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ABSTRACT 

A digital computer method and a program which employs 

optimized successive overrelaxation were developed to solve 

certain problems involving time-dependent two-dimensional 

flow of an incompressible homogeneous Newtonian fluid. 

Bubble sort techniques were used in a boundary field 

and a vectorization of the inner-most Do-loops of the program 

was carried out using a CRAY-1 computer. A polygon region was 

selected for analysis purposes. 

As a test program, "Spin-up problem" for a circular 

region with rotating solid boundary conditions was analyzed. 

The results of computations using a fine mesh were in good 

agreement with analytical results. 

Finally, a flow contained in an infinite cylinder with 

part-moving boundarie-s is examined. It is to be applied to an 

analysis of a flow in a circular cavity. 
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CHAPTER 1 

INTRODUCTION 

1 

·The computational techniques of a computer program which 

seems to be effective for time-dependent two-dimensional viscous 

flow problems will be developed. The analysis is applied to a 

polygon region with solid moving or fixed boundary conditions. 

':the method is outlined in i~r1~pi:.eirl 3, and more details concerning 

the test program are given in Chapt.e-r1 4. 
- --·· ·-•-.J

Mathematically, the problem is that of solving numerically 

a system of nonlinear partial differential equations. It is 

lrnown that, even without the· added complications of time 

variation. or non-linearit·y, numerical techniques for multi-order 

equations tend to require substantial computer time. The 

presence of non-linear terms may not only accentuate the 

computer time problems, but may also tend to induce computational 

instabilities. 

As might be expected from their potential importance, 

viscous flow computations have received considerable attention 

in the literature (Fromm& Harlow (4) ; Dix (2) ; Hellums & 

C-hurchill ( 5) ; Wilkes ( 15) and Thompson ( 14) ; Pearson ( 9),

etc). In general, it appears that there have been difficulties 

with one or another of computational speed, stability, accuracy, 

or the ability to handle correct boundary conditions. In a 

problem of this general difficulty, it seems worth while to 
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begin with the simplest possible problem possessing realistic 

boundary conditions. ·rn this research, a rotating flow 

contained in an infinite cylinder, with moving boundaries (test 

program) and part-moving boundaries is treated. 

In the process of developing computational techniques 

and a computer program, the treatment of boundary fields, which 

are very important in recent computational fluid dynamics is 

1.1tilized. By employing the curvature term in the formula of 

Thom (12) and the computer programming algorithm (Bubble Sort, 

etc), the accurate calculations of the vorticities and stream 

functions are resolved and are in good agreement with those of 

analytical works in a test program. A vectorization in a 

relaxation loop which is the most time-consuming operation and 

in the other inner-most Do-loops results in an increase in 

speed by a factor of three on the CRAY-1 Computer. As an 

application, which can be used for the analysis of a flow in a 

circular cavi~y with part of its wall moving, the problems for 

the fluid in a part-rotating infinite cylinder of radius, a, 

are investigated. These computations are converged and 

stabilized after reaching the time desired, even though the 

exact analytical results are unknown. Throughout this research, 

calculations of pressure are omitted. 



CHAPTER 2 

GOVERNING EQUATIONS 

3

In terms of vector notations and time t, the Navier-

Stokes equations are derived from Newton's second law of motion 

in the case of incompressible fluids <P andµ are constant): 

F = ma~

-
- --V +µ;::.i-u =fJ DDut-- gradp -, graan V , 

Where fJ is density, o/° is unit weight, h is elevation from a 

da tum line and·µ is dynamic viscosity;~ is substantive 

derivative. 

Applying the principle of conservation of mass, the 

equation of continuity may be· written in the following form, 

\} • u -= 1ef2 - p Dt.

(1)

(2) 

( 3) 

In Cartesian coordinates (x, y), the equations relating 

pressure p, and. velocity components (u, v) for two-dimensional 

incompressible flow are 

- gradP +µv-; =f) g¥ ' (4)

or 
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p (ut + 1'UxU + u v) = - P +µ <u + u:YY), y X XX 
( 5) 

p <vt + V u + v v) = - P +µ Cv + vYY), X y y xx (6)

For two-dimensional incompressible flow the continuity equation 

;nay be written as 

(7) 

where subscripts denote partial differentiation, and the overbars 

rr2present dimensional quantities. A stream function that 

satisfies equation (4) may be defined in the following manner. 

u = 1/ly, V = -t/Jx,, (8)

·where 1/J is the stream function. The vorticity is defined by 

= 2W= (u - v) y X 

where CJ is angular velocity. Then Poisson's equation is 

VZ 1/) (X, Y) = - t (X, Y) ,

Taking the curl of equation (4) yields 

(9)

(10) 



0
.,...
.:!. 

--2~ 
- cur 1 gradp + cur iµ \] u

- -2- - D µ curl\] u = p curl Dt u , 

- -2 - - D µ \} curlu = P Dt curlu, 

--2F nF. 
l) \] = Dt <;

.I. 

- u . 

5

--- ·nu 
= curl fJ Dt. (11)

( 12)

(13)

(14) 

(15) 

where 'l) = µ_;p is the kinematic viscosity. Equation (14), the 

parabolic vorticity transport equation, can be thought of as the 

condition that a pressure function p exist, by taking the 

divergence _of equation (4). An equation for p, the pressure 

equation, may be obtained from equation (4): 

(16)

-2 --2 -\] p +V\} (u + v )
X y 

= g.t ( ux+ vy) + u u + u v + u8 (u + v )U,._ XX yx ox X y 

-a - - ) +Vu+ V V + v~. (u + V ' 
X Y Y Y uY X Y

(17) 
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- ( u 2 + 2u v + v 2 )
X y X y (18) 

The normalizing system used throughout the analysis is 

based on the advective time scale L/Uo, where :Eis a 

characteristic length and q, is a characteristic velocity of 

the problem. ·The dimensionless quantities are defined as follows, 

u = u/fio, V = v/ib

X = x/L , y = y/L

t = f /(Uo/L), t = t/(E/u0 ) • (20)

Combining equations (15) and (10) yields 

- 1 2~-\). (us) +i;[Js, ( 21)

(22) 

where Re is Reynolds number, 

Re = U0 L/[} • (23)



CHA.PTER 3 

COMPUTATIONAL APPROACH 

- Procedure Methodology · 

7

Initially the fluid is at rest and the rotating boundary 

f.:.: lement assumes its rotational speed instantaneously. Thus, for 

t he first time step the values of all variables,1/J,t, u, and v 

a re zero with the exception of the finite velocities at mesh 

points on the rotating boundary. This constitutes the initial 

s olution. A small time increment~~ t, is chosen according to 

equation (32) (Roach (12) ). Then the computational cycle 
. .

begins as the finite difference equation (FDE} form of the 

c ontinuum equation for vorticity transp~rt, equation (21), is 

used to calculate an approximation toi atall interior points 

i n the computational field. The new values of gare calculated . 

a t a new time level, increased by an increment 6,t, by "marching" 

the vortictty transport equation forward in time. The next step 

in the computational cycle is to solve the FDE form of equation 

(22), Poisson's equation, for new value of the stream function 

t./;, using the new interior values of f. since· this Poisson 

solution for new t/J does not depend on the boundary values for 

new g, which are not yet Jmown, the fact that the solution for 

the newf is itself iterative with the optimized successive 

over-relaxation factor is employed. 



8

At this point, new velocity components can be evaluated by 

finite difference analogs of equation (8). Then the new values 

of~ on_ the boundaries of the computational region are calculated 

a23 a last step. The computational cycle is repeated until the 

dr::sired time is reached. The new values of vorticity, t, at all 

boundary points maybe calculated with high accuracy, using the 

appropriate form of the formula of Thom including the 

curvature term, and "Bubble Sort" techniques. The calculation 

of 1/) for all interior points at· each time step, which required 

the iteration of equation (10), is the most time consuming 

op_eration and in order to reduce computing time to a minimum 

successive over-relaxation is used to increase the speed of 

convergence of the iterative procedure, and a vectorization is 

carried out there. As in the point successive over-relaxation 

(S.O.R.) iterative process, the new value ofl/Jat each node is 

computed from the most recent values available at adjacent 

nodes, as indicated by equation (28). Schematically, the whole 

procedure is illustrated in Figure 3.1.1. 



9

l
Start 

-Layout 

Finite Different Mesh 
t

Initialize tjJ and 

Time Step Loop 

Outer Space Loop 

Inner Space Loop 

New at interior points from 

~t = -'\} (ii~ ) +\}2 t/Re 

SOR Loop 

· outer Space Loop 

Inner Space Loop 

Iterate for new tj} at all points from 
2\] l/J= -f

j .

using newg at interior points. 

C Calculate new ii from u = i.j;y , v = - .X 

·- .__ ______ ...,_____,j 

Calculate new boundary values off 

using new 1/1 and~ values at interior points. 

!Desired Time Reached I

Solution I

Figure 3.1.1 Main Program 
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.2 - Finite Difference Equation 

In the following analysis the governing equations are 

written in finite difference form. In finite difference 

formulations, spatial derivatives are represented by centered 

differences, whereas time derivatives are represented by 

forward differences (forward time and centered space method: 

FTCS) except at the advection terms. A one-step, explicit, two-

time-level method which achieves static stability of the 

advection terms involves the use of one-si_ded, rather than space-

centered, differencing. Backward differences are used when the 

velocities are positive, and vice-versa (Upwind Differencing 

Method: Lilly (B». The governing differential equation (15) with 

symmetric "legs'' is formulated in finite difference form as 

f'ollows: 

t_-n+l n 2s (i , j) = %c i, j ) + 6 t (t)'\J - u . grad~)

n n n+l n+l 
= ~(i,j) + j1I~ (i+I,j) + (i-1,j) + (i,j+l) 

+~C\,j-1) - 4~(\,jB-tit<~x + ~y) 

n 

= ~{i,j) +: lH <$)sur ;} (i,j)
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n n n n 
=~ (i,j) + Hl [f(i+l,j) - r(i,j) +~ (i,j-1) 

n n n n 
- ( i, j) - g(i, j) + ( i +l, j) - t (i, j) 

n+l n n 
+ g (i , j +1 ) ] - H2 { [lj}(i , j-1 ) - tJ; ( i , j+1 )

1/P ,/1n tn tn . 
+ I'Y <i , j-1 ) - V" <i , j +1 ) l J <s <i , j ) - s c i + 1 , j >)

+ [lJ;(i,j-1) - tf;(i,j+l) 

n 1 /P n+l n
-lt/l(i,j-1) - 'j/(i,j+l)I ](~ (i-1,j) -~ (i,j)) 

i1P· n.
+ [ 'r ( i +1, j) - t/1< i-1 ·, j) 

n n n n+l 
+ 1V,,(i+l,j) -lf'(i-1,j)j ]( (i,j) - (i,j+l)) 

+ [i/;{i+l,j) - i/;(i-1,j) - 11/-l(i+l,j) - .i/;(i-1,j)I J 

n n l 
(~ (i,j-1) -f (i,j))J (24)

where: 6 = grid space, 

Hl = ~t 
QR , 

H2 _ 6t - 4d,., , 
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tn+l 
ands denotes the value at time t +6t. The subscripts i,j 

refer to points in the region of flow such that in the general 

co-•ordina te system X. = .iAX, Y . = -},AY. Then the governing J. J

di.fferential equation (15) with assymmetric "legs" is 

tn +( . ) t n( . . ) + t -2, I I\ - t ( 2ut + 2 t ) J.,J =s J.,J RV~, 2 Sx VSy ' 

n+l· • n t (i , j ) = ( i , j ) + HS * A TLED 



where: HS = L\t 
R ,

H6 - L\t - 2,

+ 2 ( i-1, j} + 2 ( i,5-1) 
83 <81 +8 3 ) 84 <8 2 +. 4 ) 

13 

-
2 [81<8~+63} +82<8~+()4l +83<8>83> +Q4<8~+84>J~(i,j}

T'he expression of new or old values of time in the neighborhood 

of vorticities is omitted, since the scanning of the boundary 

Points is different from that of the interior points. Bubble 

Sort techniques are used for the computation of vorticities at 

boundary points, using the formula of Thom { see Ch_apfe~ \ 3. 5 

Boundary Treatment). 

For the calculation of the stream functions in the grid 

centers, the iterative method of successive over-

relaxation (SOR) was selected in order to have a very fast 

asymptotic rate of convergence. A five-point difference equation 

which represents the Poisson equation (10) can be found by 

expanding1j;(x,y) in a Taylor series and substituting back into 

Poisson's equation. Neglecting terms with coefficients of order 
2 8 or higher, the finite difference approximation is: 
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-t;_W1< i +1, j) +!/;(i, j+l) +i/J( i-1, j) +i/J(i, j-1) 

(26)

Rearranging, we have 

(27)

where "( ) . " denotes the average of surrounding points. sur 
Hockney (6) describes the method of odd/even SOR, in which 

t he points on the grid mesh are corrected in a particular order: 

First to be corrected are all the points for which i+j_are 

even,. followed by all points with '·i+j· '.odd. 

At each point, the corrected form of the stream function 

is 
n+l cl- n+l n · 

1/J (i ,j) = ORFK!/J)sur + 4 ~ (i, j) J + ( 1 - ORFy/J ( i, j) · , 

(28)

ORF is called the over-relaxation factor, l<ORF<2, and it can 

be adjusted in order to speed up convergence of the system. 

In this analysis, one more program was formulated which 

may calculate the optimized ORF with the calculations of the 

minimized error, being defined as 

E =
~

1

n+l n t'=1j~//J (i,j) -i/J(i,j>I (29)

where: 



NX is the number of x divisions, and NY is the number of y 

divisions. 
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Since the approach of Frankel (3) for the Dirichlet problem in 

a rectangular domain of size ( i - 1 x by ( j - 1 ~Y with 

constant6 x and6 y it may be shown that 

ORF = 2 ( l - ~l - l] ) (30)

where: 

TJ
7( b.x 2 - 1T

cos <-=--1) + (K7:) cos ( .----1)
= [ l.- UY . J- ] ,

1 + (6x)
~y 

rrhe ORF may be approximated as an initial value for the program. 
rq. • .. ., ince 1 = j and (J =6 x~y = 1, then 

ORF 
1 - 1 - cos(i7!°1 )) 

= 2(------------1( cos ( , l) 
l.-

1T 2
7f ( ·j-1)

Let i-1 be large. Then, using cos ( i-l) 1 - 2 ! 

(31)

The initial guess (IORF lo91 for 50 by 50 grid system), which 

is decreased by small decrements in order to get the minimized 

error may be thus obtained. 

Using this program, the optimum over-relaxation factor was 

determined for the rectangular coordinates 50 by 50 grid system. 

The optimum over-relaxation factor was found to be ORF= 1.87 

with the value of error E = 8.5X 10-3 ~ 
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Because of the odd/even fashion of stepping through the 

grid, the SOR routine can be put into vectorized form for use 

on the CRAY-1 computer. Vectorizing on the CRAY-1 refers to 

arranging the FORTRAN code in such a way that the computer can 

b!tJ~e advantage of its parallel processing capabilities, meaning 

that calculations normally done sequentially are done concurrently. 

Vf.::ctorizing is possible because the calculation of any single 

odd/§ven point does not depend on the previously computed odtj,/ 

even point on that row. Vectorizing SOR results in an increase 

i:n speed by a factor of 3 on the CRAY-1 • The program listed in 

Appendix C is the vectorized version. 

A finite-difference equation is said to be stable if its 

solution remains bounded as t -:,,-00. Furthe:i;-more, ±tis said to 

br~ convergent if the solution of the difference equation 

converges to the solution of the corresponding differential 

equation as the spatial and time increments tend to zero. 

Lax and Richtmeyer (7) show that stability implies convergence 

if the difference equations are consistent with the differential 

equations, i.e. if ,,the truncation errors tend to zero as the 

spatial and time increments tend to zero. In this project, an 

analysis of a fluid filled rotating infinite cylinder was 

resolved with an error of E = 0.1 %, which is in very good 

agreement with the computations of analytical work. (see Figure 

Bin Appendix A). The convergence of a flow in a circular cavity 

with part of wall moving is attained for Reynolds numbers 3.16, 
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10, 31.6, 100, 316, 1000, and 3160. Considering the application 

of upwind differencing with diffusion terms in two-dimensional 

incompressible flow, Roach (12) showed that the time step,~t, 

which is required for stability, is 

For CRAY-1, the half value of the time step, calculated in 

e quation (32), was used in order to obtain the solution. 

3 - Classification of Mesh Points 

(32) 

A polygon,7r, was setup and periodic meshes covered, with 

mutual overlap (A), by 7r ( see Figure 3. 3 .1). 

Figure 3.3.1 Classification of Mesh Points 
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Each mesh point is classified according to its relations~ip 

to7f. Subroutine CLOSE takes as its input a point x in the 

plane, and an N sided polygon 7f in the plane, of vertices [ xi] • 

I t returns an output ICLOSE of "2" if xis inside1f, and an 

output ICLOSE of "1" if x is outside 1T (see Figure 3. 3. 2). 

Figure 3.3.2 Moving Points Around a Polygon. 

-x 1 , shown in Figure 3o3.2 is both the start and the finish 

point for pas p moves around7f. Subroutine NEAR determines 

whether a point pis near a polygon7f. By "near" is meant within 

the small distance: using the matrixlilxl +16YI = d* of a vertex, 

or using the standard matrixY6x2 +6y
21 

= d* and requiring that 

a vertical line from p intersects the side. With the help of 

these two subroutines, there may be 4 catagories, 1, b, 2, and 

3 (see Figure 3.3.1), 

where: 

1 mesh points outside 1T



b: mesh points on 7r 
3 mesh points inside 7r but with a neighbor either on 

or outside 7r

19 

2 mesh points inside Tr all of whose neighbors are also 

inside7f. 

4 - Treatment of Points According to Category 

The mesh points on and outside of Tr were skipped. At mesh 

points inside 7f but with a neighbor either on 7r or outside a 

stream function,'tj;, is computed by assymetrical finite difference 

approximation to Poisson's equation (see Figure 3.4.1). 

81 

Figure 3.4.1 Treatment of Points 

The length of the shortened "legs" are computed by subroutine 

POINT. The values of 1/J at the "feet" of the shortened legs are 

given by the boundary conditions, t/J = t/J (s) on 7f. The 

computation of the finite difference approximation to Poisson's 
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equation is accomplished by subroutine SIGMA. 

A vorticity,~ , is computed by the use of the no slip 

boundary condition according to the formula of Thom (Roach(l2)). 

At strictly interior points (interior points with interior 

nE:ighbors), a stream function is computed from symmetric finite 

difference approximation to Poisson's equation by the method of 

rE:•.laxation. A vorticity,~ , is computed using weather 

differenced finite difference approximation to the vorticity 

transport equation (15). 

5 - Boundary Treatment 

For each boundary point (3-point) the arc length measured 

counter-clock-wise from the first vertex of 7[ to the base of 

the normal from the boundary point to 7f is computed using the 

snbtoutine APROCH, augmented by the subroutine VARC computing 

the arc length of the vertices (see Figure 3.5.1). In order to 

apply Bubble Sort technique along the perimeter of a polygon 

in the counter-clock-wise sence, the subroutine PRANK gives the 

rank from smallest to largest of the arc lengths. By employing 

this method, a more accurate analysis may occur because the 

lengths of 1 and n in the formula of Thom (l~n) are 

differentiated. 
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6

Figure 3.5.1 Method of Handling 3-Points 

S: ARCNOR 

T: ARCLEG 
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Vorticity at N is determined from the formula of Thom. Vorticity 

at Lis determined by linear interpolation between such points 

as N, using.the subroutine PERINT. The formula of Thom may be 

restated for no-slip conditions at·a straight wall. Let point P be 

at a distance 8 from an impermeable wall w which moves at speed 

Uw (see Figure 3.5.2). Let y be the coordinate normal to the 

wall (y = 0 on w). 

p 

y 

8 

w

Figure 3.5.2 Point Near a Moving Wall 
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Let the stream function at the wall be l/.Jw and let the stream 

function at P be i/Jp• Let the fluid velocity be U(y). Due to the 

no slip condition, 

U (0) = uw (33) 

Consider first the case of zero vorticity, in which 

u (y) = uw (34)

where ''r::/" means "at all points." 

Eq ., (34) states that the fluid between wand Pis all flowing 

parallel to the wall at speed U as shown.in figure 3.5.3a. w 

p p p 

8 

I 

uw ·I
(a) (b)

Figure 3.5.3 Relation Between 1/1 and t at w 

Then the flow between wand Pis given by 

w 

(35) 
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Consider next the case where U(y) is not constant but is linear 

according to 

u (y) = u + ky w

wht=re k is constant. Clearly 

k = U' (y) = -

(36) 

(37)

whE1re here is assumed constant. Integrating Eq. (36) gives 

. 18 !pp -lfw = . U(y) dy

0 f-
= uw8- k 2 (38)

solving fort gives 

(39) 

which is called the formula of Thom. The first term in brackets 

in equation (39), uwf;, is recognized from equation (35) as the 

flow between P and w which would occur if the velocity were 

constant ~t Uw. The second term, Cl/JP -1/Jw), is the flow which 

actually occurs. The formula of Thom, equation (39), implies 

that if there is more flow between wand P than would be 



provided by a constant velocity, then the vorticity will be 

negative (see Figure 3.5.3b). If there is less flow than uw8' 

t hen the vorticity will be positive (see Figure 3.5.3c). The 

formula of Thom may also be derived for a curved wall (see 

Fi gure 3.5.4). 

X 

Figure 3.5.4 Formula of Thom for a Curved Wall 

From the definition of vorticity, equation (9), 

= V - u X y 

=
Uwd0 

<1/ly>y dx 

= u (a0l - (i/J~lfw - Uw)/8 I 2. w dx 

Rearranging: 

24

uw 
+ ffe [ (uw{)) - Q./;P - 1/lw)] (40) =

a



where a is the radius of curvature, or 

( l + y2 ) 3/2 
X a=------

Yxx 

25 

(41)



26

CHAPTER 4

ANALYTICAL APPROACH FOR A TEST PROBLEM 

~cylinder of internal radius, a, and infinite length is 

:filled with a fluid of kinematic viscosity V. Initially the 

fluid is at rest. At time zero the internal wall starts moving 

at peripheral speed uw (Figure 4.4.1). 

Figure 4.4al Rotating Infinite Cylinder Filled with a Fluid 

The overbars are omitted for representing dimensional quantities 

in this section. The problem shall be formulated in terms of 

stream function and vorticity. Due to rotational symmetry these 

may be written, respectively, as t/J(r, t) and~ ( r, t), the being 

neglected. The differential equations for stream function and 

vorticity are, respectively 

(42)

and 
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(43) 

The boundary condition on the peripheral velocity q (r,t) is 

= a (44) 

The initial condition of rest is given by 

,l/J (r, o) = o, (45)

and 

(r, o) = o. (46)

The problem of spinup is considered solved if q (r, t) are 

determined for all rand t. Starting with the vorticity equation 

( 14) and applying separation of variables in ( r, t) , according 

to 

t (r, t) = R (r) T (t) (47)

yields, upon substitution into equation (43), 

R R Tt 
V ( rr + l ~} = = K = canst. 

R r R , T
(48)
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This clearly resulted in two ordinary differential equations, 

and 

Tt - KT = O. 

Equation (50) has the general solution 

kt T = ce •

(49)

(50) 

(51) 

rrhe vorticity is required to be bounded as t ....ooand therefore 

Kc::::: O. Then, 

k = - h; h>Q (52)

Equation (49) is Bessels equation of order m, which is 

(53) 

To transform equation (49) into equation (53) r is nondimension-

lized according to 

r = r/L n (54)

Transformation of equation (49) to the dimensionless radius r n 

proceeds as follows. 



S r~lecting 

t hen 

a nd 

L =vf 

+ r R n r n 
+ r 2 R = 0n 
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(55) 

(56) 

(57)

(58)

Comparison of equation (58) with equation (53) shows equation 

( 49) to be a Bessel equation of order zero. With the aid of 

e quation (54) and equation (56) solution of equation (49) may be 

written as 

(59)

The desired solution of the vorticity equation is given by an 

expansion, in terms of the form (47), as follows. 

co
= L 

i=O 
c.e 

J_ 

-h.t 
J_ 

(60)
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The constants [c.J and [.h.] must be chosen so as to satisfy the 
1 1

boundary and initial conditions to determine the constants, an 

expression for the peripheral veracity q = -1//r is derived. The 

equation for 1/,J, Eq. (42), may be written as 

(61) 

'Ihe space dependent portion of each term of ( 60) is the form 

,J ( O'. r) so 
0 1 

- J (Q'.r) 
0 1 

( 62)

·which is integrated as follows. 

= - ~1 fro ( O:' .r ) J ( Cl. . r ) d ( Cl .r ), l O 1 l 
l • 

Thus 

(63)

from which 



31 

q(r, t) (64) 

Now equations (44) and '(60) are used to compute the constants 

[hi]. Near the wall at early times the velocity jumps from Oto Uw 

over a very thin layer of thickness E (Figure 4.4.2). 

I 
pf

I
I 

I 

• Figure 4.4.2 Thin Layer of Thickness E

In that layer, for y = 0 and x = r, 

so

= V - U
X y 

uw uw 
= O( t ) - O( a ) vr 

Uw = r f dr = canst. ;a-t 
uw 

where O( T') means the order of Uw/E. 

(65)

(66)

Thus, it can be seen that the vorticity distribution across 

the friction layer has a constant,integral, u. The rate- of 
w

change of that integral with respect to time is given by 

= [vorticity rate o~ 

increase in layeJ 



32 

*

[

~orticity diffusing] 

= into the layer from 

the wall at r = a 
[

vorticity diffusing] 

- out of the layer at 

inside edge of layer 

= (67) 

For r a-Ethe vorticity and all its derivatives are extremely 

small by equation (46) so equation (67) becomes 

O = V (i/fr ) r =a - V • 0

and 

(at) = 0or r=a 'ef small t. (68)

Equations (50) and (68) can only hold for all small t if 
/

@r = a 

which implies that 

J 1 ( &- a ) = 0 (69)

Thus the values of~ a are zeros of J 1 : 

a = 0; 3.8317; 7.0156; 10.1735; 13.3237; 16.4706; 

...... ( 70)

* This form of equation (14) is same as that of the energy equation. 
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From equation (70.) the leading term of equation (64) is seen to 

be indeterminate. That term is evaluated by taking the limit as 

~a -. o. 
thus h 

lim Jl ( -/- r ) _ lim Jl (C(r) r 
h -o [ ... / ' J -0{-.o [ (X J = 2 

o Vho/J) 

From (64) and (71), 

q (r, t)

q (r, t)

00

= I: 
i=O 

c.e 
1 

-hit 1 

jhi/J)' 

'00 
= c r + . L Cl, e -hit ~hz}, Jl ( 0,i r ) 

o 2 i=l v~ v
At r = a, q = U

w and J 1 ( r) = 0 

so equation (72) gives 

--a

( 71)

( 72)

(73)

The dimensionless peripheral velocity q' is defined as follows. 

q' = q/Uw (74) 

From equation (72) to equation (74) 



co
q'(r', t') = r' - [ 

i=l 

_ Ci If}) 
where the [Qi] are the zeros of J 1 , ai = u h. , 

w · 1 
a nd the dimensionless radius and time are given by 

r' = r/a 

a nd 

t' tV 
= 7 .
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(75) 

(76)

(77) 

Clearly as t' ......... oo equation (75) gives the correct limiting 

peripheral velocity which is that of rigid body rotation (see 

curve labeled 00 in Figure 4. 4. 3) • 

Figure 4.4.3 

1 

0 1 r' 

Dimensionless Peripheral Velocity vs. 
Dimensionless Radius. 

There remains the task of computing the coefficients [ai] so 

that equation (75) will give the correct peripheral velocity at 

t'= 0 (see curve labeled O in Figure 4.4.3).: Substituting 

t' = 0 into equation (75) gives 



or 

00

q'(r', 0) = r' - L a . J 1 ( . r ' ) 
i=l i i

00

L a . J 1 ( Ci .r ' ) = r ' - q ' ( r ' , 0 ) 
i=l i i

= q' ( r' , 00) - q' ( r' , o)

r' c:::: 1 

r' = 1 
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(78)

(79) 

The coefficients [a.] are obtained classically by convoluting 
1 

equation (79) with successive components and applying the 
I 

orthogonality conditions for Bessel functions. Thus both sides 

of equation (79) are multiplied by r'J1 (Ctjr') and integrated 

b:?tween 0 and 1 • 

fl 2
( r' ) J ( OI. .r' ) dr' 

0 1 J 
(80)

Now applying the orthogonality conditions 

i I j 

( 81) 

to equation (80) gives 
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1 
a . ( J 1 ' ( O::'.)) 2 

= f (r') 2 J 1 ( .r') dr' 
J J O J

( 82)

The orthogonality equation has effectively isolated a single 

coefficient a . for computation. The derivative J 1· ' ( Ol,) may be 
J J

E::valuated by use of the familiar Bessel function relationship 

d m m
dx (x Jm_(x)) = x Jm-1 (x)

'rhus setting m = 1 yields 

and 

d 
dx(xJ1 (x)) = xJ

1
' (x) + J

1
(x) = xJ (x)

0

ex .J <ex.).J O J 

ex .J1 , <a . ) + o = ex .J c C( . )
J J J O J 

= J (O{,) 
0 J

(84)

The integral appearing in equation (82) may be evaluated 

by another application of equation (83). 

Setting m = 2 yields 
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which, upon integration yields 

thus 

f_l 1 
( r ' ) J ( C:/. .r ' ) dr ' = _L ( ( Ci .r ' ) 2 

J ( Ci .r ' ) d ( 0t. . r ' ) 
o i J ex~ Jo J i J J

J

1 QI..' 1 2 = -·- J JxJ (x)dx = - 3 CX. J
2
(()!.)

0 1 CY_. J J
J J 

From equations (82), (84), and (85) we write 

Manipulation of the formal series for the Bessel function, 

which is 

(85) 

(86)

x m 1 { ( x/ 2 ) 2 ( x/2 ) 4 
J (x) = (-) - 1 - .___,~...._ _ _____,,"'"'= + -m 2 m! (l)[(m+l)] (1•2)[(m+l)(m+2)] 

(m+2)6 l 
- (1•2•3)[(m+l}(m+2)(m+3)] + ••·•••J' (87)

easily provides the relationship 

- J ((;t,).
0 l 

( 88) 



Equation (88) simplifies equation (86) to 

- -2 
a j - Ci .J (O:'. ) 

J O J

substitution of equation , ( 89) _· in,to- :equation ( 75) gives 

00

q'(r', t') = r' + L
i=l 

Jl((Yir') 
Jo(Q'i) 
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(89)

(90) 

By assembling several of our results we may write the following 

expressions for the dimensionless vorticity and stream function. 

g 00

f' = = 1 + I: 
i=l 

1f 
1/1' r'2) = (Uwa/2) = (1 -

-0:',2t' 
e 1.

cc 
- 4 [ 

i=l 

J (Ci.,r') 
0 1.

J (a.)
0 1 

-0<' .2t' 
e 1 

[l 
cx.2

J.. 

(91) 

J Q'.r) 
0 1 ] 
J (CX., ) 

0 1 

( 92) 

A ''Bessel" program is listed in Appendix B, which 

calculates values , of q', g', and 1/,J' at various values of r' and 

t', using three subtoutines, SPEED which computes eq~ation (90), 

VORT which computes equation (91), and FLOW which computes 

equation (92). The "Bessel" program was run on the Honeywell 66, 

using IMSL routines. 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSION. 

The stream function at center of cylinder in a test 

problem is plotted with respect to time. A comparison between 

Bi~ssel function solution and numerical solution is shown in 

Figure Bin Appendix A. Agreement is very good with the 

approximate error of 0.1%. There was a discrepancy due to 

omitting the curvature term in Thom's formula since the errors 

associated with the polygonal approximation propagate into the 

interior of the flow. The vorticities of the 26th column_with 

40 vertices are shown in Figure C in Appendix A. The results of 

Bessel function solution are shown by broken lines. It may be 

seen that the vorticity lines are becoming horizontal when time 

is increased, as is expected. The final value of vorticity at 

center is obtained after approximately 1600 time steps of 0.0002 

each with the total dimensionless time of 0.32 secs (see Figure 

Din Appendix A). 

The final values of vorticity at center, with respect to 

time steps, of a half-moving solid boundary problems <0 = 180°) 

are· shown in Figure E to Figure Kin Appendix A for the 

dimensionless Reynolds numbers, 3.16, 10, 31.6, 100, 316, 1000, 

and 3160 with the total dimensionless time, being converged. 

The cases of a quarter-moving solid boundary problems <0 = 90°) 

are plotted in Figure L to Figure o shown in Appendix A for the 

dimensionless Reynolds numbers, 100, 316, 1000, and 3160 with 
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the total dimensionless time, being converged. The duration for 

convergence with respect to the dimensionless Reynolds numbers 

in logarithmic scale (see Figure Pin Appendix A) may be 

calculated. Ultimate vorticities at column 26 are resolved in 

Figure Q, Figure R, and Figure Sin Appendix A (Re= 100, 1000, 

and 3160, e = 180°). Some final vorticities at center of circle 

;:;;md at center of vortex are shown in Figure T and Figure Sin 

2)"ppendix A. The advection effects may be seen from the equi-

vortici ty lines in Figure V and Figure w, and furthermore, these 

data would become valuable in analyzing more delicate and 

,complicated phenomena. 



41 

LIST OF REFERENCES 

(1) Courant, R. and Hilbert, D., Methods of Math. Phys., 
vol. 1, Interscience Pub., N.Y., 1937. 

(2) Dix, D. M., J. Fluid Mech.., vol. 15, 449, 1963. 

(3) Frankel, s. P., "Convergence Rates of Iterative 
Treatments of Partial Differential Equations, 
Math. Tables and other Aids to Computation, vol. 4, 
pp. 65-75, 1950. 

(4) Fromm, J.E. and Harlow, F. H., Phys. of Fluids, vol. 6, 
975, 1963. 

(5) Helliums, J. D. and Churchill, S. w., Proc. Int. Heat 
Transf. Conf_!_, 985, 1961. 

{6) Hockney, R. w., "The Potential Calculation and Some 
calculations", Methods in.Computational Physics, 
vol. 9, eds. B. Alder, s. Fernbach, and 
M. Rotenberg, Academic Press, N.Y., 1970. 

(7) Lax, P. D. and Richtmeyer, R. D., "Survey of the 
Stability of Linear Finite - Difference Equations", 
Comm. Pure Appl. Math., vol. 9, 267, 1956. 



42

_LIST OF REFERENCES (continued) 

(8) Lilly, D. K., "On the Computational Stability of 
Numerical Solution of Time-Dependent Non-Linear 
Geophysical Fluid Dynamics Problems", U.S. Weather 
Bureau Monthly Weather Review,-- vol. 93, No. 1, 
pp. 11-26, 1965. 

(9) Pearson, C. E., A Computational Method for Viscous Flow 
Problems, Sperry Rand Research Center, 1964. 

(10) Peirce, B. o., A Short Table of Integrals, Dinn and Co., 
Boston, 1956. 

(11) Reddick, H. W., and Miller, F. H., Adv. Math. for 
Engineers, John Wiley, N.Y., 1938. 

(12) Roach, P. J., Computational Fluid Dynamics, Hermosa 
Publishers, Albuquerque, 1972. 

(13) Schlichting, H., Boundary L~yer Theory, McGraw-Hill, 
N. Y. , 1979. 

(14) Strawbridge, D.R. and Hooper, G. T. J., "Numerical 
solutions of the Navier - Stokes Equations for 
axisymmetric Flow'', J. of Mechanical Engineering 
Science, vol. 10, No. 5, 1968. 



43 

LIST OF REFERENCE (continued) 

(15) Thompson, P. D., Numerical Weather Analysis and Prediction, 
MacMillan, N.Y., 1961. 

(16) Wilkes, J.O., Thesis, Univ. of Michigan, 1963. 



44 

APPENDIX A 
FIGURES FOR MESH TREATMENT AND RESULTS 
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Figure A. Set Up 50 Mesh Spaces in Spin Up Problem. 
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Figure A1 . Mesh Layout at Boundary Points with 20 Vertices 

for Spin-Up Problem(Upper-Half Region in Polygon). 
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Dimensionless Vorticity vs. Mesh Point at 26th 
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Comparison of Bessel Function Solution and Numerical 
Solution. 
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Dimensionless Vorticity vs. Number of Time Step at 
Center(Re=l, 8=360°, 1 Time Step=O. 0002). 
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Step at Center(Re=31.6, 0=180°, 1 Time Step 
=0. 004 ). 
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Dimensionless Vorticity vs. Number of Time 
Step at Center(Re=lOO, 0=180°, 1 Time Step 
=O. 008 ). 
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1
Dimensionless Time=128. 
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NUMBER OF TIME STEP, NTS 

Dimensionless Vorticity vs. Number of Time Step 
at Center (Re=l 000, 0 =180°, 1 Time Step=O. 01 ). 
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l
Dimensionless Time=200. 
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NUMBER OF TIME STEP, NTS 

Dimensionless Vorticity vs. Number of Time Step 
at Center(Re=3160, ·e =180°, 1 Time Step=O. 01 ). 
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1
Dimensionless Time=33.6 
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NUMBER OF TIME STEP, NTS 

Dimensionless Vorticity vs. Number of Time Step 
at Center(Re=lOO, 9=90°, 1 Time Step=0.006). 
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l
Dimensionless Time=60. 
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NUMBER OF TIME STEP,NTS 

Dimensionless Vorticity vs. Number of -Time Step 
at Center(Re=316, 8=90°, 1 Time Step=0.008). 
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l
Dimensionless Time=90. 

3000 6000 9000 12000 15000 

NUMBER OF TIME STEP,NTS 

Dimensionless Vorticity vs. Number of Time Step 
at Center(Re=lOOO, 9=90°, 1 Time Step=0.01). 
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15 20 25 30 

MESH POINTS, j 

Ultimate Dimensionless Vorticity vs. Mesh Points 
at 26th Column(Re=lOO, 9=180° ). 
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MESH POINTS, j 

Ultimate Dimensionless Vorticity vs. Mesh Points 
at 26th Column(Re=l000, 0 =180° ) , 
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MESH POINTS, j 

Ultimate Dimensionless Vorticity vs. Mesh Points 
at 26th Column(Re=3160, 0=180° ). 
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4

Ultimate Dimensionless Vorticity at Center vs. 
Reynolds Number in Logarithmic Scale(9=90°, 180°). 
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Dimensionless Equivorticity Line at R=lOO and 
9=180°. 



Figure W. 
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Dimensionless Equivorticity Line at R=316 and 
0=90°.
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APPENDIX B 

COMPUTER PROGRAM FOR ANALYTICAL SOLUTION 

The program which calculates the dimensio.nless stream 

function and vorticities for the two-dimensional incompressible 

spin up problem (0= 360°, Re= 1) by analytical works is 

listed below. The principal symbols used in the program and 

their definitions are as follows: 

ALPHA(lOO) zeros of Jl 

ALPJO(lOO) J CCX> 
0

ALPJOR(l00,20) J (C{ r) 
0 

ARGO argument of J
0

(Ct r) 

MMBSJO Bessel function of order 0 

MMBSJl Bessel function of order 1 

PI '7T, the geometry constant 

R radius 

XJJO temporary value of Jo(O:!r) 

XJJl temporary value of Jl ((Xr) 

XJO temporary value of Jo(Q) 



DIMENSION ALPHA(lOO),R(21),ALPJO(lOO),ALPJOR(l00,21) 
DOUBLE PRECISION ALPHA,ARGO,XJJl,XJJO,XJO,PI,R 

&,MMBSJO,MMBSJl,ARG 
DATA PI,T/3.14159D0,0.0/ 
EXTERNAL MMBSJl,MMBSJO,SPEED,VORT,FLOW 
DATA ALPHA/3.8317D0,7.0156D0,10.1735D0,13.3237DO, 

&16.4706D0,19.6159D0,22.7601D0,25.9037D0,29.0468DO, 
&32.1897D0,35.3323D0,38.4748D0,41.6171Do,44.7593DO, 
&47.9015D0,51.0435D0,54.1856D0,57.3275D0,60.4695DO, 
&63~6114D0,66.7532D0,69.8951D0,73.0369D0,76.1787D0, 
&79.3205D0,82.4623D0,85.6040D0,88.7458D0,91.8875DO, 
&95.0292D0,98.171D0,101.3127DO,l04.4544D0,107.5961D0, 
&110.7378D0,113.8794D0,117.0211D0,120.1628D0,123.3045DO, 
&126.4461D0,60*1.00DO/ 

DO 30 II=l,60 
ALPHA(40+II)=ALPHA(39+II) + PI 

30 CONTINUE 
R(l)=O.O 
DO 20 NNN=l,20 
R(NNN+l)=R(NNN)+.05DO 

20 CONTINUE 
DO 50 N=l,100 
ARG=ALPHA(N) 
XJO=MMBSJO(ARG,IER) 
ALPJO(N)=XJO 

50 CONTINUE 
DO 55 LL=l,100 
DO 55 LLL=l,21 
ARGO=ALPHA(LL)*R(LLL) 
XJJO=MMBSJQ(ARGO,IER) 
ALPJOR(LL,LLL)=XJJO 

55 CONTINUE 
DELTIM=. 01 
DO 60 IMET=l,15 
CALL SPEED(R,T,ALPJO,ALPHA) 
CALL VORT(R,T,ALPJOR,ALPJO,ALPHA) 
CALL FLOW(R,T,ALPJOR,ALPJO,ALPHA) · 
T=T+DELTIM 

60 CONTINUE 
STOP 
END 
SUBROUTINE SPEED(R,T,ALPJO,ALPHA) 
DIMENSION ALPJO ( 100) ,ALPHA ( 100) , R ( 21) 
DOUBLE PRECISION ALPHA,R,XJJl ,ARG1 ,MMBSJl. 
EXTERNAL MMBSJl 
DO 80 K=l, 21 
VELSUM=O.O 
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DO 85 KK=l, 100 
ARGl=ALPHA(KK)*R(K) 
XJJl=MMBSJl(ARGl,IER) 
EXARG=ALPHA(KK)*ALPHA(KK)*T_ 
IF(EXARG.LE.88.0)GO TO 83 
VEL=O.O 
GO TO 84 

83 VEL=(2.*EXP(-EXARG)/ALPHA(KK)*(XJJ1/ALPJO(KK)) 
84 VELSUM=VELSUM+VEL 
85 CONTINUE 

VELTOT=VELSUM+R(K) 
WRITE(5,86)T,R(K),VELTOT 

86 FORMAT( 'T=' ,F8.2, 'R=·' ,F8.2,' VELOCITY=' ,F20.8) 
80 CONTINUE 

RETURN 
END 
SUBROUTINE VORT(R,T,ALPJOR,ALPJO,ALPHA) 
DIMENSION R(21),ALPJOR(l00,21),ALPJO(lOO),ALPHA(lOO) 
DOUBLE PRECISION ALPHA,R 
DO 90 J=l,21 
VORSUM=O.O · 
DO 95 JJ=l, 100 · 
AXARG=ALPHA(JJ)*ALPHA(JJ)*T 
IF(AXARG.LE.88.0)GO TO 93 
VORTT=O.O 
GO TO 94 

93 VORTT=EXP(--AXARG)*(ALPJOR(JJ,J)/ALPJO(JJ)) 
94 VORSUM=VORSUM+VORTT 
95 CONTINUE 

VORTOT=l.+VORSUM 
WRITE(5,100)T,R(J),VORTOT 

100 FORMAT ( 'T=' , F8. 2, ' R=' ,_F8. 2, ' VORTICITY=' , F20. 8) 
90 CONTINUE 

RETURN 
END 
SUBROUTINE FLOW(R,T,ALPJO,ALPHA) 
DIMENSION R(21),ALPJOR(l00,21),ALPJO(lOO),ALPHA(lOO) 
DOUBLE PRECISION ALPHA,R 
DO 110 I=l,21 
PSISUM=O.O 
DO 120 III=l,100 
BXARG=ALPHA(III)*ALPHA(III)*T 
IF(BXARG.LE.88.0)GO TO 103 
PSI=O. 0 
GO TO 104 

103 PSI=(EXP(-BXARG)/(ALPHA(III))**2.)*(l.-ALPJOR(III,I) 
&/ALPJO(III)) 

70 



104 PSISUM=PSISUM+PSI 
120 CONTINUE 

PSITOT=(l.-(R(I))**2.)-4.*PSISUM 
WRITE(5,130)T,R(I),PSITOT 

130 FORMAT('T=',F8.2,' R=',F8.2,' STREAM FCN=',F20.8) 
110 CONTINUE 

RETURN 
END 
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APPENDIX C 

COMPUTER PROGRAM FOR NUMERICAL SOLUTION 

The program which calculates the dimensionless stream 

functions and vorticities for the two-dimensional incompressible 

spin up problem by computational works is listed below. The 

principal symbols used in the program and their definitions 

are as follows: 

ARCLEG(K,L) 

ARCNOR(J) 

ARCNOR(K) 

ARCVER(I) 

DCALL(L) 

DELTA 

DELTAT 

DSIG(K,L) 

I 

ICLASS(I,J) 

arc length from the 1st vertex to the Lth leg 

of Kth 3 point . 

arc length from the 1th vertex to the bases 

of the normals of the 3 points in computer-

clock-wise order around 

arc length from the 1st vertex to the Kth 

normal 

arc length· from the 1st vertex to the Ith 

vertex 

4 distances for calling SUBROUTINE SIGMA 

mesh space 

time increment 

distances to 7t right of, above, leftof, and 

below the Kth point near 6" (boundary) 

grid-point subscript 

classification of mesh points 1-out; 2-in; 

3-on 0



IDISPLY(Sl) 

IPOFR(J) 

IROFP(I) 

ISSIG(K,L) 

J

K

L 

NSIG 

NTS 

NV

NX

NY

OMEGA(I,J) 

OMNEW(I,J) 

OMWALL(I) 

PSI(I,J) 

R 

SCALL(L) 

SMALL 

SPI(I) 

SRTRN 
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mesh display matrix 

integer position of occurance in the mesh 

scan of the Jth 3-point going c.c.w. around 

?((position of ranks J) 

ranks of the Ith element of ARCNOR 

side index to right of, above, to left of, 

and below the Kth point near() according as 

whether Lis respectively 1, 2, 3 and 4 

grid-point subscript 

boundary point index 

mesh points leg index 

number of points near o 
number of time steps 

number of vertices 

number of columns in space mesh 

number of rows in space mesh 

mesh vorticity 

mesh vorticity storage place 

vortivity at base of normal of the Ith 3-

point C. C. W. around "Jt.. 

mesh stream function 

Reynolds number 

4 stream functions for calling SUBROUTINE 

SIGMA 

0.25 DELTA 

stream function on 1(._ 

value of stream function returned by 



SSIG(K,L) 

UPI(I) 

VCALL 

VOR3L(L) 

VORSUR(L) 

WL

XPI(I) 

YMAX

YMIN 

YPI(I) 
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SUBROUTINE SIFMA 

stream function on right of, above, left of, and 

below Kth point 

velocity on ?C. 

value of OMEGA(I ,J) for calling SIGMA 

vorticity at the Lth leg of a 3-point either from 

an interior point or interpolated at a boundary 

surrounding vorticity at the Lth leg of a 

temporary assymetric spider 

mutual overlap A

vertex coordinates of 7t 

greatest y-coordinates reached by'fL 

least y-coordinates reached by 'JC.

vertex coordinates of 'ft
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DIMENSION DSIG(2000,4),ISSIG(2000,4),SSIG(2000,4),ARCLEG(2000,4) 
DIMENSION DCALL( 4), ISCALL( 4) ,VORSUR( 4), SCALL( 4) 
DIMENSION H3(2000),H4(2000),ARCNOR(2000),0MWALL(2000) 
DIMENSION ARCALL(2000),IPOFR(2000),IROFR(2000) 
DIMENSION XPI(200) ,YPI(200) ,UPI( 200) ,SPI( 200) ,ARCVER( 200) ,RO( 200: 
DIMENSION PSI(51,49),0MEGA(Sl,49),PSINEW(49) 
DIMENSION JSTART(600),JEND(600) 
COMMON/COMl/OMNEW(Sl,49) 
DIMENSION ISIG(2000),JSIG(2000) 
COSH(S)=O.S*(EXP(S)+EXP(-S)) 
SINH(S)=0.5*(EXP(S)-EXP(-S)) 

5 FORMAT(BilO) 
10 FORMAT(BFl0.5) 
15 FORMAT(lH ,125Il) 
2o·FoRMAT(lH-) 
25 FORMAT(lHO) 
30 FORMAT(lHl) 
32 FORMAT(38H STREAM FUNCTION AFTER INITIALIZATION:) 
35 FORMAT(22H STREAM FUNCTION AFTER,15,12H TIME STEPS:) 
37 FORMAT(32H VORTICITY AFTER INITIALIZATION:) 
40 FORMAT(l6H VORTICITY AFTER,15,12H TIME STEPS:) 
50 FORMAT(lH ,8I10) 
60 FORMAT(lH. ,8Fl2.7) 
65 FORMAT(l6H WALL VORTICITY:) 
70 FORMAT(26H BOUNDARY POINT VORTICITY:) 
75 FORMAT(30H PRINCIPAL VORTICITY DIAGONAL:) 
80 FORMAT(35H ANTI-PRINCIPAL VORTICITY DIAGONAL:) 

TIMEl=SECOND(EARLY) 
C READ 5,NPI,NX,NY,NTS,NRELAX,INTDIS,IE 

READ (5,S)NPI,NX,NY,NTS,NRELAX,INTDIS,IE 
C READ 10,WL,R,YSTART,DELTAT,ORF 

READ (5,lO)WL,R,YSTART,DELTAT,ORF 
PRINT 50,NPI,NX,NY,NTS,NRELAX,INTDIS,IE 
PRINT 60,WL,R,YSTART,DELTAT,ORF 

C READ 10,XPI(I),YPI(I),UPI(I),SPI(I),RO(I) 
DO 100 I=l ,NPI 
XPI(I)=l.+COS(6.283185*(I-1)/NPI) 
YPI(I)=l.+SIN(6.283185*(I-1)/NPI) 
UPI( I) =::O. .. . 
IF(I.LE.IE)UPI(I)=l. 
SPI(I)=O. 
RO(I)=l. 

100 PRINT60,XPI(I),YPI(I),UPI(I),SPI(I),RO(I) 
CALL VARC(NPI,XPI,YPI,ARCVER) 
PRINT 60,(ARCVER(I),I=l,NPI) 
PERIM=ARCVER(I) 
DELTA=WL/(NX-1) 



SMALL=DELTA *. 25 
Hl=DELTAT/(DELTA*DELTA*R) 
H2=DELTAT/(DELTA*DELTA*4.) 
HS=DELTAT/R 
H6 =DELTA*. 5 
ORFTG=ORF*DELTA*DELTA/4. 
ORFD4=0RF/4. 
·oRFMl =ORF-1. 
Y=YSTART 
DO 720 J=l,NY 
X=O. 
DO 710 I=l,NX 
CALL CLOSE(NPI,XPI,YPI,X,Y,IRTRN) 
IF(IRTRN.EQ.O)GO TO 700 
CALL NEAR(NPI,XPI,YPI,X,Y,SMALL,NYE) 
IF(NYE.NE.O)GO TO 700 
ICLASS(I,J)=2 
GO TO 710 

700 ICLASS(I,J)=l 
710 X=X+DELTA 
720 Y=Y-DELTA 

DO 730 I=l,NX 
IF ( I CLASS ( I , l ) • EQ • · 2 ) I CLASS ( I , l ) =3 
IF(ICLASS(I,NY).EQ.2)ICLASS(I,NY)=3 

730 CONTINUE 
NYMl=NY-1 
DO 740 J=2,NYM1 
DO 740 I=l,NX 
IL=I-1 
IF(IL.LT.l)IL=NX 
IR=I+l 
IF(IR.GT.NX)IR=l 
IF( ICLASS ( I ,J). EQ. 2.AND. ( ICLASS ( IR,J). EQ. 1. OR. ICLASS 

& ( I , J -1 ) • EQ • 1 
+ .OR.ICLASS(IL,J).EQ.l.OR.ICLASS 
& ( I , J +1 ) • EQ • 1 ) ) 
+ ICLASS(I,J)=3 

740 CONTINUE 
DO 745 I=l,NX 
JSTART(I)=O 
DO 745 J=l ,NY _ . 
IF( ICLASS ( I ,J-1). NE. 2.AND. ICLASS ( I ,J) .• EQ. 2 )JSTART( I) =J 
IF(ICLASS(I,J+l).NE.2.AND.ICLASS(I,J).EQ.2)JEND(I)=J 

745 CONTINUE 
DO 750 J=l,NY 
PRINT 15,(ICLASS(I,J),I=l,NX) 

750 CONTINUE 
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GO TO 758 
PTINT 25 
JBELOW=NY-10 
DO 755 J=JBELOW,NY 
PRINT 15,(ICLASS(I,J),I=l,NX) 

755 CONTINUE 
758 K=O 

AA=DELTA/10000. 
BB=lOOOO.*DELTA 
X=O.O 
DO 840 I=l,NX 
Y=YSTART 
DO 820 J=l,NY 
IF( ICLASS (I, J). NE. 3)GO TO 810 
K=K+l 
ISIG(K)=I 
JSIG(K)=J 
CALL APROCH(DELTA,X,Y,NPI,YPI,L,DSQ,ARCN) 
H3(K)=2./DSQ 
H4(K) =SPI (L) +UPI (L) * (SORT( DSQ) +1./(RO(L) *H3 (K))) 
IF(L.NE.l)ARCN+ARCVER(L) 
ARCNOR(K)=ARCN 
ARCALL(K)=ARCN 
CALL POINT(AA,BB,X,Y,NPI,XPI,YPI,DCALL,ISCALL,SCALL) 
CALL NEAR(NPI,XPI,YPI,X,Y,AA,NR) 
DO 760 L=l,4 . 

I DSIG(K,L) =DCALL(L) 
ARCADD=O. 
IF(ISCALL(L) .NE. l )ARCADD=ARCVER(ISCALL(L)) 
ARCLEG(K,L)=SCALL(L)+ARCADD 
II=ISCALL(L) . 
ISSIG(K,L)=II 
SSIG(K,L)=SPI(II) 

760 CONTINUE 
IF (NR.EQ.O)GO TO 770 
ISSIG(K,l)=-ISSIG(K,1) 
GO TO 81.0 

770 Il=I+l 
IF(Il.GT.NX)Il=l 
IF ( I CLAS s·( I 1 , J ) • NE. 1 ) ISSI G ( K , 1 ) =O 
IF(J.EQ.l)GO TO 790 
IF(ICLASS(I,J-1).NE.l)ISSIG(K,2)=0 

790 I3=I-l 
IF(I3.LT.l)I3=NX 
IF(ICLASS(!3,J).NE.l}ISSIG(K,3)=0 
IF(J.EQ.NY)GO TO 810 
IF(ICLASS(I,J+l).NE.l)ISSIG(K,4)=0 
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810 Y=Y-DELTA 
820 CONTINUE 
830 x=x+DELTA 
840 CONTINUE 

NSIG=K 
CALL PRANK(NSIG,ARCALL,IPOFR,IROFP) 
PRINT 50, ( ISIG( IPOER(K)) ,K=l ,NSIG) 
PRINT 50,(JSIG(IPOFR(K)),K=l,NSIG) 
PRINr 50,(IPOFR(I),I=l,NSIG),(IROFP(I),I=l,NSIG) 
PRINT 50,NSIG 
DO 850 L=l,20 
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PRINT 860,(DSIG(L,J),J=l,4),(ISSIG(L,J),J=l,4),(SSIG(L,J), 
&J=l,4) 

PRINT 60,H3(L),ARCNOR(L) 
PRINT 860,(ARCLEG(L,J),J=l,4) 

850 CONTINUE 
860 FORMAT( lH .. ,4F7. 3, 4I3 ,4F7. 3) 

DO 853 K=l,NSIG 
853 ARCALL(K)=ARCNOR(K) 

DO 857 K=l,NSIG 
85 7 ARCNOR ( K) =ARCALL ( IPOFR( K) ) 

Y=YSTART 
CPSI=.033333333 
DO 880 J=l,NY 
BIGPSI=Y*(-l.+Y*(l.3333333-.44444444*Y)) 
S=3.1622777*(1.-Y) 

1 HYPsNs =s INH <s) 
F=-.1468*HYPSNS-.03392*S*COSH(S) 
X=O.O 
DO 870 I=l,NX 
PSI(I,J)=O.O 
OMEGA(I,J)=O.O 
OMNEW (I, J) =O. 0
GO TO 870 
COSINE=-COS(3.1622777*X) 
XT=X+WL*.5 

· YT=Y 
CALL RETRO(XT,YT) 
OMEGA(I,J)=2.6666667*(YT-1.) 
PSI(I,J)=BIGPSI+CPSI*F*COSINE 
OMNEW(I,J)=PSI(I,J) 

870 X=X+DELTA 
880 Y=Y-DELTA 

GO TO 1031 
DO 1030 IRLX=l,500 
DO 930 I=l,NX 
Il =1 +MOD( I, NX) 



I3=NX-MOD(NX+l-I,NX) 
JS=JSTART(I) 
IF(JS.EQ.O)GO TO 930 
JE=JEND(I) 
JSBLAC=JS 
JSRED=JS+l 
JEBLAC=JE-MOD(JE-JS,2) 
JERED=JE-l+MOD(JE-JS,2) 
DO 910 J=JSBLAC,2 
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910 PSINEW(J)=ORFD4*(PSI(Il,J)+PSI(I,J+l)+PSI(I3,J)+PSI(I,J-l)) 
++ORFIG*OMEGA(I,J)-ORFMl*PSI(I,J) 

DO 920 J=JSBLAC,JEBLAC,2 
920 PSI(I,J)=PSINEW(J) 

DO 923 J=JSRED,JERED,2 
923 PSINEW(J)=ORFD4*(PSI(Il,J)+PSI(I,J+l)+PSI(I3,J)+PSI(I,J-1)) 

++ORFTG*OMEGA(I,J)-ORFMl*PSI(I,J) 
DO 927 J=JSRED,JERED,2 

927 PSI(I,J)=PSINEW(J) 
930 CONTINUE 

DO 1020 K=l,NSIG 
I=ISIG(K) 
J=JSIG(K) 

. Il =1 +MOD( I ,NX) 
I3=NX-MOD(NX+l-I,NX) 
IF(ISSIG(K;l).GE.O)GO TO 950 
PSI ( I ,J) =SSIG(K, l )· 
GO TO 1020 

950 DO 1010 L=l,4 
IF(ISSIG(K,L).EQ.O)GO TO 960 
DCALL(L)=DSIG(K,L) 
SCALL(L)=SSIG(K,L) 
GO TO 1010 

960 DCALL(L)=DELTA 
GO T0(970,980,990,1000),L 

970 SCALL(L)=PSI(Il,J) 
GO TO 1010 

980 SCALL(L)=PSI(I,J-1) 
GO TO 1010 

990 SCALL(L)=PSI(I3,J) 
GO TO 1010 

1000 SCALL(L)=PSI(I,J+l) 
1010 CONTINUE 

VCALL=OMEGA(I,J) 
CALL SIGMA(DCALL,SCALL,VCALL,SRTRN) 
PSI(T,J)=SRTRN 

1020 CONTINUE 
1030 CONTINUE 



1031 CONTINUE 
DO 1035 J=l,NY 
DO 1032 I=l,NX 
OMNEW(I,J)=OMEGA(I,J) 

1032 CONTINUE 
1035 CONTINUE 

PRINT 30 
PRINT 37 
CALL DISCRA(NX,NY,2,1,1,.001) 
PRINT 30 
PRINT 32 
DO 1440 J=l,NY 
DO 1445 I=l,NX 
OMNEW(I,J)=PSI(I,J) 

1445 CONTINUE 
1440 CONTINUE 

CALL DISCRA(NX,NY,2,1,1,.001) 
TIME2=SECOND(LATER) 
ELAPSE=TIME2-TIME1 
PRINT 1447,ELAPSE 
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1447 FORMAT(40H TIME FOR INPUT,MESH,AND INITIALIZATION=,El0.3) 
DO 3000 ITS=l,NTS 
TIMEl=SECOND(EARLY) 
DO 1532 I=l,NX 
Il=l +MOD( I ,NX) 
I3=NX-MOD(NX+l-I,NX) 
JS'=JSTART(I) 
IF(JS.EQ.O)GO TO 1532 
JE=JEND(I) 
DO 1530 J=JS,JE 
J2=J-l 
J4=J+l 
U2D=PSI(I,J2)-PSI(I,J4) 
V2D=PSI(I3,J)-PSI(Il,J) 
OMEGAO=OMEGA(I,J) 
OMEGAl =OMEGA ( Il,J) 
OMEGA2=0MEGA(I.J2) 
OMEGA3=0MEGA(I3,J) 
OMEGA4=0MEGA(I,J4) 
OMXDl=OMEGAl-OMEGAO 
OMXD3=0MEGA0-0MEGA3 
OMTD2=0MEGA2-0MEGAO 
OMYD4=0MEFA0-0MEGA4 
U4DP =U2D +ABS ( U2D) 
U4DM=U2D-ABS(U2D) 
V4DP=V2D+ABS(V2D) 
V4DM=V2D-ABS(V2D) 
OMNEW(I,J)=OMEGAO 



++Hl*(OMXDl+OMYD2-0MXD3-0MYD4) 
+-H2*(U4DP*OMXD3+U4DM*OMXD1+V4DP*OMYD4+V4DM*OMYD2) 

1530 CONTINUE 
1532 CONTINUE 

DO 1535 K=l,NSIG 
I=ISIG(K) 

·J=JSIG 
OMWALL(IROFP (K)) =H3 (K) * (H4 (K)-PSI ( I ,J)) 

1535 CONTINUE 
DO 1780 K=l,NSIG 
I=ISIG(K) 
J=JSIG(K) 
Il =1 +MOD ( I ,NX) 
I3=NX-MOD(NX+l-I,NX) 
IF(ISSIG(K,1).GE.O)GO TO 1550 
OMNEW(I,J)=O:MWALL(IROFP(K)) 
GO TO 1780 

1550 DO 1610 L=l,4 
IF(ISSIG(K,L).EQ.O)GO TO 1560 
DCALL(L)=DSIG(K,L) 
SLEG=ARCLEG(K,L) 
CALL PERINT(NSIG,PERIM,ARCNOR,OMWALL,SLEG,VLEG) 
VORSUR(L)=VLEG 
SCALL(L)=SSIG(K,L) 
GO TO 1610 

1560 DCALL(L)=DELTA 
GO TO(l570,1580,1590,1600),L 

1570 VORSUR(L)=OMEGA(Il,J) 
SCALL(L)=PSI(Il,J) 
GO TO 1610 

1580 VORSUR(L)=OMEGA(I,J-1) 
SCALL(L) =PSI ( I ,J-1) 
GO TO 1610 

1590 VORSUR(L)=OMEGA(I3,J) 
SCALL(L)=PSI(I3,J) 
GO TO 1610 

1600 VORSUR(L)=OMEGA(I,J+l) 
SCALL(L) =PSI( I ,J+l) 

1610 CONTINUE 
VCENTER=OMEGA(I,J) 
CALL ASLAP(VORSUR,DCALL,VCENTER,ATLED) 
D1PD3=DCALL(l)+DCALL(3) 
D2PD4=DCALL(2)+DCALL(4) 
USIG=(SCALL(2)-SCALL(4)/D2PD4 
VSIG=(SCALL(3)-SCALL(l)/D1PD3 
OMXR=(VORSUR(l)-VCENTER/DCALL(l) 
OMXL=(VCENTER-VORSUR(3))/DCALL(3) 
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OMYA=(VORSUR(2)-VCENTER)/DCALL(2) 
OMYB=(VCENTER-VORSUR(4))/DCALL(4) 
U2SIGP=USIG+ABS(USIG) , 
U2SIGM=USIG-ABS(USIG) 
V2SIGP=VSIG+ABS(VSIG) 
V2S IGM=VSIG-ABS (VSIG) · 
OMNEW(I,J)=VCENTER+H5*ATLED 
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+ -H6*(U2SIGP*OMXL+U2SIGM*OMXR+V2SIGP*OMYB+V2SIGM* 
&OMYA) 

1780 CONTINUE 
DO 1792 J=l,NY 
DO 1790 I=l,NX 
OMEGA(I,J)=OMNEW(I,J)*ORFTG 

1790 CONTINUE 
1792 CONTINUE 

TIME2=SECOND(LATER) 
ELAPSE=TIME2-TIME1 
IF(ITS.NE.NTS)GO TO 1800 
PRINT 1795,ELAPSE 

1795 FORMAT(37H TIME FOR SOLVING VORTICITY EQUATION=,El0.3) 
1800 CONTINUE 

TIMEl=SECOND(EARLY) 
DO 2020 IRELAX=l,NRELAX 
DO 1930 I=l,NX 
Il =l +MOD( I ,NX) 
I3=NX-MOD(NX+l-I,NX) 
JS=JSTART(I) 
IF(JS.EQ.O)GO TO 1930 
JE=JEND( I) 
JSBLAC=JS 
JSRED=JS+l 
JEBLAC=JE-MOD(JE-JS,2) 
JERED=JE-l+MOD(JE-JS,2) 
DO 1910 J=JSBLAC,JEBLAC,2 

1910 PSINEW(J)=ORFD4*(PSI(Il,J)+PSI(I,J+l)+PSI(I3,J)+PSI(I,J-l)) 
++oMEGA(I,J)-ORFMl*PSI(I,J) 

DO 1920 J=JSBLAC,JEBLAC,2 
1920 PSI(I,J)=PSINEW(J) 

DO 1923 J=JSRED,JERED,2 
1923 PSINEW(J)=ORFD4*(PSI(Il,J)+PSI(I,J+l)+PSI(I3,J)+PSI(I,J-l)) 

++oMEGA(I,J)-ORFMl*PSI(I,J) 
DO 1927 J=JSRED,JERED,2 

1927 PSI(I,J)=PSINEW(J) 
1930 CONTINUE 

DO 2020 K=l,NSIG 
I=ISIG(K) 
J=JSIG(K) 



Il=l +MOD( I ,NX) 
I3=NX-MOD(NX+l-I,NX) 
IF(ISSIG(K,1).GE.O)GO TO 1950 
PSI(I,J)=SSIG(K,l) 
GO TO 2020 

1950 DO 2010 L=l,4 
IF(ISSIG(K,L).EQ.O)GO TO 1960 
DCALL(L)=DSIG(K,L) 
SCALL(L)=SSIG(K,L) 
GO TO 2010 

1960 DCALL{L)=DELTA 
GO TO{l970,1980,1990,2000),L 

1970 SCALL(L)=PSI(Il,J) 
GO TO 2010 

1980 SCALL(L)=PSI(I,J-1) 
GO TO 2010 

1990 SCALL(L)=PSI(I3,J) 
GO TO 2010 

2000 SCALL(L)=PSI(I,J+l) 
2010 CONTINUE 

VCALL=OMNEW(I,J) 
CALL SIGMA(DCALL,SCALL,VCALL,SRTRN) 
PSI(I,J)=SRTRN 

2020 CONTINUE 
TIME2=SECOND(LATER) 
ELAPSE=TIME2-TIME1 
IF(ITS~NE.NTS)GO TO 2027 
PRINT 2025,NRELAX,ELAPSE 

2025 FORMAT(l8H TIME REQUIRED FOR,I4,13H RELAXATIONS=,El0.3) 
2027 DO 2030 J=l,NY 

DO 2035 I=,NX 
OMEGA(I,J)=OMNEW(I,J) 

2035 CONTINUE 
20:30 CONTINUE 

IMPRTR=O 
RINT=(ITS+.25)/INTDIS 
IINT=RINT 
DIFRI=RINT-IINT 
HALFOI=.5/INTDIS 
IF{DIFRI.LT.HALFOI)IMPRTR=l 
IF(IMPRTR.NE.l)GO TO 3000 
PRINT 30 
PRINT 40, ITS -. 
CALL DISCRA(NX,NY,2,1,1,.001) 
PRINT 30 
PRINT 35,ITS 
DO 2040 J=l,NY 
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DO 2045 I=l,NX 
OMNEW(I,J)=PSI(I,J) 

2045 CONTINUE 
2040 CONTINUE 

CALL DISCRA(NX,NY,2,1,1,.001) 
PRINT 65 
PRINT 60,(0MWALL(K),K=l,NSIG) 
PRINT 70 
PRINT 60,(0MEGA(ISIG(IPOFR(K)),JSIG(IPOFR(K)),K=l,NSIG) 
PRINT 75 
PRINT 60, ( OMEGA (I, I-1), I=2, 50) 
PRINT 80 
PRINT ,60,0MEGA(I,51-I),I=2,50) 

3000 CONTINUE 
STOP 
END 
SUBROUTINE POINT(R,B,XP,YP,NV,XV,YV,D,IS,S) 
DIMENSION XV( 200) ,yv( 200) ,X( 200), Y( 200), D( 4), IS ( 4) ,S ( 4) 
DO 40 L=l,4 
D(L)=B 
IS (L) =1 
S (L) =O 
DO 40 I=l,NV 
J=MOD( I ,NV) +1 
XI=XP-XV(I) 
XJ=XP-XV(J) 
YI =YP-~'I'/( I) 
YJ=YP-YV(J) 
DO 10 K=l,L 
AI=XI 
XI=YI 
AJ=XJ 
XJ=YJ 
YI=-AI 

10 YJ=-AJ 
IF(ABS (XI). LT. R. OR.ABS (XJ). LT. R)GO TO 20 
IF(XI*XJ.GT.O)GO TO 40 
YINT=YI-(YJ-YI)*XI/(XJ-XI) 
IF(YINT.LE. 0 •• OR. YINT.GE.D(L))GO TO 40 
D(L)=YINT 
S(L)=SORT(XI*XI+(YI-YINT)*(YI-YINT)) 
GO TO 30 

20 IF(YI.LE.O .• OR.YI.GE.D(L).OR.ABS(XI) .GE.R)GO TO 40 
D(L) =YI 
S(L)=O 

30 IS (L) =I 
40 CONTINUE 
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RETURN 
END 
SUBROUTINE APROCH(DELTA,XP,YP,N,X,Y,IS,DSQ,S) 
DIMENSION X( 200) , Y ( 200) 
DSMIN=DELTA+DELTA 
DSQMIN=DSMIN*DSMIN 
DO 100 I=l,N 
J=I+l 
IF(J.GT.N)J=l 
DXIJ=X(J)-X(I) 
DYIJ=Y(J)-Y(I) 
DXIP=XP-X(I) 
DYIP=YP-Y(I) 
DOT=DXIJ*DXIP+DYIJ*DYIP 
IF(DOT.LT.0.)GO TO 50 
SISQ=DXIJ*DXIJ+DYIJ*DYIJ 
IF(DOT.GT.SLSQ)GO TO 100 
CROSS=DXIJ*DYIP-DXIP*DYIJ 
DSQ=CROSS*CROSS/SLSQ 
IF(DSQ.GE.DSOMIN)GO TO 100 
DSQMIN=DSQ 
SSQ=DOT*DOT/SLSQ 
IS=I 
GO TO 100 

50 DSQ=DXIP*DXIP+DYIP*DYIP 
IF(DSQ.GE.DSQMIN)GO TO 100 
DSQMIN=DSQ 
SSQ=O.O 
Is=r · · 

100 CONTINUE 
DSQ=DSQMIN 
S=SQRT(SSQ) 
RETURN 
END 
SUBROUTINE CLOSE(N,XV,YV,XE,YE,I) 
DIMENSION XV(200),YV(200),ANGEL(200) 
DO 120 L=l,N 
X=XV(L )-XE 
Y=YV(L)-YE 
A=ABS (X) +ABS (Y) 
IF(A.LE.l.E-30)GO TO 140 
ANGLE(L) =l. -X/A 
IF(Y.LT.0.)ANGLE(L)=4.-ANGLE(L) 

120 CONTINUE 
SUM=O. 
DO 130 L=l,N 
LNEXT=L+l 
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. . . 

IF(L.EQ.N)LNEXT=l 
CHANGE=ANGLE(LNEXT)-ANGLE(L) 
SINGE=l. 
IF(CHANGE.LE.0.)SINGE=-1. 
SUBTAN=CHANGE*SINGE 
IF(SUBTAN.GT.2)CHANGE=-(4.-SUBTAN)*SINGE 
SUM=SUM+CHANGE 

130 CONTINUE 
I=0 
IF(ABS(SUM).GT.2.)I=l 
RETURN 

140 I=0 
RETURN 
END 
SUBROUTINE NEAR(NV,XV,YV,XP,YP,A,NYE) 
DIMENSION XV(200),YV(200) 
NYE=0 
DO 100 I=l ,NV 
XIP=XP-XV(I) 
YIP=YP-YV(I) 
DIP=ABS(XIP)+ABS(YIP) 
IF(DIP.GT.A)GO TO 10 
NYE=I 
RETURN 

10 J=I+l 
IF(J.GT.NV)J=l 
XIJ=XV(J)-XV(I) 
YIJ=YV(J)-YV( I) 
RIPOIJ=XIP*XIJ+YIP*YIJ 
IF(RIP0IJ)l00,100,20 

20 XJP=YP-YV(J) . 
RJI0JP=-XIJ*XJP-YIJ*YJP 
IF(RJI0JP)l00,100,30 

30 DLJ=ABS(XIJ)+ABS(YIJ) 
V=ABS(XIP*YIJ-XIJ*YIP)/DIJ 
IF(V.GT.A)GO TO 100 
NYE=I 
RETURN 

100 CONTINUE 
RETURN 
END 
SUBROUTINE DISCRA(M,N,KBILD,KTAB,KREICH,SMALL) 
DIMENSION IDSPLY(Sl) 
C0MMON/COMl/A(Sl,49),ICLASS(Sl,49) 
DATA KDl/' '/,KD2/'8'/,KD3/'+'/ 

5 F0RM..Z\ T ( 7H COLUMN, I 4 ,. 2H : ) 
7 FORMAT( 4H ROW, I4, 2H : ) 
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10 FORMAT( lH) 
20 FORMAT(lH ,7El0.3) 
25 FORMAT(50H PICTURE NOT SHOWN BECAUSE FUNCTION REMAINS 

&WITHIN,El0.2 
+,25H OF ITS' MINIMUM VALUE OF,El0.2) 

30 FORMAT(lH ,80Al) 
35 FORMAT( lHl.) 

IF(KTAB.EQ.O)GO TO 70 
I=26 
PRINT 10 
PRINT 5,1 
PRINT 20,(A(I,J),J=l,N) 

40 CONTINUE 
J=25 
PRINT 10 
PRINT 7 ,J 
PRINT 20,(A(I,J),I=l,M) 

50 CONTINUE 
PRINT 10 

70 IF(KBILD.EQ.O.AND.KREICH.EQ.O)GO TO 140 
PRINT 35 
AMAX=-100000. 
AMIN=lOOOOO. 
DO 80 J=1,N 
DO 80 I=l ,M 
IF(ICLASS(I,J).EQ~l)GO TO 80 
AIJ=A( I ,J), 
IF(AIJ.LE.AMAX)GO TO 75 
AMAX=AIJ 
IMAX=I 
JMAX=J 

75 IF(AIJ.GE.AMIN)GO TO 80 
AMIN=AIJ 
IMIN=I 
JMIN=J 

80 CONTINUE 
IF(KREICH.EQ.O)GO TO 90 
PRINT 83,AMIN,IMIN,JMIN,AMAX,IMAX,JMAX 

83 FORMAT(5H MIN=,El0.3,2HAT,2I5,4HMAX=,E10.3,2HAT,2I5) 
90 IF(KBILD.EQ.O)GO T0.140 

RANGE=AMAX-AMIN 
IF(RANGE.GT.SMALL)GO TO 95 
PRINT 25,SMALL,AMIN 
RETURN 

95 DO 130 J=l,N 
DO 120 I=l ,M 
STRIPE=KBILD+KBILD 
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L=8TRIPE* (A(I ,.J)-AMIN)./RANGE+l 
IF(L.EQ.2.0R.L.EQ.6.0R.L.EQ.8.0R.L.EQ.lO)GO TO 100 
IDSPLY(.I) =KD2 . . 

100 IF(J.EQ.l.OR.J.EQ.N.OR.I.EQ.l.OR.I.EQ.M)GO TO 110 
IDSPLAY(I)=KDl 
GO TO 120 

110 IDSPLY(I)=KD3 
120 CONTINUE 

PRINT 30,(IDSPLY(I),I=l,M) 
130 CONTINUE 
140 RETURN 

END 
SUBROUTINE SIGMA(D,S,VOR,PSI) 
DIMENSION D(4),S(4) 
DlD3=D(l)*D(3) 
D2D4=D(2)*D(4) 
PSI=(DlD3*(D(2)*S(4)*S(2)+D(4))+D2D4*(D(3)*S(l)+D(l)*S 

C( 3 )/(D( 1) +D( 3) +VOR*DlD3*D2D4/2. )/(DlD3+D2D4) 
RETURN 
END 
SUBROUTINE RETRO(X,Y) 
DIMENSION A(4) 
DA TA A ( 1 ) , A ( 2 ) , A ( 3 ) , A ( 4 ) /2 • 6 9 3 24 , - • 01 8 0 8 7 , • 00018 09 , 

&-.000001855/ 
DO 10 ITS =1 , 500 
CALL SPEED(4,A,3.16227701,X,Y,U,V) 
X=X-U*.000002 
Y=Y-V*. 000002 

10 CONTINUE 
RETURN 
END 
SUBROUTINE SPEED(N,A,ALPHA,X,Y,U,V) 
DIMENSION A(4) 
U=O.O 
V=O.O 
DO 100 I=l,N 
U=U-A(I)*ALPHA*COSH(I*ALPHA*(l.-Y))*SIN(I*ALPHA*X) 
V=V-A(I)*ALPHA*SINH(I*ALPHA*(l.-Y))*COS(I*ALPHA*X) 

100 CONTINUE 
RETURN 
END 
SUBROUTINE PRANK(N,S,K,L) 
DIMENSION K(2000),S(2000),L(2000) 
DO 100 I=l,N 
K(I)=l 
SMIN=S ( 1)
DO 50 J=2 ,N 
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IF(S(J).GE.SMIN)GO TO 50 
K(I)=J 
SMIN=S(J) 

50 CONTINUE 
INDIR=K(I) 
L(INDIR) =I 
S(INDIR)=lOOOOOOOOO. 

100 CONTINUE 
RETURN. 
END 
SUBROUTINE VARC(N,X,Y,S) 
DIMENSION X( 200), Y( 200) ,S ( 200) 
SUM=O. 
DO 100 I=l ,n 
J=MOD( I ,N) +1 
DXLJ=X(J)-X(I) 
DYIJ=Y(J)-Y(I) . 
SIDEL=SORT(DXIJ*DXIJ+DYIJ*DYIJ) 
SUM=SUM+SIDEL 
S(J) =SUM 

100 CONTINUE 
RETUTN 
END . 
SUBROUTINE PERINT(N,P,X,Y,YIN,:!'OUT) 
DIMENSION X( 2000) ,Y( 2000) 
IF(XIN.GE.X(l)}GO TO 10 
xr=X(N)-P 
YI=Y(N) 
XJ=X( 1) 
YJ=Y( 1)
GO TO 55 

10 IF(XIN.LT.X(N))GO TO 20 
XI=X(N) 
YI=Y(N) 
XJ=P+X( 1) 
YJ=Y( 1) 
GO TO 55 

20 DO 45 JJ=2,N 
. XJ=X(JJ) 

IF(XIN.GE.XJ)GO TO 45 
I=JJ-1 
XI=X( I) 
YI=Y( I) 
YJ=Y(JJ) 
GO TO 55 

45 CONTINUE 
55 YOUT=YI+(YJ-YI)*(XIN-XI)/(XJ-XI) 
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RETURN 
END 
SUBROUTINE ASLAP(SUR,D,CENTER,ATLED) 
DIMENSION SUR(4),D(4) 
D1PD3=D( 1) +D( 3) 
D2PD4=D( 2) +D( 4) 
R1=2./(D(l)*DlPD3) 
R2=2./(D(2)*D2PD4) 
R3=2./(D(3)*D1PD3) 
R4=2./(D(4)*D2PD4) 

90 

SUMR=Rl+R2+R3+R4 
ATLED=Rl*SUR(l)+R2*SUR(2)+R3*SUR(3)+R4*SUR(4)-SUMR*CENTER 
RETURN 
END 




