)
SCALL(I) =PSI(I,J+1)
1610 CONTINUE
VCENTER=OMEGA (I,J)
CALL ASLAP(VORSUR,DCALL,VCENTER,ATLED)
D1PD3=DCALL(1) +DCALL(3)
D2PD4=DCALL (2) +DCALL (4)
USIG=(SCALL(2)-SCALL(4)/D2PD4
VSIG=(SCALL (3)-SCALL(1)/D1PD3
OMXR = (VORSUR (1)-VCENTER/DCALL (1)
OMXL=(VCENTER-VORSUR(3))/DCALI(3)

```
```

 OMYA=(VORSUR(2)-VCENTER)/DCALL(2)
 OMYB=(VCENTER-VORSUR(4))/DCALL(4)
 U2S IGP=USIG+ABS (USIG)
 U2SIGM=USIG-ABS(USIG)
 V2SIGP=VSIG+ABS(VSIG)
 V2SIGM=VSIG-ABS(VSIG).
 OMNEW (I,J) =VCENTER +H5*ATLED
 + -H6*(U2SIGP*OMXL+U2SIGM*OMXR+V2SIGP*OMYB+V2SIGM*
 &OMYA)
 1780 CONTINUE
DO 1792 J=1,NY
DO 1790 I=1,NX
OMEGA (I,J) =OMNEW (I,J)*ORFTG
1790 CONTINUE
1792 CONTINUE
TIME 2=SECOND(LATER)
ELAPSE=TIME2-TIME1
IF(ITS.NE.NTS)GO TO 1800
PRINT 1795,ELAPSE
1795 FORMAT(37H TIME FOR SOLVING VORTICITY EQUATION=,E10.3)
1800 CONTINUE
TIME1 =SECOND (EARLY)
DO 2020 IRELAX=1,NRELAX
DO 1930 I=1,NX
II =1 +MOD(I,NX)
I3=NX-MOD (NX+1-I,NX)
JS =JSTART(I)
IF(JS.EQ.O)GO TO 1930
JE=JEND (I)
JSBLAC=JS
JSRED=JS +1
JEBLAC=JE-MOD(JE-JS,2)
JERED=JE-1 +MOD(JE-JS, 2)
DO 1910 J=JSBLAC,JEBLAC,2
1910 PSINEW(J)=ORFD4*(PSI(II,J)+PSI(I,J+1)+PSI(I3,J)+PSI(I,J-1))
++OMEGA(I,J)-ORFM1 *PSI(I,J)
DO }1920\mathrm{ J=JSBLAC,JEBLAC,2
1920 PSI(I,J)=PSINEW (J)
DO 1923 J=JSRED,JERED,2
1923 PSINEW(J)=ORFD4*(PSI(II,J)+PSI(I,J+I)+PSI(I3,J)+PSI(I,J-1))
++OMEGA(I,J)-ORFM1 *PSI(I,J)
DO }1927\mathrm{ J=JSRED,JERED,2
1927 PSI(I,J)=PSINEW (J)
1930 CONTINUE
DO 2020 K=1,NSIG
I=ISIG(K)
J=JSIG(K)

```
```

 II=1+MOD(I,NX)
 I3=NX-MOD(NX+I-I,NX)
 IF(ISSIG(K,I).GE.0)GO TO 1950
 PSI(I,J)=SSIG(K,I)
 GO TO 2020
 1 9 5 0 ~ D O ~ 2 0 1 0 ~ L = 1 , 4
IF(ISSIG(K,L).EQ.O)GO TO 1960
DCALL(I) =DSIG(K,L)
SCAIL(I)=SSIG(K,I)
GO TO 2010
1960 DCAIL(L)=DEITA
GO TO(1970,1980,1990,2000),工
1970 SCALL(I) =PSI(II,J)
GO TO 2010
1980 SCAIL(I)=PSI(I,J-1)
GO TO 2010
1990 SCALL(L)=PSI(I3,J)
GO TO 2010
2000 SCALL(L)=PSI(I,J+1)
2010 CONTINUE
VCAL工=OMNEW (I,J)
CAIL SIGMA(DCALL,SCALI,VCAIL,SRTRN)
PSI(I,J)=SRTRN
2020 CONTINUE
TIME 2 =SECOND (LAATER)
ELAPSE=TIME2-TIME1
IF(ITS.NE.NTS)GO TO }202
PRINT 2025,NRELAX,ELAPSE
2025 FORMAT(18H TIME REQUIRED FOR,I4,13H RELAXATIONS=,E1O.3)
2027 DO 2030 J=1,NY
DO 2035 I=,NX
OMEGA(I,J) =OMNEW (I,J)
2035 CONTINUE
20.30 CONTINUE
IMPRTR=0
RINT=(ITS +. 25)/INTDIS
IINT=RINT
DIFRI=RINT-IINT
HALFOI=.5/INTDIS
IF(DIFRI.LT.HALFOI)IMPRTR=1
IF(IMPRTR.NE.1)GO TO }300
PRINT 30
PRINT 40,ITS
CALL DISCRA(NX,NY,2,1,1,.001)
PRINT }3
PRINT 35,ITS
DO 2040 J=1,NY

```
```

DO 2045 I=1,NX
OMNEW (I,J)=PSI (I,J)
2045 CONTINUE
2040 CONTINUE
CALI DISCRA(NX,NY,2,1,1,.001)
PRINT 65
PRINT 60,(OMWALL(K),K=1,NSIG)
PRINT 70
PRINT 60,(OMEGA(ISIG(IPOFR(K)),JSIG(IPOFR(K)),K=1,NSIG)
PRINT 75
PRINT 60,(OMEGA(I,I-1),I=2,50)
PRINT 80
PRINT 60,OMEGA(I,51-I),I=2,50)
3 0 0 0 ~ C O N T I N U E ~
STOP
END
SUBROUTINE POINT(R,B,XP,YP,NV,XV,YV,D,IS,S)
DIMENSION XV(200),YV(200),X(200),Y(200),D(4),IS (4),S(4)
DO 40 L=1,4
D(L) =B
IS (L)=1
S(I)=0
DO 40 I=1,NV
J=MOD (I,NV) +1
XI=XP-XV(I)
XJ=XP-XV(J)
YI=YP-YV(I)
YJ=YP-YV(J)
DO 10 K=1,I
AI=XI
XI=YI
AJ=XJ
XJ=YJ
YI=-AI
10 YJ=-AJ
IF(ABS (XI).LT.R.OR.ABS(XJ).LT.R)GO TO 20
IF(XI*XJ.GT.0)GO TO 40
YINT=YI-(YJ-YI)*XI/(XJ-XI)
IF(YINT.LE.O..OR.YINT.GE.D(L))GO TO 40
D(L)=YINT
S(L) =SORT(XI*XI +(YI-YINT)*(YI-YINT))
GO TO 30
2O IF(YI.IE.O..OR.YI.GE.D(L).OR.ABS(XI).GE.R)GO TO 40
D(L)=YI
S(L)=0
30 IS(L)=I
40 CONTINUE

```
```

RETURN
END
SUBROUTINE APROCH(DELTA,XP,YP,N,X,Y,IS,DSQ,S)
DIMENSION X(200),Y(200)
DSMIN = DELTA +DELTA
DSQMIN=DSMIN*DSMIN
DO 100 I=1,N
J=I+1
IF(J.GT.N)J=1
DXIJ=X(J)-X(I)
DYIJ =Y(J)-Y(I)
DXIP=XP-X(I)
DYIP=YP-Y(I)
DOT=DXIJ*DXIP+DYIJ*DYIP
IF(DOT.IT.O.)GO TO 50
SISQ=DXIJ*DXIJ+DYIJ*DYIJ
IF(DOT.GT.SLSQ)GO TO 100
CROSS =DXIJ*DYIP-DXIP*DYIJ
DSQ =CROSS*CROSS/SLSQ
IF(DSQ.GE.DSOMIN)GO TO 100
DSQMIN=DSQ
SSQ=DOT*DOT/SLSQ
IS =I
GO TO }10
50 DSQ=DXIP*DXIP*DYIP*DYIP
IF(DSQ.GE.DSQMIN)GO TO 100
DSQMIN=DSQ
SSQ=0.0
IS =I
100 CONTINUE
DSQ=DSQMIN
S=SQRT (SSQ)
RETURN
END
SUBROUTINE CLOSE(N,XV,YV,XE,YE,I)
DIMENSION XV(200),YV(200),ANGEL(200)
DO 120 L=1,N
X=XV (L) -XE
Y=YV(L)-YE
A =ABS (X) +ABS (Y)
IF(A.LE.1.E-30)GO TO 140
ANGLE(L)=1.-X/A
IF(Y.LT.O.)ANGLE(L)=4.-ANGLE(L)
120 CONTINUE
SUM=0.
DO 130 L=1,N
LNEXT=L+1

```

IF (L.EQ.N) LNEXT=1
CHANGE =ANGLE (LNEXT) -ANGLE (L)
SINGE=1.
IF (CHANGE.IE.O.) SINGE \(=-1\).
SUBTAN = CHANGE*SINGE
IF (SUBTAN. GT. 2 ) CHANGE \(=-(4 .-\) SUBTAN \() *\) SINGE
SUM \(=\) SUM + CHANGE
130 CONTINUE
\(I=0\)
IF (ABS (SUM). GT. 2.) I=1
RETURN
140 I=0
RETURN
END
SUBROUTINE NEAR(NV,XV,YV,XP,YP,A,NYE)
DIMENSION XV(200),YV(200)
NYE \(=0\)
DO \(100 \mathrm{I}=1\),NV
\(X I P=X P-X V(I)\)
\(Y I P=Y P-Y V(I)\)
\(\mathrm{DIP}=\mathrm{ABS}(\mathrm{XIP})+\mathrm{ABS}(Y I P)\)
IF (DIP.GT.A)GO TO 10
NYE=I
RETURN
\(10 \mathrm{~J}=\mathrm{I}+1\)
\(I F(J . G T \cdot N V) J=1\)
\(X I J=X V(J)-X V(I)\)
\(Y I J=Y V(J)-Y V(I)\)
RIPOIJ=XIP*XIJ+YIP*YIJ
IF(RIPOIJ) 100,100,20
\(20 \mathrm{XJP}=\mathrm{YP}-\mathrm{YV}(\mathrm{J})\)
RJIOJP \(=-X I J * X J P-Y I J * Y J P\)
IF (RJIOJP) \(100,100,30\)
30 DLJ \(=A B S\) (XIJ) \(+A B S\) (YIJ)
\(V=A B S(X I P * Y I J-X I J * Y I P) / D I J\)
IF (V.GT.A) GO TO 100
\(\mathrm{NYE}=\mathrm{I}\)
RETURN
100 CONTINUE
RETURN
END
SUBROUTINE DISCRA (M,N,KBILD,KTAB,KREICH,SMALL)
DIMENSION IDSPLY(51)
COMMON/COM1/A(51, 49), ICLASS (51, 49)
DATA KD1/' '/,KD2/'8'/,KD3/'+'/
5 FORMAT (7H COLUMN,I4,2H :)
7 FORMAT (4H ROW,I4, 2H : )
```

10 FORMAT(1H)
20 FORMAT(1H ,7E10.3)
25 FORMAT(50H PICTURE NOT SHOWN BECAUSE FUNCTION REMAINS
\&WITHIN,E1O.2
+,25H OF ITS' MINIMUM VALUE OF,E1O.2)
30 FORMAT(1H , 80A1)
35 FORMAT(1H1)
IF(KTAB.EQ.0)GO TO 70
I=26
PRINT 10
PRINT 5,1
PRINT 20,(A(I,J),J=1,N)
4 0 ~ C O N T I N U E ~
J=25
PRINT 10
PRINT 7,J
PRINT 20,(A(I,J),I=1,M)
5 0 ~ C O N T I N U E ~
PRINT 10
70 IF(KBILD.EQ.O.AND.KREICH.EQ.O)GO TO 140
PRINT }3
AMAX=-100000.
AMIN=100000.
DO 80 J=1,N
DO }80\textrm{I}=1,
IF(ICLASS(I,J).EQ.1)GO TO 80
AIJ=A(I,J)
IF(AIJ.LE.AMAX)GO TO }7
AMAX=AIJ
IMAX=I
JMAX = J
75 IF(AIJ.GE.AMIN)GO TO 80
AMIN=AIJ
IMIN=I
JMIN=J
8 0 ~ C O N T I N U E ~
IF(KREICH.EQ.O)GO TO 90
PRINT 83,AMIN,IMIN,JMIN,AMAX,IMAX,JMAX
83 FORMAT(5H MIN=,E10.3,2HAT,2I5,4HMAX=,E10.3,2HAT,2I5)
90 IF(KBILD.EQ.0)GO TO 140
RANGE=AMAX-AMIN
IF(RANGE.GT.SMALI)GO TO }9
PRINT 25,SMALL,AMIN
RETURN
95 DO 130 J=1,N
DO 120 I=1,M
STRIPE=KBILD+KBIID

```
```

 L=STRIPE*(A(I,J)-AMIN)./RANGE +1
 IF(L.EQ.2.OR.I.EQ.6.OR.L.EQ.8.OR.L.EQ.10)GO TO 100
 IDSPLY(I)=KD2
 100 IF(J.EQ.I.OR.J.EQ.N.OR.I.EQ.I.OR.I.EQ.M)GO TO 110
IDSPIAY (I) =KD1
GO TO 120
110 IDSPLY(I)=KD3
120 CONTINUE
PRINT 30,(IDSPLY(I),I=1,M)
130 CONTINUE
140 RETURN
END
SUBROUTINE SIGMA(D,S,VOR,PSI)
DIMENSION D(4),S(4)
D1D3=D(1)*D(3)
D2D4=D(2)*D(4)
PSI=(D1D3*(D(2)*S(4)*S(2) +D(4)) +D 2D4*(D (3)*S(1) +D(1)*S
C(3)/(D(1)+D(3)+VOR*D1D3*D2D4/2.)/(D1D3+D2D4)
RETURN
END
SUBROUTINE RETRO(X,Y)
DIMENSION A(4)
DATA A(1),A(2),A(3),A(4)/2.69324,-.018087,.0001809,
\&-.000001855/
DO 10 ITS =1,500
CALL SPEED(4,A,3.16227701,X,Y,U,V)
X=X-U*.000002
Y}=\textrm{Y}-\textrm{V}*.00000
10 CONTINUE
RETURN
END
SUBROUTINE SPEED(N,A,ALPHA,X,Y,U,V)
DIMENSION A(4)
U}=0.
V=0.0
DO 100 I=1,N
U=U-A (I)*ALPHA*COSH(I*ALPHA* (1.-Y))*SIN(I*ALPHA *X)
V =V -A (I) *ALPHA*SINH(I*ALPHA* (1,-Y))*COS (I*ALPHA*X)
100 CONTINUE
RETURN
END
SUBROUTINE PRANK(N,S,K,I)
DIMENSION K(2000),S(2000),L(2000)
DO 100 I=1,N
K(I)=1
SMIN=S (1)
DO 50 J=2,N

```
```

 IF(S(J).GE.SMIN)GO TO 50
 K(I)=J
 SMIN=S(J)
 50 CONTINUE
 INDIR=K(I)
 L(INDIR) =I
 S(INDIR) =1000000000.
 100 CONTINUE
RETURN
END
SUBROUTINE VARC(N,X,Y,S)
DIMENSION X(200),Y(200),S(200)
SUM=0.
DO 100 I=1,n
J=MOD (I,N) +1
DXIJ=X(J)-X(I)
DYIJ=Y(J)-Y(I)
SIDEL=SORT(DXIJ*DXIJ +DYIJ*DYIJ)
SUM=SUM +SIDEL
S(J)=SUM
100 CONTINUE
RETUTN
END
SUBROUTINE PERINT(N,P,X,Y,YIN,YOUT)
DIMENSION X(2000),Y(2000)
IF(XIN.GE.X(I))GO TO 10
XI=X(N)-P
YI=Y(N)
XJ=X(1)
YJ=Y(1)
GO TO 55
10 IF(XIN.LT.X(N))GO TO 20
XI=X(N)
YI=Y(N)
XJ=P+X(1)
YJ=Y(1)
GO TO 55
.20 DO 45 JJ=2,N
XJ=X(JJ)
IF(XIN.GE.XJ)GO TO 45
I=JJ-1
XI=X(I)
YI=Y(I)
YJ=Y(JJ)
GO TO 55
4 5 ~ C O N T I N U E ~
55 YOUT=YI+(YJ-YI)*(XIN-XI)/(XJ-XI)

```

RETURN
END
SUBROUTINE ASLAP (SUR,D,CENTER,ATLED)
DIMENSION SUR(4),D(4)
D1PD3 \(=D(1)+D(3)\)
D2PD4 \(=D(2)+D(4)\)
RI \(=2 . /(D(1) * D 1 P D 3)\)
\(R 2=2 . /(D(2) * D 2 P D 4)\)
R3 \(=2 . /(D(3) * D 1 P D 3)\)
R4 \(=2 . /(D(4) * D 2 P D 4)\)
SUMR \(=\) R1 + R2 \(2+\mathrm{R} 3+\mathrm{R} 4\)
ATLED \(=R 1\) *SUR (1) \(+R 2 * \operatorname{SUR}(2)+R 3 * \operatorname{SUR}(3)+R 4 * \operatorname{SUR}(4)-\operatorname{SUMR} * \operatorname{CENTER}\) RETURN
END```

