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Linear response approximations are central to our understanding and simulations of nonequilibrium
statistical mechanics. Despite the success of these approaches in predicting nonequilibrium dynam-
ics, open questions remain. Laird and Thompson [J. Chem. Phys. 126, 211104 (2007)] previously
formalized, in the context of solvation dynamics, the connection between the static linear-response
approximation and the assumption of Gaussian statistics. The Gaussian statistics perspective is useful
in understanding why linear response approximations are still accurate for perturbations much larger
than thermal energies. In this paper, we use this approach to address three outstanding issues in the
context of the “dipole-flip” model, which is known to exhibit nonlinear response. First, we demonstrate
how non-Gaussian statistics can be predicted from purely equilibrium molecular dynamics (MD) sim-
ulations (i.e., without resort to a full nonequilibrium MD as is the current practice). Second, we show
that the Gaussian statistics approximation may also be used to identify the physical origins of nonlin-
ear response residing in a small number of coordinates. Third, we explore an approach for correcting
the Gaussian statistics approximation for nonlinear response effects using the same equilibrium sim-
ulation. The results are discussed in the context of several other examples of nonlinear responses
throughout the literature. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981009]

I. INTRODUCTION

Understanding the chemical dynamics of liquids is crit-
ical to the study of chemical reactions, spectroscopy, energy
transfer, and catalysis. Linear response theories,1–5 in which
perturbations are described by fluctuations in the equilibrium
state, are the dominant method for describing nonequilib-
rium dynamics. In many linear-response approaches,1–4 the
perturbation is assumed to be weak—on the order of ther-
mal energies (kBT )—so that higher-order correlations in the
equilibrium fluctuations are neglected. Such linear response
approximations have been remarkably successful in predicting
nonequilibrium dynamical properties for not only weak per-
turbations, but also for perturbations much larger than those
on the order of the thermal energy. It has been appreciated
for some time,6,7 and even shown directly,5,8 that the latter
is a consequence of systems exhibiting Gaussian statistics
—which predicts not just local but global, linear response.
Thus, Gaussian statistics approximations underlie the linear
response approaches that assume small perturbations and rep-
resent a more broadly applicable framework for thinking about
linear response.

A key application of linear-response approximations has
been in describing time-dependent fluorescence (TDF) exper-
iments that are used to study solvation dynamics. In these
experiments, a dye molecule with a charge-transfer transi-
tion is photoexcited, and the subsequent return to the ground
state via fluorescence is followed as a function of time after
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excitation using femtosecond spectroscopy. Specifically, the
fluorescence energy, ∆E(t), or Stokes shift at time t after exci-
tation reports on the rearrangements of the solvent induced
by the change in the dye-molecule charge distribution upon
excitation. The result is often presented as the normalized
time-dependent Stokes shift (TDSS)

S(t) =
〈∆E(t)〉ne − 〈∆E(∞)〉ne

〈∆E(0)〉ne − 〈∆E(∞)〉ne
, (1)

where the 〈· · · 〉ne indicates a nonequilibrium average and
〈∆E(∞)〉ne is the relaxed fluorescence energy. This experi-
ment can be modeled with nonequilibrium molecular dynam-
ics (MDs) simulations in which the equilibrium ground-
state dye molecule is excited, i.e., the charge distribution is
changed at t = 0, and the resulting time-dependent fluores-
cence energy, ∆E(t)=∆Ee(t)−∆Eg(t), is monitored. Here, the
subscripts indicate the excited (e) and ground (g) states and
∆E(t) thus represents the difference in the dye-solvent inter-
actions between the two electronic states (i.e., solute charge
distributions).

Linear response approximations relate the nonequilib-
rium response to the fluctuations observed at equilibrium.
There are two approaches to obtain linear response approx-
imations which give S(t) in terms of only equilibrium simu-
lations, i.e., in terms of a correlation function of the equilib-
rium fluctuations of the energy gap ∆E. In the first approach,
the dynamic linear-response approximation9 gives the TDSS
in terms of a ground-state correlation function, S(t)≈Cg(t)
= 〈δ∆E(t)δ∆E(0)〉g/〈δ∆E2〉g, where the angled brackets
denote an equilibrium average in the ground (g) state and
δ∆E(t)=∆E(t) − 〈∆E〉g is the fluctuation in the energy gap
at time t from its equilibrium value. This approximation has
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been used to successfully describe the solvation dynamics of
many systems and, indeed, most simulations of TDF measure-
ments reported in the literature have been carried out using
this method. The second approach, the static linear-response
approximation, gives the TDSS in terms of the excited-
state fluctuations, S(t) ≈ Ce(t)= 〈δ∆E(t)δ∆E(0)〉e/〈δ∆E2〉e.
This is obtained (vide infra) by assuming that fluctuations
of the energy gap at equilibrium are small. Much like the
dynamic linear-response approximation, the static linear-
response approximation can accurately describe solvation
dynamics in many systems. Interestingly, Maroncelli and
Fleming found that it was generally superior to the dynamic
linear-response approximation in tests against nonequilibrium
simulations,10 a result that was subsequently explained more
directly by Laird and Thompson.5,8 However, in a number
of notable systems, neither linear-response approximation is
accurate.11–15 The reasons for these breakdowns are not yet
fully understood in terms of the linear-response approxima-
tion, making it difficult to know if an approximation is justified
absent a full nonequilibrium treatment. It is these issues that
are the subject of this paper.

Laird and Thompson have previously shown that the
static linear-response approximation, i.e., S(t) ≈ Ce(t), actu-
ally represents the assumption that the energy gap, ∆E, obeys
Gaussian statistics.5,8 Where the static linear response approx-
imation ignores higher-order correlation functions (truncating
the perturbation after the linear term), the Gaussian statis-
tics assumption factorizes them into lower-order correlation
functions. The Gaussian statistics assumption therefore does
not rely upon the (usually unjustified) approximation that the
energy gap fluctuations are small1–4,14 and thus it represents a
global approximation that is still applicable for systems driven
far from equilibrium. We note that the connection between
linear response and Gaussian statistics was widely recognized
before this explicit relationship was derived (see, e.g., Refs. 6
and 7). For example, Marcus theory invokes linear response
to illustrate the mechanism by which electron transfer reac-
tions occur, that is, that solvent fluctuations on a harmonic
free energy surface can adequately describe nonequilibrium
dynamics.16 Throughout the rest of this paper, we will refer
to the approximation S(t) ≈ Ce(t) as the Gaussian statistics,
rather than static linear-response, approximation except when
noting the differences between the two approaches.

In this paper, we address some of the outstanding fun-
damental questions about nonequilibrium chemical dynamics
and the Gaussian statistics approximation. First, can non-
Gaussian statistics be predicted by relying only on equilibrium
simulations? Second, what is the origin of the non-Gaussian
statistics? Third, can the Gaussian statistics approximation be
corrected to describe nonlinear response?

We are motivated, in part, by the work of Ladanyi and co-
workers, who studied solvation dynamics of model diatomic
dye molecules in water and methanol to investigate linear
response. They studied two models for the electronic tran-
sition. In the first model, excitations induced a dipole moment
in the excited state from a nonpolar, ground-state diatomic
solute.11,12 In the second model, excitation induced a “dipole
flip” in which the ground-state dipolar molecule charges switch
in the excited state, as depicted in Fig. 1.12,13 In both models,

FIG. 1. Schematic illustration of the excitation of the dipole-flip solute model
in which promotion from the ground to the excited state exchanges the charges
on the two atoms; the solvent dipole moments are unchanged in the Franck-
Condon transition.

linear-response approximations failed to predict the nonequi-
librium dynamics: the nonequilibrium simulations showed
faster relaxation times than were computed from equilibrium
correlation functions. These linear-response breakdowns were
attributed to changes in hydrogen-bonding between the solvent
and solute after the excitation. The linear-response approxima-
tion accurately described the inertial relaxation at short times
but showed significant deviations at longer times associated
with molecular reorientations. The latter, dipole-flip, model is
particularly interesting in that the ground- and excited-state
equilibrium dynamics are the same so that the dynamic linear-
response and Gaussian statistics approximations are equiva-
lent. Not only does this model provide a convenient test for
the approximations, but because of the breakdown despite the
symmetry, it also hints at the way in which linear response
fails, as will be discussed throughout this paper.

The remainder of this paper is organized as follows. The
linear-response and Gaussian statistics approximations are
briefly outlined in Sec. II. The details of the solvation dynam-
ics of the dipole-flip model in various solvents are given in
Sec. III. The results of the simulations are then presented
in Secs. IV–VI in the context of testing diagnostics for non-
Gaussian statistics, uncovering the origins of the non-Gaussian
behavior, and evaluating corrections to non-Gaussian dynam-
ics. The present results are discussed in the context of other
examples of nonlinear response in the literature in Sec. VII.
Finally, some concluding remarks are offered in Sec. VIII.

II. THEORY

In this section, we briefly outline the static linear response
and Gaussian statistics approximations for the case of a change
in solute state, e.g., solvation dynamics. Detailed derivations,
including that for dynamic linear response, have been provided
elsewhere.5,8 We consider the change in some property A as
a function of time after excitation from the ground, g, state to
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the excited, e, state. This can be expressed as

〈A(t)〉ne =
∫ dp ∫ dq A(t)e−βHg

∫ dp ∫ dq e−βHg

=
∫ dp ∫ dq [e−L̂etA(0)]e−βHg

∫ dp ∫ dq e−βHg
, (2)

where Hg (He) is the ground-state (excited-state) Hamiltonian
and L̂e is the excited-state Liouville operator, L̂e = {He, ·},
with {F, G} =

∑
j[(∂F/∂pj)(∂G/∂qj)−(∂F/∂qj)(∂G/∂pj)] the

Poisson bracket. Note that the time-dependence of the prop-
erty A is determined by excited-state dynamics initiated from
equilibrium ground-state configurations. The exact (classical)
result for 〈A(t)〉ne can thus be obtained from non-equilibrium
molecular dynamics in which ground-state equilibrium sim-
ulations are used to generate configurations from which
excited-state dynamics are initiated. Then, 〈A(t)〉ne is calcu-
lated as an average of A over the non-equilibrium, excited-state
trajectories as a function of time, t, after excitation.

Linear-response approximations, however, yield expres-
sions for 〈A(t)〉ne in terms of only equilibrium dynamics,
resulting in significantly less computational effort. In these
approximations, the ground-state Hamiltonian is expressed in
terms of the excited-state Hamiltonian and the fluorescence
energy, Hg = He − ∆E. Then, Eq. (2) can be rearranged as

〈A〉ne(t) = ∫
dp ∫ dq A(t)eβ∆Ee−βHe

∫ dp ∫ dq eβ∆Ee−βHe
, (3)

where A(t) is propagated under the excited-state Hamilto-
nian (i.e., A(t) = e−L̂etA(0)). By dividing the numerator and
the denominator by the excited-state partition function the
dynamic nonequilibrium average of A is

〈A〉ne(t) =
〈A(t)eβ∆E〉e

〈eβ∆E〉e
, (4)

where the angled brackets indicate an equilibrium average and
the subscript e signifies that the average is in the excited state.
Defining the average energy gap ∆E ≡ 〈∆E〉e and property
A ≡ 〈A〉e, it is straightforward to show that

〈A〉ne(t) − 〈A〉e =
〈A(t)eβδ∆E〉e

〈eβδ∆E〉e
−

A〈eβδ∆E〉e

〈eβδ∆E〉e

=
〈δA(t)eβδ∆E〉e

〈eβδ∆E〉e
, (5)

where δ∆E(t) = ∆E(t) − ∆E and δA(t) = A(t) − A.
So far no approximation has been invoked, but it is at

this point that the derivations of the static linear-response and
Gaussian statistics approximations diverge.

A. Static linear response

The static linear-response approximation1–4 is obtained
by expanding the exponential in Eq. (5) in a Taylor series and
truncating at the linear term

eβδ∆E ≈ 1 + βδ∆E. (6)

This approximation can be introduced in both the numerator
and denominator and is valid only when the equilibrium fluc-
tuations in ∆E are small relative to kBT (βδ∆E � 1). This

gives the dynamic Stokes shift as

〈A〉ne(t) − 〈A〉e ≈
〈δA(t)〉e + β〈δA(t)δ∆E(0)〉e

1 + β〈δ∆E〉e
= β〈δA(t)δ∆E(0)〉e, (7)

where the last equality results because 〈δA(t)〉e = 0 and
〈δ∆E〉e = 0.

B. Gaussian statistics

The mathematical expression in Eq. (7) can, however, be
obtained without invoking any approximations regarding the
size of fluctuations. If, instead of truncating at the linear term
the full Taylor series is included for the exponential, one has

〈δA(t)eβδ∆E(0)〉e =

∞∑
n=0

1
n!
βn〈δA(t)δ∆E(0)n〉e

=

∞∑
n=0

1
(2n)!

β2n〈δA(t)δ∆E(0)2n〉e

+
∞∑

n=0

1
(2n + 1)!

β2n+1
〈
δA(t)δ∆E(0)2n+1

〉
e
.

(8)

Then, if δA(t) and δ∆E(t) are Gaussian random variables, all
of the higher-order correlation functions can be factorized into
only two-point correlation functions, e.g., 〈δA(ti)δ∆E(tj)〉e,
according to Wick’s theorem.17,18 Thus, the correlation
function 〈δA(t)δ∆E(0)2n〉e can be factorized into terms of
the form 〈δA(t)δ∆E(0)〉e〈δ∆E(0)〉e and 〈δ∆E(0)2〉e〈δA(t)〉e.
However, because δA and δ∆E both have zero mean,
then 〈δA(t)δ∆E(0)2n〉e = 0 for all n when the two variables
obey Gaussian statistics. Applying similar factorizations to
〈δA(t)δ∆E(0)2n+1〉e yields5,8

〈
δA(t)eβδ∆E(0)

〉G

e
=

∞∑
n=0

1
n!2n β

2n+1〈δA(t)δ∆E(0)〉e〈δ∆E2〉
n
e

= β〈δA(t)δ∆E(0)〉eeβ
2〈δ∆E2〉e/2. (9)

If δ∆E is a Gaussian variable then the denominator in Eq. (4)
(which is the characteristic function evaluated at −iβ) can be
similarly evaluated to give〈

eβδ∆E
〉

e
' eβ

2〈δ∆E2〉e/2, (10)

which gives the result for the nonequilibrium change in the
property A within the Gaussian statistics approximation as

〈A〉ne(t) − 〈A〉e ' β〈δA(t)δ∆E(0)〉e. (11)

This is the same expression as the static linear-response
approximation to the Stokes shift in Eq. (7). It is important,
however, to note that the physical assumptions used here are
quite different from those used in static linear response. In par-
ticular, there is no requirement that βδ∆E � 1. As has been
shown before8,19 and will be demonstrated below, this assump-
tion of the static linear-response approach is not satisfied and
thus it is more accurate to consider the expression in Eqs. (7)
and (11) as the Gaussian statistics approximation.
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III. SIMULATION DETAILS

Equilibrium and nonequilibrium simulations were carried
out for a dipolar solute in bulk solutions of methanol, water,
and acetonitrile. Each system consisted of 256 total molecules:
1 solute molecule and 255 water, methanol, or acetonitrile
molecules. The solute was modeled as a diatomic molecule
with each atom having equal and opposite charges (Fig. 1).
The molecules interact through site-site Lennard-Jones and
Coulombic potentials; the force-field parameters are given in
Table I. The solvent molecules are flexible with the water,
methanol, and acetonitrile potentials similar to the similar to
the extended simple point charge (SPC/E),20 all-atom opti-
mized potentials for liquid simulations (OPLS-AA),21 and
Nikitin and Lyubartsev22 models, respectively; the intramolec-
ular potential uses harmonic bond and angle bending potentials
using the parameters given in Table II. Long-range interactions
were computed using an Ewald sum with a tolerance of 10�4

and a potential cutoff radius of 12.0 Å. The solute bond length
was held fixed using the SHAKE algorithm.23

Two types of MD simulations were carried out: (1) equi-
librium trajectories with the solute in the excited state and
(2) nonequilibrium trajectories where the solute is promoted
to the excited state from initial configurations obtained from
an equilibrium ground state simulation and the dynamics are
subsequently followed. Note that the dipole-flip solute has the
same ground- and excited-state dynamics due to the symmetry
of the charges. For each system, five equilibrium trajectories
were sampled. Each simulation was propagated for a time
between 400 and 600 ps in the NVE ensemble in which veloc-
ity rescaling was used to maintain the temperature. Following
the NVE period, the system was propagated using the NVT
ensemble at a temperature of 298.15 K with a Verlet integrator
and a time step of 1 fs. The Nosé-Hoover thermostat was used
to maintain temperature with a time constant of 100 fs. An
equilibration time of 40–60 ps was followed by a production

TABLE I. Lennard-Jones and Coulombic site parameters for each atom used
in the simulations.

Atom ε (kcal/mol) σ (Å) q m (g/mol)

H2O
O 0.155 35 3.166 �0.8476 16.00
H 0 0 0.4238 1.0079
CH3OH
O 0.17 3.12 �0.683 16.00
H 0 0 0.418 1.0079
C 0.066 3.5 0.145 12.01
H (CH3) 0.03 2.5 0.040 1.0079
CH3CN
N 0.17 3.20 �0.56 14.019
C 0.066 3.5 0.46 12.01
C (CH3) 0.066 3.5 �0.08 12.01
H (CH3) 0.015 2.5 0.06 1.0079
Solute (ground)
A 0.175 3.083 0.5 30.00
B 0.175 3.083 �0.5 30.00
Solute (excited)
A 0.175 3.083 �0.5 30.00
B 0.175 3.083 0.5 30.00

TABLE II. Intramolecular potential parametersa for the H2O, CH3OH, and
CH3CN solvents.

Bond r0 (Å) kr Angle θ0 (◦) kθ

H2O
O–H 1.00 553.0 H–O–H 109.47 55.0
CH3OH
C–O 1.41 320.0 O–C–H 109.5 35.0
O–H 0.96 553.0 C–O–H 108.5 55.0
C–H 1.09 331.0 H–C–H 109.5 35.0
CH3CN
C–H 1.09 340.0 H–C–H 109.5 35.0
C–C 1.458 385.0 H–C–C 108.0 35.0
C–N 1.157 650.0 C–C–N 180.0 150.0

aThe stretching potential is of the form V (r) = kr (r � r0)2 with kr in units of
(kcal/mol)/Å and the bending potential V (r)= kθ (θ − θ0)2 with kθ in units of
(kcal/mol)/radian2.

run of 5 ns for the solute in the ground state. The potential
energy was then computed for the solute in the excited state in
the configurations of the ground-state trajectory. Data for the
simulations were recorded every 100 fs.

The nonequilibrium MD simulations were performed
from the configurations produced by the ground state equi-
librium trajectory. The solute at a particular configuration was
promoted to the excited state and the dynamics in the excited
state were followed for 50 ps. The ground-state dynamics
were then computed along this excited-state trajectory to give
the fluorescence energy, ∆E(t). This process was repeated for
a total of 1000 nonequilibrium trajectories, taken from the
ground-state equilibrium configurations every 5 ps. Data for
the nonequilibrium simulations were recorded every 10 fs.
Error bars were computed using block averaging. For the
equilibrium simulations, five blocks were used where each
block was taken to be an individual equilibrium simulation.
Ten blocks were used for the nonequilibrium MD simulations,
where each block was composed of 100 individual trajectories.

IV. CAN NON-GAUSSIAN STATISTICS BE PREDICTED
FROM EQUILIBRIUM SIMULATIONS?

We start by addressing an important practical issue
involved in applying the Gaussian statistics approximation.
Namely, how can one be confident that the results are accurate,
i.e., the system exhibits Gaussian statistics, without carrying
out a full nonequilibrium simulation?

We first show, as has been done before,6,12,13,24 that the
dipole-flip model exhibits a breakdown of the Gaussian statis-
tics approximation for water and methanol solvents. It is first
worthwhile, however, to note some general properties of the
normalized time-dependent Stokes shift, S(t) for these two sys-
tems. The TDSS results obtained from nonequilibrium MD
simulations are shown in Fig. 2. For the solute immersed in
either solvent, S(t) is well fit by a tri-exponential function.
In water, the shortest time scale is 20 fs and represents the
inertial motion of the nearby solvent molecules. The inter-
mediate time scale is ∼0.35 ps and represents the oscillating
librational motion of water due to its hydrogen bonds. The
longest time scale, which is associated with molecular rear-
rangements, is ∼1.7 ps. Methanol has an inertial time scale
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FIG. 2. Normalized time-dependent Stokes shift, S(t), obtained from
nonequilibrium MD simulations for water (blue) and methanol (red).

of ∼65 fs, a librational time scale of ∼0.64 ps, and a longest
time scale of ∼5 ps. These relaxation times resulting from the
simulations conducted in this study are consistent with those
found previously.13

The difference in relaxation at short times can be attributed
to key differences in the solvation dynamics between the two
solvents. First, the three moments of inertia for water are all
small in comparison to methanol which has one small and two
large moments of inertia.13,24 The larger moments of inertia
describe the slower response time of methanol in the inertial
regime. Second, and more relevant to the issue of the Gaus-
sian behavior, is the number of solvent-solute hydrogen bonds.
Water, because of its smaller size, donates more hydrogen
bonds to the negatively charged solute site and thus exhibits
a larger amplitude for the librational component of the sol-
vation dynamics compared to methanol. The differences in
the longer time scales, associated with molecular rearrange-
ments, are consistent with the faster OH reorientation for water
compared to methanol.25

For the dipole-flip model considered in this paper, the
Gaussian statistics approximation has been implemented for
the fluorescence energy, i.e., A=∆E, to approximate the
normalized TDSS response function in Eq. (1). This gives

S(t) ' C(t) =
〈δ∆E(t)δ∆E(0)〉

〈δ∆E2〉
, (12)

where the subscript “e” has been suppressed on the thermal
average due to the symmetry of the model. The full nonequi-
librium S(t) and the Gaussian statistics approximation, C(t),
for water and methanol are shown in Fig. 3. The data show

that Gaussian statistics is an imperfect approximation for the
nonequilibrium solvation dynamics of the dipole-flip model in
water and a very poor one in methanol. For each system, the
relaxation predicted by Gaussian statistics is slower and does
not agree (within error bars) with the nonequilibrium dynamics
until t ≈ 0.5 ps for water and t > 8 ps for methanol.

Clearly, the error of the Gaussian statistics approxima-
tion is greater for methanol than it is for water. However,
the larger question is how one could evaluate the approxima-
tion in either case without the direct comparison to the exact,
nonequilibrium result, as presented in Fig. 3. As we now dis-
cuss, the Gaussian statistics approximation outlined in Sec. II
provides an answer. Namely, Wick’s theorem states that if ∆E
is a Gaussian random variable then

Cm(t) ≡ βm−1 〈δ∆E(t) δ∆E(0)m−1〉 = 0 (13)

if m is odd, and, if m is even

Cm(t) =
(2n + 1)!

n! 2n β2n+1 〈δ∆E(t) δ∆E(0)〉 〈δ∆E2〉
n
≡ Cfac

m (t),

(14)

where n = m
/
2 � 1 (or m = 2n + 2). Thus, the quality of the

Gaussian statistics approximations depends on the accuracy
of these factorizations and can be directly evaluated by the
comparison of Cm(t) and Cfac

m (t) for the higher-order (m > 2)
correlation functions.

The first of these higher-order correlation functions
and their factorizations based on Wick’s theorem are
displayed in Fig. 4, where the non-normalized Gaus-
sian statistics approximation, C2(t)= β〈δ∆E(t)δ∆E(0)〉e, and
the first term that is neglected according to Eq. (13),
C3(t)= β2〈δ∆E(t)δ∆E(0)2〉e/2, are shown. For both water and
methanol solvents, the latter, higher-order correlation function
is nearly, but not fully, zero within error bars, which is expected
for Gaussian statistics. For water it is nonzero up to t ≈ 0.4 ps,
while for methanol the results suggest that C3(t) may be non-
zero for much longer times, but the (substantial) error bars
overlap zero for all times. The next highest, odd-order correla-
tion functions, C5(t)= β2〈δ∆E(t)δ∆E(0)4〉e/24 (not shown),
are essentially zero for all times for water but non-zero and pos-
itive for methanol with a rapid (<30 fs) initial drop followed
by an ∼1.5 ps decay.

The even-order time correlation functions are all non-zero
and it is the factorization in Eq. (14) that can be checked
for deviations from Gaussian statistics. The first example
is shown in Fig. 5 where C4(t) and its factorized form,
Cfac

4 (t), are compared for both water and methanol solvents.

FIG. 3. The normalized time-
dependent Stokes shift, S(t), obtained
from nonequilibrium MD (solid lines)
is compared to the Gaussian statistics
approximation, C(t), (dashed lines) for
(a) water (blue) and (b) methanol (red).
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FIG. 4. Shown are the first two terms in
the Taylor series, C2(t), (solid lines) and
C3(t) (dashed violet lines) for (a) water
(blue) and (b) methanol (red).

FIG. 5. Shown are the fourth-order cor-
relation functions and Gaussian statis-
tics factorizations, C4(t) (solid lines)
and Cfac

4 (t) (dashed violet lines), respec-
tively, for (a) water (blue) and (b)
methanol (red).

Similarly, the sixth-order correlation functions, C6(t), are
compared to the factorized forms, Cfac

6 (t), in Fig. 6. Note that
the magnitude of these correlation functions increases with the
order in direct contradiction of the approximation invoked in
static linear response. Interestingly, when water is the solvent,
the factorization of these even-order time correlation functions
is an excellent approximation, with no discernable difference
with the full time correlation functions. In contrast, the results
for the methanol case show significant disagreement between
the full and factorized forms. For both C4(t) and C6(t), the
corresponding factorized correlation function is larger than the
full version. The difference is larger for Cfac

6 (t) than Cfac
4 (t),

but in both cases the factorized form decays slightly faster
than the full correlation function such that they are in better
agreement at longer times. These results are consistent with
the comparison of the nonequilibrium response, S(t), to the
Gaussian statistics approximation, C(t), in Fig. 2, where the
latter is significantly larger than the former.

Taken together, these comparisons of the full, higher-order
time correlation functions to the factorized forms assumed
in the Gaussian statistics approximation indicate a strong
breakdown of the approximation for methanol and a quite
weak one for water. This is generally consistent with the

comparison of the Gaussian statistics result with the nonequi-
librium response in Fig. 2, where the methanol case shows
significant disagreement while for water the differences are
smaller and more quantitative.

It is interesting to compare these results to an analysis
of the equilibrium energy gap distribution, P(δ∆E). This is
done in Fig. 7, where the distributions for water and methanol
are shown. For both solvents, the results are interesting. In
water, the energy gap distribution is well described by a Gaus-
sian, with deviations only observed in the very wings of
the distribution. In methanol, however, the statistics of the
energy gap are non-Gaussian exhibiting a shoulder on the
low energy side of the distribution. These results make pre-
scribing a cause of non-Gaussian statistics difficult: in some
cases, like methanol, the breakdown is expressly found in the
energy gap distribution, but in others, like water, the break-
down is subtle, or even “hidden,” and not clearly evident
in the distribution.26 This was previously observed for the
dipole-flip model in water by Geissler and Chandler who
observed a similar Gaussian behavior but showed, by analysis
of the nonequilibrium energy gap distributions after excitation,
that it was nonstationary, i.e., the distribution changed with
time.6

FIG. 6. Shown are the sixth-order cor-
relation functions and Wick’s factor-
izations, C6(t) (solid lines) and Cfac

6 (t)
(dashed violet lines), respectively, for
(a) water (blue) and (b) methanol (red).
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FIG. 7. Energy gap probability distri-
butions for (a) water and (b) methanol
computed directly from a histogram of
the simulation data (blue circles and
dashed line) are compared with a Gaus-
sian having the same mean and stan-
dard deviation as the simulation data
(solid red line); insets show the data on
a semi-log plot.

V. WHAT IS THE PHYSICAL ORIGIN
OF THE NON-GAUSSIAN BEHAVIOR?

The previous results show how breakdowns of the Gaus-
sian statistics approximation can be predicted without resort-
ing to full nonequilibrium simulations. However, it is also
important to understand the origin of the breakdown. For the
dipole-flip model, it has been proposed that the breakdown
of the Gaussian statistics approximation is caused by changes
in the solute-solvent hydrogen-bonding (H-bonding) network
upon excitation.11,13 Here, we investigate this hypothesis in
two ways. First, we consider an aprotic solvent that cannot
hydrogen bond with the dipole-flip solute. Second, we examine
how the Gaussian statistics approximation allows a partition-
ing between different contributions to the solvation energy and
thus an isolation of the non-Gaussian motions responsible for
the breakdown.

Choosing a coordinate to partition, as will be shown in
Secs. V A and V B, for the dipole-flip model is fairly intu-
itive, and previous studies have made the identification simple.
For other systems, choosing an adequate partition may not be
as straightforward and may require further analysis of equi-
librium simulations. These coordinates must be sufficiently
small in number such that the central limit theorem does
not apply but their contributions must be sufficiently large
that their effect is important in the overall nonequilibrium
response.14,27,28

A. Dipole-flip solvation in an aprotic solvent

If H-bonding rearrangements are the origin of the failure
of the Gaussian statistics approximation, there should be no
such breakdown for solvation in an aprotic solvent. We have
tested this idea by comparing the nonequilibrium TDSS result,
S(t), for the dipole-flip model in acetonitrile to the Gaussian
statistics result, C(t), as shown in Fig. 8. The data show that
the Gaussian statistics approximation is in excellent agree-
ment with the full, nonequilibrium MD result. This supports
the implication of H-bonding dynamics in the non-Gaussian
behavior.

This can be examined further by comparison of the higher-
order correlation functions and their Wick’s factorizations.
These are shown for the dipole-flip solute in acetonitrile in
Fig. 9. The results clearly show that for this non-H-bonding
solvent, the Gaussian statistics approximation is an excellent
description of the nonequilibrium solvation dynamics, with
only a small deviation from zero of the lowest odd-order corre-
lation function, C3(t), at short times. The data also reinforce the

diagnostic utility of the comparison of the full and factorized
higher-order correlation functions for evaluating the Gaussian
statistics approximation from purely equilibrium simulations.
Finally, they illustrate why the static linear-response approxi-
mation is not the appropriate interpretation of Eq. (12). Even
in this case where C(t) ' S(t), each higher-order correlation
function is larger than all the lower order ones and is thus
not remotely negligible, while, in contrast, the factorization
assumed in the Gaussian statistics approximation is highly
accurate.

B. Partitioning Gaussian and non-Gaussian
solvent coordinates

These results implicate the H-bonds between the solute
and solvent molecules in the breakdown of the Gaussian
statistics approximation in water and methanol. To explic-
itly demonstrate this we take a different tack. Specifically,
we have partitioned the trajectories into a hydrogen-bonded
partition—which is presumably non-Gaussian—in which only
those solvent molecules that are H-bonded to the solute and
the solute itself are included and a non-H-bonded partition—
which is presumably Gaussian—in which only those solvent
molecules that are not H-bonded to the solute and the solute
itself are included. Solute-solvent H-bonds were identified
using geometric criteria for both methanol and water. Specif-
ically the criteria were based on the oxygen-site distance
rOα ≤ 3.5 Å, the hydrogen-site distance rHα ≤ 2.45 Å, and the

FIG. 8. Time-dependent fluorescence correlation functions using the full
nonequilibrium MD, S(t), (solid green line) and the Gaussian statistics
approximation, C(t), (dashed green line) for acetonitrile.
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FIG. 9. Higher-order correlation func-
tions (solid green lines) and corre-
sponding Wick’s factorizations (dashed
violet lines) are shown for the dipole-
flip model in acetonitrile, (a) C2(t) and
C3(t) are compared, and (b) from bot-
tom to top C4(t) and Cfac

4 (t) (scaled by

103), C6(t) and Cfac
6 (t) (scaled by 104

and shifted up by 0.5 for clarity), and
C8(t) and Cfac

8 (t) (scaled by 105 and
shifted up by 1.0 for clarity).

hydrogen-oxygen-site angle ∠HOα ≤ 30◦, where α = A or B
of the solute. Transiently broken H-bonds were also included
in the H-bonding partition.

One can easily show that the Gaussian statistics approx-
imation for the nonequilibrium response of a property A can
be decomposed into various contributions to A by an additive
partitioning. Specifically, we can write the fluorescence energy
as ∆E(t) = ∆EHB(t) + ∆ENHB(t), where ∆EHB is the contribu-
tion to the energy gap due to solvent molecules H-bonded to
the solute and ∆ENHB the contribution from all other, non-H-
bonded, molecules. The Gaussian statistics approximation is
distributive such that

C(t) 〈δ∆E2〉e = 〈δ∆E(t) δ∆E(0)〉e
= 〈δ∆EHB(t) δ∆E(0)〉e + 〈δ∆ENHB(t) δ∆E(0)〉e
≡ CHB(t) + CNHB(t), (15)

where the Gaussian statistics approximation gives

〈∆EHB(t)〉ne − 〈∆EHB(∞)〉ne ' CHB(t), (16)

and similarly 〈∆ENHB(t)〉ne − 〈∆ENHB(∞)〉ne ' CNHB(t); note
that CHB(t) and CNHB(t), unlike C(t), are not normalized.
The correlation functions CHB(t) and CNHB(t) can be further
divided into components using ∆E(0) = ∆EHB(0) + ∆ENHB(0)
in Eq. (15). However, as is clear from the above derivation,
this is not necessary for the present purposes because CHB(t)
(CNHB(t)) itself represents the contribution of the H-bonded
(non-H-bonded) molecules to the unnormalized TDSS. The
same diagnostics applied in Sec. IV can be independently
applied to CHB(t) and CNHB(t) by comparison of higher-order
correlation functions to the corresponding factorized forms.
In this way, the Gaussian statistics approximation can be inde-
pendently tested in different partitions of the relevant coordi-
nates in the same way as was done for the total fluorescence
energy.

Note that the energy gaps, ∆EHB and ∆ENHB, involve only
the Coulombic contributions to the energy difference of the
solute-solvent interactions between the excited and ground
states. The Lennard-Jones interactions are the same in the
ground and excited states and thus cancel in the energy gap.
Although there is a contribution to the energy gap from the
long-range electrostatics due to the solute interaction with
itself in different periodic images in the Ewald sum, we have
not included it here.

The even-order time correlation functions for the H-
bonded and non-H-bonded partitions are compared with their
factorized forms in Figs. 10 and 11. In Sec. IV we found that for
water, the factorized forms were in excellent agreement with
the full correlation functions (see Figs. 5(a) and 6(a)). Thus
it is not surprising that the factorization is accurate for both
the fourth-order and sixth-order partitioned correlation func-
tions shown in Figs. 10(a) and 11(a), respectively. On the other
hand, the same is not true for the odd-order correlation function
which is zero in the Gaussian statistics approximation but was
shown to be non-zero at short times for the dipole-flip model
in water (see Fig. 4(a)). The results for the corresponding
partitioned correlation functions are presented in Fig. 12 and
show that C3,NHB(t) ' 0 for all times and the deviations from
Gaussian statistics are isolated in the H-bonding contributions
represented in C3,HB(t). This indicates that the non-Gaussian
character of the dipole-flip model in water is present primarily
in an asymmetry of the energy gap distribution as shown in
Fig. 7(a) and is associated solely with the waters H-bonded to
the solute.

The results are different for the methanol solvent, which
can be seen from the comparison of the fourth- and sixth-order
correlation functions to their factorized forms in Figs. 10(b)
and 11(b) for the H-bonding and the non-H-bonding parti-
tions. As in the case of water, the non-H-bonding partitions
obey Gaussian statistics based on the close agreement between

FIG. 10. Fourth-order correlation func-
tions (blue and red lines) and Wick’s
factorizations (violet lines) are pre-
sented. Results are shown for the
contributions from H-bonded solvent
molecules, C4,HB(t) and Cfac

4,HB(t), (solid
lines) and non-H-bonded molecules,
C4,NHB(t) and Cfac

4,NHB(t), (dashed lines)
for (a) water and (b) methanol.
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FIG. 11. Same as Fig. 10 but for the
sixth-order correlation functions.

FIG. 12. The third-order correlation
functions (that are zero in the Gaus-
sian statistics approximation) are pre-
sented. Results are shown for the
contributions from H-bonded solvent
molecules, C3,HB(t), (solid lines) and
non-H-bonded molecules, C3,NHB(t),
(dashed lines) for (a) water (blue) and
(b) methanol (red).

the correlation functions and their factorizations. However,
in methanol, the H-bonding partition shows a significant
deviation from the Gaussian statistics approximation in both
the fourth- and sixth-order correlation functions. A similar
behavior is observed for the partitioned third-order correlation
functions shown in Fig. 12(b), for which the non-H-bonding
contribution is effectively zero at all times (and thus consis-
tent with Gaussian statistics) while the H-bonding correlation
function is non-zero (albeit with significant error bars). Thus,
it is clear that the non-Gaussian behavior is associated with
the H-bonding of solvent molecules to the dipole-flip solute.

This analysis represents a general approach to identifying
the origins of non-Gaussian statistics from only equilibrium
simulations. It is interesting to note that in the case of water,
the non-Gaussian behavior only arises from the odd-order cor-
relation functions that are related to the asymmetry of the
energy gap distribution. In contrast, for methanol, the non-
Gaussian behavior is observed at all orders (even and odd),
indicative of the stronger failure of the Gaussian statistics
approximation that is also reflected in the energy gap distri-
bution. This is presumably related to the smaller number of
methanol molecules that contribute to the dipole-flip solute sol-
vation through H-bonding, compared to the case of water, that
is, the central limit theorem does not apply for the H-bonding
solvent molecules in methanol but nearly does in water. It is
important to note that the partitioning used here was relatively
easy to find and motivated by the previous work on the dipole-
flip model.6,13 Indeed, we cannot be sure that the partitioning
has completely identified the origin of the non-Gaussian statis-
tics in that the H-bonding partition we have defined may still
contain degrees-of-freedom that are Gaussian. The approach
outlined here does not provide a prescription for how to
determine the non-Gaussian coordinates but rather gives a
straightforward method for evaluating hypotheses for such
coordinates.

VI. CAN NON-GAUSSIAN STATISTICS
BE CORRECTED?

A key aim of investigating the origins of failures of the
Gaussian statistics approximation is to ultimately develop
approaches for correcting for non-Gaussian effects and thereby
obviate the need for performing nonequilibrium MD simula-
tions. A possible approach for this is offered by the deviations
from Gaussian statistics manifested in the difference between
the higher-order time correlation functions and their factorized
forms.

As shown in Sec. II B, the Gaussian approximation is
obtained by replacing the higher-order correlation functions
with their factorized forms. Corrections to this approximation
are most straightforwardly examined by considering the even-
and odd-order correlation functions separately. The latter have
no contribution in the Gaussian approximation and thus the
corrections for odd-order terms can be included simply by
addition of any non-zero higher-order correlation functions.
Thus, the lowest-order correction to the nonequilibrium energy
gap would be

〈∆E〉ne(t) − 〈∆E〉e ' β〈δ∆E(t)δ∆E(0)〉

+
β2

2
〈δ∆E(t)δ∆E(0)2〉

≡ C3,corr(t), (17)

where the subscript “3,corr” indicates that this correlation
function represents a correction up to the third-order. This cor-
rected result has been applied to both the water and methanol
solvent cases and the results are shown (dashed violet lines)
in Fig. 13, plotted in normalized form. In the case of water,
the effect of the correction is to predict a significantly more
rapid decay in the energy gap compared to the Gaussian statis-
tics approximation alone followed by a nearly constant but
non-zero value. Despite the fact that the correction is in better
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FIG. 13. The normalized TDSS, S(t),
(solid line) is compared to the Gaussian
statistics approximation, C(t), (dashed
line) and is shown for (a) water (blue
lines) and (b) methanol (red lines).
They are compared to the corrections
to the Gaussian statistics approxima-
tion, C3,corr (t) (dashed violet lines) and
the averaged correction, C3–6,corr (t)
(dashed cyan line).

quantitative agreement with the full, nonequilibrium TDSS at
most times compared to the Gaussian statistics result, it more
poorly predicts the shape of S(t). In contrast, for the methanol
solvent, the C3,corr(t) corrected result is in significantly better
qualitative and quantitative agreement with the nonequilibrium
TDSS compared to the Gaussian statistics approximation. In
particular, it exhibits a larger amplitude for the initial, iner-
tial component as well as a faster decay at longer times. We
note that the higher-order correlation functions are obtained
with essentially no additional effort above that required for
the Gaussian statistics approximation. However, a key issue
with this correction is the large statistical errors associated
with the C3(t) correlation function it is based on as illustrated
in Fig. 4.

It is less clear how to correct for deviations from Gaussian
statistics in the even-order correlation functions. One approach
is to note that the Gaussian approximation assumes

〈δA(t)δ∆E(0)2n+1〉e =
(2n + 1)!

n! 2n 〈δ∆A(t) δ∆E(0)〉 〈δ∆E2〉
n
.

(18)

Then an approximation to the Gaussian statistics result for a
given n can be obtained as

〈δ∆A(t) δ∆E(0)〉2n+2 =
〈δA(t)δ∆E(0)2n+1〉e

(2n + 1)! 〈δ∆E2〉
n
/(n! 2n)

. (19)

Clearly, for n = 0 this gives the Gaussian statistics approxi-
mation, C(t), but for n > 0 it yields a correction to this C(t)
based on the time-dependence of the higher-order correlation
function. Then a reasonable scheme for correcting the Gaus-
sian statistics approximation is to average the estimates of this
correlation function from the different orders, e.g.,

〈∆A〉ne(t) − 〈∆A〉e '
1
3

2∑
n=0

β〈δ∆A(t)δ∆E(0)〉2n+2

+
β2

2
〈δ∆A(t)δ∆E(0)2〉 ≡ C3−6,corr(t).

(20)

This result is shown for methanol solvent in Fig. 13(b) and is in
agreement with the full TDSS result for all times (within error
bars). It represents a slight improvement over the C3,corr(t)
correction, particularly for times less than ∼3 ps. However, it
is clear that the corrections for the even-order terms are less
significant than the first odd-order correction represented in
C3,corr(t). For water, the higher-order, even correlation func-
tions are in good agreement with the Gaussian approximations
so that C3–6,corr(t) = C3,corr(t) within our calculations.

Finally, we note that an alternative approach to correct the
Gaussian statistics approximation is to add the cumulants, i.e.,
the differences between the higher-order correlation functions
and their factorized forms, to the Gaussian statistics approxi-
mation result.29 If, however, the resulting series of higher-order
terms does not converge (as has been the case in previous stud-
ies8,19), then this construction will fail at least theoretically if
not also practically. Indeed, this is what we have observed
for both the water and methanol solvents for the dipole-flip
solute.

VII. RELATION TO OTHER EXAMPLES
OF NONLINEAR RESPONSE

The dynamic linear response and Gaussian statistics
approximations are used frequently, particularly in applica-
tions to solvation dynamics. Because of the general success
of these approaches, the cases where they fail have drawn
significant theoretical and experimental interest.

The dipole-flip model, in particular, has been studied by
others following the early work by Ladanyi and co-workers
establishing it as a key example of nonlinear response. Geissler
and Chandler computed the nonequilibrium distribution of the
excited- and ground-state energy gaps for the dipole-flip model
in water and found that the statistics of the energy gap are
Gaussian but are nonstationary.6 These nonstationary Gaus-
sian statistics were attributed to the change in the H-bond
network due to the sensitivity of dielectric response on bound-
ary conditions. As the solvent molecules rearrange themselves
upon solute excitation, boundary conditions of the solvent
region change, influencing the solvent response. These results
also indicate that the non-Gaussian statistics result from some
alternative, non-Gaussian degree(s) of freedom, which cause
the overall energy gap to be non-Gaussian and result in nonlin-
ear response. The present work is consistent with these results,
particularly in explicitly isolating the role of the H-bonding
network, through the projection of the energy gap fluctuations
(Sec. V), as the few degrees of freedom responsible for the
non-Gaussian behavior.

Breakdowns in Gaussian statistics for solvation dynamics
have also been reported in a number of other systems. Schwartz
and co-workers used MD to study a single atom capable of car-
rying a charge dissolved in water.27,28 They found that solute
size changes (e.g., induced by ionization) cause a breakdown in
linear response. In particular, both the dynamic linear-response
and Gaussian statistics approximations give incorrect results
in the inertial regime of relaxation. This is associated with the
size change of the solute, which results in a restructuring of
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the H-bond network due to inertial motion of proximal OH
groups.

Systems of the solvated electron serve as another class
of non-Gaussian solvation dynamics. Rossky and co-workers
have shown that the Gaussian statistics approximation fails
to describe the solvation dynamics of an excess electron in
methanol.15,30 They conducted mixed quantum-classical MD
(MQC-MD) simulations and computed the normalized TDSS
from nonequilibrium simulations as well as linear response
correlation functions from equilibrium simulations in two
states: the initial state (the neat solvent) and the final state
(the solvated electron system). Both linear response correla-
tion functions differed from the TDSS, which was, like the
previous example, attributed to large structural changes in the
H-bond network.15 Upon excitation, mechanical forces from
localization of the electron push H-bonds away, so at short
times (<500 fs) the number of H-bonds around the electron
decreases.

Bedard-Hearn et al. used MQC-MD to study the hydrated
electron to show how their previous findings on Gaussian
statistics breakdowns from solute size changes apply to the
system.31 Using Steele theory,32 they found that the Gaussian
statistics breakdown for size changes in the hydrated elec-
tron from excitation occurs from significant deviations in the
solvent librations that interfere with the electron p-like wave-
function. These studies on solute size changes are possible
explanations for the breakdown of Marcus theory (i.e., lin-
ear response) for reactions of cation transition metals with the
hydrated electron.33 Specifically, Kanjana et al. studied the
kinetics of hydrated electron reactions with a number of dica-
tion transition metals using UV-Vis absorption spectroscopy,
which showed deviations from Marcus theory.33 That Marcus
theory fails for these reactions is perplexing; the reactions are
Arrhenius, are not diffusion limited, and are thermally acti-
vated, all of which point to the validity of Marcus theory for
this system.34

Laird and Thompson studied TDF and dye molecule dif-
fusion in nanoconfined solvents.8 The results showed that
the Gaussian statistics approximation agrees reasonably with
nonequilibrium MD results for the TDSS of a nanoconfined
dye molecule (whereas dynamic linear response does not) but
more poorly for the dye molecule position. Additionally, in
the case of nanoconfined solvation dynamics, the assump-
tion invoked by static linear response (neglect of higher-order
terms) is not justified. In fact, the higher-order correlation func-
tions not only do not decrease but also increase by orders of
magnitude with each term in the series. The energy gap was
found to obey Gaussian statistics for a fixed dye molecule posi-
tion but with position-dependent properties leading to the non-
Gaussian behavior. This is consistent with the nonstationary
Gaussian statistics observed by Geissler and Chandler.6

Li and co-workers have studied the validity of linear
response for TDF of Staphylococcus Nuclease (SNase).19,35

They performed equilibrium and nonequilibrium simulations
and found that the Gaussian statistics approximation proved
more favorable than dynamic linear response based on com-
parison with nonequilibrium simulations.35 Furthermore, they
showed that the static linear-response approximation was not
valid for the system they studied by computing higher-order

correlation functions, which also increased with increasing
order.19

These examples should not be used to infer that break-
downs of the Gaussian statistics approximation are limited to
systems where H-bonding is present. There are, indeed, many
systems displaying nonlinear response in aprotic solvents. One
example is the solvation of neutral sodium atoms in tetrahy-
drofuran (THF). Schwartz and co-workers have investigated
the solvation of a neutral Na atom in liquid THF using two
approaches: one in which a sodium atom was produced by
removing an electron from Na� and the other in which an
electron was added to Na+.36 Were the system to obey Gaus-
sian statistics, the dynamics of both experiments should exhibit
the same time scales because they occur on different sides of
the same harmonic free energy surface. Bragg et al. however,
observed that the solvation dynamics of the sodium atom pre-
pared from Na� were much slower than that of the sodium atom
prepared from Na+.37 Bedard-Hearn et al. used MD to study
sodium deionizing in THF; however, instead of an explicit
breakdown in linear response resulting from comparison of
C(t) and S(t), they found that the breakdowns were hidden in
the mechanism of relaxation for each property, that is, S(t) and
C(t) were in good agreement but the components for each dif-
fered.26 Using Steele theory, they analyzed the contributions
to C(t) and S(t) from the Coulomb and Lennard-Jones parti-
tions of the energy and found that the relaxation from each
contribution differed between the nonequilibrium value and
linear-response approximation.

Another example is the relaxation of rotational energy.
Moskun et al. studied the energy dissipation in highly rota-
tionally excited CN dissolved in liquid argon.38 The rota-
tional excitation in the gas phase would be observed for an
extended period compared to the liquid phase in which, as lin-
ear response would predict, the rotational energy would rapidly
dissipate. They observed, however, that the dynamics went
against the intuition of both phases: initially a linear-response-
like dissipation was observed followed by a sudden switch to
gas phase-like dynamics. This switch corresponds to a molec-
ular event that cannot be predicted by linear response theory. In
fact, the rotations of CN produce a distinct cavity in the liquid
at short times, which extends the coherence of the rotations.
This was confirmed by Tao and Stratt in which they derived
a linear-response approximation to the normalized response
function and computed both linear-response correlation func-
tions and nonequilibrium MD simulations.7 Similar findings
were reported for simulations of OH rotors.39 An analogous
result was observed in a combined experimental and compu-
tational study of vibrational relaxation of HCN formed as the
product of a chemical reaction.40

In each of the aforementioned examples of a breakdown in
linear response, i.e., non-Gaussian statistics, specific molecu-
lar rearrangements of the solvent are reported that are strongly
coupled to the solvation dynamics. It is from these molecular
events—cavitation of a solvated rotor, H-bond restructuring,
solute cavity expansion or contraction, etc.—that a breakdown
of the Gaussian statistics approximation can be attributed. A
key commonality is that each involves only a small number
of degrees-of-freedom preventing Gaussian behavior via the
central limit theorem,1 as has been previously suggested by
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Schwartz and co-workers.27,28 This is supported in the case of
the dipole-flip model by the more nonlinear response observed
in methanol compared to water (Fig. 3) and observed by Fon-
seca and Ladanyi for a smaller solute compared to a larger
one in methanol.12 That is, the response is less linear when
fewer solvent molecules are involved in the molecular rear-
rangements, which for the dipole-flip model are associated
with H-bonding to the solute and influenced by both the solvent
and solute sizes. Similarly, the nonlinear response observed for
the solvated electron15,30 and solute size changes27,28 is asso-
ciated with rearrangements of the liquid structure in the first
solvation shell, i.e., involving a small number of molecules.

Importantly, Tao and Stratt noted that changes in liq-
uid structure were a common feature in many of the studies
cited above and further suggested “. . .that the relative slow-
ness of structural relaxation could be an important prerequisite
for linear-response breakdowns.”7 The observation of non-
Gaussian structural rearrangements occurring on slower time
scales has been observed in the case of rotational relaxation,
where it is associated with the formation of a solute cavity7,38,39

as well as for vibrational relaxation which exhibits an analo-
gous behavior.40 In the case of solvation dynamics, a similar
picture was posited by Turi et al. for the solvated electron in
methanol, again associated with a change in solvent structure
around the electron.15 For the dipole-flip model, the picture
is more complicated. The linear response breakdown tends
to appear at longer times, after the inertial dynamics, as was
pointed out by Fonseca and Ladanyi,12 who noted “. . .both
fast and slow solvation dynamics have substantial contribu-
tions from structural rearrangements within the first solvation
shell. After the perturbation is applied, the destruction of an
existing local structure is rapid, but a build-up of a new one
is much slower.” The present analysis shows deviations from
Gaussian statistics at all time scales, which can be primar-
ily observed in the odd-order correlation functions for both
water and methanol (Fig. 4) but also in the even-order cor-
relation functions for methanol (Figs. 5 and 6). However, it
is also the case that the H-bonding rearrangements respon-
sible for the nonlinear response in this model do occur on
longer time scales. Thus, while the current results appear to
suggest that structural relaxation need not be slow on the time
scale of the response to lead to nonlinear response, this topic
deserves additional examination for other systems and from
other perspectives.

VIII. CONCLUSION

The static linear response and Gaussian statistics approx-
imations have been outlined and investigated in the context
of the dipole-flip model. Where the static linear response
approximation assumes all higher-order correlation functions
are negligible, the Gaussian statistics approximation factorizes
them into lower-order correlation functions based on Wick’s
theorem and, upon summation, gives the same mathematical
expression as static linear response.

For a dipolar solute immersed in water or methanol,
the approximation fails, confirming prior knowledge on the
subject,6,12,13 but it has also been shown that the physical
approximation made in static linear response is unjustified:

the higher-order correlation functions are not negligible and,
in fact, grow by orders of magnitude. Thus, what is often
referred to as the static linear response approximation is really
the assumption of Gaussian statistics.

The Gaussian statistics approximation assumes that the
relevant dynamical variable, e.g., the energy gap in solva-
tion dynamics, is a Gaussian random variable. An accepted
approach for evaluating this approximation is to compare
it with full nonequilibrium MD simulations. This is rarely
done, however, because the nonequilibrium simulations are
significantly more computationally expensive than the equi-
librium MD simulations required for the Gaussian statistics
result. Thus, we have addressed the question can non-Gaussian
statistics be predicted by relying only on equilibrium simu-
lations? The answer is yes. Specifically, Gaussian statistics
assumes that higher-order time correlation functions can be
factorized into two-point time correlation functions; both the
higher-order and factorized time correlation functions can be
evaluated from the same equilibrium MD simulation. The
dipole-flip model in water and methanol exhibits a breakdown
of the Gaussian statistics approximation based on compari-
son with nonequilibrium MD results. This breakdown is also
reflected in differences between the equilibrium higher-order
and factorized time correlation functions, which thus offers a
method for the evaluation of the Gaussian statistics approxima-
tion. This complements a direct examination of the distribution
of the energy gap, which for simulations in methanol is clearly
non-Gaussian, but for water is nearly Gaussian.

When there is a breakdown of the Gaussian statistics
approximation it is natural to ask what is the origin of the
non-Gaussian statistics? It has been proposed that the nonlin-
ear response for the dipole-flip model in H-bonding solvents
can be attributed to the solvent-solute H-bonds6,12,13 which
must rearrange upon the electronic excitation that changes
the identity of the dipole-flip solute atom that can act as an
H-bond acceptor. Here, we have shown that the Gaussian statis-
tics approximation agrees with nonequilibrium dynamics for a
non-H-bonding solvent, acetonitrile, indicating that the lack of
H-bonding recovers agreement between the Gaussian statistics
approximation and nonequilibrium dynamics.

An additional, more direct, test to the non-Gaussian nature
of the solute-solvent hydrogen bonds was performed in which
the equilibrium trajectories were partitioned into a solvent-
solute H-bonding component and a bath (non-H-bonding)
component. The same comparisons of higher-order correlation
functions and their factorizations that, as discussed above, can
be used to identify non-Gaussian statistics can then be applied
to each partition separately. This analysis clearly shows that
solvent-solute H-bonds are responsible for the breakdowns of
the Gaussian statistics approximation for methanol and water.
Moreover, it shows how the origins of the non-Gaussian behav-
ior can be identified and isolated in general through such
partitioning.

Ideally, one would like to find a way to improve upon the
Gaussian statistics approximation when necessary. Thus, we
asked can the Gaussian statistics approximation be corrected
to describe nonlinear response? This is a more challenging
problem than identifying the non-Gaussian behavior and its
origins. Nevertheless, the results indicate that there is some
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promise in using the information about the non-Gaussian char-
acter of the dynamics embodied in the higher-order time corre-
lation functions to improve upon the Gaussian approximation.
The results for methanol, where the non-Gaussian behavior is
more prominent, are encouraging, while those for water are
less so. This is an area that is ripe for future exploration.

We have placed the present study of the dipole-flip model
in various solvents in the context of other examples of break-
downs of the Gaussian statistics approximation throughout the
literature. In each case discussed, one can reasonably attribute
the origin of this breakdown to some specific solvent mecha-
nism, involving a small number of relevant coordinates, that
occurs in the nonequilibrium dynamics that does not occur at
equilibrium. Though there have been no tests of these systems
based on the assumptions invoked in the static linear response
and Gaussian statistics approximations such as that presented
here, they represent both model and real, experimentally acces-
sible systems to which the present analysis could be applied
to advantage.
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