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Abstract

Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV)

that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We

used phylogenetic analyses to understand the demographic history of RVFV populations,

using sequence data from the three minigenomic segments of the virus. We used phylogeo-

graphic approaches to infer RVFV historical movement patterns across its geographic

range, and to reconstruct transitions among host species. Results revealed broad circulation

of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Mada-

gascar resulted from three major waves of virus introduction: the first from Zimbabwe, and

the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly

resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single

introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya

and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa

appear to have resulted from a single introduction from Central African Republic. The overall

picture of RVFV history is thus one of considerable mobility, and dynamic evolution and bio-

geography, emphasizing its invasive potential, potentially more broadly than its current

distributional limits.

Author Summary

Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus

(RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Penin-

sula. We used phylogenetic approaches that take sampling date into account to under-

stand the demographic history of RVFV populations, using sequence data from the three

minigenomic segments of the virus. We found evidence of broad circulation of the virus

in East Africa, with many lineages originating in Kenya, with single and multiple intro-

ductions of RVFV among countries. The overall picture of RVFV history is thus one of

considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive

potential, potentially more broadly than its current distributional limits.
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Introduction

Rift Valley Fever (RVF) is an acute zoonotic viral disease caused by RVF virus (RVFV; Phlebo-
virus, family Bunyaviridae) that affects both large mammals and humans, and that is transmit-

ted by Aedes and Culex mosquitoes [1]. It causes high mortality and abortions in ruminants

[2]; while infections in humans are characterized by febrile illness, followed by hemorrhagic

fever, encephalitis, and ocular disease, and can lead to death [2]. It is endemic in Sub-Saharan

Africa, being first isolated in Kenya in 1930 [3]. Outbreaks were limited to that region until

1977–1978, when the virus spread to Egypt [4]. In 1993, southern Egypt suffered a further out-

break, in which 600–1500 human infections were reported [5]. Periodic RVFV epizootics and

epidemics have been associated with above-average rainfall and other environmental factors

that result in dramatically increased mosquito populations [6,7].

A recurrence of RVF in East Africa was reported in 1997–1998 [8]. In 1987, the first West

African epidemic occurred in Senegal and Mauritania during flooding in the lower Senegal

River area [9]. The first outbreaks outside Africa occurred in 2000, in Saudi Arabia and Yemen

[10]. In 2000–2010, outbreaks were reported in Sudan, Kenya, Tanzania, Somalia, Senegal,

Mauritania, and Swaziland, with incidence rates higher than in the 1978 Egyptian epidemic

[11–14]. RVFV has not apparently become endemic outside Africa, but seropositive animals

have been detected in Saudi Arabia [15]. Climate conditions are appropriate for incursions of

RVFV elsewhere in the Middle East, Europe, and beyond [10,16].

RVFV has been isolated from both livestock and mosquitoes [17,18]. The virus is main-

tained in mammal host species, including cattle, sheep, goats, and camels, in which infections

have been reported [18,19]. RVFV is transmitted via several routes: mosquitoes serve as vectors

in most cases, but direct transmission through aerosol and contact with abortion products are

other routes [20]. RVFV is also capable of persisting in the environment for long periods

between epidemics [21], facilitated by vertical transmission among mosquitoes [22].

The RVFV genome is organized in three negative-sense, single-stranded RNA segments

termed large (L), medium (M), and small (S), with a total genome length of 11.9 kb. The large

segment (*6.4 kb) encodes the RNA-dependent RNA polymerase [23]; the M segment (*3.2

kb) encodes envelope glycoproteins Gn and Gc, plus two accessory proteins, NSm and the

78-kDa protein [24]. The S ambisense segment (*1.7 kb) encodes for nucleoprotein (NP; 27

kDa) and non-structural protein (NSs; 31-kDa). Previous studies have sequenced the three

virus segments from diverse strains circulating in outbreaks across Africa and Saudi Arabia

[25].

Historical movements of RVFV among countries raise concerns about possible appearance

of RVFV in new regions [16]. Here, we aim to derive a detailed picture of RVFV phylogeny

based on analysis of sequences of the three segments. We used phylogeographic approaches to

examine mobility patterns of virus lineages across the virus’ geographic distribution.

Materials and Methods

Data used in this analysis represent all RVFV strains deposited in GenBank (as of August

2014; http://www.ncbi.nlm.nih.gov/nuccore), and include full sequences of the L, M, and S

segments. If two or more records were available from the same isolate, we included the more

recently sequenced version in analyses. Sequences for which the GenBank metadata listed no

country of origin were excluded from those analyses. Sequences were aligned using the MUS-

CLE plugin [26] in the MEGA 6 software [27].

We used JModelTest [28] to identify the best-fitting nucleotide substitution model for each

of the segments separately. A molecular clock-based phylogenetic analysis was performed for

each segment separately in BEAST [29], using the best-fitting nucleotide substitution model
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for each segment, an uncorrelated lognormal relaxed molecular clock [30], and a GMRF

Bayesian skyride tree prior [31]. Because variation among virus sampling dates (i.e., 1944–

2010) is of meaningful magnitude relative to the time to most recent common ancestor of the

clade in question [32,33], the temporal information associated with sampling each isolate had

to be taken into consideration [30,34]. Sampling dates were used as prior information to cali-

brate the tree, estimate ages of different RVFV lineages, and infer evolutionary history of the

strains [29]. An uncorrelated lognormal relaxed molecular clock was used in light of its high

accuracy and precision to infer temporal information into molecular phylogeny [30]. Codon

positions 1 and 2, and codon position 3, were treated as two separate partitions in the align-

ment. Multiple Monte Carlo Markov Chain (MCMC) runs of 108 states (the first 10% was dis-

carded as burn-in) were combined to achieve estimated sample sizes of at least 250 for all

numerical model parameters.

The posterior set of trees from each of the three initial BEAST analyses was used as an

empirical tree set for a discrete-trait phylogeography analysis [35]. We assumed an asymmetri-

cal rate matrix. For each tree sampled from the MCMC, Markov Jumps procedure [36] was

used to reconstruct a stochastic realization of the between-country diffusion process; results

were summarized over the entire posterior distribution by calculating median numbers of

transitions between each pair of countries and the posterior probability that at least one transi-

tion occurred.

As the full dataset consisting of every available RVFV sequence in GenBank is a very uneven

sample, we wished to confirm that our results were robust to this unevenness. Hence, we

repeated these analyses using datasets produced by randomly removing sequences from each

alignment until they contained no more than one sequence from isolates obtained in a single

country during a single year. For each segment, the molecular clock and phylogeography pro-

cedure was then repeated as described above, for these smaller datasets. The smaller size of

these datasets led to poor MCMC convergence when the JModelTest-identified substitution

models were used, so we employed the SRD06 [37] model instead. All other settings in BEAST

were identical.

Reassortment between RFV segments was investigated by concatenating the alignments for

the three segments, retaining only sequences from isolates for which at least two segments

were available. We used the RDP method implemented in the program RDP4 [38] to identify

recombination breakpoints in the concatenated alignment. A reassortment event was implied

where these breakpoints coincided with segment boundaries.

Results

Sequence data

A total of 155 S, 99 M, and 97 L minigenomic segments of RVFV sequence data were available

from Genbank (Table 1). Sequences had lengths of 1689–1692 base pairs (bp) for S, 3871–3885

bp for M, and 6397–6404 bp for L. These sequences represented RVFV strains from 18 coun-

tries across Africa plus Saudi Arabia (Table 1). Saudi Arabian strains were represented by

sequences for two S segments, one M segment, and one L segment only. Full details of the

sequence data are available via Figshare (https://figshare.com/s/1efd1db044bcaa9e35a9),

including information for sequence accession, sequence length, country of origin, and isola-

tion host.

Molecular clock and skyride analysis of RVFV strains

The nucleotide substitution models with the lowest Akaike Information Criterion scores iden-

tified by JModelTest were TPM2uf+I+G for the S segment, and GTR+I+G for both M and L.
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The maximum clade credibility (MCC) tree for the M segment is presented in Fig 1; trees for

the other two segments can be found in the supplementary materials (S1 and S2 Files). Line-

ages previously identified and discussed by Bird et al. [32] are indicated on the trees.

Estimated posterior mean nucleotide substitution rates were 3.6392 x 10−4, substitutions

per site per year, with a 95% highest posterior density (HPD) interval of 2.8114 × 10−4 to

4.5813 × 10−4, for the S segment, 3.7774 × 10−4 (2.7391 × 10−4 to 4.8902 × 10−4) for M, and

2.7310 × 10−4 (1.9289 × 10−4 to 3.6677 × 10−4) for L. The posterior mean calendar year of the

most recent common ancestor (TMRCA) of all isolates was 1929 (1920–1937) for S, 1914

(1897–1928) for M, and 1909 (1888–1927) for L.

Skyride plots reconstructing temporal variation in RVFV genetic diversity are presented in

Fig 2 for all three segments. All three indicate a peak in diversity around the middle of the

twentieth century, followed by a decline and levelling off, with a subsequent increase in the

reconstruction for the S segment.

The downsampled datasets consisted of 49 sequences for S, 33 for M, and 32 for L. For L,

the posterior mean substitution rate was 2.406 × 10−4 substitutions/site/year (1.106 × 10−4 to

4.4065 × 10−4) and the posterior mean TMRCA was 1870 (1810–1919). For S, the rate was

3.636 × 10−4 substitutions/site/year (2.058 × 10−4 to 5.248 × 10−4) and the TMRCA was 1914

(1893–1935). These rate estimates are consistent with those estimated from the full dataset,

although the TMRCA point estimates are rather different; we noted a clear loss of precision in

using the smaller alignments and considerable HPD interval overlap. For M, however, the pos-

terior mean rate was 2.74 × 10−4 substitutions/site/year (1.965 × 10−4 to 3.573 × 10−4) and the

Table 1. Countries and dates of sampling available for the complete sequences of the small, medium, and large segments of RVFV strains across

Africa, and Arabian Peninsula.

Country No. of isolates Date range (Years)*

Small Medium Large

Angola 1 0 0 1985

Burkina Faso 2 1 1 1983

Central African Republic 8 6 6 1969–1985

Egypt 9 7 10 1977–1994

Guinea 3 2 2 1981–1984

Kenya 63 45 42 1951–2007

Madagascar 14 11 10 1979–2008

Mauritania 5 4 4 1987–1988

Mayotte 2 2 2 2008

Namibia 1 0 0 2004

Saudi Arabia 2 1 1 2000

Senegal 1 0 0 1981

Somalia 1 0 0 1998

South Africa 10 4 4 1951–2008

Sudan 13 5 4 2007–2010

Uganda 2 1 1 1944–1955

United Republic of Tanzania 4 4 4 2007

Zambia 1 0 0 1985

Zimbabwe 13 6 6 1970–1979

All sequences 155 99 97 1944–2010

* The date range represents the range of sampling RVFV strains to which the sequence is identified. When a single sequence identified in a country, the

date range represent the date of sampling for this single strain.

doi:10.1371/journal.pntd.0005226.t001

Phylogeography of Rift Valley Fever Virus

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005226 January 9, 2017 4 / 16



Fig 1. Maximum Clade Credibility tree based on all sequences of the medium minigenomic segment (M) of RVFV

isolates in the study. NCBI accession number, country, and date of sampling are presented at the tree tips. Tree

branches are colored and labelled alphabetically by lineage (A to K). Lineage nomenclature is from Bird et al. [32]. The red

triangle identifies the clade containing isolates from both Saudi Arabia and Africa. Clades with posterior probability >0.9

are labelled with red circles.

doi:10.1371/journal.pntd.0005226.g001
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posterior mean TMRCA was 1881 (1844–1907). The results of the posterior mean nucleotide

substitution rates and TMRCA from both full and downsampled datasets are summarized in

supplementary materials (S3 File). The skyride plots for the downsampled analyses (S4 File)

did not indicate that the inclusion of all GenBank sequences had any major effect on the demo-

graphic reconstructions.

Phylogeography of RVFV strains

Fig 3 presents the MCC phylogeny for the M segment, this time with branches colored by

highest posterior probability of location; trees for the other two segments are in the supple-

mentary materials (S5 and S6 Files). The tree shows that strains from Saudi Arabia belong to

the same lineage (B) as those from Kenya in 1998 and Madagascar in 1991. Most strains from

Fig 2. Gaussian Markov Random Field (GMRF) Bayesian skyride plots for all three RVFV segments,

representing the relationship between reconstructed effective population size and calendar year. Blue

lines show the boundaries of the 95% highest posterior density interval.

doi:10.1371/journal.pntd.0005226.g002
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Fig 3. Maximum Clade Credibility tree based on all sequences of the medium minigenomic segment

(M) of RVFV isolates in the study. Country of origin is indicated by color of the tree branches and branch

tips. An online version of the tree is available via https://figshare.com/s/1efd1db044bcaa9e35a9.

doi:10.1371/journal.pntd.0005226.g003
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West Africa (Mauritania and Burkina Faso) are part of lineage D, but those from Guinea are in

lineage C, which is otherwise recorded in the Central African Republic and Zimbabwe.

The diffusion patterns for viral lineages reconstructed using Markov Jumps are presented

in Fig 4 & S7–S11 Files; the complete results of the Markov Jumps analysis for all countries are

available via Figshare (https://figshare.com/s/1efd1db044bcaa9e35a9). The reconstruction

using all three segments revealed that the highest median number of jumps was from Kenya to

other countries in East Africa; movements of RVFV lineages from Kenya to Tanzania are par-

ticularly well supported (posterior probability >0.9). Hence, arrival of the virus in Tanzania in

2007 was probably related to a single introduction event from Kenya. Introductions of RVFV

to Madagascar came in three waves: the first from Zimbabwe, and the second and third from

Kenya.

The two major outbreaks in Egypt since 1977 originally may have been the result of a long-

distance introduction from Zimbabwe, as they are closely related to strains from that country

in 1974. The Markov Jumps reconstruction revealed a possible transition from Kenya to

Fig 4. Connectedness of countries with Rift Valley Fever outbreaks based on Markov Jumps reconstruction using the medium

minigenomic segment (M) of RVFV isolates in the study. Connections between countries are presented as lines with arrows to refer to

the direction of movement. Line thickness identifies the median number of jumps between each country pair.

doi:10.1371/journal.pntd.0005226.g004
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Mayotte, with posterior probabilities ranging from 0.83 to 0.96 in different genomic segments.

All sequences from Sudan came from a single outbreak in 2007–2010, and were closely related

to isolates from outbreaks occurring in other East African countries since 2007; the recon-

struction suggested direct movement of the virus from Kenya to Sudan (posterior probability

>0.7).

Markov Jumps analysis of M and L segments indicated virus introduction from Zimbabwe

to the Central African Republic (posterior probabilities 0.51 and 0.64, respectively). Other

movement patterns inferred included transitions from Zimbabwe to South Africa (posterior

probabilities 0.59, 0.68, and 0.78 for S, M, and L, respectively). M and L segments revealed a

single transition into West Africa, from the Central African Republic to Guinea.

The M and L segments suggested a single introduction from Kenya to Saudi Arabia, with a

posterior probability >0.79 for both segments. Movement of the virus between Kenya and

Sudan occurred in both directions, with posterior probabilities of>0.7. Similarly, transitions

between Central African Republic and Zimbabwe were reconstructed in both directions (pos-

terior probabilities 0.57, 0.79, and 0.69 for S, M, and L, respectively, for Central African Repub-

lic to Zimbabwe; posterior probabilities 0.62, 0.51, and 0.64 for Zimbabwe to Central African

Republic, for S, M, and L, respectively). The S segment revealed information about movements

involving countries for which it was the only segment available: from Kenya to Somalia (poste-

rior probability 0.77), Burkina Faso to Mauritania (posterior probability 0.80), Burkina Faso to

Senegal (posterior probability 0.78), Kenya to Central African Republic (posterior probability

0.91), and Kenya to South Africa (posterior probability 0.91). Results of phylogeographic anal-

yses for the downsampled datasets were similar with the results from those reported above

(S12–S14 Files).

Reassortment and recombination events of RVFV

The full concatenated alignment was 11,999 bp in length, with the S segment occupying posi-

tions 1–1695, the M segment positions 1696–5595, and the L segment positions 5596–19999.

The RDP algorithm identified two events that suggest segment reassortment. The first sug-

gested that strain 2007000608 is a reassortment of the L and S segments of 2007000234 and the

M segment of 2007001811. All three isolates were sampled in Kenya in late 2006 or early 2007

[32]. However, the GenBank records for the M segments of 2007000608 and 2007001811 are

identical, which raises the possibility of a database error. The estimated breakpoints were at

positions 1581 (95% confidence interval 1238–2043) and 5565 (5391–5917), strongly suggest-

ing agreement with segment boundaries.

The second event suggested that the Tanzanian isolate TAN/Tan-001/07 was a reassortment

of the M segment from another Tanzanian isolate, TAN/Dod-002/07, and the L and S seg-

ments from the Kenyan isolate 2007001564. All three were sampled in early 2007 [39] and no

two segments were identical. RDP identified a number of small recombination events, but

none involved a longer genomic region. Again, the breakpoints at positions 1919 (1385–2202)

and 5441 (5285–5917) were consistent with reassortment. RDP identified four other potential

recombination events whose breakpoints did not coincide with segment boundaries in the

concatenated alignment, and therefore were not suggestive of reassortment; see supplementary

file for details (S15 File).

Discussion

This study used up-to-date phylogenetic approaches [35] to investigate the ancestry of RVFV

strains across Africa and Saudi Arabia, and to study virus movements and host transitions.

Sequences for the three segments of the RVFV genome were available for strains sampled over

Phylogeography of Rift Valley Fever Virus
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a span of 66 years (1944–2010). RVFV minigenomic segments showed differences in amounts

of genetic change and time scale [33]. These minigenomic segments have previously been used

to derive phylogenetic and ecological insights regarding RVFV circulation in Africa and the

Arabian Peninsula [32,33]. These analyses used phylogenetic approaches similar to ours; how-

ever, our analysis takes advantage of a discrete-traits phylogenetic analysis using Markov

Jumps to infer the history of between-country and between-host movements.

The substitution rate estimates in our study were similar to those in previous studies

[33,43]. Other studies have reported higher rates [32,44]: for example, estimates from Aradaib

et al. [44] were 4.20 × 10−4, 5.06 × 10−4, and 4.29 × 10−4 substitutions per site per year for S, M,

and L, respectively; the 95% HPD intervals reported in that paper overlap with ours. These dif-

ferences might be a result of the different datasets used: our work should have better resolution

because the dataset is larger and more diverse. The Aradaib et al. [44] study was also limited to

only two lineages of the 11 in our analysis, and covered only strains from Kenya, Sudan, Mada-

gascar, and Zimbabwe. Interestingly, Freire et al. [33] found a lower evolutionary rate in the

large minigenomic segment, suggesting a distinct evolutionary history in the three segments;

our results corroborated this finding [33].

Previous studies reported earlier TMRCA estimates than ours. Bird et al. 2007 [32] esti-

mated the mean TMRCA as 1891 for the S segment, 1882 for M, and 1887 for L. These differ-

ences could be a result of our larger dataset, and reflect higher estimates of substitution rates;

again, their HPD estimates overlap with ours. As the HPD intervals for the TMRCAs of the

three segments in our analysis all overlap, the difference in point estimates likely reflects statis-

tical uncertainty only. Our TMRCA estimates for all segments agreed well with the first report

of RVFV in 1930 in Kenya [3].

The steady decline in RVFV genetic diversity since the 1970’s was previously reported [33],

in an analysis that considered most of our samples. A possible explanation for the decline cen-

ters on the vaccination and control measures implemented on a large scale from 1969 to 1979

[45]. In all, 35.2 million vaccines were provided to Zimbabwe, South Africa, Namibia, Israel,

and Egypt in response to large RVF outbreaks [46].

Discrete-traits phylogenetic approaches have some limitations [34]. In our case, these limi-

tations are associated with the nature of virus sampling across its range, as sampling is gener-

ally unbalanced. This point suggests that some aspects of our results should be interpreted

with caution. For example, country was used as indication of location in our analyses, which is

quite coarse for some of the spatial phenomena that we would like to reconstruct. As more

sequence data become available, it should be possible to develop finer-resolution views.

In Sub-Saharan Africa, RVFV appears to be spread by movement of viremic livestock

between countries [47,48], or though introduction of infected mosquitoes to neighboring

countries [16,48]. We used Markov Jumps to infer possible introduction events and movement

routes of RVFV. Two types of RVFV movements can be considered: short- and long-distance

jumps [32,49,50]. Inferred movements between distant countries may omit the effects of

unsampled lineages in countries on the route between them. For example, studies attributed

the 1977–1978 epidemics in Egypt to viral introductions from Sudan [51,52], but our study

saw strong support for Zimbabwe as a country of origin for Egyptian strains. This result sug-

gests that, although Zimbabwe was the sampled origin for these lineages, they travelled north

over Sudan to Egypt; all available Sudanese sequences came from more recent outbreaks in

2007–2010, which presumably originated in Kenya, and are genetically distant from Egyptian

strains in the outbreak of the 1970s [44]. With no earlier Sudanese sequences available [53,54],

this analysis could not find an origin in Sudan, and hence tracked lineages back to Zimbabwe;

this result should thus not be taken to indicate that the hypothesis of a Sudanese origin for

Egyptian epidemics is incorrect.

Phylogeography of Rift Valley Fever Virus
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The RVFV strain identified from the Arabian Peninsula in 2000 was embedded in lineage B

with strains from Kenya, suggesting that this virus originated from Kenyan epizootics in

1997–1998. The outbreak was driven by floods and heavy rains along the Saudi Arabia-Yemen

border in the Al Humayrha region, where the first cases were reported [55], and where it was

maintained by Culex tritaeniorhynchus [56].

RVFV strains from West Africa fell in two lineages (C & D): one included samples from

Guinea and another that included samples from Burkina Faso, Mauritania, and Senegal. Our

results suggest possible introduction of RVFV to Guinea from the Central African Republic,

and that the outbreak in Mauritania in 1987 had its origin in lineages that were in Burkina

Faso in 1983. The route of introduction from East Africa to West Africa more fundamentally

is still unclear. Our analysis suggested interesting patterns for outbreaks in Mauritania and

Egypt, in comparison to recent outbreaks in Kenya, with single viral introductions to Maurita-

nia and Egypt, but multiple origins for the 2007–2010 outbreaks in Kenya.

These latter phylogeographic analyses revealed the overall picture of RVFV history and

migration across Africa and Arabian Peninsula. Early RVFV strains were restricted to Sub-

Saharan Africa; however, the virus was later identified from several parts across North and

West Africa. The considerable mobility and dynamic distribution of the virus allowed spread

and invasion of the virus to new regions, including in the Arabian Peninsula. Understanding

the movement patterns between countries represents one of the major reasons why we set out

to understand the detailed picture of the virus evolution and biogeography.

Previous studies identified evidence of reassortment events among RVFV segments

[32,33,41,42]. Our phylogenetic analyses showed incongruences in the topologies of the three

minigenomic segments of RVFV, these incongruences could result from genetic reassort-

ments. Final analyses to investigate the reassortment and recombination events were based on

the RDP algorithm: all strains potentially involved in the reassortment events were from East

Africa. This possibility of reassortment raises two important concerns in regard to the poten-

tial of RVFV epidemics and its pathogenicity, although detailed studies with which to answer

these questions are lacking. Successful reassortment under natural selection requires (1) co-

occurrence of at least two different strains in the same host, area, and time; and (2) the reas-

sorted strain would have to be virulent and able to infect a host. The two strains detected as

possible reassortments in this study were from humans and bovines, and not restricted to a

single host [42]. Although previous studies revealed no evidence of recombination on large

scales in RVFV [40,41], this study also suggests that small recombination events may indeed

occur, although none involving long gene regions. Reassortment and recombination represent

key potential mechanisms to promote emergence of novel strains of RVFV that may be more

virulent and can infect broad ranges of hosts, and locations. Further studies investigating pos-

sible influences of reassortment events in RVFV evolution across Africa and Arabian Penin-

sula are much needed.

Our results assist the RVFV control program across its range in three ways. (1) The study

shows possible movement and migration of the virus among endemic areas; as such, this study

allows tracking virus movement among countries, which may inform transportation guidelines

for animal shipments. (2) Our calculations of evolutionary rates and TMRCAs offer a more

detailed picture of the temporal nature of successive outbreaks of RVFV. Finally, (3) possible

reassortment and recombination events reported herein raise important questions regarding

control programs related to novel strains of RVFV across the potential geographic range, atten-

uated vaccination efficacy, and changing virus pathogenicity. Future studies should collect

samples more systematically, and on a much finer scale with respect to location and host, to

give a more detailed picture of migratory patterns of RVFV across the continent for a compre-

hensive study including reconstruction of both geographical and between-host transmission.
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