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ABSTRACT
Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering
of dark matter plays a dominant role in the formation of all observed structures on scales from
a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these
structures so they can be observed. The observations in the last several decades have unveiled
opulent geometry of these structures currently known as the cosmic web. Haloes are the
highest concentrations of dark matter and host luminous galaxies. Currently the most accurate
modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying
the haloes from the distribution of particles in N-body simulations is one of the problems
attracting both considerable interest and efforts. We propose a novel framework for detecting
potential dark matter haloes using the field unique for dark matter–multistream field. The
multistream field emerges at the non-linear stage of the growth of perturbations because the
dark matter is collisionless. Counting the number of velocity streams in gravitational collapses
supplements our knowledge of spatial clustering. We assume that the virialized haloes have
convex boundaries. Closed and convex regions of the multistream field are hence isolated
by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the
smoothed multistream field. In a single-scale analysis of high multistream field resolution and
low softening length, the halo substructures with local multistream maxima are isolated as
individual halo sites.

Key words: methods: numerical – dark matter – large-scale structure of Universe – cosmo-
logy: theory.

1 I N T RO D U C T I O N

The web-like distribution of matter initially revealed by redshift sur-
veys (with less than 300 galaxies by Gregory & Thompson 1978 and
around 1000 galaxies by de Lapparent, Geller & Huchra 1986) and
numerical modelling (using N-body simulations of around 30 000
particles by Klypin & Shandarin 1983; Shandarin 1983a) pioneered
morphological investigations of the cosmic web structures (see
Bond, Kofman & Pogosyan 1996, also reviews by Shandarin &
Zeldovich 1989; van de Weygaert & Bond 2008). Detailed map-
ping of the Universe has crossed three million objects today, by
catalogues such as the Sloan Digital Sky Survey (SDSS; SDSS
Collaboration et al. 2016). The upcoming Large Synoptic Survey
Telescope (LSST; LSST Science Collaboration et al. 2009) is ex-
pected to probe the nature of dark matter (DM) using several bil-
lion galaxies. On the other hand, cosmological simulations have
improved immensely in several aspects – numerical techniques,
parallelization schemes, inclusion of various physical processes,
volume and resolution (some of these developments are summa-
rized in Bagla & Padmanabhan 1997; Bertschinger 1998). Modern
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state-of-the-art simulations like the Illustris project (Vogelsberger
et al. 2014), the Evolution and Assembly of Galaxies and their Envi-
ronments (EAGLE) project (Schaye et al. 2015) and Q-Continuum
(Heitmann et al. 2015) use more than a billion DM particles. Finally,
the ever improving data analysis techniques have resulted in new
and sophisticated density estimators, geometrical and topological
indicators. A plethora of algorithms for identifying and character-
izing DM structures have emerged in last two decades (a summary
on cosmological data analysis is highlighted in van de Weygaert
& Schaap 2009). Considering all these improvements, it is worth
noting that the protostructures detected in the modern simulations
are qualitatively similar to the quasi-linear description of cluster-
ing by Zel’dovich approximation (ZA; Zeldovich 1970). Location
and properties of these structures, i.e. the voids, walls, filaments
and haloes, may be inconsistent across different structure finding
algorithms, but that is primarily due to varied definitions.

Most structure finders are halo finders only and majority of them
are stemmed from three underlying algorithms. One of them is
the spherical overdensity (SO) halo finder that defines haloes as
spherical regions whose mass density exceeds the mean density by a
specified factor (Press & Schechter 1974). Another is the friends-of-
friends (FOF) halo finder describing haloes as the groups of particles
separated by less than a specified linking length often chosen as
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0.2 times the mean particle separation (Davis et al. 1985). The FOF
can be also used for identifying filaments and walls/pancakes by
increasing the linking length (Zeldovich, Einasto & Shandarin 1982;
Shandarin 1983b; Shandarin, Habib & Heitmann 2010). Finally,
the DENsity MAXimum (DENMAX) halo finder assumes that the
haloes are the peaks of the density fields and thus selects the particles
concentrated in the vicinity of the density maxima (Bertschinger &
Gelb 1991). One of the common features of these techniques is
that all three are based on density, in one form or another. And
all of them depend on free parameters that are chosen chiefly on
the ‘merits principle’ (Forero-Romero et al. 2009) rather than on
physics. Over the years all three kinds of the halo finders have
been experiencing various modifications and improvements. A few
examples from a long list of these modifications may include the
following.

(i) Improvised techniques of generation of the density field from
the particle positions, and finding spherically bound overdensities
(Lacey & Cole 1994; Weinberg, Hernquist & Katz 1997; Jenkins
et al. 2001; Evrard et al. 2002; Neyrinck, Gnedin & Hamilton 2005;
Knollmann & Knebe 2009; Planelles & Quilis 2010; Sutter & Ricker
2010, etc.).

(ii) Adaptive methods controlling the linking length in meth-
ods using FOF (Davis et al. 1985; van Kampen 1995; Gottlober,
Klypin & Kravtsov 1999; Springel et al. 2001b; Habib et al. 2009;
Rasera et al. 2010, etc.).

(iii) Adaptive methods for searching the positions of density
maxima (e.g. Klypin et al. 1999).

(iv) Generalization of FOF and DENMAX techniques to six-
dimensional phase space, and many others (such as 6DFOF by Die-
mand, Kuhlen & Madau 2006 and ROCKSTAR by Behroozi, Wechsler
& Wu 2013 use velocity–position space with parameters analogous
to linking length).

(v) Computing hierarchical tree of clusters in the phase space
such as the Hierarchical Structure Finder (MacIejewski et al. 2009),
and the 6D Hierarchical Overdensity Tree (Ascasibar 2010).

(vi) Hybrid algorithms: frameworks such as the Hierarchical
Bound-Tracing algorithm (Han et al. 2012) and SURV (Giocoli
et al. 2010) identify haloes at multiple time-steps from the sim-
ulation to find prospective subhaloes. In addition, there are HOP
methods by Eisenstein & Hut (1998), Tweed et al. (2009) and Skory
et al. (2010).

A detailed comparison of several halo/subhalo finders is pro-
vided in Knebe et al. (2011, 2013) and Onions et al. (2012). In
a nice summary discussing these developments and describing a
few new suggestions they concluded that there was no general
consensus for a precise definition of a halo or a subhalo. Con-
sequently, there were different estimates of number of haloes,
halo mass functions, halo centre locations, boundaries and other
parameters.

There are significant concerns with SO, DENMAX and FOF
algorithms–both in terms of underlying mechanisms of halo forma-
tion and the parameters used in halo identification. SO is motivated
by the analytical toy model of the collapse of a top-hat spherical
density perturbation. Parameters of the virial radii rvir and virial
mass Mvir are determined by the regions with density ρvir ≥ �vir ρb,
where ρb is the background density of the simulation box. �vir is
generally taken around 180 or 200, derived for an isolated spherical
collapse model, and it varies for different cosmologies and red-
shift. The peaks in cold dark matter (CDM) models are not only
aspherical, but their collapse is subject to tidal forces, mergers and
presence of substructures–none of these complexities are weighed
in the spherical collapse model.

For FOF, the free parameter of linking length is generally taken
as b = 0.2 times the mean separation of particles at z = 0. This
interparticle separation corresponds to �vir ≈ 180 if the halo has an
isothermal density profile, ρ ∝ r−2. Using percolation theory, More
et al. (2011) argued that this corresponds to a rather wide range of
overdensities depending on halo mass and density profiles. They
found out that b = 0.2 corresponds to local overdensity δ within
the enclosed halo to be in the range of 250–600. Moreover, the
resulting FOF-haloes need not have a compact geometry: often the
haloes are irregularly shaped, which is unlikely if the haloes are
virialized. Hence modern algorithms redefine the halo boundaries
by excluding particles using post-processing techniques. In recent
simulations with clear delineation of walls and filaments (Angulo,
Hahn & Abel 2013), b = 0.05 was used for finding FOF-haloes
since the traditional value of b = 0.2 corresponded to structures that
percolate into the web structure.

Absence of dynamical traits in the FOF and SO algorithms is
arguably more crucial. In phase space, the halo collapse mod-
els show collisionless DM particles in oscillatory motions about
a core, at successive foldings of the phase-space sheet. The velocity
field within each oscillatory spiral is multivalued in physical space.
Incrementing multistream shells, separated by caustic surfaces se-
quentially trace the structures of the cosmic web walls, filaments
and the haloes. Majority of the mass accretion into the haloes along
the filaments: from lower multistreams into higher. Thus the DM
haloes are not independent of filaments around them, and the hi-
erarchical layers of multistreams represent this portrait precisely.
This picture of structure formation was initially theorized using ZA
(Zeldovich 1970) and in context of caustics (Arnold, Shandarin &
Zeldovich 1982) and in the adhesion approximation (Gurbatov et al.
1989; Kofman et al. 1992). Shandarin & Zeldovich (1989) reviewed
gravitational evolution of density perturbations in the context.

It has been demonstrated that the multistream field in Eulerian
space can be computed directly from the Lagrangian submanifold
(Abel, Hahn & Kaehler 2012; Shandarin, Habib & Heitmann 2012).
About 90 per cent of the field is single-streaming voids, and the rest
of the volume comprises multistream walls, filaments and haloes.
Ramachandra & Shandarin (2015) found the multistream value of
nstr ≈ 90 corresponds to virial density �vir = 200. On the other hand,
DM particles are identified by Falck, Neyrinck & Szalay (2012) as
belonging to haloes if they undergo flip-flop along three orthogonal
axes. These analyses have opened up a new avenue in studies of
halo formation, both qualitative and quantitative. Re-investigations
of halo spins, physical radii of the halo and substructure in the
light of streaming phenomena have shown that the halo structures
and formations are more complicated than previously believed.
Vogelsberger & White (2011) investigated the distribution of
streams in small haloes at various redshifts. They concluded that
tracking caustics and streams is better than density, since density
fields are noisy in the dense inner regions of haloes. In another study,
More, Diemer & Kravtsov (2015) argued that the ‘splashback ra-
dius’ – distance from the halo core to the first caustic enumerated
from outside – is a better physical indicator of DM halo boundary
than the virial radius (also see the discussion on turn-around ra-
dius of bound objects by Lee & Yepes 2016). Angulo et al. (2013)
also agree with the view that the locally overdense regions corre-
spond better with the volumes within the first caustic than the virial-
ized DM clumps. Recent toy model of anisotropic halo collapse by
Neyrinck (2016) considers intersecting multistream filaments form-
ing spinning nodes. Ramachandra & Shandarin (2017) showed that
the virial surfaces of FOF haloes have varying number of streams,
including single-streams. Study by Shandarin & Medvedev (2017)
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Figure 1. Dynamical collapse of DM in one-dimensional universe. Top panels show the ( p, x) phase-space manifold of the DM sheet at redshifts z1, z2, z3

and z = 0. Dots represent the DM particles. The momentum values are chosen at arbitrary scales. Bottom panels show the corresponding multistream field
nstr(x, z) (red) and density field ρ(x, z) (grey).

delineated the rich substructure of haloes using another derivative
parameter from the Lagrangian submanifold called the ‘flip-flop’
defined on the Lagrangian space.

In this paper, we identify potential haloes by utilizing multi-
streaming as the governing dynamical phenomena. A review of
the DM particle clustering in a one-dimensional universe is made in
Section 2, and the concept of multistream field is extended to higher
dimensions. The multistream field is computed on the cosmological
simulations described in Section 3. The halo identification frame-
work in this field is described in Section 4. This algorithm isolates
convex regions of the multistream field using Hessian eigenvalues,
each enclosing a local multistream maximum. Without employing
any non-local thresholds that several halo finders generally use,
these convex multistream regions are identified as potential halo
sites. We also illustrate the significance of multistream refinement
and softening scales in finding subhaloes. However, this paper does
not focus on adaptive multiscale analyses for substructure stud-
ies. A few properties of the multistream haloes are discussed in
Section 5, and comparison of these haloes with AMIGA halo finder
(AHF) and FOF algorithms is done in Section 6. We also discuss
the spatial distribution of the DM haloes along the percolating web
structure.

2 P H A S E - S PAC E R E P R E S E N TAT I O N O F
G R AV I TAT I O NA L C L U S T E R I N G

We begin with a simple illustration showing the formation of a
few haloes in a one-dimensional simulation. DM clustering in a
(1+1)-dimensional phase space ( p, x) (where p is the momentum
and x is the comoving Eulerian coordinate) at four successive time-
steps is shown in the top panels of Fig. 1. The lower panels show
the corresponding multistream field (Abel et al. 2012; Shandarin
et al. 2012) nstr(x, z) (red) and density field ρ(x, z) (grey). At z1

(leftmost panel), velocity is single-valued in Eulerian coordinates
shown, except at a small three-stream region near x = 5π/4. This is
the first instance of multistreaming in the region, which previously
had nstr = 1 throughout. The interface of nstr = 1 and nstr = 3
regions is also the location of the first caustic. On the other hand,
the density calculated at a high resolution shows variations, even

in the monostreaming regions. The variations are especially more
pronounced around the caustic (near x = 5π/4).

The gravitational clustering is more evolved in the two centre
panels (z2 and z3) with three prominent phase-space spirals. The
regions between the spirals have sparsely distributed DM particles,
and have nstr = 1. Each spiral corresponds to a location of gravi-
tational collapse with nstr > 1 region, and higher density. A few of
these regions within three-streaming regions are elevated to nstr = 5.
The corresponding density field is not only noisier, but also reaches
very high values at the caustics. This is also a primary distinguish-
ing feature between mass density fields and multistream fields: at
the locations of caustic, the density (regardless of how it is calcu-
lated) is not smooth (Vogelsberger & White 2011). Computational
limitations on simulation resolutions and refinement of density cal-
culations soften the fields, exceptionally at the zero volume mea-
sure regions of caustic surfaces. On the other hand, multistream
values are increased by finite values at caustic surface locations –
this property is preserved at higher simulation resolutions and any
refinements of multistream field calculations – although nstr may
be resolved enough to have intermediate even-values. Multistream
fields are also intrinsically discrete valued, which is not true with
density fields. Discreteness of multistream fields is discussed in
more detail in Ramachandra & Shandarin (2017).

The rightmost panel in Fig. 1 shows the final structure at z = 0.
Two large spirals have spatially merged. These collapse environ-
ments are naturally very complex, with an increased number of
successive caustic formation and merging. The corresponding ve-
locity streams also show a more complicated structure. Clearly, the
multistream field has a saddle point that is not as low as nstr = 1.
This poses a bigger problem in the context of most of halo detection
algorithms, and we discuss this in the appendix.

2.1 Collapse in higher dimensions

Extending the above results of one-dimensional collapse into higher
dimension is vital, primarily in the context of halo formation. The
individual spiral collapses in the one-dimension happen at a small
region (leftmost panel in Fig. 1), and the region grows by volume,
whilst increasing the spiral twists within. This is in contrast with
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the theoretical top-hat spherical model of halo formation when the
shell crossing would not happen until the final moment of the col-
lapse of the entire halo into a point-like singularity. Thus all shell
crossings happen at a single point and at a single instant of time.
The collapse of an isolated, spherically symmetric density peak is a
very exceptional case, because every spherical shell feels only the
force due to interior mass until it collapses into the caustic region.
The collapse of the real peak proceeds in the field generated by the
mass distribution – in both the mass within the forming halo and
the mass outside the halo.

The collapse of a uniform ellipsoid also results in a simultane-
ous collapse of the entire ellipsoid, however this time not into a
point but into a two-dimensional ellipse (Lin, Mestel & Shu 1965;
Icke 1973; Eisenstein & Loeb 1995). Another customarily used
spherical model of halo formation by Fillmore & Goldreich (1984)
and Bertschinger (1985) does not consider the initial collapse at
all. Instead it assumes self-similar initial conditions and the halo at
advanced stage with formally infinite number of spherical caustic
shells.

The ‘core’ in a collisionless DM collapse (in Fig. 1) is a region
where a multistream region is first formed due to caustic formation.
This is conceptually similar to a shell crossing. However, there are
successive caustic formations that follow the first shell crossing,
and they are not limited to the halo cores. Each caustic increases the
multistream value within by a finite number. The cores of the multi-
stream haloes obviously have the local maxima of velocity streams
in Eulerian coordinates. On the contrary, mass densities have infi-
nite values at the caustic surfaces, including the core. Discontinu-
ities in densities at these regions of sharp multistream transitions
are clearly seen if the mass and spatial resolutions were sufficiently
high (see two-dimensional simulations by Melott & Shandarin 1989
and three-dimensional simulations by Hahn, Abel & Kaehler 2013;
Angulo et al. 2016; Hahn & Angulo 2016, etc.).

In three-dimensional simulations, the Lagrangian submanifold
twists in complicated ways in a six-dimensional phase space. This
is due to complexities involving caustic formations in higher di-
mensions, which is true even in the ZA; see Arnold et al. (1982)
and Hidding, Shandarin & van de Weygaert (2014) for detailed
analyses of caustic formation. The resulting intricate geometrical
structures can be characterized by the nstr field. Nearly 90 per cent
of the volume in N-body simulations are single-streamed voids at
z = 0 (Shandarin et al. 2012, also see Falck & Neyrinck 2015
for a percolation analysis of single-streaming voids). From the vi-
sualizations in Ramachandra & Shandarin (2015) and percolation
analysis of Ramachandra & Shandarin (2017), we also know that
the nstr = 3 regions mostly form connected wall-like structures, un-
like the isolated patches as seen in one-dimensional simulations of
Fig. 1. The structures become predominantly filamentary at higher
thresholds of nstr � 17. Subsequently, the regions around the multi-
stream maxima have isolated closed surfaces (e.g. in Fig. 2), which
may be identified as halo locations.

Caustic formations and mass accretion are also seen to occur more
along the higher streams, which makes the haloes non-spherical,
with the alignment generally determined by a complicated inter-
play of the intensities of the streams from neighbouring filamentary
structures. Number of streams corresponding to the DM halo also
has a local environment dependence. The three small haloes in
Fig. 2, where the number of streams is higher than the neighbouring
filaments, are aligned along three intersecting filaments. Halo envi-
ronment studied in Ramachandra & Shandarin (2015) shows simi-
lar hierarchical variation in nstr values. The halo environments are
thus very complicated, and empirical thresholds (on multistream or

Figure 2. Multistream field contours: the multistream field is calculated at
eight times the native resolution. Each inner convex blobs (red) surrounds lo-
cal multistream maxima inside. Surrounding outer shell (blue) is not convex
throughout the surface, and the outermost grey multistream surface displays
a filamental geometry.

density fields) may not account for all the haloes uniformly. Hence
we use a local geometrical method to identify potential haloes in
multistream fields.

The first non-linear structures in the web have nstr = 3. By visual
inspection, these regions generally form a fabric-like open struc-
tures that resemble walls. The surface contours of higher nstr are
embedded within the walls. Fig. 2 shows a filamentary structure of
the web at nstr � 17. The figure also shows regions around local
maxima of the multistream field, which are generally located at the
intersections of filaments.

3 SI M U L AT I O N S A N D TO O L S

The emphasis of this paper is to demonstrate the use of multi-
stream field in identifying potential DM haloes, and not a full
statistical analysis of halo properties. For this purpose, we have
run simulations at two different mass resolutions (number of par-
ticles Np = 1283 and 2563, and respective mass of particles,
mp = 3.65 × 1010 and 4.57 × 109 h−1 M�), with the same pe-
riodic side length L = 100 h−1 Mpc. The gravitational softening
length ε = 20 and 10 h−1 kpc for low- and high-resolution simula-
tion, respectively. The initial conditions are generated by MUSIC
(Hahn & Abel 2011) with the transfer function from Eisenstein &
Hu (1998) at a redshift of zini = 80. The �CDM cosmological sim-
ulation run using GADGET-2 (Springel et al. 2001a; Springel 2005) is
similar to the ones used in Ramachandra & Shandarin (2017). The
cosmological parameters used in the simulation are �m = 0.276,
�� = 0.724, the Hubble parameter, h = 0.703, the power spectrum
normalization, σ 8 = 0.811 and the spectral index, ns = 0.961.

Multistream field nstr(x) is calculated on the GADGET-2 snapshots
at z = 0 using the tessellation scheme by Shandarin et al. (2012).
The multistream field can be computed at the native resolution of
the Lagrangian grid of the simulation, i.e. at refinement factor of
ll/ld = 1 (where ll is the interparticle separation in Lagrangian grid
and ld is the side length resolution of diagnostic grid). Arbitrarily
high refinement factors can be utilized in computing multistream
fields as well, for example ll/ld = 8 for the halo multistream envi-
ronment shown in Fig. 2. For analysis of full simulation boxes, we
restrict ll/ld to 1 and 2.

Two halo finders are also used to identify potential haloes with
20 or more particles at z = 0: a classic FOF method (Davis et al.
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1985) using a popular linking length b = 0.2 (e.g. Frenk et al.
1988; Lacey & Cole 1994), and the Adaptive Mesh Investigations
of Galaxy Assembly (AMIGA halo finder or AHF; Gill, Knebe &
Gibson 2004; Knollmann & Knebe 2009). Halo catalogues from
these halo finders are used to compare with our implementation of
halo detection in the multistream field. The halo candidates from
AHF and FOF algorithms are hereafter referred to as AHF-haloes
and FOF-haloes, respectively.

4 H A L O E S I N T H E M U LT I S T R E A M F I E L D

We intend to identify haloes in the nstr(x) field instead of using just
the position coordinate data. While the eigenvalue analysis itself
is done at a chosen time, the multistream field inherently has data
from six-dimensional Lagrangian space (q, x) that contains the full
dynamical information, similar to the phase-space sheet albeit in a
different form. Dynamical history that is embedded in the multi-
stream field is crucial in understanding the strength of gravitational
binding of the particles. A physically motivated distinction between
void and gravitationally collapsed regions – voids are the regions
with a single stream – is a unique feature of multistream analysis
(Shandarin et al. 2012; Ramachandra & Shandarin 2017). Thus the
haloes detected from local maxima of the nstr field can be ensured
to be away from the monostreaming voids. Methods based on link-
ing length or density fields may not be able to ensure that all the
particles in haloes are away from voids (as shown for FOF haloes
in Ramachandra & Shandarin 2017).

Numerical analyses of scalar fields generally depend on resolu-
tion as opposed to particle coordinates analysis tools like FOF. The
multistream field conveniently has an advantage of being less noisy
than mass density (Shandarin et al. 2012, also see the appendix in
Ramachandra & Shandarin 2017).

4.1 Hessian of multistream fields

Hessian matrix H(f ) of a scalar field f involves local second-
order variations in three orthogonal directions. Each element of the
Hessian matrix Hij (f ) (where i and j can be any of x, y or z direc-
tions) is given by equation (1):

Hij (f ) = ∂2f

∂xi∂xj

. (1)

By choosing f = −nstr(x) (smoothened if necessary), local multi-
stream variations can be diagnosed. The Hessian matrices at each
point on the configuration space are always symmetric matrices, re-
sulting in real eigenvalues. The Hessian eigenvalues in multistream
fields differ from that in density, gravitational potential or velocity
shear tensor. We refer the readers to Ramachandra & Shandarin
(2017) for an extensive analysis on multistream Hessians and their
geometrical significance. Some of the salient features of Hessian
eigenvalues of multistream field are as follows.

(i) Every element of Hessian matrices H(−nstr), and conse-
quently the eigenvalues λis are zero in single-stream voids. Even
if the multistream field is smoothed, the eigenvalues peak at zero.
This property is unique to multistream fields. Eigenvalues of Hes-
sians of density (Aragon-Calvo et al. 2007), velocity shear tensor
(Libeskind et al. 2013) do not peak at zero, and the eigenvalues of
deformation tensor are negative in voids as a result of continuity
equation (shown in Zel’dovich formalism as well).

(ii) The eigenvalues of these Hessian matrices are always real,
and depending on if their values are positive or negative, one may

infer local geometrical features in the field. For our choice of
−nstr(x) as the domain of Hessian, at least in principle, the con-
ditions for geometric criteria are: λ1 > 0 > λ2 ≥ λ3 for locally flat
regions; λ1 ≥ λ2 > 0 > λ3 for locally tubular structures and λ1 ≥
λ2 ≥ λ3 > 0 for clumped blobs.

(iii) Convex neighbourhoods around local maxima of the multi-
stream field are isolated by the positive definite Hessian matrices.

(iv) The resulting Hessian eigenvalues characterize the geometry
in a four-dimensional hyperspace of (−nstr, x, y, z). The boundary
of a region with λ1 ≥ λ2 ≥ λ3 > 0 is a closed convex contour in
this hyperspace, and thus its projection on to the three-dimensional
Lagrangian space is also closed and convex.
Of the three geometries that are characterized by the eigenvalue
conditions, we investigate the convexity of multistream contours in
the context of halo finding in the section below.

4.2 Halo finder algorithm

Our goal is to isolate the locations of convex geometries in the
multistream flow field. Prospective regions of the halo locations
in the web structure are selected by positive definite condition of
the Hessian H(−nstr): λ1 > 0, λ2 > 0 and λ3 > 0, or simply the
smallest of the eigenvalues, λ3 > 0. We also filter out the regions if
the multistream values inside do not suggest gravitational collapse
into haloes. The sequence of our halo detection framework is listed
below.

(i) The multistream flow field is calculated on a diagnostic grid.
The number of tetrahedra that encompasse each vertex in the grid
gives the nstr field. Top left-hand panel of Fig. 3 shows the multi-
stream web structure in a slice of the simulation with nstr > 1 in
grey and nstr ≥ 7 in blue.

(ii) The discrete multistream flow field is smoothed in order to re-
duce numerical noise. We have used Gaussian kernel for smoothing
in our analysis. Effect of smoothing scales in the halo identification
is discussed in Section 4.3.

(iii) Second-order variations of the smoothed −nstr(x) is com-
puted at each point in the field. This gives symmetric Hessian ma-
trices for this field whose eigenvalues are real. Ordered eigenvalues
of the Hessian λ1 ≥ λ2 ≥ λ3 are calculated. The λ3 field is shown
in the top right-hand panel of Fig. 3.

(iv) Using segmentation techniques, each region with λ3 strictly
greater than 0 within nstr ≥ 3 regions of multistream field is isolated
and labelled. This condition for each halo candidate guarantees that
it is in the region where at least one gravitational collapse happened
within the halo boundary. Mass particles belonging to these regions
are shown as dark spots in the top right-hand panel of Fig. 3.

(v) The multistream field has a range of values within the isolated
sites. We impose constraints on the isolated regions to rule out the
labels with low multistream values. The local maxima of nstr inside
each halo must be at least 7. By this restriction, it is ensured that the
halo sites with three Lagrangian submanifold foldings are selected.
Bottom left-hand panel of Fig. 3 shows patches that are discarded
in red. The resulting λ3-haloes are shown in the bottom right.

(vi) In our comparisons with other halo finders in Section 6, we
also used an additional constraint on the minimum number of mass
particles in the haloes to be 20, which is generally used as a criteria
in several halo finders.

For the illustration halo detection framework in this section, we
have calculated the number-of-streams at refinement factor of 2 and
smoothing scale of 0.39 h−1 Mpc (equal to the grid length of the
multistream field) for the simulation box of 1283 particles and size
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Figure 3. Detection of potential halo candidates in the multistream field:
algorithms of segmentation and filtering are illustrated in a smaller slice of
40 × 40 h−1 Mpc slice of the simulation box. Top left-hand figure shows the
multistream field of the slice. Voids (white) are the regions with nstr = 1,
rest are non-void structures. Blue patches within the structure (grey) are
the regions with gravitational collapses in more than one direction, i.e. nstr

≥ 7. Top right-hand figure shows the smallest eigenvalue λ3 field. The
value of λ3 is close to 0 in most of the regions (yellow), including the
voids. Regions with λ3 > 0 and nstr > 1 are isolated (black spots) using
image segmentation techniques. Bottom left-hand panel shows the filtering
scheme: the red patches do not have maxima of nstr ≥ 7 in the regions,
hence are filtered out. The remaining potential halo regions with more than
20 particles are shown in the bottom right-hand panel.

L = 100 h−1 Mpc. Hessian matrices and eigenvalues are calculated
on the same diagnosis grid. Results of the halo detection scheme for
simulation box of higher mass resolution and different smoothing
factors are discussed in Sections 6 and 4.3. Hereafter we refer to
the potential DM haloes detected from the Hessian analysis of the
multistream field as λ3-haloes for brevity.

Applying the above scheme on the simulation with side length
of 100 h−1 Mpc and 1283 particles (with cosmological parameters
mentioned in Section 3), we detected approximately 50 000 regions
satisfying λ3 > 0 within the non-void in the multistream field of
refinement factor ll/ld = 2 and smoothing scale of grid length,
i.e. 0.39 h−1 Mpc. We filtered out the segments with local maxima
of nstr < 7, and around 14 000 regions remained as prospective
haloes. Majority of these regions have less than 20 particles, which
are excluded in the halo catalogues. On the whole, our algorithm
detected about 4500 haloes with more than 20 particles in the entire
simulation box. We have not applied virialization to define the halo
boundaries. A more detailed study of halo edges, and comparison
with that of FOF-haloes and AHF-haloes is done in Section 5.
Here we concentrate on the three vital factors in our framework:
local geometrical indicators λis, the softening scale of the field and
multistream thresholds.

The maximum values of λ1, λ2 and λ3 in each of the haloes
have peaks away from 0 as shown in Fig. 4. The median values of
max(λ1) and max(λ2) are in the range of 1–10 (Table 1), in spite of
the threshold for λ3 being barely positive, by definition. Hence the

Figure 4. PDF of highest λ1, λ2 and λ3 values in each of 4492 haloes
detected by our algorithm. The peaks of the PDF are in the range 1–10.
Shaded regions represent 1σ error.

Table 1. Statistics of the Hessian eigenvalues in the halo candidates.

Statistics λ1 λ2 λ3

Minimum 1.5 0.5 1.3 × 10−2

Maximum 1.7 × 103 1.5 × 103 1.1 × 103

Median 10.5 5.5 1.9

interior of the potential halo segments is quite convex, with a local
maximum inside. In some haloes, the local maxima of eigenvalue
are in the order of thousands, as tabulated in Table 1.

With this algorithm, we obtain prospective DM haloes – regions
with a local maximum of the multistream field in the interior of
their closed convex surfaces. The haloes are detected without using
density fields or linking lengths between particles. The parameters
in the algorithm are entirely based on features of the multistream
field and local geometry using Hessian matrices.

4.3 Effect of smoothing

In order to reduce noise, the field is smoothed for our analysis using
a Gaussian filter. The effect of smoothing scale on the distribution
of the eigenvalue λ3 in the simulation of 1283 particles is shown
in Fig. 5. Effect of softening on the multistream fields does not
alter the distribution of multistream distribution significantly (as
shown in fig. 10 of Ramachandra & Shandarin 2017). However,
the second-order variation (and consequently the Hessian eigenval-
ues) is significantly changed due to the softening of the edges of
structures. Probability distribution function (PDF) of λ3 at multi-
stream smoothing scale of the half the side length of diagnostic grid,
0.5 ld = 0.20 h−1 Mpc, is noisier than in the scales of ld and 2 ld.
However, at every scale, the PDF peaks at 0. The volume fraction
of regions with λ3 > 0 (i.e. with positive curvature) is 2.4 per cent,
2.3 per cent and 2.5 per cent for scales 0.20, 0.39 and 0.78 h−1 Mpc,
respectively. For the detection of haloes in Section 4, we only look
at these regions.

In addition to reducing the numerical noise, smoothing of the
multistream field also results in softening of the substructures
(Ramachandra & Shandarin 2017). Since our framework of de-
tecting haloes isolates the multistream regions with local maxima,
the closed curvatures are resolved separately. The halo or subhalo
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Figure 5. The distribution of λ3 in the simulation box of 1283 particles and
multistream field of refinement factor ll/ld = 2. Three smoothing scales are
shown.

Table 2. Number of λ3-haloes identified at smoothing of nstr(x) at different
scales.

Np 0.20 h−1 Mpc 0.39 h−1 Mpc 0.78 h−1 Mpc

1283 5181 4492 2923

2563 27 929 18 221 7897

regions, which enclose the local maxima of the nstr field, vary with
the smoothing scale of the multistream field. By increasing smooth-
ing of the multistream field, the number of haloes is reduced as
shown in Table 2. In the simulation with 2563 particles, 27 929
λ3-haloes are detected at smoothing scale equal to the diagnostic
grid length, ld = 0.20 h−1 Mpc. The number of haloes decreases to
18 221 and 7897 at softening scales of two and four times the grid
lengths, respectively.

Moreover, since the spatial resolution is higher at the low soften-
ing, more small haloes are detected, as shown in lower mass regime
of halo mass functions in Fig. 6. The tail of halo mass functions re-
veals that large haloes are more massive for higher softening scales.
For instance, the largest haloes for the same simulation with multi-
stream softening length of 0.20, 0.39 and 0.78 h−1 Mpc have 30 650,
38 333 and 56 257 particles, respectively.

The subhalo finder methods (see Onions et al. 2012 and refer-
ences therein) identify substructures within a large host halo. The
subhaloes are resolved individually as λ3-haloes at different scales
from our algorithm if the local maxima of the smoothed multistream
field is enclosed within the boundary.

4.4 Effect of multistream thresholds

Environmental dependence of the haloes results in various mul-
tistream values for the halo core. Theoretical toy models of halo
formation such as the tetrahedral collapse model (Neyrinck 2016)
describes a three-dimensional halo with four filaments accreting
mass into it, which has 15 stream crossings. Ramachandra &
Shandarin (2015) have previously showed that a high threshold
of nstr ≥ 90 is equivalent of virial density of ρvir = 200, and filters
most of the large haloes above 1013 M�.

The algorithm used for detecting multistream haloes initially de-
tects all the closed regions in the multistream (nstr > 1) regions of the

Figure 6. Top panel shows halo mass functions of the potential λ3-haloes
in the multistream field refinement factor ll/ld = 2 with various smoothing
scales. Simulation box has 2563 particles. Lower panel shows the deviation
of the each halo mass function with respect to their average.

cosmological simulation. In order to exclude some of the obvious
non-halo sites, we impose a lower threshold of nstr ≥ 7 on the mul-
tistream maximum (these regions were also seen as parts of walls
or filaments in Ramachandra & Shandarin 2015), so that all the
sites with three or more foldings in the Lagrangian submanifold are
chosen. Combining this with the conditions on local eigenvalues,
number of particles in haloes etc., we got a pretty good correspon-
dence with other halo finders as demonstrated in Section 6.

Although this condition is by no means strict, it is necessary
to check the validity of the assumption. Fig. 7 shows the halo
mass functions for the haloes detected with changing thresholds on
the multistream values of the halo cores. The figure demonstrates
that increasing the cut-off from nstr ≥ 3 to ≥25 systematically
excludes small mass haloes while the number of haloes with M �
2 × 1012 M� remains the same.

5 H A LO PRO PERTIES

Multistream environment of haloes can be very diverse.
Ramachandra & Shandarin (2015) demonstrated that a majority
of the FOF-haloes are in contact with the single-streaming voids.
Illustration in Ramachandra & Shandarin (2017) also shows that a
large number of FOF-haloes have more than 10 per cent void on the
spherical surfaces with virial radii. The λ3 haloes are significantly
different: none of the λ3-haloes are in contact with the regions where
gravitational collapse has not occurred. This is guaranteed by the
lower bound of nstr = 3 on all potential halo candidates. Condition
on the multistream field within the potential halo sites also en-
sures that there are collapses along more than one direction, which
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Figure 7. Halo mass functions of the potential λ3-haloes in the multistream
field refinement factor ll/ld = 2 (in simulation box with Np = 2563) with
various thresholds on local maxima of nstr within the halo. Lower panel
shows the deviation of the each halo mass function with respect to their
average.

Table 3. Local maxima and minima of nstr in each of 4492
haloes. The highest nstr values in the interior of haloes span
over a large range of values. Low values of nstr in haloes,
which are generally near halo boundaries, have a median
of 3.

Statistics n
high
str (Hi ) nlow

str (Hi )

Minimum 7 3

Maximum 2831 459

Median 17 3

corresponds to nstr = 7. Hence by definition, for any multistream
halo Hi, highest and the lowest multistream value are n

high
str (Hi) ≥ 7

and nlow
str (Hi) ≥ 3, respectively.

The potential haloes His selected by eigenvalue condition λ3 > 0
have a local maxima of n

high
str (Hi) inside their boundaries. For a large

number of these λ3-halo candidates, the maximum n
high
str is higher

than the bound of nstr ≥ 7, as shown in Table 3 and Fig. 8. For
simulation with 1283 particles, the median of this peak n

high
str (Hi)

value is 17. Unsurprisingly, the global maximum of the multistream
field (nstr = 2831) is also a local maximum for one of the haloes. On
the other hand, the median of lowest multistream value nlow

str (Hi) in
the haloes is 3 (Table 3), which is also the first stage of non-linearity.

An important feature of our halo detection method is that the
detected λ3-haloes do not have a global threshold on nstr or mass
density values. The local conditions may be more suited in identify-
ing haloes in multistream fields, since the multistream environments
around haloes are very diverse. For instance, regions with nstr ≥ 25

Figure 8. Maximum, minimum and median of nstr in each of 4492 halo
candidates. The closed contours of haloes encompass a wide range of multi-
stream values. None of the haloes are in contact with the void region, since
lowest value of min(nstr) is 3. Shaded regions are the 1σ absolute errors in
the number of λ3-haloes.

Figure 9. Multistream environment of a λ3-halo. The contours represent
regions with three different multistream values: outermost nstr ≥ 25 (grey)
is tubular; the blue region has nstr ≥ 75; the inner region is highly non-linear
with nstr ≥ 200. The black dots represent the mass particles belonging to a
λ3-halo, as detected by our algorithm.

are tubular around one of the large haloes in Fig. 9. Even the region
with more than 75 streams does not enclose a convex multistream
region. Whereas, for nstr ≥ 200 the region is convex and the parti-
cles detected by our method reside mostly within. We detect closed
regions in the multistream field as long as they are not in void, and
have at least three foldings in the Lagrangian submanifold.

However, the λ3-halo boundary is different from any constant
multistream contour. That is, from the function nstr(x), convex re-
gions in the four-dimensional function space (−nstr, x, y, z) are
projected on to three-dimensional coordinate space using eigenval-
ues. This is different from projecting ‘iso-multistream’ slice on to
three-dimensional coordinate space. The appendix illustrates the
difference in the two approaches for a one-dimensional function.

The multistream field usually has concentric shells in the regions
of successive gravitational collapses (as explained in Section 2 and
Appendix in Ramachandra & Shandarin 2017). In a specific scenario
of Fig. 9, regions of lower number of streams (nstr = 25 and lower)
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Table 4. Number of haloes, NH, detected by the three halo
finder algorithms in the two simulations of L = 100 h−1 Mpc
with different mass resolutions. Values shown for λ3-haloes
are done in the multistream fields with refinement factor of
2, and smoothing scale equal to the diagnostic grid size.

Np NAHF
H N

λ3
H NFOF

H

1283 3374 4492 5440

2563 24 710 27 929 35 765

are tubular and have regions of higher nstr inside (nstr = 200 and
higher) that is closed. However, this transition from concavity to
convexity of the multistream field does not occur at a constant
value of nstr throughout the field. Instead, it is a local geometrical
change that occurs at λ3 = 0. For the λ3-haloes in our simulation
(Np = 1283), minimum of multistream values nlow

str (Hi) within each
halo has a range of values shown in Table 3 and Fig. 8 – this varies
between 3 ≤ nlow

str (Hi) ≤ 459. Hence a global condition on nstr does
not guarantee that the region is convex.

The particles in a massive λ3-halo shown in Fig. 9 form a
spheroidal structure. The number of particles in similar massive
haloes are in the order of 103–104 particles. For instance, the most
massive halo in the simulation (with Np = 1283) has 5593 particles.
We have chosen a minimum threshold of 20 particles, which is an
artificial parameter (may be cooked up or ad hoc) used by most
halo finder methods. Majority of the λ3-haloes have low number
of particles; median of number of particles per halo is 49. Each
particle in this simulation is approximately 3.65 × 1010 h−1 M�.
Hence the halo mass range varies in the order of 1011–1014 M�.
Combined mass of all the λ3-halo candidates is about 31 per cent of
the total mass in the simulation. In contrast, the haloes occupy just
0.3 per cent of the total volume. Thus the λ3-haloes are extremely
dense structures. Further analysis of halo mass function of λ3-haloes
and comparison with AHF- and FOF-haloes is done in Section 6.

6 C O R R E S P O N D E N C E W I T H OT H E R H A L O
F I N D E R S

Comparison of haloes obtained from AHF and FOF method along
with our geometric analysis of the multistream field reveals sev-
eral interesting features. The number of haloes (NH) with at least
20 particles that were detected by all the algorithms is shown in
Table 4. For both the simulations, FOF detects the highest number
of haloes and AHF detects the least. By applying the Hessian algo-
rithm on multistream fields smoothed at the scale of diagnostic grid
size, ld, we detected around 4500 and 28 000 haloes in simulations
with 1283 and 2563 particles, respectively. The number of λ3-halo
is close to the mean of AHF- and FOF-haloes in each simulation,
i.e. N

λ3
H is around 2 per cent of mean of NAHF

H and NFOF
H for the

Np = 1283 simulation and 8 per cent for the Np = 2563 simula-
tion. We calculated multistream field of both the simulations at a
refinement factor of ll/ld = 2.

The halo mass functions from all three finders are shown in
Fig. 10. For smaller haloes of order of 1013 M�, our method predicts
a slightly higher number of haloes than FOF and AHF. For the most
massive haloes of mass around 1014 M�, the number of λ3-haloes
is fewer than the other two methods, albeit around the range of error
of AHF-haloes.

By observing some of the massive haloes, like the one in Fig. 11,
we find that the λ3-halo particles are within AHF- or FOF-halo
region. This is generally observed in other massive haloes too:

Figure 10. Halo mass functions from AHF-, FOF- and λ3-haloes. The
AHF-haloes are fewer than FOF- and λ3-haloes. The number of haloes
above a mass threshold is binned and taken along vertical axis, normalized
to simulation box volume. Error of 1σ is shown in shaded region.

the large λ3-haloes have fewer particles than corresponding AHF-
or FOF-haloes. For haloes greater than 1014 M�, λ3-haloes have
boundaries slightly within the AHF virial radius. Without unbind-
ing, the FOF-haloes can be very large compared to other methods,
as seen in Fig. 11. This results in a deviation in the λ3-halo mass
function (Fig. 10) from the other two methods over halo mass of
1014 M�. Further discussion of size of the detected λ3-haloes in the
context of smoothing of the multistream is done in Section 4.3.

The particles identified by the AHF as belonging to haloes form
spherical structures due to a series of processes (including virial-
ization) applied to unbind the particles. Inherently, the isodensity
contours at virial levels are not spherical or spheroidal. The virial-
ized AHF-haloes on the web are shown in the top panel of Fig. 12.
However, the spherical AHF-haloes are fewer in number compared
to the other methods.

The popular choice of linking length of b = 0.2, although cor-
responding to virial density, does not ensure that the haloes have
positive curvature. Most algorithms based on the FOF method re-
define the halo boundaries by unbinding the particles outside a
truncation radius. This truncation radius maybe the distance from
the centre of mass of the halo to the farthest particle, rms distance or
an inflection point in the density field (for details on these methods,
see Knebe et al. 2011 and references therein). Some halo finders de-
fine the virial radius, rvir, at the distance from halo centre where the
density is �vir times the background density. In the middle panel of
Fig. 12, the FOF-haloes are shown without any of the above post-
processing schemes. Without any unbinding, the FOF-haloes are
generally larger in size than λ3-haloes in the centre panel of Fig. 12.
For a specific case of a massive halo, Fig. 11, FOF identifies more
particles as bounded than AHF or our algorithm.

In contrast to the AHF and FOF algorithms, our halo method
directly detects a closed, convex surface (approximately the largest
one, since λ3 > 0) for each of the haloes. There is no unbind-
ing procedure on the particles identified within the halo site. The
boundaries of λ3-haloes themselves are not spherical or of any reg-
ular structure, but they are closed convex surfaces, as seen in the
middle panel of Fig. 12.

Haloes from the three finders in Fig. 12 also show other differ-
ences in the halo boundaries. While all the AHF-haloes are spher-
ical by definition, the FOF-haloes are irregular. The boundaries of
the λ3 haloes are not spherical either, but are more compact than
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Figure 11. A large halo that was detected by AHF (top, red), our geometric
analysis in the multistream field (centre, green) and FOF (bottom, blue).
Halo boundary differs for each halo finder method. AHF detects particles
within a sphere of virial radius. FOF-halo is irregularly shaped. λ3-halo
particles are in a non-spherical, yet compact structure.

FOF-haloes and in addition they are convex surfaces by design.
At some junctions of the filaments, FOF identifies a large region
as belonging to single halo, whereas AHF and our algorithm de-
tect multiple isolated haloes. Each isolated λ3-halo region encloses
one maximum of multistream field, thus guaranteeing that multiple
haloes are always resolved. On the other hand, a linking length cut-
off or a constant threshold on scalar fields may enclose regions with
multiple local maxima (for one-dimensional fields, an illustration
of this is shown in the appendix).

For a simulation box with Np particles, each of mass mp, the
halo-mass fractions fh = (

∑NH
i=1 mH(i))/(mpNp) (where mH is the

mass of each halo and NH is total number of haloes) are shown
in a Venn diagram in Fig. 13. For the simulation with Np = 1283

particles, AHF-, λ3- and FOF-haloes occupy 22, 31 and 35 per cent
of the total mass, respectively. Nearly 19 per cent of the total mass

Figure 12. Potential haloes detected by AHF (top), our analysis (centre)
and FOF (bottom). Most of the haloes are embedded in a percolating filament
with nstr ≥ 9. AHF-haloes are spherical by definition. FOF-haloes without
any post-processing are elongated along the filament. λ3-halo candidates are
neither spherical nor elongated. Boundaries of λ3-haloes are well resolved.
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Figure 13. Mass fraction of haloes fh (in per cent) as a detected by the
three finders. Each circle represents fractions of mass of all halo particles
(AHF, FOF or λ3) in the total mass of the simulation box. The particles
concurrently detected as belonging to haloes by different frameworks are
shown in the intersections.

is concurrently detected as belonging to haloes by all the three
algorithms. FOF (with highest halo mass fraction) detects virtu-
ally all the haloes that AHF (with least halo mass fraction). About
3 per cent of the particles classified as belonging to haloes by both
AHF and FOF are not classified as multistream halo particles. Our
method also detected nearly 6 per cent of mass particles as haloes,
which neither FOF nor AHF classify as haloes. For simulation
with Np = 2563 particles, the corresponding halo mass fractions
f AHF

h = 30 per cent, f
λ3
h = 32 per cent and f FOF

h = 42 per cent,
respectively. Thus the mass fraction f

λ3
h remains fairly consistent

over increasing mass resolution, as opposed to AHF and FOF. How-
ever, large fractions of these mass particles, nearly 23 per cent of
the Np = 2563 (increased from 19 per cent for low mass resolution
simulation), are simultaneously detected as belonging to haloes by
different methods, as shown in the right-hand panel of Fig. 13. For
the simulation with Np = 2563, we also see increase in agreement
between any two pairs for halo finders. That is, the mass fraction
of haloes simultaneously detected by λ3 and FOF jumps from 25 to
27 per cent. This correspondence increases from 19 to 23 per cent
for λ3–AHF, and 22 to 30 per cent for FOF–AHF pairs. For the
same pair (in the Np = 2563 simulation), 12.3 per cent of particles
are detected by FOF but not AHF, whereas almost all the particles
(>99.9) for the AHF particles were also detected by FOF. For the
pair λ3–AHF, 9.5 per cent of particles are detected by λ3 but not by
AHF, and 7.3 per cent of particles were detected by AHF but not by
λ3. Finally, for the λ3–FOF pair, 5 per cent of particles are detected
by λ3 but not by FOF, and 15 per cent of particles were detected by
FOF but not by λ3.

On the other hand, looking at the mass particles that were only
detected as haloes by one method, but not by other two, we see that
only the multistream haloes improve (i.e. the disagreement reduces
from 5.9 to 5 per cent) with mass resolution. FOF detects 6.3 and
7.8 per cent of haloes in simulations of 1283 and 2563 particles,
respectively, that were not classified as haloes by the other two
methods. AHF-halo particles, being subset of FOF-haloes for the
most part, show less than 0.1 per cent disagreement with other
finders.

The discrepancies may have to be addressed on a case-by-case
basis. One of the major differences between the haloes detected by
isolating local multistream maxima regions and AHF/FOF is shown
for a large halo in Fig. 11. Without any unbinding procedure, FOF
may detect very large irregular-sized haloes, often consisting of

multiple subhaloes as shown in the bottom panel. On the other
hand, the corresponding AHF-halo (top panel) is smaller spherical
subset of FOF-halo. Furthermore, the λ3-halo in the middle panel
is smaller than both. Our multistream field detection technique se-
lects convex regions with strictly one nstr maxima within them. The
subhaloes detected by FOF (or AHF) may be detected as separate
λ3-haloes. Nevertheless, some of the mass particles between the two
neighbouring haloes (like ones along saddle regions of multistream
fields) will not be included as belonging to the halo. This effect is
seen in halo mass functions (Fig. 10) for large haloes of mass more
than 1014 M� – number density of large λ3-haloes is smaller than
FOF. Similarly it causes a few discrepancies in mass fractions of
potential haloes as well.

Another cause for differences in mass fraction is also rooted
in the definition of haloes. Single-streaming regions are excluded
from our halo search completely. Whereas, FOF and AHF employ
no such mechanism to check for number of gravitational collapses.
Ramachandra & Shandarin (2015) showed that a significant frac-
tion (nearly 35 per cent) of FOF-haloes are in contact with single-
streaming voids. Particles within these regions would not be con-
sidered as potential λ3-halo particles. This also contributes to the
discrepancy in halo mass fraction by different halo finders.

6.1 Haloes in the percolating filament

The excursion set of multistreams above an nstr threshold hosts
a varying number of haloes. We compare the multistream halo
candidates from our geometric method with the AHF and the FOF
method in Fig. 14 for the simulation with Np = 2563. The regions
in the coordinate space are classified into excursion set and non-
excursion set regions based on whether the multistream is over or
under the nstr threshold. In the excursion set we also distinguish the
largest structure from the rest of the structures because the largest
region of the excursion set plays the crucial role in detecting the
transition to percolation. Percolation takes place at thresholds nstr ≤
17 (Ramachandra & Shandarin 2017) to the right from the vertical
dashed line. Based on the coordinates of the halo particles, we check
if a halo is in contact with the largest region of the excursion set or
with rest of the excursion set.

The fraction of haloes in the non-excursion set are shown at
various nstr thresholds in the top panel of Fig. 14. At thresholds
greater than 17 streams (i.e. in non-percolating regime), a large
fractions of the AHF-, FOF- and λ3-haloes are in the non-excursion
set, as shown in the top panel of Fig. 14. The fraction of λ3-haloes is
slightly higher than FOF or AHF in this regime. At relatively high
threshold of, say, nstr = 35, about 65 per cent of the AHF-haloes,
about 75 per cent of the FOF-haloes and about 80 per cent of the
λ3-haloes are in the non-excursion set.

For multistream values lower than the percolation threshold of
nstr ≤ 17 (i.e. in percolating regime) the fractions of AHF-, λ3-
and FOF-haloes in the largest (i.e. percolating) region quickly grow
with decreasing values of the threshold and surpass both the corre-
sponding fractions in the non-percolating regions of the excursion
set and that in the non-excursion set at nstr ≈ 10. The majority of
the haloes belong to the single percolating structure [shown for the
simulation with Np = 1283 in Fig. 12; similar spatial distribution of
SUBFIND haloes (Springel et al. 2001b) in the multistream regions is
shown by Aragon-Calvo, Neyrinck & Silk (2016)] and at nstr = 3,
all the haloes are attached to the web.

At nstr = 3, the filling fraction f1/fES is almost close to unity
(Ramachandra & Shandarin 2017). Most halo candidates from all
three algorithms are at least in contact with the percolating cosmic
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Figure 14. Percentage of haloes detected (in the simulation with Np = 2563)
that are embedded in the non-excursion set (top panel), largest excursion set
segment (centre panel) and the rest of excursion set regions (bottom panel).
Multistream haloes, AHF-haloes and FOF-haloes are shown in green, red
and blue, respectively. Vertical dashed line at nstr = 17 is where percolation
transition occurs.

web. Because of the threshold on nstr in our halo detection method,
the λ3-haloes are not only in contact, but also completely within
this structure.

7 DISCUSSION

The multistream field can have only integral values, moreover these
values must be odd numbers practically at every point, because
the number of streams can be even only on a set of measure zero.
It means that in numerical simulations even values may occur on
extremely rare occasions. We have analysed functional variation of
the scalar field −nstr(x) using Hessian eigenvalues. The Hessian

analysis is generally done for inherently continuous fields since
it requires evaluation of the second derivatives. Geometries of web
structures unveiled by Hessian signatures of smoothed density fields
(such as Aragon-Calvo et al. 2007; Sousbie et al. 2008; Aragon-
Calvo, van de Weygaert & Jones 2010; Bond, Strauss & Cen 2010a;
Cautun et al. 2014 and many more), tidal shear or velocity shear
tensor (Hahn et al. 2007; Forero-Romero et al. 2009; Hoffman
et al. 2012; Libeskind et al. 2013; Cautun et al. 2014, etc.) and
observational data from surveys (Sousbie et al. 2008; Bond et al.
2010a,b; Pahwa et al. 2016, etc.).

Although the multistream field has discrete values by definition,
it may be smoothed for numerical analysis at some scale, typically
the scale of grid length of the field. The resulting Hessian eigenval-
ues approximately characterize the geometry in a four-dimensional
hyperspace of (−nstr, x, y, z). Our only assumption about the shape
of the boundary of a virialized halo is that it is a convex surface.
Therefore the boundary of a halo can be defined as a region with λ1

≥ λ2 ≥ λ3 > 0 since it is a closed convex contour in the (−nstr, x,
y, z) hyperspace, and thus its projection on to the three-dimensional
(x, y, z) space is also closed and convex.

Differentiating a smoothed nstr(x)-field may still pose a problem
in the regions where nstr(x) is close to a constant and therefore the
eigenvalues represent noise about the zero level. Fortunately in the
most of such regions the unsmoothed nstr(x) = 1, therefore they can
be easily eliminated.

Our algorithm for detecting potential DM haloes is unique due
to two important factors: the geometrical attribute and the choice
of field. Local geometrical analysis on the multistream field conve-
niently delineates the non-void structures without any free parame-
ters. The dark halo candidates have compact surfaces that enclose
local maxima of the multistream field. We do not employ non-local
thresholds that several halo finders use (see Knebe et al. 2011, 2013;
Onions et al. 2012 for comparisons of various halo finders). Global
thresholds (like a constant nstr cut-off) might be unsuitable for de-
tecting halo candidates since the halo multistream environments are
generally not categorical. Secondly, the nstr field enables us to mask
out the regions belonging to monostream regions without a heuristic
criteria. Our method guarantees that none of the λ3-halo particles
belong to void region.

We note that present halo finders employ a variety of physical
and numerical processes to identify DM halo candidates. Further-
more, there is no consensus in the definition of haloes itself (see
discussion in Knebe et al. 2011). This is also the cause for the few
differences between FOF-, AHF- and multistream haloes: FOF- and
AHF-haloes only use Eulerian coordinates x(z) – either raw posi-
tions or in the form of mass density. On the other hand, we utilize a
mapping on the Lagrangian submanifold x(q, z) to define the mul-
tistream field nstr(x). The boundaries of haloes in FOF and AHF
are defined by the free-parameter thresholds of linking length and
density, and the halo centre is usually defined as the centre of mass
of the particles. Conceptually, the centre of a λ3-halo is the location
of the local multistream maximum, and the boundary of the halo is
the convex region surrounding it. At least for large haloes like the
one in Fig. 11, this convex region is well within the FOF boundary.

The applicability of non-local thresholds in detecting haloes de-
serves deeper investigation. Lower bounds on overdensity or linking
length thresholds traditionally define halo regions in several halo
finders. Values such as �vir ≈ 180 or b ≈ 0.2 correspond to virial
theorem applied to isolated spherical collapse models. Recently
More et al. (2011) demonstrated that depending on halo environ-
ment, cosmology and redshift the overdensities corresponding to
b = 0.2 have different values. The virial theorem itself is a good
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measure of equilibrium of a system. However, the global thresh-
olds empirically derived from it may not be pertinent to diverse
environment of DM haloes.

The algorithm prescribed in Section 4 lists out a set of physi-
cally motivated steps that filter out the noisy λ3 > 0 regions that
cannot be identified as haloes. The analysis in the simulation of
100 h−1 Mpc side length and 1283 particles, with the multistream
calculated on 2563 diagnosis box, approximately 40 000 labelled
segments satisfying λ3 > 0 criterion in the non-voids were filtered
out by a lower limit on multistreaming regions. One of the possi-
ble improvements in our algorithm would be to use information of
number of flip-flops of each particle (for instance, using methods
prescribed by Shandarin & Medvedev 2014, 2017). Such methods
involving the Lagrangian submanifold may reveal rich substructure
in the haloes.

The requirement that each halo should have closed convex sur-
faces with a multistream maximum inside may identify subhaloes
in large haloes but is too demanding because a halo with sub-
haloes must have saddle points in the nstr field. This may explain
the shortage of massive haloes shown in Fig. 10. Applying a filter
for smoothing the nstr field increases the number of massive haloes
but reduces the number of low-mass haloes. Although our present
method does not currently perform an analysis simultaneously on
multiple smoothing scales, such approaches done in density, log-
normal density, tidal, velocity divergence or velocity shear fields
(see MMF by Aragon-Calvo et al. 2007 and NEXUS+ by Cautun, van
de Weygaert & Jones 2013) have shown interesting multiscale fea-
tures of the cosmic web. Applying a more sophisticated procedure
for linking λ3-subhaloes in a more massive halo will be done in the
follow-up paper.

DM haloes, being localized structures, are uniquely convenient
for our local Hessian analysis. Conditions of λ1 > 0 > λ2 ≥ λ3 and
λ1 ≥ λ2 > 0 > λ3 also give information about curvature. Hessian
eigenvalue analysis at high resolution of multistream fields may be
very interesting in understanding the tubular edges of filaments and
surfaces of walls at smaller scales. However, in this study, Hessian
analysis is only applied to haloes. Walls and filaments span large
volumes in the DM simulations, and we employ topological tools
to investigate them.

8 SU M M A RY

We studied certain geometries of the multistream field in the context
of halo formation. Findings from our analysis are summarized as
follows.

(i) Several aspects of halo formation in the Lagrangian subman-
ifold are considerably different than that of reference models of
spherical top-hat collapse and ellipsoidal collapse. Successive for-
mations of caustics (and consequently multiple velocity streams)
play a crucial role in the process of clustering.

(ii) We present a novel halo detection algorithm for identifying
DM halo candidates in the multistream field. Conditions on the
local geometric indicators of the field are used to ensure that each
closed halo boundary hosts a local multistream maximum. The
positive signs of all principal curvatures (please note that we use
curvatures of −nstr(x) field) inside the boundary also guarantee that
the boundary is convex. Bounds on nstr guarantee that all the halo
particles are in the non-void structure. We also ensure that the halo
regions have foldings in the Lagrangian submanifold in more than
one direction.

(iii) The multistream field within the halo boundaries may be
very diverse. We do not detect halo candidates from a global lower
bound on nstr. Instead, we look for closed convex regions in the
multistream field. For the simulation with 1283 particles, minima
of nstr in each halo vary from 3 to nearly 450. Maxima of nstr in the
halo vary from 7 to about 2800.

(iv) Our multistream halo candidates had a reasonably good cor-
respondence with haloes from AHF and FOF catalogues. One no-
table difference was found with massive haloes. Our algorithm pre-
dicted fewer particles than the FOF method. This is likely to be
caused by the requirement that the multistream field in the regions
of the λ3-halo candidates is convex that may be a reasonable ap-
proximation for simple haloes (i.e. having no subhaloes) but massive
haloes are more likely to have subhaloes and therefore the nstr field
in the corresponding regions must have saddle points and there-
fore cannot be entirely convex. Our study of the smoothing effects
has shown that the number of massive subhaloes tends to increase
with growing smoothing scale that seems to agree with the above
explanation. We will address this problem in the following study.

(v) Halo candidates were mostly embedded on the excursion set
of the multistream field after percolation transition (nstr = 17 in
the simulation with 2563 particles). At lower thresholds (around
nstr = 5–11), the largest percolating structure in the excursion set
hosts most of the haloes.

In conclusion, the Lagrangian submanifold contains dynamical
information of structure formation. We analysed the multistream
field that contains the information of foldings in the submanifold.
In addition, we demonstrated the use of geometrical features of the
multistream field in identifying potential DM halo candidates in
cosmological N-body simulations.
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A P P E N D I X : H E S S I A N S I G NAT U R E S O F TH E
MULTI STREAM FI ELD

Second-order local variations of a scalar field f is described by a
Hessian matrix, whose element in a three-dimensional domain is
given by equation (1). The geometry of the scalar field is classi-
fied by the eigenvalues of the Hessian. The convex regions have at
most one maxima within the (3+1)-dimensional functional space.
Projection of this closed region on to three-dimensional coordinate
space also gives a closed surface in coordinate space. An illustra-
tion of the projection is shown in Fig. A1 for a simpler function f(x)
in one-dimensional domain. The eigenvalue criteria for regions are

simplified: for instance, ∂2f

∂x2 < 0 for convex region. Projection of
these regions on to coordinate space is shown in the shaded regions.
This is different from regions within a contour, which is the pro-
jection of the curve along which the function has a constant value.
Boundaries of these two regions may, but not necessarily, intersect.

In the case of cosmic fields, thresholds like �vir are equivalent
to the green dotted line in Fig. A1. The overdense regions (green
shaded regions) are not constrained to be convex. Similarly, struc-
tures selected based on nstr thresholds do not universally result in
convex structures either. Local geometry can be probed from the
eigenvalue criteria instead, as shown by the red line on the curve
and the corresponding shaded area. The projected structures, albeit
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Figure A1. Projections of regions of f(x) from (1+1)-dimensional function
space on to one-dimensional coordinate space. Convex regions and regions
above a threshold of an arbitrary function f(x) are shown. Both the regions
intersect around a few maxima, but not universally.

convex, may have very small values of f(x) (like the red shaded area
around x = 5). In the framework of identifying potential haloes in
multistream field, multistream thresholds are devised in so that some
of these small peaks detected by the Hessian are not considered as
potential halo sites.
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