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Abstract. Ecological niche modeling (and the related species distribution modeling) has been used as a
tool with which to assess potential impacts of climate change processes on geographic distributions of spe-
cies. However, the factors introducing variation into niche modeling outcomes are not well understood: To
this end, we used seven algorithms to develop models (Maxent, GARP, BIOCLIM, artificial neural net-
works, support-vector machines, climate envelope, and environmental distance) to estimate the potential
geographic distribution of olives (Olea europaea sensu lato, including Olea ferruginea) under two climatic
data sets (current 2000 and future 2050). Five general circulation models and two representative concentra-
tion pathway scenarios were used as predictor variables in future projections of the geographic potential of
this species; models were fit at global extents (100 spatial resolution) but transferred and interpreted for a
region of particular interest in Central Asia, which largely avoids problems with truncation of niche esti-
mates. We found marked differences among approaches in predicted distributions and model perfor-
mance, as well as in the future distributional pattern reconstructed, from one algorithm to another. These
general approaches, when model-to-model variation is managed appropriately, appear promising in pre-
dicting the potential geographic distribution of O. europaea sensu lato and thus can be an effective tool in
restoration and conservation planning for wild populations, as well as possible commercial plantations of
this species.
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INTRODUCTION

Climate change has affected the weather pat-
terns of the Earth radically. Effects of climate
change on biological species can be estimated by
comparing temperature and precipitation patterns
and trends in relation to species’ distributional

shifts (Peterson et al. 2015). Climate change also
may deplete and rearrange distributions of plant
and animal species that contribute to the function-
ing of natural ecosystems and the services that
they provide (Tallis et al. 2008). Future climate
patterns will likely have strong impacts on spe-
cies’ geographic distributions (Garcia et al. 2014),
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with the general expectation that species’distribu-
tions will shift poleward and upward in elevation
(Hickling et al. 2006).

Ecological niche modeling (and the related
species distribution modeling) represents an
effort to estimate dimensions of the fundamental
ecological niche, and therefore, it can predict the
probability of environmental suitability for a spe-
cies in an area (Cardona and Loyola 2008, Peter-
son et al. 2011); numerous modeling algorithms
have been developed to meet these challenges
(Elith et al. 2006). The complexity of natural sys-
tems necessitates diverse modeling approaches
(Carpenter et al. 1993, Stockwell 1999, Hirzel
et al. 2002, Pearson et al. 2002, Thuiller 2003,
Elith et al. 2006, 2010, Phillips et al. 2006, Elith
and Leathwick 2007, 2009), and no single
approach is likely to be the best in all cases (Qiao
et al. 2015). In geographic space, these methods
identify the potential distribution of a species
over the full set of grid cells, which are the cells
that are most similar (in some sense, depending
on the algorithm) to cells that are known to be
occupied by the species (Negga 2007, Kgosiesele
2010, Cunze and Tackenberg 2015).

We used as a case study and worked example
the tree species Olea europaea sensu lato: Olea grow
as woody vines, shrubs, and trees (Nasir and Rafiq
1995) and are common in dry, moist temperate,
and sub-tropical regions of the world.Olea europaea
sensu lato occurs in regions with 800–1200 mm
rainfall and annual mean temperatures of 14–18°C
(Hines and Karlyn 1993). In Central Asia, this spe-
cies ranges up to 2400 m in elevation (Joshi 2012).
Olives also occur in New Zealand, South Africa,
and along the coastal areas of Australia, Europe,
and China (International Olive Council 2013).

Olea europaea sensu lato is an evergreen species
that has many uses. Their fruit is used for food
(olives), and the plant also has medicinal uses.
The leaves and fruit contain polyphenols and
antioxidants that are used to treat health problems
as an antitumour, anti-inflammatory, antioxidant,
antipruritic, antiallergic, immunomodulatory, and
antiviral agents. Their roots are beneficial in treat-
ing scorpion stings, asthma, rheumatism, and
headache (Joshi 2012). Factors such as phenotypic
plasticity, functional traits, and genetic effects
have also been studied by a number of researchers
(Wang et al. 2010, Benito Garz�on et al. 2011, Stahl
et al. 2014, Valladares et al. 2014).

Numerous approaches are available for estimat-
ing species’ ecological niches and predicting their
potential geographic distributions (Guisan and
Zimmermann 2000). Many comparative evalua-
tions have been developed among multiple
approaches (e.g., Elith et al. 2006), but fewer eval-
uations have assessed model transfers in a com-
parative sense (e.g., Pearson et al. 2006). Certainly,
model transfers are complicated by the limited
representation of environments across regions
over which models are calibrated (Saupe et al.
2012, Owens et al. 2013), which led to the concept
of the existing niche, defined as the part of the fun-
damental ecological niche that is actually repre-
sented over relevant areas (Peterson et al. 2011).
Here, we take advantage of the global nature of
the distribution of Olea europea sensu lato to cali-
brate more comprehensive (“Hutchinsonian,” in
the sense of Saupe et al. 2012) models than is pos-
sible in any more limited region. Our main objec-
tive was to compare results of seven approaches to
estimating ecological niches of species (Maximum
Entropy [Maxent], genetic algorithm for rule-set
prediction [GARP], BIOCLIM, artificial neural net-
works [ANN], support-vector machines [SVM],
climate space [CE], and environmental distance
[ED]), and to evaluate their consistency and varia-
tion in predicting the potential distribution of Olea
europea in Central and South Asia under current
and future climate scenarios (Representative Con-
centration Pathway; RCP 4.5 and RCP 8.5).

METHODS

Study area and input data
Given the near-global distribution of Olea euro-

pea sensu lato, either as a native species or as an
introduced species, we had the opportunity to
calibrate models across broad and diverse land-
scapes. Calibrating models across the most exten-
sive areas possible allows assessment of the
niche dimensions of the species across the most
diverse environmental background possible,
which helps greatly to avoid problems with trun-
cation of representation of environments and
associated model extrapolation (Owens et al.
2013). As such, our model calibration area was
the entire world (minus Antarctica and oceanic
areas). However, the region of particular interest
in our analysis was Central and South Asia
(5.68–53.93° E, 37.58–102.40° N), with adjoining
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areas of North Africa and the Arabian Peninsula.
The global extent for model calibration was cho-
sen in consideration of the accessible area (M) of
the species (Barve et al. 2011), whereas the Asian
focus of interpretation was based on the motiva-
tions of this study and the region of origin of
most of the authors.

Primary occurrence data (Fig. 1) with geo-
graphic coordinates were extracted from the
literature (Ahmed et al. 2009, Ashraf et al. 2016)
and from the Global Biodiversity Information
Facility (www.gbif.org). A gap in the distribu-
tional data centered on Pakistan was filled by
on-ground surveys. In all, 33,647 points were
gathered for the occurrence of the species world-
wide, but showed notable clusters and clumping;
we used SDMTools (Brown 2014) to rarefy these
points spatially such that no pair of points was
closer than 10 km; this step left 3557 points for
model calibration. Species distribution data were
separated evenly into calibration and evaluation
subsets at random to permit rigorous model
evaluation.

To permit model transfers into the future, we
focused model calibration on climatic variables,
which center on temperature and precipitation as

important drivers of distributions of species. Envi-
ronmental variable selection depends on their
impacts on the distributional potential of the spe-
cies; considerable collective experience points to a
significant role for climate in this regard (Pearson
2007, Kumar and Stohlgren 2009). We obtained 19
so-called bioclimatic variables from the World-
Clim archive (Hijmans et al. 2005, http://
www.worldclim.org/) at spatial resolutions of 100

(global extents, for model calibration) and 2.50

(Asian area of interest, for model transfer). For the
assessment of future distributional potential, we
downloaded corresponding data layers from the
CCAFS (Climate Change, Agriculture and Food
Security)-downscaled general circulation model
(GCM) data portal (http://www.ccafs-climate.org/),
in the form of data for two emissions scenarios
(RCP 4.5 and RCP 8.5) and five GCMs: MIROC-
MIROC 5, NCAR-CCSM 4, MOHC_HADGEM
2.CC, MPI-ESM-MR, and GISS-E2-R-CC. We
downloaded future climate data at 2.50 spatial
resolution for both RCP scenarios.

Data processing
Our general plan of analysis was to calibrate

and evaluate models at global extents at 100

Fig. 1. Current distribution of Olea europaea sensu lato worldwide.
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spatial resolution and then transfer them to the
Asian study area at 2.50 resolution for exploration
and assessment, as is summarized in Fig. 2.
One approach (Maxent) was implemented in a
standalone software platform (https://www.cs.
princeton.edu/~schapire/maxent/); the remaining
approaches were run via the openModeller plat-
form, which is designed to facilitate comparative
analyses (de Souza Mu~noz et al. 2011). We evalu-
ated all present-day climate variables (100, global
extent) for highly correlated variables using
SDMTools: One variable was removed from any
pair of variables showing Pearson’s product–
moment correlations >0.9 (Table 1).

Diverse approaches are available for modeling;
here, we focused on Maxent (Phillips et al. 2006),
GARP (Stockwell 1999), BIOCLIM (Nix 1986),
ANN (Pearson et al. 2002), and SVM (Drake

et al. 2006); we also used the CE and ED imple-
mentations within openModeller. We used Maxent
version 3.4.0k, available from at http://www.cs.
princeton.edu/~schapire/Maxent/ (Phillips et al.
2017). We chose the random seed and 10 boot-
strap replicates options, and left the remaining
parameters at default values.
For the remaining approaches, we used open-

Modeller version 1.1.0 (Giannini et al. 2010), avail-
able from http://openmodeller.sourceforge.net/.
openModeller is a platform that hosts multiple
algorithms that can be implemented in parallel
under comparable circumstances. We used the
GARP “best subsets-openModeller” implementa-
tion, plus BIOCLIM, ANN, SVM, CE, and ED. In
each case, we calibrated models globally (100) for
current conditions, and transferred models to the
Asian region (2.50) for interpretation. We evaluated

Fig. 2. Flowchart summary of data processing steps in this study.
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model predictions using the evaluation data subset
at global extents. We averaged across all individ-
ual GCM predictions separately for RCP 4.5 and
8.5 to provide a best guess as to the species’
response under two scenarios of future climate.

An important first step in assessing the outputs
of a study such as this one is a formal statistical
test to establish whether models are able to pre-
dict independent subsets of occurrence data better
than random expectations. The commonly used
true skill statistics and Cohen’s kappa both require
absence data, as well as presence data, and so are
not applicable in situations such as this one. We
used partial receiver-operating characteristic
(ROC) approaches, as they avoid at least some of
the failings of classical ROC approaches (Peterson
et al. 2008). We used an acceptable omission error
threshold of E = 10 (introduced in Peterson et al.
2008), and 1000 replicate 50% bootstrap resam-
plings to establish whether the ROC AUC (area
under the curve) ratio was above 1.0. Partial ROCs
were computed using online tools at http://shiny.c
onabio.gob.mx:3838/nichetoolb2/. Significance of
partial ROCs was assessed by direct count of the
proportion of replicate analyses with an AUC
ratio ≤1.0.

We simplified model outputs and improved
comparability among modeling approaches by
means of omission error-scaled thresholding.
That is, we began with lowest training presence

areas: the highest suitability level that includes
100% of the data on which the model was cali-
brated (“T100”; Pearson et al. 2007). When error
may exist among the available data, it is useful
to reduce the percentage included by the accept-
able omission rate E (Peterson et al. 2008);
hence, we explored T100-E for E = 5% and
E = 10%, such that higher acceptable omission
rate values identify smaller areas and higher
confidence in suitability.

RESULTS AND DISCUSSION

Model performance
Initial assessments of correlations between

environmental variables indicated four pairs of
variables with Pearson’s correlation coefficients
>0.9 (Table 1); removing variables from the envi-
ronmental dataset to avoid these correlations, we
ended up with mean diurnal range, isothermal-
ity, maximum temperature of the warmest
month, minimum temperature of the coldest
month, temperature annual range, annual pre-
cipitation, precipitation of the wettest month,
precipitation of the driest month, and precipita-
tion seasonality as environmental dimensions for
modeling. Minimum temperature of the coldest
month and maximum temperature of the warm-
est month were the most informative variables
for Olea europaea sensu lato; these variables were

Table 1. Pearson’s product-moment correlations among the 15 original “bioclimatic” variables.

Bio 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

1
2 0.5
3 0.8 0.3
4 �0.8 �0.2 �0.8
5 0.9 0.7 0.6 �0.5
6 0.9 0.3 0.8 �0.9 0.7
7 �0.7 0.0 �0.8 0.9 �0.3 �0.8
10 0.9 0.6 0.6 �0.5 0.9 0.8 �0.4
11 0.9 0.4 0.8 �0.9 0.8 1.0 �0.8 0.8
12 0.3 �0.2 0.5 �0.5 0.1 0.4 �0.6 0.2 0.4
13 0.4 �0.1 0.5 �0.5 0.2 0.5 �0.5 0.3 0.5 0.9
14 0.0 �0.3 0.2 �0.2 �0.1 0.1 �0.3 �0.0 0.1 0.7 0.3
15 0.3 0.5 0.2 �0.1 0.4 0.2 �0.0 0.4 0.3 �0.1 0.1 �0.5
16 0.4 �0.1 0.5 �0.5 0.2 0.5 �0.5 0.2 0.5 0.9 0.9 0.4 0.0
17 0.0 �0.3 0.2 �0.2 �0.1 0.2 �0.3 �0.0 0.1 0.7 0.4 0.9 �0.5 0.4

Notes: Correlations above r = 0.9 are shown in boldface. Variables 8, 9, 18, and 19 were omitted owing to known spatial
artifacts.
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the top two predictors in the Maxent model. The
least important variables were precipitation of
the driest month and precipitation seasonality.
Model outputs in terms of global extents were all
roughly comparable, corresponding more or less
closely to the known occurrences of the species.
Table 2 summarizes the results of the partial
ROC analyses: Results from all approaches
except CS had all replicate AUC ratios >1, such
that Maxent, GARP, BIOCLIM, ANN, SVM, and
ED models yielded predictions that were signifi-
cantly better than random expectations (P <
0.001). For CS, however, none of the replicate
AUC ratios was >1, so we conclude that its pre-
dictions were not better than random expecta-
tions (Table 2; Appendix S1: Figs. S1–S7).

Phillips et al. (2006) found that GARP and
BIOCLIM overpredicted suitable areas for plant
and animal species. Tarkesh and Jetschke (2012)
found that Maxent performed better than BIO-
CLIM and GARP. M�arquez (2006) compared
models for two herpetofaunal species at different
scales, and again concluded that Maxent offers
better predictions compared to BIOCLIM and
GARP. However, other authors have pointed out
that the metric of performance can have serious
effects on these conclusions and that average per-
formance does not inform particularly effectively
regarding model performance in any particular

case (Qiao et al. 2015). A general summary of
our results, then, specifically as regards success-
ful prediction of the random subset of the avail-
able occurrence data, is that the best of the
approaches was Maxent, followed by GARP,
SVM, BIOCLIM, and ANN.

Current and future distributional potential
Model results were developed for two RCP

emissions scenarios for future climate conditions
across Central and South Asia. Thresholded
maps showed clearly the differences between
results obtained by different approaches, both in
the present (Fig. 3) and under future conditions
(RCP 4.5 and RCP 8.5; Figs. 4 and 5). Maxent
models for the present day covered 5.9% of the
total study area under a T10 assumption set;
transferring these models to future conditions
yields predictions that covered 1.2 and 1.1% of
the Asian study area for RCP 4.5 and RCP 8.5,
respectively (Table 3, Figs. 4 and 5). This predic-
tion covered parts of southeastern China, Hima-
layan Burma and on the Potohar Plateau, and
parts of Afghanistan, Turkmenistan, Armenia,
Yemen, and Somalia (Figs. 4 and 5).
Genetic algorithm for rule-set prediction antici-

pated a somewhat broader potential area for the
species, covering 5.0% of the Asian study area in
the present (Fig. 3) and 4.8 and 4.7% of the area

Table 2. Summary of partial ROC values and AUC ratios for seven approaches to estimating the ecological niche
of Olea europea sensu lato.

Maxent GARP Bioclim ANN SVM CE ED

AUC at 0.1
Minimum 0.528 0.512 0.744 0.759 0.541 0.425 0.653
Maximum 0.589 0.580 0.839 0.865 0.607 0.462 0.706
Average 0.559 0.540 0.794 0.817 0.573 0.442 0.676
SD 0.010 0.010 0.014 0.019 0.011 0.005 0.008

AUC at 0.5
Minimum 0.496 0.485 0.500 0.500 0.494 0.474 0.495
Maximum 0.499 0.495 0.500 0.500 0.497 0.488 0.499
Average 0.498 0.490 0.500 0.500 0.495 0.481 0.497
SD 0.000 0.002 0.000 0.000 0.000 0.002 0.000

AUC ratio
Minimum 1.061 1.049 1.488 1.519 1.091 0.896 1.315
Maximum 1.182 1.174 1.677 1.731 1.224 0.948 1.416
Average 1.124 1.100 1.588 1.634 1.156 0.920 1.358
SD 0.020 0.018 0.028 0.038 0.021 0.007 0.015

Probability <0.001 <0.001 <0.001 <0.001 <0.001 >0.001 <0.001

Note: ANN, artificial neural networks; CE, climate space; ED, environmental distance; GARP, Genetic algorithm for rule-set
prediction; ROC, receiver-operating characteristic; SVM, support-vector machines.
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Fig. 3. Comparison of classified maps of seven approaches to modeling the ecological niche of Olea
europaea sensu lato for present-day climate conditions across Central and South Asia projection at 2.50 spatial
resolution.
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Fig. 4. Maps of modeled future potential distribution for Olea europaea sensu lato from Maxent, genetic
algorithm for rule-set prediction (GARP), and BIOCLIM (left side: RCP 4.5; right side: RCP 8.5).
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Fig. 5. Maps of modeled future potential distribution for Olea europaea sensu lato from artificial neural net-
works, support-vector machines, and environmental distance approaches (left side: RCP 4.5; right side: RCP 8.5).
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under RCP 4.5 and 8.5, respectively (Table 3,
Fig. 4). Genetic algorithm for rule-set prediction
thus predicts the same general pattern as Max-
ent, but covering a larger area. BIOCLIM antici-
pated a much-broader area (~34.8% of the Asian
study area), although thresholding is compli-
cated by the fact that BIOCLIM predictions are
very simple. BIOCLIM predictions with RCP 4.5
showed that highly suitable area increased,
whereas with RCP 8.5 moderately suitable area
decreased (Table 3, Fig. 4). ANN results were
similarly broad, covering 45.8% of the Asian
study area at present and increasing under future
conditions by 2.5–4.1%. SVM results were closely
similar in extent although somewhat different in
position as those of Maxent: 1.33% of the Asian
study area at present was identified as suitable
declining to 1.0% with RCP 4.5 and 0.8% with
RCP 8.5 (Table 3, Fig. 5). Environmental distance
identified 5.7% of the Asian study area as

suitable at present, declining to 1.9 and 1.6%
under the two RCPs, respectively (Table 3,
Fig. 4).

CONCLUSIONS AND RECOMMENDATIONS

In this study, we have explored diverse
approaches to estimating ecological niches for
O. europaea sensu lato under present-day condi-
tions and two scenarios of future climate.
Although six of seven approaches yielded model
predictions that were better than random (signifi-
cantly so), Maxent and SVM emerged as the two
approaches that showed good ability also to dis-
criminate between suitable and unsuitable sites
within our Asian study area, particularly given
the limited range of the species in the region
(Ashraf et al. 2016). These two approaches at
least captured the limited distributional potential
in the region, and thus were best able to

Table 3. Cumulative comparison of total suitable area (%) for current and future projected RCP scenarios for Olea
europaea sensu lato.

Models Classes

Global (100) Central Asia (2.50) Averaged (RCP 4.5) Averaged (RCP 8.5)

Current (%) Future (%)

Maxent Unsuitable 0.00 0.01 0.00 0.00
Less suitable 88.04 88.03 96.58 97.00

Moderately suitable 6.06 6.06 2.24 1.94
Highly suitable 5.90 5.90 1.18 1.06

GARP Unsuitable 75.88 73.36 67.66 66.82
Less suitable 4.56 9.18 17.90 19.49

Moderately suitable 8.92 12.44 9.63 8.98
Highly suitable 10.64 5.03 4.82 4.71

BIOCLIM Unsuitable 56.31 65.20 71.93 68.72
Moderately suitable 43.68 34.79 6.14 31.28
Highly suitable 0.01 0.00 21.93 0.00

ANN Unsuitable 39.78 25.03 13.66 11.01
Less suitable 14.32 26.69 34.74 35.95

Moderately suitable 1.97 2.50 3.29 3.12
Highly suitable 43.92 45.77 48.31 49.91

SVM Unsuitable 0.00 0.00 0.00 0.00
Less suitable 90.99 96.29 97.13 97.30

Moderately suitable 4.39 2.38 1.92 1.92
Highly suitable 4.62 1.33 0.95 0.77

Climate space Unsuitable 0.19 0.54 0.46 0.48
Less suitable 72.05 60.26 63.36 65.31

Moderately suitable 13.22 25.91 25.37 24.15
Highly suitable 14.55 13.30 10.82 10.07

Environment distance Unsuitable 25.75 14.61 3.14 2.85
Less suitable 31.32 38.38 58.21 61.33

Moderately suitable 33.06 41.35 36.71 34.27
Highly suitable 9.87 5.66 1.93 1.55

Note: GARP, genetic algorithm for rule-set prediction; ANN, artificial neural networks; SVM, support-vector machines.

 ❖ www.esajournals.org 10 May 2017 ❖ Volume 8(5) ❖ Article e01825

ASHRAF ET AL.



discriminate between suitable and unsuitable
areas, and avoid broad commission error.

As in previous such comparative analyses, the
dominant theme that emerged was that results of
climate projections for distributional shifts of
species are highly method dependent (Pearson
et al. 2006). The broad variation among appro-
aches can be appreciated in our Figs. 4 and 5, in
which very different future predictions emerged
from different modeling approaches. Most indi-
cated that likely future conditions will lead to at
least moderate impacts on the species’ distribu-
tional potential on our Asian study area. This
species has been documented to be in the process
of losing distributional area in some areas but
gaining in other, higher-elevation areas (Ashraf
et al. 2016).
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